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Abstract 11 

Infections linked to Clostridium difficile are a significant cause of suffering. In hospitals, the 12 
organism is primarily acquired through the faecal-oral route as spores excreted by infected patients 13 
contaminate the healthcare environment. We previously reported that members of the C. difficile 14 
group varied widely in their ability to adhere to stainless steel and proposed that these differences 15 
were a consequence of variations in spore architecture. In this study of clinical isolates and spore 16 

coat protein mutants of C. difficile we identified three distinct spore surfaces morphotypes; smooth, 17 
bag-like and “pineapple-like” using scanning electron microscopy (SEM). The frequency of each 18 
morphotype in a spore population derived from a single isolate varied depending on the host strain 19 
and the method used to produce and purify the spores. Our results suggest that the inclusion of a 20 
sonication step in the purification process had a marked effect on spore structure. In an attempt to 21 

link differences in spore appearance with key structural spore proteins we compared the morphology 22 

of spores of CD630 to those produced by CD630 variants lacking either CotE or BclA. While SEM 23 

images revealed no obvious structural differences between CD630 and its mutants we did observe 24 
significant differences (p<0.001) in relative hydrophobicity suggesting that modifications had 25 
occurred but not at a level to be detectable by SEM. 26 

In conclusion, we observed significant variation in the spore morphology of clinical isolates of C. 27 
difficile due in part to the methods used to produce them. Sonication in particular can markedly 28 

change spore appearance and properties. The results of this study highlight the importance of 29 
adopting “standard” methods when attempting to compare results between studies and to understand 30 

the significance of their differences.  31 
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1. Introduction 32 

Clostridium difficile (recently renamed as Clostridioides difficile) is a Gram-positive anaerobic 33 
spore-forming bacterium and is currently the most common cause of antibiotic-associated 34 
nosocomial infection the US and UK [1, 2]. It is estimated that in 2015 the pathogen was responsible 35 
for 500,000 cases and 15,000 deaths in the US, according to the CDC [3]. The most recent data from 36 
the UK reported 12,798 confirmed cases in England in 2016-2017 [4]. While the incidence in the 37 

UK has reduced significantly from a peak of 60,000 cases in 2007, it still remains a significant cause 38 
of suffering. The additional costs associated with treating infected individuals, estimated to be 39 
between £4,000 ($5,500) and £8,000 ($11,000) impose a significant financial burden on healthcare 40 
systems [5]. Alterations in colonic microbiota, usually due to broad-spectrum antibiotic treatment, 41 
increase sensitivity to C. difficile infection and enable the vegetative organism to produce cytotoxins 42 

that destroy host intestinal epithelial cells [6].  43 

In the hospital environment the organism is primarily acquired through the faecal-oral route 44 
contaminating the surrounding healthcare environment [7, 8]. Current measures to prevent the 45 
spread of the pathogen seek to block transmission routes and to limit inappropriate antibiotic usage 46 

[9]. The ability of spores to adhere to surfaces is thought to play an important role in their survival 47 
and spread and in the subsequent infection of susceptible individuals [9, 10]. Adherence to organic 48 
and inorganic surfaces is influenced by a number of factors, which include hydrophobicity and the 49 

presence of surface structures, such as appendages [11] and the outer spore layer known as the 50 
exosporium [12-15].  51 

C. difficile shows significant variation within the species. There are over 100 existing ribotypes with 52 

each ribotype being a broad genetic group based on rRNA similarities [16]. Some ribotypes, such 53 
as the 027 ribotype are associated with higher virulence, and have been subject of study. In an earlier 54 
study we showed that clinical isolates of C. difficile varied widely in their inherent hydrophobicity 55 

and in their ability to adhere to stainless steel. These differences which were independent of ribotype, 56 

appeared to be linked to the presence of an exosporium-like layer [17]. Further characterisation of 57 
the spore morphotypes and particularly the exosporium layer was necessary to understand the 58 
variation both between different ribotypes and within the same ribotype, which became the focus of 59 

this research.  60 

The exosporium is a loose outer layer, which surrounds the spores produced by some, but not all, 61 

Bacillus and Clostridium species, [12, 13, 18-20]. In the case of Bacillus cereus and anthracis 62 
species it forms a loose “baggy” layer surrounding the spore with hair-like appendages projecting 63 
from the surface [21]. Studies have reported that the outer spore layer of clinical isolates of C. 64 
difficile differ markedly [22]. For some isolates the exosporium appears to be tightly bound to the 65 
spore coat, which in others forms a bag-like structure [14, 22-24]. Several proteins were found to be 66 

essential for C. difficile spore outer layer assembly, including the BclA, Cot and CdeC families of 67 

proteins [25]. To add to our understanding of these proteins, we looked contribution of individual 68 

known spore structural proteins to spore surface morphology.  69 

The analysis of spore surface structure is further complicated by the fact that there is no common 70 
spore production method making it difficult to compare the results between studies. To ensure that 71 
the results are relevant to the real-world properties of C. difficile virulence, it is important that spores 72 

grown in the lab are representative of the spores in the clinical environment. If the spore preparation 73 
method alters the outer spore layer, the spore properties could change significantly. For this reason, 74 
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we also sought to characterise the spore surface morphology depending on the method used to 75 
produce the spores to see if it had an effect on their appearance and surface properties. 76 

 77 
2. Materials and Methods 78 

2.1 Strains and growth conditions. The clinical isolates of C. difficile used in this study are shown 79 
in Table 1 and were obtained from the National Anaerobic Reference Unit, Cardiff, Wales. The 80 
CD630 strain and its mutants by insertional inactivation were obtained from the laboratory of Prof. 81 
Simon Cutting, University of Royal Holloway. The R20291, DS1748 and DS1813 originated from 82 
the National Anaerobic Reference Unit, Cardiff, Wales. Unless otherwise stated, all organisms were 83 

stored as spores at 4°C. Cultures were incubated at 37°C in a BugBox Plus anaerobic workstation 84 
(Ruskin Technology Ltd., Bridgend, United Kingdom) using an 85% nitrogen, 10% carbon dioxide, 85 
and 5% hydrogen gas mix.  86 

2.2 Media composition 87 

Wilson’s broth [26] contained the following per litre: 90g Trypticase peptone, 5g Proteose peptone, 88 

1 g Ammonium sulphate, 1.5 g Tris. The pH was adjusted to 7.4 following autoclaving. BHIS agar 89 
[24] contained the following: BHI agar + 5g/l yeast extract + 0.1% L-cysteine. For CD630 structural 90 
mutants, this agar was further supplemented with 5mg/ml erythromycin. Unless otherwise stated, 91 
all reagents were purchased from Sigma Aldrich, Dorset, UK. Unless otherwise stated, the centrifuge 92 
used in the purification steps was an Eppendorf 5417R centrifuge. 93 

2.3 Spore production and purification methods 94 

Lawley’s method. The following method, based on the work of Lawley and colleagues [14], was 95 

employed to produce C. difficile spores. To produce spores, a single colony harvested from a BHI 96 

agar plate was used to inoculate 25ml of Wilson’s broth, which was then incubated for 10 days at 97 

37°C in anaerobic conditions.  98 

To purify the spores, the cultured broth was centrifuge at 16,800 g for 15 min using a Beckman 99 
Coulter J-20 centrifuge, the supernatant was discarded, and the pellet was resuspended in 1.5ml 100 

distilled water. This washing step was repeated 4 more times using an Eppendorf 5417R centrifuge 101 
and the final pellet was resuspended in 1.5ml PBS. The spore suspension was then subjected to 102 
sonication for 90s using a tapered probe set at an amplitude of 35%, in a Soniprep 150 sonicator. 103 
Following sonication, the sample was mixed with 1.5ml of 10% Sarkosyl and incubated for 1 hour 104 

at 37°C with agitation. Samples were then pelleted at 3,400 g for 10 min and the pellets were 105 
resuspended in 1.5ml of PBS + 0.125 M Tris buffer (with pH 8) + 10mg/ml lysozyme and incubated 106 
overnight at 37°C with agitation. The suspensions were then sonicated again as described above, but 107 
with 1% Sarkosyl instead of 10% Sarkosyl prior to the 1-hour incubation. 108 

The suspensions were then layered onto a 50% sucrose solution and centrifuged at 3,400 g for 20 109 
min. The pellets were resuspended in 2ml of PBS containing 200 mM EDTA, 300ng/ml proteinase 110 

K + 1% Sarkosyl and incubated for 1 hour at 37°C with agitation. The suspensions were then layered 111 
on 50% sucrose and centrifuged as described above. The resulting pellets were washed with sterile 112 
distilled water (SDW) twice and finally resuspended in SDW and stored at 4°C. 113 

Sorg’s method. Described by Sorg & Sohenshein [6, 24], this method differs from that of Lawley 114 
in that the spores are produced on agar rather than in broth and the purification process is less 115 
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complex. Bacteria were incubated in BHIS agar anaerobically at 37°C for 4 days. Following 116 
incubation, cells were collected from the surface of the plate, using a 10µl inoculating loop and 117 

suspended in 1ml SDW in a sterile Eppendorf tube. The suspension was incubated at 4° C overnight 118 
and then centrifuged at 5000g for 5 min, the supernatant was discarded and the pellet was 119 
resuspended in 1ml ice cold water. This washing step was repeated 4 times. The suspensions were 120 
then layered onto a 50% sucrose solution and centrifuged at 3,400 g for 20 min and the pellet was 121 
resuspended in 1ml ice cold water. The suspension was then centrifuged at 5,000 g for 5 min, and 122 

the pellet was resuspended in 1ml ice cold water. This washing step was repeated 4 times. The 123 
resulting final pellet was resuspended in SDW and stored at 4°C. 124 

Heeg’s method. The following method is based on the work of Heeg and colleagues [23]. Bacteria 125 
were incubated on BHIS agar further supplemented with 250µg/ml cycloserine and 8µg/ml cefoxitin 126 

anaerobically at 37°C for 4 days. Following incubation, cells were collected from the surface of the 127 

plate, using a 10µl inoculating loop and suspended in 1 ml SDW in a sterile Eppendorf tube. The 128 

suspension was incubated at 4°C overnight and then centrifuged at 16,000 g for 4 min, with the 129 
supernatant and top layer of the pellet carefully removed after centrifugation. The rest of the pellet 130 
was resuspended in SDW and the washing step repeated 10 times. The resulting final pellet was 131 
resuspended in SDW and stored at 4°C. 132 

Counting viable spores. To count the number of viable spores produced in all three of the above 133 

methods, a serial dilution and drop count was used. The spore suspension was serially diluted, 134 
mixing 10µl of the suspension with 10µl of SDW, with steps from 10-1 to 10-8 dilution. From each 135 

of the dilution steps, three 10µl drops were placed on a BHI agar plate supplemented with 0.1% 136 
sodium taurocholate (Joshi et al., 2012). Based on the number of colonies which were seen after a 137 
48-h incubation, the original concentration of viable spores was calculated. 138 

2.4 Visualisation of spores by light microscopy 139 

A standard Gram staining method was used to stain the spores [27]. 10µl of spore suspension was 140 
placed on a glass slide and dried under a flame. The slide was subsequently flooded in crystal violet, 141 

Gram’s iodine and safranin for up to 30 seconds in each step. Slides were washed with water 142 
following crystal violet and Gram’s iodine flooding, and with ethanol following Safranin. 143 
Vegetative cells, if any, were stained and would appear as long purple rods. A Leica DM2500 144 
microscope was used to visualise the spores, using x1000 magnification and oil immersion. Spores 145 

were then visualised using phase contrast settings in the microscope, with the slide under oil 146 
immersion.  147 

2.5 Determining Spore Suspension Purity 148 

Spore suspensions were gram-stained as described above. The ratio of vegetative cells (determined 149 

by gram staining) to spores (determined by phase contrast) was determined for 3 separate fields of 150 
view for each sample. The fields of view were chosen to contain at least 100 objects (spores or cells), 151 
but without clumping which could disrupt counts. 152 

2.6 Visualisation of spores by Scanning Electron Microscopy (SEM) 153 

A 10 µl aliquot of the purified spore suspension from stock was dried on a glass slide. The slide was 154 
then coated with a film of Gold-Palladium using the Agar Scientific Sputter Coater in three 15-155 
second coating runs, using argon plasma. SEM images were captured using a Zeiss 1540 Crossbeam 156 
Scanning Electron Microscope using Inlens and SE2 imaging modes. Spore dimensions were 157 

http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
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measured from SEM images using ImageJ software. To determine spore characteristics, 30 158 
individual spores were used from at least 6 fields of view. The analysis of spore samples by electron 159 

microscopy was undertaken in the Cardiff School of Engineering. 160 

2.7 Hydrophobicity assay 161 

The Microbial Adhesion to Hydrocarbons (MATH) test was employed to determine the 162 
hydrophobicity of spores examined in this study [28]. A 3ml spore suspension in distilled water with 163 
an OD600 0.4-0.6 was prepared in a McCartney bottle. OD measurements were made using an 164 
Ultrospec 1100 pro UV/Visible spectrophotometer, (Biochrom, Cambridgeshire, UK). A 300µl 165 
aliquot of hexadecane was then added to the suspension and vortex mixed (VortexGenie, Fisher 166 

Scientific, UK) for 1 min at room temperature. The mixture was incubated for 15 min at room 167 
temperature, allowing the layers to separate, with hexadane and hydrophobic components of the 168 
suspension rising to form to form the top layer, while the aqueous layer settled below with the 169 

hydrophilic components of the suspension. After this, the OD of the aqueous (bottom) layer was 170 
measured. The resulting decrease in the  OD of the aqueous layer, compared to the the OD before 171 
the addition of hexadecane, was recorded. 172 

2.8 Sonication 173 

To determine the feasibility of removing the exosporium, we adapted the methods of Escobar-Cortes 174 
[29] and by Alyousef [30] which showed that intense sonication can remove the exosporium. For 175 
this investigation, 1ml spore suspensions with 107 spores each, were treated with 16 sonication 176 
cycles of sonication of 15µm amplitude for 50 sec each, and cooling on ice for 1 min between each 177 

cycle (Soniprep 150 sonicator, exponential probe). 178 

2.9 Statistical tools 179 

For simple statistical tools, including t-test and standard deviation, Microsoft Excel was used. For 180 

statistical tests where more than two data sets were compared, ANOVA tests were done using 181 
Graphpad Prism 5.0. 182 

 183 

3. Results 184 

3.1 Selection of the optimal growth and spore purification method 185 

To support our studies to characterise differences in spore structure between different clinical 186 
isolates of C. difficile we first sought to identify a method which maximised spore yield and purity. 187 

As can be seen from Figure 1, both the Lawley and Sorg methods yielded similar levels of purified 188 
spores at 107–109 cfu/ml (per 25 ml of broth for Lawley’s method and per agar plate with 25 ml of 189 

agar for Sorg’s method) while the Heeg method only yielded 103 –104 cfu/ml per 25 ml agar plate. 190 

To determine the reason for the low spore cfu when using the Heeg method, we compared spore 191 
numbers at different stages of the culture and purification process. Both the Lawley and Sorg 192 
methods produced spore counts ranging from 107–109 cfu/ml following primary culture and lost 193 

47.5% and 40% of these spores, respectively, following purification. The final spore suspensions 194 
were of high purity, with more than 99% spores (Figure 2 A-B). In contrast, the Heeg method yielded 195 
only 104 cfu/ml upon primary culture of which 52.3% were lost during purification. The final 196 

suspension, when observed by light microscopy, was mostly composed of vegetative cells and debris 197 

http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
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(Figure 2C). Overall, there was no statistically significant difference in percentage spores lost 198 
between the 3 methods (p=0.09). The results suggest that the poor spore yield using the Heeg method 199 

was due to a failure of the individual bacterial strains to produce spores in the cycloserine- and 200 
cefoxitin-enriched agar.  201 

3.2 Physical dimensions of spores 202 

The physical dimensions of the spores produced using the different production and purification 203 
methods varied markedly, ranging from 1.2 µm to 2.6 µm in length and from 0.7 µm to 1.15 µm in 204 
width (Figure 3). To determine if any of these results were significantly different, we compared the 205 
results obtained for each isolate produced using the Lawley and Sorg methods using Tukey’s 206 

multiple comparison test. Overall, spores produced using the Lawley method were larger than the 207 
spores produced with the Sorg method. This difference was not significant for the strains DS1813 208 

(p > 0.05) and CD630 but was significant for strains 1748 (p = 0.011 for length) and R20291 209 

(p<0.001 for length). 210 

To determine if the different spore production and purification methods had an effect on surface 211 

properties, spores produced by different clinical isolates of C. difficile were visualised by SEM. As 212 
can be seen from Figure 4, spores of different clinical isolates produced using the same method 213 

varied in their appearance. It is notable that despite belonging to the same “hypervirulent” 027 214 
ribotype, the spore forms of DS1813 and R20291 differed markedly in appearance (Figure 4 C-F).  215 

3.3 Effect of the spore purification method on spore structure 216 

Next, we determined if the different spore production and purification methods had an effect on the 217 

overall appearance of spores of the same clinical isolate. While the different methods had no visible 218 
effect on the structure of spores produced by DS1813 this was not the case for R20291 spores. 219 

Spores of the R20291 strain purified using the Sorg method differed in structure from those purified 220 
using the Lawley method. The majority of spores (97%) purified using the Sorg method were 221 

surrounded by a loose layer. In contrast only 44% of the spores produced using the Lawley method 222 
were surrounded by a loose layer, likely due to the extra sonication and proteinase steps in the 223 
purification method. We also observed what appeared to be filaments, approx. 80 nm in width, 224 

extending from the spore surface (Figure 4F). The morphology of spores produced by DS1813 also 225 
varied depending on the production and purification method. 70% of the spores purified with the 226 

Sorg method had “ridge” structures as seen on Figure 4C. In spores purified with the Lawley method, 227 
only 21% showed these features (data not shown). For DS1748, the ratio of pineapple-like spores 228 
was higher when produced using the Sorg method (75% of those observed), and higher for DS1748 229 
when produced using the Lawley method (99%). The ratio of spores with a bag-like layer was higher 230 
for both R20291 (98%) and CD630 (86%) when using the Sorg method. 231 

To determine if spore coat protein mutants of CD630 differed in their appearance when produced 232 
using the two methods they were also subjected to SEM. However, we observed no obvious 233 
differences in the appearance (Figure 5) of the spore form of the various BclA and CotE mutants 234 
when compared to the parent strain. 235 

3.4 Sonication of C. difficile strains 236 

To obtain data on how different strains are changed by sonication and whether the sonication step 237 
in Lawley’s method might have affected spore surface, the four strains purified with the Sorg method 238 

http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
http://en.wikipedia.org/wiki/Microlitre
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were sonicated and then observed using SEM. Sonication resulted in the loss, to varying degrees, of 239 
the outermost surface features of the spores of all four clincial isolates (Figure 6). Sonication of the 240 

630 and R20291 strains resulted in the removal of the loose layer which surrounds the untreated 241 
spore ( Figure 4, blue arrows) in 49 and 85% of the total observed spores respectively. In the case 242 
of DS1813 the disruption was less marked with the loss of surface “ridge” stuctures from 39% of 243 
the spores while spores of DS1748 saw the least disruption with only 20.3% change (Figure 7). 244 
Sonication of DS1813, CD630 and R20291 yielded spores similar in appearance to those produced 245 

using the Lawley method. This was not the case for the 1748 strain, where the changed were stripped 246 
of the outermost layer, which could be observed separately from the spore (see example Figure 8).   247 
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3.5 Hydrophobicity of C. difficile spores 248 

To determine the effect of the individual purification methods on spore properties, the commonly 249 
used Microbial Adhesion to Hydrocarbons (MATH) test was used. The relative hydrophobicities 250 
(RH) of the different strains are shown on Figure 7. Comparison of the RH values of the spores 251 
produced using the Lawley method revealed no statistically significant difference (ANOVA p=0.67), 252 
suggesting that all four strains possessed similar levels of hydrophobicity.  253 

In contrast, when the spores form of the same clinical isolates were produced and purified using the 254 
Sorg method, we observed a statistically significant difference in RH values across all of the strains 255 
(ANOVA p=0.0001), with the spores of the DS1748 and DS1813 strains having the highest 256 

hydrophobicity and the R20291 strain having the lowest.  257 

Sonication of the Sorg method-produced caused a significant reduction in RH values of all isolates 258 

when compared to the unsonicated Sorg spores (p<0.0001), suggesting that sonication had caused 259 
changes in spore surface properties. For the DS1813, CD630 and R20291, the sonicated strain also 260 
had lower RH values than the spores purified with Lawley method. 261 

 262 

3.6 Structural mutant hydrophobicity 263 

The hydrophobicity of the spores of the CotE and BclA insertional inactivation mutants was 264 
determined and compared to that of clinical isolates. Previous studies [32] have shown that BclA 265 
mutants have altered spore hydrophobicity, but the difference in methods made comparisons with 266 

isolates in our study not possible, so the hydrophobicity measurements were done with spores 267 
purified using the Sorg method. 268 

As can be seen from in Figure 9, the knockout strains do show different hydrophobicities compared 269 
to the isogenic strain of CD630. The differences between CD630 strain mutants are significant 270 
overall (p=0.0004). The greatest differences were seen in the CotEn and BclA3 strains. CotEn is 271 

significantly higher in hydrophobicity than other strains (p=0.001). BclA3 was the lowest in 272 
hydrophobicity than other strains (p=0.006).  273 

  274 
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4. Discussion 275 

Ideally a spore production method should minimize the damage to the final spores so that they mirror, 276 

as much as possible, the native form encountered in the context of disease. This is particularly 277 

important for a bacterium such as C. difficile which as a species exhibits markedly genomic plasticity 278 

due to horizontal gene transfer [33]. Thus, while isolates may share the same core genes and thus 279 

belong to the same genotype (depending on how it is defined) they may differ markedly in 280 

characteristics such as spore surface structure.  281 

When we compared the spores produced by C. difficile belonging to the same hypervirulent ribotype 282 

(027) we observed marked difference in spore ultrastructure which was affected by the spore 283 

production method. R20291 spores produced two distinct morphotypes, smooth and surrounded by 284 

a bag-like layer. The relative proportion of each morphotype was influenced by the spore production 285 

method. While the majority of R20291 spores produced using the Sorg method were surrounded by 286 

a bag-like layer this number reduce to less than half using the Lawley method suggesting some form 287 

of physical disruption.  288 

A similar change in the morphotype frequency was observed with DS1813 (Ribotype 027) and 289 

CD630 (Ribotype 012) suggesting that some aspect of the Lawley purification method may have an 290 

adverse effect on structural integrity. Unlike the Sorg method the Lawley purification protocol 291 

includes a sonication step. Independent sonication of the spores used in this study resulted in a higher 292 

proportion of smooth spores suggesting that this process may have contributed the shift in spore 293 

morphotype observed using the Lawley method.  It must be noted that despite the sonication and 294 

loss out other layers feature, spores isolated using the Lawley method are slightly larger. The larger 295 

size of the spores produced during the Lawley method could be due to both differences in the media 296 

composition and due to the fact that it was a liquid culture, as opposed to growth on an agar. 297 

Pineapple-like structures on the surface of C. difficile spores were reported previously [39], where 298 
it was thought to be a common feature among C. difficile spores in general. These features may also 299 

be related to the “bumps” observed using TEM on the surface of the spores of TL176, TL178 and 300 
R20291 strains of C. difficile which have been linked to the “thick” exosporium morphotype [35]. 301 

However, unlike Pizarro-Guajardo et al., we did not observe the presence of short hair-like structures 302 
surrounding our spores but did observe long hair-like features projecting from R20291 spores 303 
produced using the Lawley method. Overall, this illustrates how varied C. difficile spore morphology 304 
is varied between different clinical isolates and can present different phenotypes that can depend on 305 

the isolate and the methods used to culture and purify them. The individual results cannot be 306 
compares due to the major difference in methods of growth and isolation of C. difficile (summarised 307 
in Table 2). 308 

As was the case for spore morphology, spore hydrophobicity also varied depending on the clinical 309 

isolates and the methods used to produce them. While spores from different isolates produced using 310 

the Sorg method varied markedly no such differences was seen when the spores were produced 311 

using the Lawley method. Sonicated of Sorg produced spores resulted in a decrease in the 312 

hydrophobicity of all of the isolates supporting the supposition that this step in the Lawley 313 

purification process could be responsible for these differences. This is line with previously reported 314 

results for the CD630 strains of C. difficile [29]. In this study we confirm this is also the case for 315 
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other strains of C. difficile and for “pineapple-like” spores the outermost layer can be observed 316 

separately from the rest of the spore. This opens up possibilities for further study of the composition 317 

and structure of this layer alone. 318 

Why is this important? Studies have shown that C. difficile R20291 spores with a defective outer 319 

bag like adhere more efficiently to Caco-2 cells than their intact counterparts suggesting a potential 320 

role in adherence to epithelial surfaces and in the transmission of CDI [34]. Removal of the outer 321 

layer has also been shown to increase the ability of C. difficile spores to germinate [35]. If we are to 322 

fully understand the contribution of individual spore structures to the virulence of a particular isolate 323 

of C. difficile it is important, given the inherent diversity of the species, to employ methods which 324 

do not alter the structural integrity of the spores we are attempting to study. 325 

For this reason, in this study we compared the appearance and hydrophobicity of spores produced 326 

using the Sorg method. The bag-like layer surrounding spores of R20291 and to a lesser extent 327 

CD630 were similar in appearance to that seen surrounding spores of the Bacillus cereus family 328 

[25]. In B. cereus the layer is hexagonal in structure around 8 nm in diameter and is composed of 329 

two proteins, CotY and CotE [21], with filament of a glycoprotein called BclA protecting from the 330 

surface [36].  331 

The composition of the C. difficile outermost layer is not as well characterised as that of B. cereus, 332 

but in the case of R20291 this layer is based on two cysteine-rich proteins; CdeC and CdeM [37]. 333 

They are similar in nature to the B. subtilis proteins CotY and CotZ. As with B. cereus, the filaments 334 

projecting from the surface of C. difficile spores are composed of BclA homologs. In both B. cereus 335 

and C. difficile the filaments have been implicated in the attachment of the spore to bind to intestinal 336 

cells [38]. This attachment may be aided by the flexible nature of the bag-like layer which assists 337 

by maximising the contact area between the spore and cell surface. 338 

The second major outer spore structure observed in this study, the “pineapple-like” layer, had 339 

previously been reported to be a common feature of C. difficile spore isolates [39]. In TEM studies 340 

this layer was observed to be electron dense and tightly bound to the inner spore. The structure of 341 

this layer to date has not been characterised. 342 

 It is possible that the “pineapple-like” structure may contribute to hydrophobicity, as they increase 343 

surface roughness and decrease wetting. Solid features of similar size to the “bumps” on the spore 344 

surface (125 nm diameter) are present on natural hydrophobic surfaces were they were shown to 345 

contribute to the hydrophobic properties [40].  346 

In an attempt to determine the contribution of individual known spore structural proteins to spore 347 

surface morphology, we compared the appearance of wildtype CD630 spores to variants lacking 348 

individual structural spore proteins. Our failure to observe the structural deficiencies described in 349 

earlier work is probably a reflection of the fact that we employed SEM rather than TEM to visualise 350 

the spores [30, 31]. While SEM does not provide the level of magnification and resolution which 351 

can be achieved using TEM is does provide more information about the 3D shape of the structure 352 

which is extremely useful when attempting the characterise the surface architecture of spores. 353 
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In contrast to the data obtained from electron microscopy, our hydrophobicity results support the 354 

hypothesis [33] that the loss of the C. difficile homologs of BclA have an effect on surface chemistry 355 

and are similar to previously reported results. It is possible that the removal of this protein unmasked 356 

polar groups on the spore surface, without damaging the spore integrity. In contrast, the loss of the 357 

CotE homolog also failed to impact on hydrophobicity suggesting that the wild type protein is not 358 

surface exposed. 359 

In conclusion, we have seen a variety we observed significant variation in the spore morphology of 360 

clinical isolates of C. difficile, due in part to the methods used to sporulate and purify them. Three 361 

distinct spore morphotypes were identified and the differences in these morphotypes were connected 362 

to different spore hydrophobicity. Sonication in particular can significantly change spore appearance 363 

and properties by removing the outermost layer of the spore. Finally, this work highlights the need 364 

for a common “standard” growth and purification method for C. difficile spores to allow for 365 

comparisons of results obtained by different research teams.  366 
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8. Tables 498 
 499 

Table 1. Strains of C. difficile used in this study. 500 

Strain Ribotype Description 

R20291 027 Hypervirulent ribotype, Stoke-Mandeville strain [17] 

DS1813 027 Relatively high hydrophobicity of 87%, no visible exosporium [17] 

DS1748 002 Relatively low hydrophobicity of 12% [17]  

CD630 012 The first isolate of C. difficile to be genome sequenced [14] 

CD630 BclA1
−
 012 Deletion mutant of BclA homolog 1 [31] 

CD630 BclA2
−
 012  Deletion mutant of BclA homolog 2 [31] 

CD630 BclA3
−
 012  Deletion mutant of BclA homolog 3 [31] 

CD630 CotE
N−

  012 N-terminal deletion mutant of spore coat protein CotE [32] 

CD630 CotE
C−

  012 C-terminal deletion mutant of spore coat protein CotE. [32] 

 501 

Table 2. Methods used in studies observing “pineapple-like” C. difficile Spores 502 

Study Imaging Source of 

strains 

Incubation media Incubation 

Duration 

Purification of 

Spores 

Rabi et al., 

2017  

SEM and 

TEM 

O'Connor et al., 

2006 [41] 

Carter et al., 

2007 [42] 

Trypticase Yeast 

broth + with 0.1% 

sodium 

thioglycolate 

10 days Manual removal 

of top layer of 

pellet over 

multiple washes 

Girinathan 

et al., 2017 

[43] 

TEM Stabler et al., 

2009 [44] 

BHIS Agar 4 days Density 

Gradient with 

50% sucrose 

Pizarro-

Guajardo et 

al., 2016 

TEM Laboratory 

strains 

3% Trypticase soy 

–0.5% yeast 

extract agar 

5 days Density 

Gradient with 

Nicodenz 

This study SEM National 

Anaerobic 

Reference Unit, 

Cardiff, Wales 

BHIS Agar 4 days Density 

Gradient with 

50% sucrose 

SEM Wilson’s Broth 10 days Density Gradian 

+ Sonication + 

Proteinase K 

 503 

  504 
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9. Figures and Legends 505 

 506 

 507 

Figure 1. The initial yield of spores after growth in media and final yield of purified spores of clinical 508 
isolates of C. difficile obtained using three different production and purification methods (n=3).  509 

 510 

 511 

Figure 2. Phase contrast microscopy of C. difficile DS1748 spore suspension following purification 512 
using the Lawley method (A), Sorg method (B) and Heeg method (C). When purified with Lawley 513 

method or the Sorg method, the suspension is composed of mostly phase bright spores which can 514 
be clearly observed. However, with the Heeg method the suspension is mostly composed of 515 

vegetative cells and debris, while spores are not visible under phase contrast. 516 

 517 
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 519 

Figure 3. The effect of production and purification methods on the physical dimensions of spores of 520 
four C. difficile isolates determined from SEM micrographs. 30 spores of each strain were measured. 521 
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Figure 4. Surface morphotype variability of C. difficile depending on clinical isolate (rows) and 526 
method of spore growth and purification (column). Arrows show examples of different morphotypes. 527 

Orange arrows show examples of “pineapple-like” spores. Blue arrows show spores with an 528 
associated with a bag-like layer. White arrows show plain smooth spores. Black arrows show 529 
filaments extending from spores. Images are representative of a set of 30 fields of view for each 530 
strain.  531 

 532 

 533 

Figure 5. Spores of mutant strains of C. difficile CD630. No clear differences in surface feature was 534 

seen. Images are representative of a set of 10 fields of view for each strain.  535 

 536 

CotEc CotEn 

BclA3 BclA2 BclA1 

CD630 w.t. 

w.t 



21 
 

 537 

Figure. 6. Change in the relative proportion of spores with a recognisable feature (pineapple shape 538 
or loose exosporium) with and without intense sonication (n=3, 50 spores per repeat). The reduction 539 

is significant for all 4 strains (p=0.005 for 1748; p=0.004 for 1813; p<0.001 for R20291; p<0.001 540 
for 630).  541 

 542 

 543 

Figure 7. Relative hydrophobicities (RH) of spores of four clinical isolates C. difficile spores 544 
produced and purified using three different methods.  545 
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 546 

 547 

  548 

Figure. 8. Fragments of the outer “pineapple” layer of sonicated DS1748 spores are indicated by 549 
yellow arrows, and a “smooth” 1748 spore can see also be seen. These images are representative of 550 
10 fields of view. 551 

 552 

 553 
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  554 

Figure. 9. The relative hydrophobicity of spores of C. difficile strain CD630 and its mutants deficient 555 
in a structural protein. All spores produced and purified using the Sorg method (n=3 replicates of 556 

each strain).  557 
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