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Bone Marrow-Derived Mesenchymal Stem
Cells-Derived Exosomes Promote Survival of
Retinal Ganglion Cells Through miRNA-Dependent
Mechanisms

Ben MEeaD, STanisLAv TOMAREV

Key Words. Mesenchymal stem cells ¢ Retinal ganglion cells « Exosomes ¢ Optic nerve crush ¢
Neuroprotection

ABSTRACT

The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness
and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no
clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuro-
protective and axogenic effects on RGC in both of the aforementioned models. Recent evidence
has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing pro-
teins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate
exosomes from bone marrow-derived MSC (BMSC) and test them in a rat optic nerve crush (ONC)
model. Treatment of primary retinal cultures with BMSC-exosomes demonstrated significant neu-
roprotective and neuritogenic effects. Twenty-one days after ONC and weekly intravitreal exosome
injections; optical coherence tomography, electroretinography, and immunohistochemistry was
performed. BMSC-derived exosomes promoted statistically significant survival of RGC and regener-
ation of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes
successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA,
demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after
knockdown of Argonaute-2, a key miRNA effector molecule. This study supports the use of
BMSC-derived exosomes as a cell-free therapy for traumatic and degenerative ocular disease.
© STEM CELLS TRANSLATIONAL MEDICINE 2017;00:000-000

SIGNIFICANCE STATEMENT

The dysfunction and loss of retinal ganglion cells (RGC), such as seen with glaucoma and trau-
matic optic neuropathy is a major cause of blindness. While mesenchymal stem cells (MSC)
have a demonstrable neuroprotective effect at protecting RGC, ideally the active components
would be purified and delivered in a cell-free manner. Here we show that exosomes, small
extracellular vesicles secreted from MSC can be easily purified from MSC and, when delivered
into a rodent model of optic nerve crush, protect RGC from death and preserve function.

traumatic (optic nerve crush; ONC) and degenera-
tive (glaucoma) diseases. Loss or dysfunction of
RGC is a leading cause of irreversible blindness and
the development of neuroprotective and axogenic
therapies is a focus of research. We and others
have demonstrated the therapeutic efficacy of
MSC in models of ONC and glaucoma, in vitro and
in vivo [Reviewed in [6]]. In retinal cultures, MSC
proved neuroprotective and neuritogenic for
injured RGC [7, 8]. After ONC, MSC transplanted
into the vitreous are able to promote significant
neuroprotection of RGC and moderate regenera-

INTRODUCTION

Mesenchymal stem cells (MSC) are a self-
replicating multipotent stromal cell isolated from
mesenchymal tissues such as bone marrow
(BMSC) [1], adipose [2], dental pulp [3] and umbili-
cal cord blood [4] as well as other tissues. MSC
have demonstrated therapeutic efficacy at promot-
ing the protection and regeneration of central nerv-
ous system (CNS) neurons, which lack the capacity
to regenerate, or be replaced following loss. The
retina is an outgrowth of the brain and is thus part
of the CNS and subject to the same regenerative

limitations [5]. Retinal ganglion cells (RGC) are the
sole projection neurons and their axons make
up the optic nerve, making them susceptible to

tion of their axons [9-12]. In animal models of glau-
coma, MSC promote the survival of RGC and their
axons and preserve their function [13-16].
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Exosome-Mediated Retinal Repair

Although the efficacy of MSC is well established, the mecha-
nism by which these cells protect RGC and promote regeneration
of their axons is poorly understood. Evidence strongly suggests a
paracrine-mediated effect with secreted factors being necessary. In
culture, MSC are efficacious when cocultured (yet physically sepa-
rated) from the injured retinal cells [7]. The assumption that neuro-
trophic growth factors (NTF) are important is corroborated both by
the expansive NTF rich secretome of MSC and by the attenuated
neuroprotective and neuritogenic effects when particular NTF
receptors are inhibited [7, 10]. Secreted NTF such as platelet-
derived growth factor and brain-derived neurotrophic factor have
been shown to be important to the neuroprotection of RGC [7, 17]
whereas MSC mediated-neuritogenesis depended more on nerve
growth factor [7]. Other secreted factors, such as Wnt3a have
been implicated in the neuroprotective effect of MSC on CNS neu-
rons [18]. Transplantation into the vitreous of healthy and diseased
eyes yields no evidence of differentiation or migration/integration
into retinal tissue [9, 10, 13, 15, 19], strongly implicating paracrine
over cell replacement as the dominant mechanism.

Following on from this established paracrine-mediated mecha-
nism, mounting evidence exists for the potential of MSC to benefit
nearby injured tissues through the secretion of exosomes. Exo-
somes, described over 30 years ago [20], are endocytic-derived
structures composed of proteins, lipids, and mRNA surrounded by
a phospholipid bi-layer that are secreted into the extracellular
space. Their size ranges from 30 to 100 nm although typically in
the literature they are grouped with another class of extracellular
vesicle (EV) known as microvesicles which range from 100 to
1,000 nm [21]. Proteomic analysis of BMSC-derived exosome con-
tents shows that many of the factors are also found within BMSC
conditioned medium [22]. Exosomes contain (along with proteins)
mRNA and miRNA, which are both functional and, when delivered
to another cell via fusion with the cell membrane, lead to the
translation of new proteins [23]. Intercellular delivery of exosomes
has now been demonstrated for a number of different cell types,
all showing capacity to make functional use of the delivered miRNA
[24]. Characterization of exosome uptake shows that upon delivery
to donor cells, exosomes are shuttled inside endocytic vesicles and
delivered to endoplasmic reticulum and lysosomes [25].

BMSC are known to secrete exosomes [26] which contain
over 150 different miRNA molecules [27] that can be delivered to
target cells. Various studies have shown that exosomes play a
major role in the therapeutic effect BMSC provide. In the heart,
BMSC conditioned medium improves cardiac function yet the
active component is derived from the fraction >1,000 kda, ruling
out most candidate secreted growth factors [28]. Further studies
demonstrated that the treatment of mice with BMSC-derived
purified exosomes is able to reduce cardiac infarct size ex vivo and
in vivo [26, 29, 30]. BMSC exosomes from human, rat, and mouse
have demonstrated therapeutic efficacy in a variety of other injury
models, mediated through both their protein and RNA cargo [31].

Treatment of primary adult rat cortical neurons with BMSC-
derived exosomes promoted neurite outgrowth, an effect that
was dependent on miRNA encapsulated in exosomes [32]. Inhibi-
tion of Argonaut-2 (Ago2), a protein important in enacting the
RNA interference function of miRNA attenuates the neuritogenic
properties of exosomes. Intravenous administration of BMSC-
derived exosomes promotes functional recovery in animals
through proangiogenic and proneurogenic effects at the injury
site following stroke [33] and traumatic brain injury [34]. In a
mouse model of diabetes-induced cognitive impairment, BMSC-
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derived exosomes delivered into the cerebral ventricles promoted
functional recovery [35]. Of note, exosomes actively integrated
into both neurons and astrocytes.

In the present rodent study, we aimed to test the neuropro-
tective and axogenic potential of BMSC-derived exosomes on
injured RGC in vitro and in vivo and to determine if the effect is
protein or miRNA mediated.

MATERIALS AND METHODS

All reagents were purchased from Sigma (Allentown, PA, https://
www.sigmaaldrich.com) unless otherwise specified.

BMSC Cultures

Human BMSC were purchased from Lonza (Walkersville, MD,
http://www.lonza.com/) and represented pooled samples from
three donors. The CD29"/cD44™/cD73"/CD90™/CD45~ (con-
firmed by supplier) BMSC were seeded into T25/T75 flasks (Corn-
ing, Acton, MA, https://www.corning.com) in a total volume of
5 ml/15 ml DMEM containing 1% penicillin/streptomycin and 10%
exosome-depleted foetal bovine serum (Thermo Fisher Scientific,
Cincinnati, OH, https://www.thermofisher.com) and at a density of
1 X 10%c ells/2 X 10° cells, respectively. Cultures were maintained
at 37°C in 5% CO,, the supplemented medium was changed every
3 days and the cells were passaged when 80% confluent using
0.05% trypsin/ EDTA to lift them from their surface attachment. For
control cells, human fibroblasts were purchased from Lonza and
cultured in the exact same conditions. For all experiments, BMSC
and fibroblasts were used at passage 2-5.

Transfection of BMSC With siRNA

BMSC were transfected using Lipofectamine 3000 (Thermo Fisher)
according to the manufacturer’s protocol. Briefly, 70% confluent
BMSC grown in Opti-MEM medium were incubated with Lipofect-
amine 3000 reagent and either siRNA against Argonaute 2
(SiAgo2) or a scrambled control siRNA (SiScr) for 48 hours.

Western Blot

Successful Ago2 knockdown was confirmed by Western blotting.
Briefly, BMSC were washed in phosphate buffered saline (PBS),
lysed in lysis buffer (20 mM Tris-HCI, 1 mM EDTA, 0.5 mM EGTA,
150 mM NaCl, 1% NP-40, and protease inhibitor) and sonicated
before protein concentration was determined by BCA protein assay
(Thermo Fisher). 20 pg total protein samples were separated on
4%—-12% Bis-Tris protein gels at 150 V for 40 minutes. Proteins were
transferred to polyvinylidene fluoride membranes, blocked for 30
minutes in 10% Western blocking buffer in Tris buffered saline
(TBS), stained for 1 hour with primary antibody (Supporting Infor-
mation Table 1) diluted in TBS, washed with TBST for 3 X 5
minutes, stained for 1 hour with secondary antibody before a final 3
X 5 minutes wash and detection with Femto ECL. Densitometry of
Western blot bands was analyzed using Image) software (National
Institutes of Health, Bethesda, MD, https://imagej.nih.gov).

Exosome Isolation

Exosomes were isolated from BMSC and fibroblasts using ultra-
centrifugation as previously described [21]. Briefly, BMSC/fibro-
blasts were cultured for 48 hours in exosome free serum and
conditioned medium was collected and centrifuged at 300g for 10
minutes, 2,000g for 10 minutes and 10,000g for 30 minutes,
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discarding the pellet and collecting the supernatant each time.
The supernatant was spun down at 100,000g twice, each for 70
minutes, the pellet collected and resuspended in 1 ml sterile PBS
(sPBS). To remove microvesicles, EV were filtered through a
0.22 um filter to obtain exosomes. The supernatant was used as a
negative control in the following step to confirm absence of exo-
somes. Exosomes were isolated from BMSC/fibroblasts at passage
2, up to passage 5.

Electron Microscopy

Exosomes were doubly-fixed in a PBS-buffered glutaraldehyde
(2.5% at pH 7.4) and osmium tetroxide (0.5%), and embedded in
epoxy resin. Thin sections (90 nm) were collected on 200-mesh
copper grids, air-dried, and doubly-stained with uranyl acetate
and lead citrate. Sections were viewed with a JEOL JEM-1010
electron microscope, and photographed.

Exosome Quantification

Exosomes were quantified using ExoELISA against CD63 (System
Biosciences, Mountain View, CA https://www.systembio.com)
according to the manufacturer’s instructions. Briefly a standard
curve was constructed using exosome standards and test samples
of purified exosomes from BMSC and fibroblasts, run in duplicate
with exosome quantity extrapolated from the standard curve.

Exosome Surface Marker Expression

The expression of surface epitopes was determined by flow
cytometry using the MACSPlex Exosome Kit (human) (Cat No.
130108813 Miiltenyi Biotec, Bergish Gladbach, Germany, http://
www.miltenyibiotec.com) Briefly, 2 X 10 exosomes were
washed and suspended in sPBS and assayed using a MACSQuant
Analyzer 10 (Miltenyi Biotec) with MACSQuantify Software Version
2.8. Assay was run in triplicate on three independent samples.

Exosome Tracking

To track exosomes in vivo, Exo-Glow (System Biosciences) was
used to label purified exosomes prior to intravitreal injection,
according to the manufacturer’s instructions. Briefly, 3 X 108 exo-
somes were suspended in 500 pul of sPBS and incubated with Exo-
Green labeling solution for 10 minutes at 37°C followed by 30
minutes on ice. Labeled exosomes were isolated by treatment
with Exoquick-TC (System Biosciences), centrifugation for 30
minutes at 14,000g, washed three times with sPBS before being
resuspended in 500 pl of sPBS and kept on ice until intravitreal
injection on the same day.

Animals

Adult female Sprague-Dawley rats weighing 170-200 g (Charles
River, Wilmington, MA, http://www.criver.com/) were maintained
in accordance with guidelines described in the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research, using pro-
tocols approved by the National Eye Institute Committee on the
Use and Care of Animals.

Animals were kept at 21°C and 55% humidity under a 12 hours
light and dark cycle, given food/water ad libitum and were under
constant supervision from trained staff. Animals were euthanized
by rising concentrations of CO, before extraction of retinae.

Retinal Cell Culture

Eight well chamber slides (Thermo Fisher Scientific) were
pre-coated with 100 pg/ml poly-D-lysine for 60 minutes and then
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with 20 pg/ml laminin for 30 minutes. After culling and ocular dis-
section, the retinae of female Sprague-Dawley were minced in
1.25 ml of papain (20 U/ml; Worthington Biochem, Lakewood, NJ,
http://www.worthington-biochem.com; as per manufacturer’s
instructions) containing 50 pg/ml of DNase | (62.5 pl; Worthington
Biochem) and incubated for 90 minutes at 37°C. The retinal cell
suspension was centrifuged at 300g for 5 minutes and the pellet
resuspended in 1.575 ml of Earle’s balanced salt solution (Wor-
thington Biochem) containing 1.1 mg/ml of reconstituted albumin
ovomucoid inhibitor (150 pl; Worthington Biochem) and 56 pg/ml
of DNase | (75 pl). After adding to the top of 2.5 ml of albumin
ovomucoid inhibitor (10 mg/ml) to form a discontinuous density
gradient, the retinal cell suspension was centrifuged at 70g for 6
minutes and the cell pellet resuspended in 1 ml of supplemented
Neurobasal-A (25 ml Neurobasal-A [Thermo Fisher Scientific], 1X
concentration of B27 supplement [Life Technologies], 0.5 mM of
L-glutamine [62.5 pl; Thermo Fisher Scientific] and 50 pg/ml of
gentamycin [125 pl; Thermo Fisher Scientific]) and seeded at a
density of 125,000 cells per 300 microliters per well in a 8 well
chamber slide. Selected cultures were treated with BMSC/fibro-
blast exosomes (before and after passing through a 0.22 um filter)
or human recombinant ciliary neurotrophic factor (50 ng/ml)/
BMSC (50,000 cells) as a positive control

Cultures were incubated for 3 days at 37°C before immunocy-
tochemical staining of RGC with Blll-tubulin. For this study, large
spherical Blil-tubulin® retinal cells [36], which can be identified by
preferential Blll-tubulin intensity around the axonal base are
referred to as RGC. Previous immunocytochemical analysis of these
cultures demonstrates that 60% of these retinal cells are neurons
(neurofilament ™ /Blll-tubulin*), of which 10% are Thy1* RGC [37].

In Vivo Experimental Design

The experimental design is shown in Figure 1. Briefly, 36 adult rats
were divided in the following 6 groups: Group 1, uninjured/
untreated; Group 2, ONC/untreated; Group 3, ONC/BMSC-derived
exosomes; Group 4, ONC/fibroblast-derived exosomes; Group 5,
ONC/SiAgo2 transfected BMSC-derived exosomes; Group 6, ONC/
SiScrambled transfected BMSC-derived exosomes. Only 1 eye per
animal was used. ONC was performed on day O contemporane-
ously with baseline recordings of electroretinography (ERG)/optical
coherence tomography (OCT). Exosome treatments were given on
day 0, 7 and 14 and animals were sacrificed on day 21 following
ERG/OCT measurements.

Optic Nerve Crush

Anesthesia was induced with 5% Isoflurane (Baxter Healthcare
Corp, Deerfield, IL, http://www.baxter.com)/1.5 liter per minute
0O, and maintained at 3.5% throughout the procedure. Following
anesthetic induction, an intraperitoneal injection of Buprenor-
phine (0.3 mg/kg) was administered (preoperatively) and the ani-
mal secured in a heal-holding frame. Intraorbital ONC was
performed as previously described [38]. Briefly, the optic nerve
was surgically exposed under the superior orbital margin and
crushed using fine forceps 1 mm posterior to the lamina cribrosa,
taking care to separate the dura mater and under lying retinal
artery before crushing.

Intravitreal Delivery of Exosomes

Deliver of exosomes was done with a 33g Hamilton syringe (Hamil-
ton Company, Beltsville, MD, http://www.hamiltoncompany.com/),
injected into the vitreous just posterior to the limbus. A 5 pl

© 2017 The Authors
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%k *k *
Day 0 Day 7 Day 14 Day 21
o
i Intravitreal I
exosome ¥
Optic nerve treatment Animals
crush sacrificed
Group No of animals Injury Treatment
1 6 Uninjured Untreated
2 6 Optic nerve crush Untreated
3 6 Optic nerve crush BMSC-derived exosomes
4 6 Optic nerve crush Fibroblast-derived exosomes
5 6 Optic nerve crush SiAgo2 transfected BMSC-derived exosomes
6 6 Optic nerve crush SiScr transfected BMSC-derived exosomes
Figure 1. Experimental design of in vivo study. Timeline detailing the ERG/OCT recordings, exosome treatments and sacrifice of animals with

respect to the day of the optic nerve crush surgery. The injury and treatment (asterisks) for each animal group is also given. Abbreviations:
BMSC, bone marrow-derived mesenchymal stem cell; ERG, electroretinography; OCT, optical coherence tomography.

volume of sPBS loaded with 3 X 10° exosomes was injected slowly
and the needle was retracted after 2 minutes to minimize backflow.

Electroretinography

ERG records the electrical function of retina in response to a
known intensity of light, with different intensities eliciting
responses in different retinal cell populations. By eliciting a RGC
dependent response, visual function of the glaucomatous rats can
be assessed. ERG was recorded using the Espion Ganzfeld full field
system (Diagnosys LLC, Lowell, MA, http://diagnosyslic.com)
before ONC (baseline) and 21 days post-ONC. Rats were dark
adapted for 12 hours overnight and prepared for ERG recording
under dim red light (>630 nm). Anesthesia was induced with
intraperitoneal injection of Ketamine (100 mg/kg; Putney Inc,
Portland, ME, http://putneyvet.com)/Xylazine (10 mg/kg; Lloyd
Inc, Shenandoah, IA, http://www.lloydinc.com) and eyes dilated
with tropicamide. Scotopic flash ERG were recorded from —5.5 to
+1 log units with respect to standard flash in half log-unit steps.

ERG Analysis

ERG traces were analyzed using in built Espion software and the
amplitude (with respect to baseline) was used as a measure of rat
visual function. Traces at a light intensity of 1 X 10~ °mcd/s were
chosen for analysis as they gave a clean, unambiguous positive sco-
topic threshold response (pSTR) with a mean latency of 100 ms.

OCT Measurements of the Retinal Nerve Fiber Layer

OCT was performed on rats under anesthesia (Ketamine and Xyla-
zine, as above) pre-ONC (baseline reading) and 21 days post-ONC,
before sacrifice and tissue collection. A Spectralis HRA3 confocal

© 2017 The Authors

scanning laser ophthalmoscope (Heidelberg Engineering, Heidelberg,
Germany, https://www.heidelbergengineering.com) was used to
take images of the retina around the optic nerve head and in-built
software segmented the retinal nerve fiber layer (RNFL) and quanti-
fied the thickness. Segmentation was manually adjusted when nec-
essary to prevent inclusion of blood vessels that populate the RNFL.

Tissue Preparation

At 21 day post-ONC, animals were sacrificed by rising concentra-
tion of CO, and perfused intracardially with 4% paraformaldehyde
(PFA) in PBS. Eyes and optic nerves were removed and immersion
fixed in 4% PFA in PBS for 2 hours at 4°C before cryoprotection in
10, 20, and 30% sucrose solution in PBS for 24 hours with storage
at 4°C. Eyes and optic nerves were then embedded using optimal
cutting temperature embedding medium (VWR International Inc,
Bridgeport, NJ, https://us.vwr.com) in peel-away mould containers
(VWR International Inc) by rapid freezing under crushed dry ice
and were stored at —80°C. After embedding, eyes and optic nerves
were sectioned on a CM3050S cryostat microtome (Leica Microsys-
tems Inc, Bannockburn, IL, http://www.leica-microsystems.com) at
—22°C at a thickness of 20 um and 14 pm, respectively, and
mounted on positively charged glass slides (Superfrost Plus,
Thermo Fisher Scientific). Longitudinal optic nerve and parasagittal
eye sections were left to dry on slides overnight at 37°C before
storage at —20°C. To ensure RGC counts were done in the same
plane, eye sections were chosen with the optic nerve head visible.

Immunocytochemistry

Retinal cells were fixed in 4% PFA in PBS for 10 minutes, washed
for 3 X 10 minutes of PBS, blocked in blocking solution (3%
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bovine serum albumin (g/ml), 0.1% Triton X-100 in PBS) for 20
minutes and incubated with primary antibody (Supporting Infor-
mation Table 1) diluted in antibody diluting buffer (ADB; 0.5%
bovine serum albumin, 0.3% Tween 20 in PBS) for 1 hour at room
temperature. Cells were then washed for 3 X 10 minutes in PBS,
incubated with the secondary antibody diluted in ADB for 1 hour
at room temperature, washed for 3 X 10 minutes in PBS,
mounted in Vectorshield mounting medium containing DAPI (Vec-
tor Laboratories, Burlingame, CA, https://vectorlabs.com) and
stored at 4°C.

Immunohistochemistry

Mounted tissue sections were equilibrated to room temperature,
hydrated in PBS for 2 X 5 minutes, permeabilized in 0.1% Triton
X-100 in PBS for 20 minutes at room temperature and washed for
2 X 5 minutes in PBS before isolation with a hydrophobic PAP pen
(Immedge pen, Vector Laboratories). Nonspecific protein binding
sites in sections were blocked by incubation in blocking buffer (75
ul; 0.5% bovine serum albumin (g/ml), 0.3% Tween 20, 15% nor-
mal goat/donkey serum (Vector Laboratories) in PBS) in a humidi-
fied chamber for 30 minutes at room temperature and then
sections were drained and incubated with primary antibody (Sup-
porting Information Table 1) diluted in ADB (15% normal goat
serum in place of bovine serum albumin) overnight at 4°C. The fol-
lowing day, slides were washed for 3 X 5 minutes in PBS. Tissue
sections were then incubated with secondary antibody diluted in
ADB for 1 hour in a hydrated incubation chamber at room temper-
ature. After 1 hour, slides were washed for 3 X 5 minutes in PBS,
mounted in Vectorshield mounting medium containing DAPI (Vec-
tor Laboratories) and stored at 4°C before microscopic analysis.

Microscopy and Analysis

All fluorescently stained sections were analyzed by an operator
blinded to the treatment groups. For immunocytochemistry, all
[3III—tubuIin+ retinal cells (identified by their staining morphology
and referred to from here on as RGC), with or without neurites,
were counted in each well, recording the total number of RGC
and the number of RGC with neurites. Fluorescently stained cells
were analyzed using a Zeiss LSM 700 confocal laser-scanning
microscope (Carl Zeiss Inc, Thornwood, NY, https://www.zeiss.
com). Neurite outgrowth was measured in images taken at X20
maghnification. Each well was divided into nine equal sectors and
the length of the longest neurite of each RGC in each sector was
measured using Axiovision software (Carl Zeiss Inc). All experi-
ments were repeated on 3 separate occasions with separate ani-
mals. Each of the treatment groups in each of the 3 experimental
runs comprised 3 replicate wells containing retinal cells harvested
from the same animals.

For immunohistochemistry of retina, RBPMS™ and Brn3a™
were counted in 20 pm-thick sections along a 250 pum linear
region of the ganglion cell layer (GCL) either side of the optic
nerve (as previously described [39]), imaged using a Zeiss LSM 700
confocal laser-scanning microscope. Six sections per retina and 6
retinae (from 6 different animals) per treatment group were quan-
tified. For immunohistochemistry of the optic nerve, growth asso-
ciated protein-43" (GAP-43) axons were counted in 14 pm thick
longitudinal sections, imaged using a Zeiss LSM 700 confocal laser-
scanning microscope and images composites created using Photo-
shop CS6 (Adobe Systems, Inc., San Jose, CA, http://www.adobe.
com). The number of axons were quantified at 100 pm distance
intervals extending distal to the laminin® crush site, up to a
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maximum distance of 1.2 mm. Three sections per optic nerve and
6 optic nerves (from 6 different animals) per treatment group
were quantified. The diameter of the nerve was measured at each
distance to determine the number of axons/mm width. This value
was then used to derive ) ad, the total number of axons extend-
ing distance d in an optic nerve with radius r using:

,  Average number of axons/mm width
Z ad=nr° X - -
Section thickness (0.015 mm)

Statistics

Animal numbers were determined beforehand using a power cal-
culation [40] (Gpower). All statistical tests were performed using
SPSS 17.0 (IBM SPSS, Inc., Chicago, IL, http://www.ibm.com) and
data presented as mean *= SEM with graphs constructed using
Graphpad Prism (La Jolla, CA, https://www.graphpad.com). The
Shapiro-Wilkes test was used to ensure all data were normally dis-
tributed before parametric testing using a one-way analysis of var-
iance (ANOVA) with a Tukey post hoc test. Statistical differences
were considered significant at p values < .05.

RESULTS

BMSC Secrete Exosomes

Both human fibroblast and human BMSC secreted exosomes, as
detected by electron microscopy and quantified by CD63 ExoELISA
(Fig. 2A). Exosomes were visualized using electron microscopy and
no observable differences were seen between BMSC and fibro-
blast exosomes but size differences were when comparing exo-
somes before and after filtration though a 0.22 pum filter to
remove microvesicles. As detected by ELISA, secretion rate was
not significantly different between BMSC and fibroblasts. Fibro-
blasts secreted 1.03 X 10°* 1.17 X 10® exosomes whereas
BMSC secreted 1.17 X 10° +1.42 X 108, measured over a 24-
hour time point and normalized to 100,000 cells. Using flow
cytometry, we analyzed the surface expression of various CD mol-
ecules on exosomes from BMSC and fibroblasts (Fig. 2B). We
detected 13 different CD molecules variably expressed on BMSC
and/or fibroblast exosomes. In particular, more CD1lc* and
CD63" exosomes were detected on the BMSC exosomes
(20.3% = 8.3%, 81.7% = 12.3%, respectively) compared to fibro-
blast exosomes (7.7 = 0.7, 49.6 £ 2.4, respectively) whereas more
CD29" and CD81" exosomes were detected on fibroblast exo-
somes (32.4% * 0.75%, 39% =+ 3.3%, respectively) compared to
BMSC exosomes (20.5% * 1.9%, 15.3% *+ 10.6%, respectively).
CD1c, CD2, CD3, CD4, CD14, CD20, CD25, CD31, CD40, CD42a,
CD45, CD49e, CD56, CD69, CD133/1, CD146, and CD326 were
undetectable. Due to the differences in the number of exosomes
expressing CD63, exosome counts (Fig. 2A) were normalized using
this data.

BMSC-Derived Exosomes Promote Neuroprotection
and Neuritogenesis of Cultured Primary RGC

Treatment of RGC cultures with 3 X 10° BMSC EV (exoso-
mes + microvesicles) elicited optimum significant survival (Fig. 3A)
of RGC (321 = 22.3 RGC per well) compared to untreated RGC
(121.3 £ 6.2)/3 X 10 fibroblast EV treated RGC (72.3 * 6.4) and
was similar to treatment with 50,000 BMSC (328 = 24 RGC per
well). At higher doses of BMSC EV (1.5 X 10%, 7.5 X 10'°), RGC

© 2017 The Authors
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Figure 2. Exosome secretion from fibroblasts and BMSC. (A): The number of exosomes, assayed and quantified by CD63 ExoELISA, secreted

by human fibroblasts and human BMSC, given as exosomes per 100,000 cells, per 24 hours. Numbers were corrected to take into account
CD63 expression percentage as determined by flow cytometry. No significant difference was found (p < .05). (B): The percentage of exosomes
that express various CD surface expression markers assayed and quantified using a MACSPlex Exosome Kit (human) in conjunction with flow
cytometry. The surface markers CD2, CD3, CD4, CD14, CD25, CD31, CD40, CD42a, CD45, CD49e, CD56, CD69, CD133/1, CD146, and CD326
were not detected in either sample. Black lines indicate significant difference (p < .05). Abbreviation: BMSC, bone marrow-derived mesenchy-

mal stem cell.

neuroprotection was significantly reduced (202.7 = 10.7,
58 = 14.4 RGC per well, respectively) unless microvesicles were
first removed from the sample (leaving exosomes), in which case
higher doses were still equally neuroprotective (299 * 24.1,
270.3 * 47.3 RGC per well, respectively).

Neuritogenesis was measured both as the number of neurite-
bearing RGC (Fig. 3B) and the average length of the longest neu-
rites (Fig. 3C). Treatment of RGC cultures with 3 X 10° BMSC EV
elicited optimum neuritogenesis of RGC (154 + 4 RGC with neu-
rites; 114.2 £ 5 pm) compared to untreated RGC (32.3 £ 3.5 RGC
with neurites; 43.7 = 6.9 um)/3x109 fibroblast EV treated RGC
(25.7 £ 3.3 RGC with neurites; 45.2 = 4.1 pm) and was similar to
treatment with 50,000 BMSC (166.7 = 11.3 RGC with neurites;
186.3 = 21.8 um). At higher doses of BMSC EV (1.5 X 10%°, 7.5 X
10%°), RGC neuritogenesis was significantly reduced (27.3 + 4.4,
11.7£35 RGC with neurites; 54.8+24, 42.7*2 um,

© 2017 The Authors

respectively), unless microvesicles were first removed from the
sample (leaving exosomes), in which case higher doses were still
equally neuritogenic (128.7 £ 16.0, 109.3 = 18.8 RGC with neu-
rites; 127.9 £5.2, 140.1 = 15.5 um, respectively). Increasing or
decreasing the number of control fibroblast-derived exosomes/EV
did not have any significant effect on neuroprotection and neuri-
togenesis (data not shown).

BMSC-Derived Exosomes Preserve RNFL THICKNESS
following ONC

The thickness of the RNFL is a measure of RGC axonal density and
did not change over 21 days in intact animals as well as between
groups pre-ONC. In untreated animals, RNFL thickness decreased
significantly from 48.2 = 1.3 pm to 18.0 £ 2.1 um 21 days after
ONC (Fig. 4). In animals receiving BMSC-derived exosomes, RNFL
thickness was reduced from 48.4+29 um to 33.8 4.8 um
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Figure 3. Effects of exosome treatment on RGC neuroprotection and neuritogenesis. The number of RGC (A), number of RGC bearing neu-
rites (B) and the length of the longest neurite (C) in heterogeneous retinal cultures after treatment with different quantities of EV, before
(exosomes + microvesicles) and after (exosomes) filtration. Black lines indicate significant difference between groups whereas asterisks indi-
cate significant difference between filtered and unfiltered exosomes (p < .05). Representative images of heterogeneous retinal cultures either
untreated (D) or treated with BMSC (E), 3 X 10° BMSC exosomes with microvesicles (F), 7.5 X 10*° BMSC exosomes with microvesicles (G)
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bone marrow-derived mesenchymal stem cells extracellular vesicles; RGC, retinal ganglion cells.

21 days after ONC, which was a significantly smaller reduction in
comparison to both untreated animals and animals receiving
fibroblast-derived exosomes (21.6 = 1.5 um). In animals receiving
exosomes derived from SiAgo2 transfected BMSC (knockdown
confirmed by Western blot; Fig. 4B), RNFL thickness decreased
significantly from 46.0 = 2.2 um to 22.0 = 2.2 um whereas in
animals receiving exosomes derived from SiScr transfected
BMSC, post-ONC RNFL was, in comparison, significantly higher
(32.4 £ 5.3 um).

BMSC-Derived Exosomes Successfully Integrate and
Deliver Cargo to RGC In Vivo

To determine the fate of exosomes after delivery into the vitreous
body they were tracked by the internalization of a fluorescent
marker (ExoGreen) prior to injection. Fluorescent labeling was
seen in the RNFL and GCL in a nonspecific manner. RBPMS™ RGC
along with the RNFL and resident cells (morphologically identified
as astrocytes) incorporated exosomes and thus were labeled
strongly with ExoGreen (Fig. 5B).

BMSC-Derived Exosomes Promote Neuroprotection of
RGC Following ONC

ONC induced a significant loss of RBPMS™ and Brn3a* RGC by
day 21 (23.6 = 7.7 and 29.1 = 7.8/mm of retina, respectively),
compared to intact controls (103.1 = 6.9 and 75.5 * 3.9/mm of
retina, respectively; Fig. 5). Intravitreal transplantation of 3 X 10°
BMSC exosomes provided significant neuroprotection for
RBPMS™ and Brn3a™ RGC (73.3 = 7.8 and 54 * 8.2/mm of retina,
respectively), compared to controls receiving fibroblast exosomes
(20 = 2.2 and 14.3 = 7.4/mm of retina, respectively). Intravitreal

www.StemCellsTM.com

transplantation of exosomes-derived from SiAgo2 transfected
BMSC failed to significantly protect RBPMS™ and Brn3a™ RGC
(11.63 £ 1.1 and 4.42 = 0.4/mm of retina, respectively) whereas
exosomes derived from SiScr transfected BMSC were significantly
RGC neuroprotective.

BMSC-Derived Exosomes Preserve RGC Function

The amplitude of the pSTR is a measure of RGC function and did
not change over 21 days in intact animals as well as between
groups pre-ONC (Fig. 6). In untreated animals, pSTR amplitude
decreased significantly from 48.7 =5.5 pv to 13.7+ 1.1 pv 21
days after ONC. In animals receiving BMSC-derived exosomes,
pSTR amplitude was reduced from 44.3 = 8.6 pv to 28.6 = 8.1 pv
21 days after ONC, which was a significantly smaller reduction in
comparison to both untreated animals and animals receiving
fibroblast-derived exosomes (13.2 = 3.4 pwv). In animals receiving
exosomes derived from SiAgo2 transfected BMSC, pSTR amplitude
decreased significantly from 45.4 =87 uv to 20.12+2.9 v
whereas in animals receiving exosomes derived from SiScr BMSC,
post-ONC pSTR amplitude was, in comparison, significantly higher
(28.7 = 6.6 uv).

BMSC-Derived Exosomes Promote Regeneration
of RGC Axons Following ONC

Intravitreal transplantation of 3 X 10° BMSC exosomes promoted
significant regeneration of GAP-43" axons up to 600 pm from the
laminin® crush site compared to untreated controls/controls
receiving fibroblast exosomes (Fig. 7). Intravitreal transplantation
of exosomes-derived from SiAgo2 transfected BMSC failed to pro-
mote significant regeneration of GAP-43" axons whereas

© 2017 The Authors
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chymal stem cells; ONC, optic nerve crush; RNFL, retinal nerve fiber layer.

exosomes derived from SiScr transfected BMSC were significantly
RGC axogenic.

DiscussION

This study is to our knowledge the first time RGC have been
treated with exosomes and the first time BMSC-derived exosomes
have been delivered into the eye. Utilizing the ONC model of CNS
injury that is characterized by RGC death and a failure of axon
regeneration, we demonstrate a significant neuroprotective and
axogenic effect afforded by BMSC-derived exosomes as well as
the capacity to preserve retinal function. Exosomes successfully
deliver their cargo to the inner retina, including the RGC and elicit
therapeutic effects through miRNA dependent mechanisms.

RGC are CNS neurons and thus are neither replaceable nor
capable of axon regeneration. While BMSC have proven effective
as neuroprotective and axogenic agents, it is more clinically trans-
lational to purify and use their cell-free active compounds. As exo-
somes contain proteins, MRNA and miRNA, they possess the
potential to not only deliver proteins and translatable mRNA but

© 2017 The Authors

also the silencing of genes through RNA interference [41]. They
can be isolated relatively easily through simple centrifugation
techniques [21] enabling the generation of a cell-free therapy,
combining the benefits of BMSC-mediated paracrine repair with-
out the risks [42]. They can also be easily stored and do not prolif-
erate, making the application of specific doses easier. Due to their
smaller size, they are also capable of migrating into the GCL from
the vitreous (unlike transplanted cells) and delivering their con-
tent to the RGC. The surrounding phospholipid bilayer of exo-
somes protects the contents against degradation and makes them
immunologically inert, qualities important for a therapeutic deliv-
ery system [43].

Here we show that BMSC secrete exosomes and to similar
quantities of that of fibroblast controls. While few studies have
monitored exosome secretion rate, our control numbers corrobo-
rate those seen in cell lines [44]. For example, a recent study
reported secretion rate of 4 X 10® exosomes per 100,000 cells
per 24 hours in MCF10A cell lines [45]. Flow cytometry of exo-
somes revealed two important conclusions. First, there are distinct
differences between exosomes from BMSC and fibroblasts and
this is reflected in their surface epitope expression. This is
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important to consider when using surface epitopes to quantify Culture of injured RGC is an effective in vitro model of RGC
exosomes from different cell types Second, exosomes from the death and abortive axonal regeneration, and has been used exten-
same cells express different epitopes, suggesting there may be dis- sively [46, 47] such as demonstrating the neuroprotective and
tinct subtypes of exosomes. neuritogenic properties of BMSC [7]. Here we have shown that
www.StemCellsTM.com © 2017 The Authors
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BMSC can be substituted with BMSC-derived exosomes without a
loss in efficacy. Two previous studies have similarly demonstrated
a neuritogenic effect of BMSC exosomes on cortical neurons,
although survival was not assessed [32, 48]. Interestingly, we
found that a negative effect was present at increasing doses of EV
and attributed this to microvesicles. Filtration and removal of
microvesicles from the samples negated the dose-dependent

© 2017 The Authors

negative effect and thus exosomes purified from EV were used for
the in vivo experiments. A previous study treating cortical neurons
with EV reported similar findings. The study found microvesicles
inhibited neuritogenesis whereas exosomes augmented it [48]. In
contrast to our study however, authors found that exosome treat-
ment completely overcame the inhibitory properties of microve-
sicles and were thus still effective in combination. It is possible
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that with higher doses however, the inhibitory effects of microve-
sicles may become more pronounced. Equally, it is possible that
adult RGC are more resistant to neuritogenesis than cortical
neurons and thus more susceptible to the inhibitory properties of
microvesicles.

ONC is a reliable model characterized by substantial RGC
death and axonal degeneration. We observed the typical 80%—
90% RGC loss 21 days after ONC [39, 49] in untreated retina
whereas treatment with BMSC-derived exosomes reduced RGC
loss to 30%. This is significantly higher neuroprotection than we
and others previously observed with BMSC transplants [10, 50].
Although RBPMS stained more RGC than Brn3a (owing to the

www.StemCellsTM.com

presence of Brn3a” RGC subtypes [51]), the relative differences
between groups remained the similar. Many BMSC do not survive
the vitreal transplantation, particular as they lack the capacity to
integrate into the retina and thus remain in the vitreous. There-
fore, despite actively secreting NTF [7] as well as exosomes, the
titres are likely low and diminish with time. In contrast, exosomes
were easily isolated, purified and delivered at high doses, poten-
tially explaining why they were significantly more effective at pre-
venting RGC death. It is equally important to recognize that
exosomes were delivered 0, 7, and 14 days post-ONC as opposed
to previous studies that transplanted BMSC only once on the day
of surgery. We chose this treatment regime to partially emulate
the continuous secretion of BMSC-derived exosomes.

By labeling the protein cargo of exosomes before intravitreal
injection, we were able to track the exosomes and identify which
retinal cells they fused with. We found a strong staining consis-
tently through the RNFL and GCL of the retina. Exogreen labeling
co-localized with the RNFL, RBPMS™ RGC, and RBPMS ™~ cells mor-
phologically resembling astrocytes. In cortical neuronal cultures, it
has been demonstrated that BMSC exosomes integrate into neu-
ronal cell bodies and axons [32]. In an in vivo model of cognitive
impairment, intravenous administration of BMSC-derived exo-
somes led to their integration into both neurons and astrocytes.
Since in the present study RGC were not the only target of BMSC
exosomes, it is not clear if the therapeutic effect we observed was
via a direct effect on the RGC or through astrocyte/miiller glia
intermediaries.

The significant neuroprotection afforded by BMSC exosomes
is corroborated by our OCT and ERG data, demonstrating a signifi-
cant protection of RGC axons (measured as RNFL thickness) and
preservation of RGC function (measured as pSTR amplitude). A
residual function was seen in untreated and fibroblast exosome
treated control retina after ONC, likely explained by the presence
of select subtypes of RGC that are resistant to ONC [52]. However,
in BMSC exosome treated retina, over 50% of RGC function was
maintained, suggesting a strong effect not only to protect RGC
from death but also to retain their function.

We [10] and others [11, 50] have previously demonstrated
that intravitreal BMSC treatment promotes moderate regenera-
tion of RGC axons after ONC. The promising neurite outgrowth
seen in the present study when retinal cultures were treated with
BMSC-derived exosomes was corroborated by their efficacy to
promote regeneration of GAP-43" axons after ONC. The regenera-
tion however was only significant at short distances from the
lesion site (<1 mm) limiting its potential at promoting functional
reconnection of the visual pathway. The use of BMSC exosomes to
promote in vivo axon regeneration is currently untested outside
of this study however, previous in vitro studies have demonstrated
a neuritogenic property on CNS neurons [32, 48]

As exosomes contain both proteins and miRNA, and studies
have reported that both can mediate the therapeutic effect [31],
we determined which was the active compound by using SiAgo2.
Ago?2 regulates the biological function of miRNA [53], is bound to
miRNA [54] and its knockdown reduces miRNA quantity within
exosomes. [32, 54]. We were able to successfully knockdown
Ago2 and demonstrated that BMSC exosomes had a significantly
muted effect in promoting RGC neuroprotection, axon regenera-
tion/survival and RGC functional preservation. These data strongly
suggest that treating RGC with exosomes is more dependent on
miRNA rather than protein. This is corroborated by protein analy-
sis of BMSC exosomes that did not detect any candidate NTF

© 2017 The Authors
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among their cargo [22]. In contrast BMSC exosomes contain a vari-
ety of miRNA [55-57], many of which their function is currently
unknown. One candidate is miR-17-92 which is located within
BMSC-derived exosomes [32] and has been found to target and
downregulate phosphatase and tensin homolog (PTEN) expression
[32], an important suppressor of RGC axonal growth and survival
[58, 59]. Similarly, miR-21, which is expressed in umbilical cord
MSC-derived exosomes [56] has been shown to regulate PTEN
expression [60]. Another candidate miRNA is miR-146a which is
expressed in BMSC exosomes [55] and targets the epidermal
growth factor receptor (EGFR) mRNA [61]. Activation of EGFR inhib-
its axon regeneration whereas receptor blockade promotes RGC
axon regeneration [47, 62]. Activation of the Akt pathway has also
been reported by BMSC-derived exosomes [63], which is a pathway
integral to the survival and regeneration of injured RGC [5].

CONCLUSION

We demonstrate for the first time that BMSC-derived exosome
offer significant therapeutic benefit to the protection of RGC, an
effect mediated by their miRNA rather than protein content. Exo-
somes offer a cell-free alternative to BMSC therapy, which can be
easily isolated, purified and stored. They lack the risk of complica-
tions associated with transplanting live cells into the vitreous
(immune rejection, unwanted proliferation/differentiation). It is
however currently unknown what the ideal timeframe for

treatment is, whether a single injection of exosomes is sufficient
or weekly/bi-weekly/monthly injections are required. Future work
should concentrate on determining the above, as well characteriz-
ing the miRNA content of BMSC-derived exosomes and their tar-
gets within the known neuroprotective/axogenic pathways to
identify candidate miRNA.
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