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ABSTRACT
This article investigates general scaling settings and limit distributions of functionals
of filtered random fields. The filters are defined by the convolution of non-random
kernels with functions of Gaussian random fields. The case of long-range dependent
fields and increasing observation windows is studied. The obtained limit random
processes are non-Gaussian. Most known results on this topic give asymptotic pro-
cesses that always exhibit non-negative auto-correlation structures and have the
self-similar parameter H ∈ ( 1

2
, 1). In this work we also obtain convergence for the

case H ∈ (0, 1
2
) and show how the Hurst parameter H can depend on the shape of

the observation windows. Various examples are presented.

KEYWORDS
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1. Introduction

Over the last four decades, several studies dealt with various functionals of random
fields and their asymptotic behaviour [4–6, 10, 11, 14, 19, 22, 41, 43]. These function-
als play an important role in various fields, such as physics, cosmology, telecommu-
nications, just to name a few. In particular, asymptotic results were obtained either
for integrals or additives functionals of random fields under long-range dependence,
see [2, 11, 23, 24, 29–31] and the references therein.

It is well known that functionals of Gaussian random fields with long-range de-
pendence can have non-Gaussian asymptotics and require normalising factors differ-
ent from those in central limit theorems. These limit processes are known as Her-
mite or Hermite-Rosenblatt processes. The first result in this direction was obtained
in [39] where quadratic functionals of long-range dependent stationary Gaussian se-
quences were investigated. The pioneering results in the asymptotic theory of non-
linear functionals of long-range dependent Gaussian processes and sequences can be
found in [10, 37, 41–43]. This line of studies attracted much attention, for exam-
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ple, in [35] it was shown that the limiting distribution of generalised variations of a
long-range dependent fractional Brownian sheet is a fractional Brownian sheet that
is independent and different from the original one. Some statistical properties of the
Rosenblatt distribution, as well as its expansion in terms of shifted chi-squared distri-
butions were studied in [44]. The Lévy-Khintchine formula and asymptotic properties
of the Lévy measure, were also addressed in [23]. Some weighted functionals for long-
range dependent random fields were considered and limit theorems were investigated
in a number of papers, including [15, 16, 30].

Linear stochastic processes and random fields obtained as outputs of filters are
popular models in various applications, see [3, 17, 18, 45]. In engineering practice
it is often assumed that a narrow band-pass filter applied to a stationary random
input yields an approximately normally distributed output. Of course, such results are
not true in general, especially when the stationary input has some singularity in the
spectrum and the linear filtration is replaced by a non-linear one.

We recall the classical central-limit type theorem by Davydov [9] for discrete time
linear stochastic processes.

Theorem 1.1. [9] Let V (t) =
∑

j∈ZGt−jξj , t ∈ Z, where ξj is a sequence of i.i.d

random variables with zero mean and finite variance (the {ξj} are not necessarily
Gaussian). Suppose that Gj is a real-valued sequence satisfying

∑
j∈ZG

2
j < ∞ and

let X
(d)
r :=

∑r
t=1 V (t). If V arX

(d)
r = r2HL2(r) as r → ∞, where H ∈ (0, 1) and the

function L(·) is a slowly varying at infinity, then

X(d)
r (t) =

1

rHL(r)

[rt]∑
s=1

V (s)
D→ BH(t), t > 0, as r →∞,

in the sense of convergence of finite-dimensional distributions, where BH(t), t > 0, is
the fractional Brownian motion with zero mean and the covariance function BH(t, s) =
1
2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s > 0, 0 < H < 1.

One can obtain an analogous result for the case of continuous time.

Theorem 1.2. Let V (t) =
∫
RG(t−s)ξ(s)ds, t ∈ R, be a linear filtered process, where

ξ(t), t ∈ R, be a mean-square continuous wide-sense stationary process with zero mean
and finite variance. Suppose that G(t), t ∈ R, is a non-random function, such that∫
RG

2(t)dt < ∞. Let X
(c)
r :=

∫ r
0 V (s)ds. If V arX

(c)
r = r2HL2(r), as r → ∞, where

H ∈ (0, 1) and L(·) is slowly varying at infinity, then

X(c)
r (t) =

1

rHL(r)

∫ rt

0
V (s)ds

D→ BH(t), t > 0, as r →∞,

in a sense of convergence of finite-dimensional distributions.

The equivalence of the statements for the discrete and continuous time follows from
the results in Leonenko and Taufer [24] and Alodat and Olenko [2].

It was Rossenblatt [38] (see also Major [28], Taqqu [41]) who first proved that for a
discrete-time Gaussian stochastic process {ξj , j ∈ Z}, with zero mean and long-range
dependence and the κ-th Hermite polynomials Hκ, the non-linear filtered process

2
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Vκ(t) =
∑
j∈Z

Gt−jHκ(ξj),

satisfies the non-central limit theorem, that is for some normalising Ar it holds

1

Ar

[rt]∑
s=1

Vκ(s)
D→ Yκ(t), t > 0, as r →∞,

where Yκ(t) is a self-similar process with the Hurst parameter H ∈ (0, 1) (non-
Gaussian, if κ ≥ 2).

The limit processes Yκ(t), t > 0, are given in terms of κ-fold Wiener-Itô stochastic
integrals, and are the fractional Brownian motions with the Hurst parameterH ∈ (0, 1)
if κ = 1.

The aim of this paper is to give an extension of the results of Rossenblatt [38],
Major [28], Taqqu [41] for the case of random fields. Motivated by the theory of renor-
malisation and homogenisation of solutions of randomly initialised partial differential
equations (PDE) and fractional partial differential equations (FPDE) (see, e.g. [1, 25–
27]), we study the asymptotic behaviour of integrals of the form

d−1
r

∫
∆(rt1/n)

V (x)dx, t ∈ [0, 1], as r →∞,

where V (x), x ∈ Rn, is a random field, ∆ ⊂ Rn is an observation window and dr is
a normalising factor. The case when the limit process is self-similar with parameter
H ∈ (0, 1) is considered.

The parameter H plays an important role in analysing stochastic processes and
can be used for their classification. In particular, stochastic processes can be classi-
fied according to the range of H to the Brownian motion (H = 0.5), a short-memory
anti-persistent stochastic process (H ∈ (0, 0.5)) and a long-memory stochastic process
(H ∈ (0.5, 1)). These three cases correspond to the three types of behaviour called 1

f

noise, ultraviolet and infrared catastrophes by Taqqu [40]. The literature shows a va-
riety of limit theorems with asymptotics given by non-Gaussian self-similar processes
that exhibit non-negative auto-correlation structures with parameter H ∈ (0.5, 1),
see [15, 20, 30, 31, 41, 43] and references therein. However, there are only few results
where asymptotic processes have H ∈ (0, 0.5). In the case H < 0.5 processes exhibit a
negative dependence structure, which is useful in applied modelling of switching be-
tween high and low values. Also, such processes have interesting theoretical stochastic
properties. For example, in this case the covariance is the Green function of a Markov
process and the squared process is infinitely divisible, which is not true for the case
H > 0.5, see [12, 13].

The example of a non-Gaussian self-similar process with H ∈ (0, 0.5) was given by
Rossenblatt [38] where the asymptotic of quadratic functions of a long-range Gaussian
stationary sequence was investigated. The result was generalised in [28] for sums of
non-linear functionals of Gaussian sequences. In this paper we extend these results in
several directions for more general conditions and derive limit theorems for functionals
of filtered random fields defined as the convolution

V (x) :=

∫
Rn
G(‖y − x‖)S(ξ(y))dy,

3
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where G(·), S(·) are non-random functions and ξ(·) is a long-range dependent ran-
dom field.
In the limit theorems obtained in this paper the asymptotic processes have the self-
similar parameters H ∈ (γ(∆), 1), where γ(∆) ≥ 0 depends on the geometry of the
set ∆ ⊂ Rn. In the one-dimensional case n = 1, γ(∆) = 0 which coincides with the
known results in the literature.

The rest of the article is organised as follows. In Section 2 we outline the necessary
background. In Section 3 we introduce assumptions and give auxiliary results from the
spectral and correlation theory of random fields. In Section 4 we present main results
on the asymptotic behaviour of functionals of filtered random fields. In Section 5 we
present some examples. Conclusions and some future research problems are presented
in 6.

2. Notations

This section gives main definitions and notations that are used in this paper.
In what follows | · | and ‖ · ‖ are used for the Lebesgue measure and the Euclidean

distance in Rn, n ≥ 1, respectively. The symbols C, ε and δ (with subscripts) will
be used to denote constants that are not important for our discussion. Moreover, the
same symbol may be used for different constants appearing in the same proof.

Definition 2.1. A real-valued function h : [0,∞)→ R is homogeneous of degree β if
h(ax) = aβh(x) for all a, x > 0.

Definition 2.2. [7] A measurable function L : (0,∞) → (0,∞) is slowly varying at
infinity if for all t > 0, limr→∞ L(tr)/L(r) = 1.

By the representation theorem [7, Theorem 1.3.1], there exists C > 0 such that for
all r ≥ C the function L(·) can be written in the form

L(r) = exp

(
ζ1(r) +

∫ r

C

ζ2(u)

u
du

)
,

where ζ1(·) and ζ2(·) are such measurable and bounded functions that ζ2(r)→ 0 and
ζ1(r)→ C0, (C0 <∞), when r →∞.

If L(·) varies slowly, then raL(r) → ∞, and r−aL(r) → 0 for an arbitrary a > 0
when r →∞, see Proposition 1.3.6 [7].

Definition 2.3. [7] A measurable function g : (0,∞)→ (0,∞) is regularly varying at
infinity, denoted g(·) ∈ Rτ , if there exists τ such that, for all t > 0, it holds that

lim
r→∞

g(tr)

g(r)
= tτ .

Theorem 2.4. [7, Theorem 1.5.3] Let g(·) ∈ Rτ , and choose a ≥ 0 so that g is locally
bounded on [a,∞).

If τ > 0 then

sup
a≤t≤x

g(t) ∼ g(x) and inf
t≥x

g(t) ∼ g(x), x→∞.

4
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If τ < 0 then

sup
t≥x

g(t) ∼ g(x) and inf
a≤t≤x

g(t) ∼ g(x), x→∞.

Definition 2.5. The Hermite polynomials Hm(x), m ≥ 0, are given by

Hm(x) := (−1)m exp

(
x2

2

)
dm

dxm
exp

(
− x2

2

)
.

The first few Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x.

The Hermite polynomials Hm(x), m ≥ 0, form a complete orthogonal system in
the Hilbert space L2 (R, φ(ω)dω) =

{
S :
∫
R S

2(ω)φ(ω)dω <∞
}

, where φ(ω) is the
probability density function of the standard normal distribution.

An arbitrary function S(ω) ∈ L2 (R, φ(ω)dω) possesses the mean-square convergent
expansion

S(ω) =

∞∑
j=0

CjHj(ω)

j!
, Cj :=

∫
R
S(ω)Hj(ω)φ(ω)dω. (1)

By Parseval’s identity

∞∑
j=0

C2
j

j!
=

∫
R
S2(ω)φ(ω)dω.

Definition 2.6. [43] Let S(ω) ∈ L2 (R, φ(ω)dω) and there exists an integer κ > 1,
such that Cj = 0 for all 0 < j ≤ κ− 1, but Cκ 6= 0. Then κ is called the Hermite rank
of S(·) and is denoted by HrankS(·).

It is assumed that all random variables are defined on a fixed probability space
(Ω,F,P). We consider a measurable mean-square continuous zero-mean homogeneous
isotropic real-valued random field ξ (x) , x ∈ Rn, with the covariance function

B (r) := E (ξ(0)ξ(x)) , x ∈ Rn, r = ‖x‖.

It is well known that there exists a bounded non-decreasing function Φ (u), u ≥ 0,
(see [15, 46]) such that

B (r) =

∫ ∞
0

Sn (ru) dΦ (u) ,

where the function Sn (·) , n ≥ 1, is defined by

Sn (u) := 2(n−2)/2Γ
(n

2

)
J(n−2)/2(u)u(2−n)/2, u > 0,

5
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where J(n−2)/2(·) is the Bessel function of the first kind of order (n−2)/2, see [20, 46].
The function Φ (·) is called the isotropic spectral measure of the random field ξ (x) ,
x ∈ Rn.

Definition 2.7. The spectrum of the random field ξ(x) is absolutely continuous if
there exists a function f(u), u ∈ [0,∞), such that

un−1f(u) ∈ L1([0,∞)), Φ(u) = 2πn/2/Γ(n/2)

∫ u

0
zn−1f(z)dz.

The function f(·) is called the isotropic spectral density of the field ξ (x).

The field ξ (x) with an absolutely continuous spectrum has the following isonormal
spectral representation

ξ (x) =

∫
Rn
ei〈λ,x〉

√
f(‖λ‖)W (dλ), (2)

where W (·) is the complex Gaussian white noise random measure on Rn, see [15, 20,
46].

Note that by (2.1.8) [20] we get E (Hm(ξ(x))) = 0 and

E (Hm1
(ξ(x))Hm2

(ξ(y))) = δm2
m1
m1!Bm1(‖x− y‖), x, y ∈ Rn,

where δm2
m1

is the Kronecker delta function.

Definition 2.8. A random process X(t), t > 0, is called self-similar with parameter

H > 0, if for any a > 0 it holds X(at)
D
= aHX(t).

If X(t), t > 0, is a self-similar process with parameter H > 0 such that E(X(t)) = 0
and E(X2(t)) <∞, then B(at, as) = a2HB(t, s), see [20].

3. Assumptions and auxiliary results

This section introduces assumptions and results from the spectral and correlation
theory of random fields.

Assumption 1. Let ξ(x), x ∈ Rn, be a homogeneous isotropic Gaussian random field
with Eξ(x) = 0 and the covariance function B(x), such that B(0) = 1 and

B(x) = E (ξ (0) ξ (x)) = ‖x‖−αL0 (‖x‖) , α > 0,

where L0 (‖ · ‖) is a function slowly varying at infinity.

If α ∈ (0, n), then the covariance function B(x) satisfying Assumption 1 is not
integrable, which corresponds to the long-range dependence case [4].

The notation ∆ ⊂ Rn will be used to denote a Jordan-measurable compact bounded
set, such that |∆| > 0, and ∆ contains the origin in its interior. Let ∆(r), r > 0, be
the homothetic image of the set ∆, with the centre of homothety at the origin and the
coefficient r > 0, that is |∆(r)| = rn|∆| and ∆ = ∆(1).

6
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Let S(ω) ∈ L2 (R, φ(ω)dω) and define the random variables Kr and Kr,κ by

Kr :=

∫
∆(r)

S (ξ (x)) dx and Kr,κ :=
Cκ
κ!

∫
∆(r)

Hκ (ξ (x)) dx,

where Cκ is given by (1).

Theorem 3.1. [22] Suppose that ξ (x) , x ∈ Rn, satisfies Assumption 1 and
HrankS(·) = κ ≥ 1. If a limit distribution exists for at least one of the random
variables Kr/

√
V arKr and Kr,κ/

√
V arKr,κ, then the limit distribution of the other

random variable also exists, and the limit distributions coincide when r →∞.

By Theorem 3.1 it is enough to study Kr,κ to get asymptotic distributions of Kr.
Therefore, we restrict our attention only to Kr,κ.

Assumption 2. The random field ξ (x) , x ∈ Rn, has the isotropic spectral density

f (‖λ‖) = c1 (n, α) ‖λ‖α−nL
(

1

‖λ‖

)
,

where α ∈ (0, n), c1 (n, α) := Γ
(
n−α

2

)
/2απn/2Γ

(
α
2

)
, and L(‖ · ‖) ∼ L0(‖ · ‖) is a

locally bounded function which is slowly varying at infinity.

Note that Assumptions 1 and 2 are connected by the so-called Tauberian-Abelian
theorems [21]. In applications these two assumptions are usually considered to be
equivalent and hence one of them might be sufficient in modelling various random data
that exhibit long-range dependence properties. For example, if the spectral density
f(·) is decreasing in a neighbourhood of zero and continuous (except at zero), then by
Tauberian Theorem 4 [21] the both assumptions are simultaneously satisfied. However,
in the general case, this equivalence is not true [4]. Therefore, the both assumptions
are essential for formulating general results in this paper. One can find more details
on relations between Assumptions 1 and 2 in [5, 21].

The function K∆ (x) will be used to denote the Fourier transform of the indicator
function of the set ∆, i.e.

K∆ (x) :=

∫
∆
ei〈u,x〉du, x ∈ Rn. (3)

Theorem 3.2. [22] Let ξ (x) , x ∈ Rn, be a homogeneous isotropic Gaussian random
field. If Assumptions 1 and 2 hold, α ∈ (0, n/κ), then for r →∞ the random variables

Xr,κ(∆) := rκα/2−nL−κ/2(r)

∫
∆(r)

Hκ (ξ(x)) dx

converge weakly to

Xκ(∆) := c
κ/2
1 (n, α)

∫ ′
Rnκ

K∆ (λ1 + · · ·+ λκ)
W (dλ1) · · ·W (dλκ)

‖λ1‖(n−α)/2 · · · ‖λκ‖(n−α)/2
.

Here
∫ ′
Rnκ denotes the multiple Wiener-Itô integral with respect to a Gaussian white

7
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noise measure, where the diagonal hyperplanes λi = ±λj , i, j = 1, . . . , κ, i 6= j, are
excluded from the domain of integration.

Assumption 3. [15] Let ϑ(x) = ϑ(‖x‖) be a radial continuous function positive for
‖x‖ > 0 and such that for α ∈ (0, n/κ)

lim
r→∞

∫
∆

∫
∆

ϑ(r‖x‖)ϑ(r‖y‖)dxdy
ϑ2(r)‖x− y‖ακ

∈ (0,∞) .

Let u(‖λ‖) := c1 (n, α)L (1/‖λ‖), where L(·) is from Assumption 2. In [20] and
Section 2.10 [15] the case when the function u(‖λ‖) is continuous in a neighbourhood
of zero, bounded on (0,∞) and u(0) 6= 0, was studied. It was assumed that there is a
function ϑ̄(‖x‖) such that for all t ∈ [0, 1]∫

Rnκ

κ∏
j=1

‖λj‖α−n
∣∣∣∣ ∫

∆(t1/n)
ei〈λ1+···+λκ,x〉ϑ̄(x)dx

∣∣∣∣2 κ∏
j=1

dλj <∞

and

lim
r→∞

∫
Rnκ

∣∣∣∣ ∫
∆(t1/n)

ei〈λ1+···+λκ,x〉
(
ϑ(r‖x‖)
ϑ(r)

κ∏
j=1

√
u(‖λj‖r−1)

u(0)
− ϑ̄(x)

)
dx

∣∣∣∣2

×
κ∏
j=1

‖λj‖α−n
κ∏
j=1

dλj = 0.

Under these assumptions the following result was obtained.

Theorem 3.3. [15] If Assumption 3 holds, then the finite-dimensional distributions
of the random processes

Yr,κ(t) :=
1

rn−κα/2ϑ(r)uκ/2(0)

∫
∆(rt1/n)

ϑ(‖x‖)Hκ (ξ(x)) dx (4)

converge weakly to finite-dimensional distributions of the processes

Yκ(t) :=

∫ ′
Rnκ

K∆(t1/n)

(
λ1 + · · ·+ λκ; ϑ̄

) ∏κ
j=1W (dλj)∏κ

j=1 ‖λj‖(n−α)/2
,

as r →∞, where α ∈
(
0,min

(
n
κ ,

n+1
2

))
and K∆

(
λ; ϑ̄

)
:=
∫

∆ e
i〈λ,x〉ϑ̄(x)dx.

4. Limit theorems for functionals of filtered fields

This section derives the generalisation of Theorem 3.3 when the integrand ϑ(·)Hκ (·)
in (4) is replaced by a filtered random field.

8
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Assumption 4. Let h : [0,∞) → R be a measurable real-valued homogeneous func-
tion of degree β and g : [0,∞)→ R be a bounded uniformly continuous function such
that g(0) 6= 0 in some neighbourhood of zero and

∫
Rn h

2(‖u‖)g2(‖u‖)du <∞.

We define the filtered random field V (x), x ∈ Rn, as

V (x) =

∫
Rn
G(‖y − x‖)Hκ(ξ(y))dy =

∫
Rn
G(‖y‖)Hκ(ξ(x+ y))dy, (5)

where

G(‖x‖) :=
1

(2π)n

∫
Rn
e−i〈x,u〉h(‖u‖)g(‖u‖)du (6)

is the Fourier transform of h(·)g(·).

Remark 1. The weight function G(·) is introduced by using the Fourier transform
of the product of h(·)g(·). This factorisation represents two types of behaviour: the
function h(·) gives homogeneous behaviour of degree β, where the bounded function
g(·) is used to incorporate all other features. In the following, it will be shown that
the limit process depends on the parameters β, g(0) and h(0). Namely, the degree
β determines the normalisation in the non-central limit theorem up to a constant
multiplier that involves g(0) and h(0).

Remark 2. Note that from the isonormal spectral representation (2) and the Itô
formula

Hκ(ξ(x+ y)) =

∫ ′
Rnκ

ei〈λ1+···+λκ,x+y〉
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj) (7)

it follows that

V (x) =

∫
Rn
G(‖y‖)

∫ ′
Rnκ

ei〈λ1+···+λκ,x+y〉
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj)dy

=

∫
Rn
ei〈λ1+···+λκ,x〉

∫ ′
Rnκ

ei〈λ1+···+λκ,y〉G(‖y‖)dy
κ∏
j=1

(√
f(‖λj‖)W (dλj)

)

=

∫ ′
Rnκ

ei〈λ1+···+λκ,x〉Ĝ(λ1 + · · ·+ λκ)

κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj),

where Ĝ(·) is the Fourier transform of the function G(·) that is defined by (6) and the
stochastic Fubini’s theorem [36, Theorem 5.13.1] was used to interchange the order of
integration.

By (6) and Assumption 4 the isonormal spectral representation of V (x) is

9
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V (x) =

∫ ′
Rnκ

ei〈λ1+···+λκ,x〉h(‖λ1 + · · ·+λκ‖)g(‖λ1 + · · ·+λκ‖)
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj)

= h(1)

∫ ′
Rnκ

ei〈λ1+···+λκ,x〉‖λ1 + · · ·+ λκ‖βg(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj).

Therefore, it follows that the covariance of V (x) is

Cov(V (x), V (y)) = h2(1)

∫
Rnκ

ei〈λ1+···+λκ,x−y〉‖λ1 + · · ·+ λκ‖2β

×g2(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

f(‖λj‖)dλj . (8)

Remark 3. By the homogeneity of h(·) and Lemma 3 in [22] it holds

I1(α) :=

∫
Rn
|K∆ (λ) |2h

2 (‖λ‖) dλ
‖λ‖n−α

= h2(1)

∫
Rn
|K∆ (λ) |2 dλ

‖λ‖n−α−2β
<∞,

for α ∈ (0, n− 2β) and β < n/2.

Lemma 4.1. If τ1, . . . , τκ, κ ≥ 1, are positive constants such that it holds∑κ
i=1 τi < n− 2β and β < n/2, then

Iκ(τ1, . . . , τκ) :=

∫
Rnκ

∣∣K∆ (λ1 + · · ·+ λκ)
∣∣2‖λ1 + · · ·+ λκ‖2β

∏κ
j=1 dλj

‖λ1‖n−τ1 · · · ‖λκ‖n−τκ
<∞.

Proof. For κ = 1 we have τ1 ∈ (0, n− 2β) and by Remark 3 we get the statement of
the Lemma.

For κ > 1, let us use the change of variables λ̃κ−1 = λκ−1/‖u‖, where u = λκ+λκ−1.
Then, we get

Iκ(τ1, . . . , τκ) =

∫
Rn(κ−1)

|K∆ (λ1 + · · ·+ λκ−2 + u) |2

×
∫
Rn

‖λ1 + · · ·+ λκ−2 + u‖2βdλκ−1

‖λκ−1‖n−τκ−1‖u− λκ−1‖n−τκ
dλ1 · · · dλκ−2du

‖λ1‖n−τ1 · · · ‖λκ−2‖n−τκ−2

=

∫
Rn

(∫
Rn(κ−2)

|K∆ (λ1 + · · ·+ λκ−2 + u) |2‖λ1 + · · ·+ λκ−2 + u‖2β
∏κ−2
j=1 dλj

‖λ1‖n−τ1 · · · ‖λκ−2‖n−τκ−2‖u‖n−τκ−1−τκ

10
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×
∫
Rn

dλ̃κ−1

‖λ̃κ−1‖n−τκ−1

∥∥ u
‖u‖ − λ̃κ−1

∥∥n−τκ
)
du. (9)

Note that the second integrand in (9) is unbounded at ‖λ̃κ−1‖ = 0 and λ̃κ−1 = u/‖u‖
(in this case ‖λ̃κ−1‖ = 1). If we split Rn into the regions A1 := {λ̃κ−1 ∈ Rn : ‖λ̃κ−1‖ <
1
2}, A2 := {λ̃κ−1 ∈ Rn : 1

2 ≤ ‖λ̃κ−1‖ < 3
2}, and A3 := {λ̃κ−1 ∈ Rn : ‖λ̃κ−1‖ ≥ 3

2}, then
the last integral in (9) can be estimated as∫

Rn

dλ̃κ−1

‖λ̃κ−1‖n−τκ−1

∥∥ u
‖u‖ − λ̃κ−1

∥∥n−τκ ≤ sup
λ̃κ−1∈A1

∥∥ u

‖u‖
− λ̃κ−1

∥∥τκ−n

×
∫
A1

‖λ̃κ−1‖τκ−1−ndλ̃κ−1 + sup
λ̃κ−1∈A2

‖λ̃κ−1‖τκ−1−n
∫
A2

dλ̃κ−1∥∥ u
‖u‖ − λ̃κ−1

∥∥n−τκ

+

∫
A3

∥∥λ̃κ−1

∥∥τκ−1−n|
∥∥λ̃κ−1

∥∥− 1|τκ−ndλ̃κ−1 ≤
(

1

2

)τκ−n ∫ 1/2

0
ρτκ−1−1dρ

+

(
1

2

)τκ−1−n ∫
A2− u

‖u‖

‖λ̂κ−1‖τκ−ndλ̂κ−1 +

∫ ∞
3/2

ρτκ−1−1 (ρ− 1)τκ−n dρ

≤ C +

(
1

2

)τκ−1−n ∫ 5/2

0
ρτκ−1dρ+

∫ ∞
1/2

dρ̂

ρ̂n+1−τκ−τκ−1
= C <∞,

where A2 − u
‖u‖ = {λ ∈ Rn : λ + u

‖u‖ ∈ A2} ⊂ vn
(

5
2

)
, vn (r) is a n-dimensional ball

with centre 0 and radius r.
Hence, by (9) and Remark 3 using recursion one obtains

Iκ(τ1, . . . , τκ) ≤ CIκ−1(τ1, . . . , τκ−2, τκ−1 + τκ)

≤ · · · ≤ CI1

( κ∑
i=1

τi

)
≤ C

∫
Rn

|K∆ (u) |2du
‖u‖n−

∑κ
i=1 τi−2β

<∞, (10)

which completes the proof.

Lemma 4.2. The following integral is finite

Jκ :=

∫
Rnκ

∣∣Ĝ(λ1 + · · ·+ λκ)
∣∣2 κ∏
i=1

f(‖λi‖)dλi <∞.

Proof. As f(·) is an isotropic spectral density we can rewrite Jκ as

11
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Jκ =

∫
Rn(κ−1)

∫
Rn

∣∣Ĝ((λ1 + · · ·+ λκ−1) + λκ)
∣∣2f(‖ − λκ‖)dλκ

κ−1∏
i=1

f(‖λi‖)dλi

=

∫
Rn(κ−1)

∫
Rn

(∣∣Ĝ∣∣2 ∗ f)(λ1 + · · ·+ λκ−1)

κ−1∏
i=1

f(‖ − λi‖)dλi. (11)

Note that |Ĝ|2(·) ∈ L1 (Rn) and f(·) ∈ L1 (Rn). Hence, by Young’s theorem [8] it

follows that Ĝ2
1(·) =

(
|Ĝ|2 ∗ f

)
(·) ∈ L1 (Rn). Therefore, using convolutions as in (11)

we obtain

Jκ =

∫
Rn(κ−2)

∫
Rn
Ĝ2

1(λ1 + · · ·+ λκ−1)f(‖ − λκ−1‖)dλκ−1

κ−2∏
i=1

f(‖ − λi‖)dλi

=

∫
Rn(κ−2)

∫
Rn

(
Ĝ2

1 ∗ f
)
(λ1 + · · ·+ λκ−2)

κ−2∏
i=1

f(‖ − λi‖)dλi

=

∫
Rn(κ−2)

∫
Rn
Ĝ2

2(λ1 + · · ·+ λκ−2)

κ−2∏
i=1

f(‖ − λi‖)dλi = · · · =

=

∫
Rn
Ĝ2
κ−1(λ1)f(‖ − λ1‖)dλ1 <∞,

where Ĝ2
j+1(·) :=

(
Ĝ2
j ∗ f

)
(·) ∈ L1 (Rn) by Young’s theorem and recursive steps.

Now we proceed to the main result.

Theorem 4.3. Let ξ (x) , x ∈ Rn, be a random field satisfying Assumptions 1, 2 and
functions g(·) and h(·) satisfy Assumption 4. Then, for r → +∞ the finite-dimensional
distributions of

Xr,κ(t) :=
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)h(1)

∫
∆(rt1/n)

V (x) dx, t ∈ [0, 1],

converge weakly to the finite-dimensional distributions of

Xκ(t) := t

∫ ′
Rnκ

K∆

((
λ1 + · · ·+ λκ

)
t1/n

)‖λ1 + · · ·+ λκ‖β
∏κ
j=1W (dλj)∏κ

j=1 ‖λj‖(n−α)/2
,

where α ∈
(

0, n−2β
κ

)
and β < n

2 .

Remark 4. By the representation (8) in Remark 2 of the covariance function of V (x)
we obtain
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Cov (Xr,κ(t), Xr,κ(s)) =

=

(
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)h(1)

)2 ∫
∆(rt1/n)

∫
∆(rs1/n)

Cov (V (x), V (y)) dxdy

=

(
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)

)2 ∫
∆(rt1/n)

∫
∆(rs1/n)

∫
Rnκ

ei〈λ1+···+λκ,x−y〉

×‖λ1 + · · ·+ λκ‖2βg2(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

f(‖λj‖)dλjdxdy

=

(
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)

)2 ∫
Rnκ

∫
∆(rt1/n)

∫
∆(rs1/n)

ei〈λ1+···+λκ,x−y〉dxdy

×‖λ1 + · · ·+ λκ‖2βg2(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

f(‖λj‖)dλj

=

(
rβ+κα/2L−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)

)2

ts

∫
Rnκ

K∆

((
λ1 + · · ·+ λκ

)
rt1/n

) κ∏
j=1

f(‖λj‖)

×K∆

(
(λ1 + · · ·+ λκ) rs1/n

)
‖λ1 + · · ·+ λκ‖2βg2(‖λ1 + · · ·+ λκ‖)

κ∏
j=1

dλj .

In particular, the variance of Xr,κ(t) is

V ar (Xr,κ(t)) =

(
rβ+κα/2L−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)

)2

t2
∫
Rnκ
‖λ1 + · · ·+ λκ‖2β

×
∣∣K∆

((
λ1 + · · ·+ λκ

)
rt1/n

)∣∣2g2(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

f(‖λj‖)dλj .

Similarly, we get

Cov (Xκ(t), Xκ(s)) = ts

∫
Rnκ

K∆

(
(λ1 + · · ·+ λκ) t1/n

)
K∆

(
(λ1 + · · ·+ λκ) s1/n

)

13
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×‖λ1 + · · ·+ λκ‖2β
κ∏
j=1

‖λj‖α−ndλj

and

V ar (Xκ(t)) = t2
∫
Rnκ

∣∣K∆

(
(λ1 + · · ·+ λκ) t1/n

)∣∣2 ‖λ1 + · · ·+ λκ‖2β
∏κ
j=1 dλj∏κ

j=1 ‖λj‖n−α
.

Remark 5. Note that for a > 0 we have

Xκ(at) = at

∫ ′
Rnκ

K∆

(
(λ1 + · · ·+ λκ) (at)1/n

)‖λ1 + · · ·+ λκ‖β
∏κ
j=1W (dλj)∏κ

j=1 ‖λj‖(n−α)/2
.

Using the transformation λ̃j = a1/nλj , j = 1, . . . , κ, and the self-similarity of the
Gaussian white noise we get

Xκ(at) = ta1− β
n

+κ(n−α)

2n

∫ ′
Rnκ

K∆

((
λ̃1 + · · ·+ λ̃κ

)
t1/n

)
‖λ̃1 + · · ·+ λ̃κ‖β∏κ

j=1 ‖λ̃j‖(n−α)/2

κ∏
j=1

W (a−
1

ndλ̃j)

= a1−κα
2n
− β
nXκ(t).

Thus, Xκ(t) is a self-similar process with the Hurst parameter H = 1− κα
2n −

β
n .

Proof. By (5) the process Xr,κ(t) admits the following representation

Xr,κ(t) =
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)h(1)

∫
∆(rt1/n)

(∫
Rn
G(‖y‖)Hκ(ξ(x+ y))dy

)
dx.

By (7) we obtain

Xr,κ(t) =
rβ+κα/2−nL−κ/2(r)

(2π)nc
κ/2
1 (n, α)g(0)h(1)

∫
∆(rt1/n)

(∫
Rn
G(‖y‖)

×
[ ∫ ′

Rnκ
ei〈λ1+···+λκ,x+y〉

κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj)

]
dy

)
dx. (12)

By Assumption 2 it follows
∏κ
j=1

√
f(‖λj‖) ∈ L2 (Rnκ). By Assumption 4, (6) and

Parseval’s theorem G(·) ∈ L2(Rn). So, one can apply the stochastic Fubini’s theorem
to interchange the inner integrals in (12), see Theorem 5.13.1 in [36], which results in

Xr,κ(t) =
rβ+κα/2−nL−κ/2(r)

c
κ/2
1 (n, α)g(0)h(1)

∫
∆(rt1/n)

∫ ′
Rnκ

ei〈λ1+···+λκ,x〉Ĝ(λ1 + · · ·+ λκ)

14
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×
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj)dx. (13)

Note that by Lemma 4.2 the integrand in (13) belongs to L2(Rnκ). Then, it follows
from the stochastic Fubini’s theorem, and Assumption 4 that

Xr,κ(t) =
rβ+κα/2−nL−κ/2(r)

c
κ/2
1 (n, α)g(0)

∫ ′
Rnκ

K∆(rt1/n)(λ1 + · · ·+ λκ)‖λ1 + · · ·+ λκ‖β

×g(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj),

where K∆(rt1/n)(λ) =
∫

∆(rt1/n) e
i〈λ,x〉dx.

Note that K∆(rt1/n)(λ) = trnK∆

(
λrt1/n

)
, where K∆(·) is given by (3). Therefore,

Xr,κ(t) = t
rβ+κα/2L−κ/2(r)

c
κ/2
1 (n, α)g(0)

∫ ′
Rnκ

K∆

(
(λ1 + · · ·+ λκ) rt1/n

)
‖λ1 + · · ·+ λκ‖β

×g(‖λ1 + · · ·+ λκ‖)
κ∏
j=1

√
f(‖λj‖)

κ∏
j=1

W (dλj).

Using the transformation λ(j) = rλj , j = 1, . . . , κ, and the self-similarity of the
Gaussian white noise we get

Xr,κ(t) = t
rβ+κα/2L−κ/2(r)

c
κ/2
1 (n, α)g(0)

∫ ′
Rnκ

K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)

×
(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥)β κ∏
j=1

√
f(‖λ(j)‖/r)g

(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥) κ∏
j=1

W (dλ(j)/r)

= t
rκα/2L−κ/2(r)r−nκ/2

c
κ/2
1 (n, α)g(0)

∫ ′
Rnκ

K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∥∥λ(1) + · · ·+ λ(κ)
∥∥β

×
κ∏
j=1

√
f(‖λ(j)‖/r)g

(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥) κ∏
j=1

W (dλ(j)) = t
rκ(α−n)/2L−κ/2(r)

g(0)

×
∫ ′
Rnκ

K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∥∥λ(1) + · · ·+ λ(κ)
∥∥β κ∏

j=1

√
(‖λ(j)‖/r)α−nL(r/‖λ(j)‖)
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×g
(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥) κ∏
j=1

W (dλ(j)) =
t

g(0)

∫ ′
Rnκ

K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∏κ
j=1 ‖λ(j)‖(n−α)/2

×
∥∥λ(1) + · · ·+ λ(κ)

∥∥β κ∏
j=1

√
L(r/‖λ(j)‖)/L(r)g

(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥) κ∏
j=1

W (dλ(j)).

By the isometry property of multiple stochastic integrals

Rr := E (Xr,κ(t)−Xκ(t))2 = t2
∫
Rnκ

|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α

×
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β(
Qr(λ

(1), . . . , λ(κ))− 1
)2
dλ(1) · · · dλ(κ),

where

Qr
(
λ(1), . . . , λ(κ)

)
:=

g
(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥)
g(0)

√√√√ κ∏
j=1

L(r/‖λ(j)‖)/L(r).

Note that by Assumptions 2, 4, and properties of slowly varying functions
Qr(λ

(1), . . . , λ(κ)) converges to 1 pointwise, as r →∞.
Let us split Rnκ into the regions

Bµ :=
{(
λ(1), . . . , λ(κ)

)
∈ Rnκ : ‖λ(j)‖ ≤ 1, if µj = −1,

and ‖λ(j)‖ > 1, if µj = 1, j = 1, . . . , κ
}
,

where µ = (µ1, . . . , µκ) ∈ {−1, 1}κ is a binary vector of length κ. Then, we can
represent the integral Rr as

Rr = t2
∫
∪µ∈{−1,1}κBµ

|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α

×
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β(
Qr
(
λ(1), . . . , λ(κ)

)
− 1
)2
dλ(1) · · · dλ(κ).

If
(
λ(1), . . . , λ(κ)

)
∈ Bµ we estimate the integrand as follows

|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β(
Qr(λ

(1), . . . , λ(κ))− 1
)2

≤
2|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β(
Q2
r(λ

(1), . . . , λ(κ)) + 1
)

16

Page 16 of 27

URL: http:/mc.manuscriptcentral.com/gssr

Stochastics: An International Journal Of Probability And Stochastic Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

=
2|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β

×
(

1 +
g2
(
r−1
∥∥λ(1) + · · ·+ λ(κ)

∥∥)
g2(0)

κ∏
j=1

‖λ(j)‖µjδ
κ∏
j=1

(r/‖λ(j)‖)µjδL(r/‖λ(j)‖)
rµjδL(r)

)
,

where δ is an arbitrary positive number.
Using the boundedness of the function g(·), we can write

|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β(
Qr(λ

(1), . . . , λ(κ))− 1
)2

≤
2
∣∣K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∣∣2∏κ
j=1 ‖λ(j)‖n−α

∥∥λ(1) + · · ·+ λ(κ)
∥∥2β

×
(

1 + C sup
(λ1,...,λκ)∈Bµ

κ∏
j=1

‖λ(j)‖µjδ
κ∏
j=1

(r/‖λ(j)‖)µjδL(r/‖λ(j)‖)
rµjδL(r)

)
.

By Theorem 2.4

lim
r→∞

sup‖λ(j)‖≤1

(
r/‖λ(j)‖

)−δL(r/‖λ(j)‖
)

r−δL(r)
= 1;

and

lim
r→∞

sup‖λ(j)‖>1

(
r/‖λ(j)‖

)δL(r/‖λ(j)‖
)

rδL(r)
= 1.

Therefore, there exists r0 > 0 such that for all r ≥ r0 and
(
λ(1), . . . , λ(κ)

)
∈ Bµ∣∣K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∣∣2∏κ
j=1 ‖λ(j)‖n−α

∥∥λ(1) + · · ·+ λ(κ)
∥∥2β(

Qr(λ
(1), . . . , λ(κ))− 1

)2

≤
2
∣∣K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)∣∣2∏κ
j=1 ‖λ(j)‖n−α

∥∥λ(1) + · · ·+ λ(κ)
∥∥2β

+
2C|K∆

((
λ(1) + · · ·+ λ(κ)

)
t1/n

)
|2∏κ

j=1 ‖λ(j)‖n−α−µjδ
∥∥λ(1) + · · ·+ λ(κ)

∥∥2β
. (14)
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By Lemma 4.1, if we choose δ ∈
(
0,min{α, n−2β

κ − α}
)
, the upper bound in (14) is

an integrable function on each Bµ and hence on Rnκ too. By Lebesgue’s dominated
convergence theorem Rr → 0 as r →∞, which completes the proof.

5. Examples

The objective of this section is to investigate the Hurst parameter H of the limit
process Xκ(t) in Theorem 4.3. The section provides simple examples where the range
(γ(∆), 1) for H is explicitly specified depending on the observation window ∆ ⊂ Rn.

Recall that H = 1− κα
2n −

β
n and I1(κα) is defined as

I1(κα) = C

∫
Rn

|K∆ (λ) |2dλ
‖λ‖n−κα−2β

.

Example 5.1. Let n = 1 and ∆ has the form ∆ = [−b, a] ⊂ R, where a, b > 0.
Using (3) one obtains

K[−b,a] (λ) =

∫ a

−b
eiλxdx =

eiaλ − e−ibλ

iλ
.

Note that as λ→ 0 it holds |K[−b,a] (λ) | → b+ a <∞.
Now, as λ→∞

|K[−b,a] (λ) | =
∣∣∣∣eiaλ − e−ibλiλ

∣∣∣∣ ≤
∣∣eiaλ∣∣+

∣∣e−ibλ∣∣
|iλ|

=
2

|λ|
.

Let τ1 = τ2 = · · · = τκ = α. Then, by (10) Iκ(α, . . . , α) can be estimated as

Iκ(α, . . . , α) ≤ CI1(κα) = C

∫
R

|K[−b,a] (λ) |2dλ
|λ|1−κα−2β

≤ C1

∫
|λ|≤C0

dλ

|λ|1−κα−2β

+C2

∫
|λ|>C0

dλ

|λ|3−κα−2β
≤ C

∫ C0

0

dρ

ρ1−κα−2β
+ C

∫ ∞
C0

dρ

ρ3−κα−2β
. (15)

Note that the two conditions 1− κα− 2β < 1 and 3− κα− 2β > 1 are required to
guarantee that, integrals in (15) are finite. The first condition implies 1− κα

2 − β < 1
and the second one 1− κα

2 − β > 0. So Iκ(α, . . . , α) <∞ if H ∈ (0, 1).

Example 5.2. Let ∆ be an n-dimensional ball of radius 1, i.e. ∆ = v(1) ⊂ Rn. In
this case

Kv(1) (λ) =

∫
v(1)

ei〈λ,x〉dx.

Note that as ‖λ‖ → 0 it holds |Kv(1) (λ) | ≤ C <∞.
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Now, as ‖λ‖ → ∞ we obtain

|Kv(1) (λ) | = C

∣∣∣∣Jn/2(‖λ‖)
‖λ‖n/2

∣∣∣∣ < C

‖λ‖
n+1

2

.

Let τ1 = τ2 = · · · = τκ = α. Then, by (10) Iκ(α, . . . , α) can be estimated as

Iκ(α, . . . , α) ≤ C
∫
Rn

|Kv(1) (λ) |2dλ
‖λ‖n−κα−2β

≤ C1

∫
‖λ‖≤C0

dλ

‖λ‖n−κα−2β

+C2

∫
‖λ‖>C0

dλ

‖λ‖2n−κα−2β+1
≤ C

[∫ C0

0

dρ

ρ1−κα−2β
+

∫ ∞
C0

dρ

ρn−κα−2β+2

]
. (16)

The two integrals in (16) are finite provided that 1−κα−2β < 1 and n−κα−2β+2 >

1. It follows that 1
2 −

1
2n < 1 − κα

2n −
β
n < 1, i.e. H ∈ (1

2 −
1

2n , 1), where n ∈ N. Note
that for n = 1 the Hurst index H ∈ (0, 1) and one obtains the same result as in
Example 5.1. For n > 1 we get γ(v(1)) = 1

2 −
1

2n <
1
2 .

Example 5.3. Let n = 2, ∆ = �(1) = [−1, 1]2 ⊂ R2. In this case

K�(1) (λ) = K�(1) (λ1, λ2) =

∫ 1

−1

∫ 1

−1
ei(λ1x1+λ2x2)dx1dx2 =

sinλ1

λ1

sinλ2

λ2
.

Note that |K�(1) (λ1, λ2) | ≤ C. When min(λ1, λ2) > C0 > 0 we get

|K�(1) (λ1, λ2) | ≤ C

|λ1||λ2|
,

and if λj > C0 > 0, λi ≤ C0, i, j ∈ {1, 2}, i 6= j, then

sup
λi,i6=j

|K�(1) (λ1, λ2) | ≤ C

|λj |
. (17)

Let us split R2 into the regions

A′1 := {(λ1, λ2) ∈ R2 : |λ1| ≤ C0, |λ2| ≤ C0},

A′2 := {(λ1, λ2) ∈ R2 : |λ1| ≤ C0, |λ2| > C0},

A′3 := {(λ1, λ2) ∈ R2 : |λ1| > C0, |λ2| ≤ C0},

A′4 := {(λ1, λ2) ∈ R2 : |λ1| > C0, |λ2| > C0},

where C0 > 0.
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Then I1(κα) can be written as

I1(κα) =

4∑
j=1

I(j)
1 (κα), (18)

where I(j)
1 (κα) :=

∫
A′j

|K�(1)(λ)|2dλ
‖λ‖2−κα−2β , j = 1, . . . , 4.

We will consider each term in (18) separately. The term I(1)
1 (·) can be estimated as

I(1)
1 (κα) =

∫
A′1

|K�(1) (λ) |2dλ
‖λ‖2−κα−2β

≤ C
∫
A′1

dλ1dλ2

(|λ1||λ2|)1−κα
2
−β

≤ C
(∫
|λ1|≤C0

dλ1

|λ1|1−
κα

2
−β

)2

.

The last integral is finite provided that 1− κα
2 − β < 1, i.e. H < 1.

Using (17) the term I(2)
1 (·) can be estimated as

I(2)
1 (κα) =

∫
A′2

|K�(1) (λ) |2dλ
‖λ‖2−κα−2β

≤ C
∫
A′2

dλ1dλ2

|λ2|2 (|λ1||λ2|)1−κα
2
−β

≤ C
∫
|λ1|≤C0

dλ1

|λ1|1−
κα

2
−β

∫
|λ2|>C0

dλ2

|λ2|3−
κα

2
−β .

The last integrals are finite provided that 1− κα
2 −β < 1 and 3− κα

2 −β > 1. It follows

that H ∈ (0, 1). Similarly, one obtains I(3)
1 (κα) <∞ when H ∈ (0, 1).

Now, for the term I(4)
1 (·) we obtain

I(4)
1 (κα) =

∫
A′4

|K�(1) (λ) |2dλ
‖λ‖2−κα−2β

≤ C
∫
A′4

dλ1dλ2

|λ1|2|λ2|2 (|λ1||λ2|)1−κα
2
−β

≤ C
(∫
|λ2|>C0

dλ2

|λ2|3−
κα

2
−β

)2

.

The last integral is finite provided that 3− κα
2 − β > 1. It follows that H > 0.

By combining the above results for (18), one obtains I1(κα) <∞. Therefore, using
τ1 = τ2 = · · · = τκ = α and the inequality (10) we obtain that the result of Theorem 4.3
is true when H ∈ (0, 1).

6. Discussion and possible extensions

In this paper, we studied the asymptotic behaviour of integral functionals of filtered
random fields defined on increasing observation windows ∆(r) ⊂ Rn, r > 0. These
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integral functionals are defined as convolutions of non-random kernels with non-linear
transformations of long-range dependent fields. It was shown that the limits are non-
Gaussian self-similar processes. The explicit form of the Hurst parameter H of the
obtained limit processes was obtained. The parameterH was given for several examples
on the set ∆. It was demonstrated that the range (γ(∆), 1) for H depends on the
geometric properties of ∆ and, contrary to the majority of results available in the
literature, H can take values in the interval (0, 1

2).
The weight function G(·) given in (6) is defined as the Fourier transform of the prod-

uct of h(·)g(·). The radial function h has a homogeneous behaviour of degree β > 0.
It would be interesting to obtain similar results for other classes of weight functions.
Furthermore, all results in this paper were obtained for integral functionals of scalar
random fields. It would be interesting to generalise these results for the case of integral
functionals of vector random fields. For this case, one can use the recent reduction
approaches introduced by Olenko and Omari [32, 33]. Another possible extension is to
consider random fields defined on hypersurfaces in Rn such as a spheres. In this case
one has to generalise recent asymptotic results obtained by Olenko and Vaskovych [34].

Acknowledgement This research was partially supported under the Australian Re-
search Council’s Discovery Projects [DP160101366]. The authors are also grateful to
the editor and referees for their suggestions that helped to improve the paper.
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The Authors’ Response to Reviewer 1

We appreciate the amount of time and effort that you have given to this paper. We have revised the manuscript
to reflect your suggestions. We made all required changes and corrections as listed below.

The authors should include a Final Comment section, where they discuss the extension of the derived results to
more general frameworks, beyond the family of functions G considered, for filtering.

We added Section 6:

6. Discussion and possible extensions
In this paper, we studied the asymptotic behaviour of integral functionals of filtered random fields defined on in-

creasing observation windows ∆(r) ⊂ Rn, r > 0. These integral functionals are defined as convolutions of non-random
kernels with non-linear transformations of long-range dependent fields. It was shown that the limits are non-Gaussian
self-similar processes. The explicit form of the Hurst parameter H of the obtained limit processes was obtained. The
parameter H was given for several examples on the set ∆. It was demonstrated that the range (γ(∆), 1) for H depends
on the geometric properties of ∆ and, contrary to the majority of results available in the literature, H can take values
in the interval (0, 12 ).

The weight function G(·) given in (6) is defined as the Fourier transform of the product of h(·)g(·). The radial
function h has a homogeneous behaviour of degree β > 0. It would be interesting to obtain similar results for other
classes of weight functions. Furthermore, all results in this paper were obtained for integral functionals of scalar
random fields. It would be interesting to generalise these results for the case of integral functionals of vector random
fields. For this case, one can use the recent reduction approaches introduced by Olenko and Omari [32, 33]. Another
possible extension is to consider random fields defined on hypersurfaces in Rn such as a spheres. In this case one has
to generalise recent asymptotic results obtained by Olenko and Vaskovych [34].

We also corrected several other minor misprints.

We believe that the manuscript has been greatly improved and hope it has reached Stochastics journal’s standards.
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The Authors’ Response to Reviewer 2

We appreciate the amount of time and effort that you have given to this paper. Your comments were very helpful in
directing our attention to areas that required clarification and corrections. We have revised the manuscript to reflect
your suggestions.

We made all required changes and corrections as listed below.

• I would suggest the authors insert a Remark to explain the role of g.

We added a Remark and now it is written:

“Remark 1. The weight function G(·) is introduced by using the Fourier transform of the product of h(·)g(·).
This factorisation represents two types of behaviour: the function h(·) gives homogeneous behaviour of degree β,
where the bounded function g(·) is used to incorporate all other features. In the following, it will be shown that the
limit process depends on the parameters β, g(0) and h(0). Namely, the degree β determines the normalisation
in the non-central limit theorem up to a constant multiplier that involves g(0) and h(0).”

We also corrected several other minor misprints.

We believe that the manuscript has been greatly improved and hope it has reached Stochastics journal’s standards.
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The Authors’ Response to Reviewer 3

We appreciate the amount of time and effort that you have given to this paper. We have revised the manuscript
to reflect your suggestions.

We made all required changes and corrections as listed below.

• Line 23, page 13: Add “to” after “is equal”

Now it is written as:

In particular, the variance of Xr,κ(t) is...

• Line 10, page 18: absolute value of a+b may be replaced by a + b 6= 0

Now it is written as:

Let n = 1 and ∆ has the form ∆ = [−b, a] ⊂ R, where a, b > 0.

• Several places in the paper: “Note, that” may be replaced by “Note that”, without the comma between “Note”
and “that”.

We replaced ”Note, that” by ”Note that”.

We also corrected several other minor misprints.

We believe that the manuscript has been greatly improved and hope it has reached Stochastics journal’s standards.
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The Authors’ Response to Reviewer 4

We appreciate the amount of time and effort that you have given to this paper. Your detailed comments were very
helpful in directing our attention to areas that required clarification and corrections. We have revised the manuscript
to reflect your suggestions.

We made all required changes and corrections as listed below.

• P. 2, line 40. Replace “stationary in the wide sense” with ”wide-sense stationary”.

Now it is written: “Let V (t) =
∫
RG(t − s)ξ(s)ds, t ∈ R, be a linear filtered process, where ξ(t), t ∈ R, be a

mean-square continuous wide-sense stationary process with zero mean and finite variance. . . ”.

• P. 6, line 20. Explain what do you mean by the field with absolutely continuous spectrum.

Now it is written:

“Definition 2.7. The spectrum of the random field ξ(x) is absolutely continuous if there exists a function f(u), u ∈
[0,∞), such that

un−1f(u) ∈ L1([0,∞)), Φ(u) = 2πn/2/Γ(n/2)

∫ u

0

zn−1f(z)dz.”

• P. 7, line 8. replace “denote” with “define”.

Now it is written: “Let S(ω) ∈ L2 (R, φ(ω)dω) and define the random variables Kr and Kr,κ by,. . . ”

• P. 7, line 11. The domain of integration is 4(r). Is it the same as ∆(r) in line 5?

The two integrations have the same domain ∆(r). The notation is corrected. Now it is written:

“Kr :=

∫
∆(r)

S (ξ (x)) dx and Kr,κ :=
Cκ
κ!

∫
∆(r)

Hκ (ξ (x)) dx, ”

• P. 7, line 32. If I understood correctly, Assumptions 1 and 2 are related by means of Abelian and Tauberian
theorems. It could be good to add a paragraph with a short explanation of the subject for a non-specialist.

We have added a short paragraph and a reference. It is written as:

“Note that Assumptions 1 and 2 are connected by the so-called Tauberian-Abelian theorems [21]. In applications
these two assumptions are usually considered to be equivalent and hence one of them might be sufficient in
modelling various random data that exhibit long-range dependence properties. For example, if the spectral density
f(·) is decreasing in a neighbourhood of zero and continuous (except at zero), then by Tauberian Theorem 4 [21]
the both assumptions are simultaneously satisfied. However, in the general case, this equivalence is not true [4].
Therefore, the both assumptions are essential for formulating general results in this paper. One can find more
details on relations between Assumptions 1 and 2 in [5, 21].”

The following reference was added

[21] N. Leonenko and A. Olenko, Tauberian and Abelian theorems for long-range dependent random fields,
Methodol. Comput. Appl. Probab. 15 (2013), pp. 715–742.

• P. 10, line 25. What do you estimate here?

Now it is written: “Then, we get ... using recursion one obtains ...”

• P. 13, line 23. Delete “equal”.

Now it is written: “In particular, the variance of Xr,κ(t) is”

• P. 16, line 20. Replace “pointwise converges to 1, when” with “converges to 1 pointwise, as”.

Now it is written as:

“Note that by Assumptions 1, 2, and properties of slowly varying functions Qr(λ
(1), . . . , λ(κ)) converges to 1

pointwise, as r →∞.”

We also corrected several other minor misprints.

We believe that the manuscript has been greatly improved and hope it has reached Stochastics journal’s standards.
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