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Abstract 

This paper deals with the sensitivity analysis of dynamic response and optimal size 

design of complex built-up systems in the mid-frequency range. A complex built-up 

system may be fabricated from many components which often differ greatly in materials 

and sizes. It may be subjected to many different wavelength structural deformations and 

may typically exhibit mixed mid-frequency behavior which is very sensitive to 

uncertainties at higher frequencies. In order to perform optimization on the mid-frequency 

vibration of the complex built-up systems, the hybrid Finite Element (FE) - Statistical 

Energy Analysis (SEA) method, in which the deterministic and statistical subsystem are 

respectively modeled by using FE and SEA, is implemented in the present work. In the 

optimization model, the size parameters of the deterministic and statistical subsystems 

are taken as design variables. The energy of the system under a specific frequency, or the 

frequency-aggregated energy of the system in a given frequency band, is taken as the 

objective function to be minimized. In this context, an efficient direct differentiation 

method for sensitivity analysis is derived. Then the optimization problem is solved by 

using a gradient-based mathematical programming algorithm. Two numerical examples 

illustrate the efficiency and effectiveness of the proposed method. The energy level of the 

complex built-up system, whether at a single frequency or in a given frequency band, can 

be significantly improved through optimization. 

Keywords: Mid-frequency; Dynamic optimization; Hybrid FE-SEA method; Complex 
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built-up system; Sensitivity analysis 

 

1 Introduction 

Complex built-up systems such as stiffened panels are widely used in aircraft, 

automobiles and ships, and their layout, shape and size directly affect the dynamic 

performance of the engineering structures. Therefore, the dynamic optimum design of 

complex built-up systems has long been a challenging subject in structural design, and 

has been widely addressed by academia and industry. Initially, researchers focused their 

attention on static optimization of structures because of the difficulty of performing 

dynamic optimization. Zarghmee (1968) and Taylor (1968) proposed the concept of the 

optimum frequency of structures, and many researchers studied the optimization of 

natural frequencies. Comparatively, there were fewer studies on dynamic response 

optimization for structures at that time. Karnopp and Trikka (1969), Sevin and Walter 

(1971) and Afiminiwala and Mayne (1974) proposed the optimization of transient 

response for engineering structures. Since then, the study of dynamic response 

optimization design has gradually increased (Hsieh and Arora 1984; Kang, Park, and 

Arora 2006). In recent years, topology optimization has attracted more attention than 

sizing and shape optimization and has been widely applied in many fields (Bendsøe and 

Sigmund 2003; Du and Olhoff 2007; Dühring and Jensen 2008; Zhang and Kang 2014). 

It is very important to correctly obtain the dynamic response of structures, since the 
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structural analysis is essential for structural optimization. The studies mentioned above 

used deterministic methods, such as the Finite Element (FE) method (Bathe 1996; 

Zienkiewicz and Taylor 2000) to study the deterministic optimization of structures in the 

low-frequency domain. Complex built-up engineering systems such as automobiles and 

aircraft may be subjected to a wide range of excitation frequencies during their operation. 

The deformation wavelength of components of a system will decrease remarkably as the 

frequency increases. In the context of the FE method, there are two problems that cannot 

be ignored (Mace and Shorter 2000; Desmet 2002; Cotoni, Shorter, and Langley 2007): 

1) A very fine finite element mesh is required to capture the short wavelength 

deformations of a system, which leads to a high number of degrees of freedom, so that 

the FE model is often computationally expensive. 2) The response of a system becomes 

sensitive to uncertainties which inevitably arise during the manufacture and assembly of 

the system. 

Systems with the same nominal parameters may have different responses. Hence, the 

optimum design of a system in the mid-frequency range may not be achieved by 

deterministic methods. As a popular statistical method, Statistical Energy Analysis (SEA) 

(Lyon and DeJong 1995), which considers the uncertainties of the system, can give a good 

prediction for the statistical behavior of the system at higher frequencies with little time 

cost. However, the assumptions (Langley 1989; Lyon and DeJong 1995) introduced in 

SEA were numerous: 1) The coupling between the subsystems is weak. 2) The power 
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transmitted is proportional to the difference of the modal energies between the coupled 

subsystems. 3) The subsystem has enough modes in the frequency band of interest. 4) 

The modal overlap of the subsystem is high enough. 5) Every resonant mode in a 

subsystem is equally energetic. The above assumptions may not be satisfied when the 

system is subjected to long-wavelength deformation at lower frequencies (Langley 1989). 

A complex built-up system fabricated from many components which differ greatly 

in materials and sizes may be subjected to many different wavelength deformations and 

may typically exhibit mixed mid-frequency behavior which is very sensitive to 

uncertainties at higher frequencies. In the context of mid-frequency vibration, the 

vibration behavior of the system may not be properly described by simply using FE or 

SEA. To address this situation, many improved methods have been proposed. These 

methods may be simply divided into three types. The first type aims to improve the 

deterministic method, e.g. using FE reduction techniques (Soize 1998; Hinke, Dohnal, 

and Mace 2009; Kassem, Soize, and Gagliardini 2011), high-order FE methods (Harari 

and Avraham 1997; Wilcox et al. 2010), stochastic FE analysis (Vanmarcke and Grigoriu 

1983; Yamazaki, Shinozuka, and Dasgupta 1988; Van Vinckenroy and De Wilde 1995) 

and analytical or semi-analytical analysis based on wave methods (Langley 1989; 

Ladevèze and Arnaud 2000; Duhamel, Mace, and Brennan 2006; Pluymers et al. 2007; 

Ma, Zhang, and Kennedy 2015). The second type (Keane and Price 1987; Langley 1992; 

Le Bot 1998; Mace 1994, 2005; Maxit and Guyader 2003; Tanner 2009) addresses the 
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applicability of the assumptions in SEA. These two types of improved methods extend 

the effective frequency range for analysis using traditional methods. Considering the 

different vibration behaviors of the components of the system when it is excited in mid-

frequency ranges, the third type (Zhao and Vlahopoulos 2000; Shorter and Langley 

2005b; Ji, Mace, and Pinnington 2006; Vergote et al. 2011; Zhu et al. 2014; Ma, Zhang, 

and Kennedy 2015) combines the deterministic and statistical methods to establish a 

hybrid model for mid-frequency vibration of the system. The most popular hybrid 

approach for the mid-frequency vibration is the hybrid FE-SEA method proposed by 

Shorter and Langley (2005b). In this hybrid FE-SEA method, a complex built-up system 

can be divided into a series of deterministic and statistical subsystems according to the 

deformation wavelength. The deterministic subsystem is modeled using FE, while the 

statistical subsystem is modeled using SEA. The dynamic coupling between the 

deterministic and statistical subsystems can be described as the transmission and 

reflection of the vibration wave. A non-iterative relationship between the two types of 

subsystems is established by using the diffuse-field reciprocity (Shorter and Langley 

2005a). The hybrid FE-SEA method can predict the ensemble average of the response of 

the system, and has been extended (Langley and Cotoni 2007) to predict the ensemble 

variance of the response of the system. By introducing a parametric model of uncertainty 

in the FE component, the assumption that the FE component is deterministic was relaxed 

by Cicirello and Langley (2013, 2014). Muthalif and Langley (2012) studied the active 
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control of high-frequency vibration, exploiting the hybrid FE-SEA method to provide 

efficient response predictions at mid- and high-frequency ranges. The optimum skyhook 

damping value and its location were obtained using the MATLAB GADS toolbox with 

combined genetic and pattern search algorithms. As intelligent algorithms, genetic 

algorithms do not require sensitivity analysis and have good global searching ability. 

However, genetic algorithms may take longer to calculate, especially for optimization 

problems with many design variables. 

The present work exploits the hybrid FE-SEA method to provide efficient response 

predictions at mid-frequency range. Then the optimization problem is solved by using a 

gradient-based mathematical programming algorithm. In the proposed optimization 

model, the ensemble average energy under a single excitation frequency, or the frequency-

aggregated ensemble average energy in a given frequency band, is taken as the objective 

function to be minimized, and the design variables are the size parameters of the 

deterministic and statistical subsystems. A direct differentiation scheme for sensitivity 

analysis is derived. The efficiency and effectiveness of the present method are verified by 

two numerical examples, in which the energy level of the complex built-up system, 

whether at a single frequency or in a given frequency band, can be significantly decreased 

through optimization. The basic principles of the hybrid FE-SEA method are outlined in 

section 2. The optimization problem formulation under a specific excitation frequency 

and in a given frequency band are respectively developed in section 3 and section 4, as 
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well as the sensitivity analysis. In section 5, two numerical examples are presented to 

illustrate the validity of the proposed method. The influence of the mass constraint factor 

is also discussed. Finally, conclusions are given in section 6. 

 

2 Basic principles of hybrid FE-SEA method 

In the hybrid FE-SEA method, the response of the statistical subsystem is partitioned 

into the direct field and the reverberant field (Shorter and Langley 2005a). First, the 

governing equation of the system is established by considering the existence of the direct 

field dynamic stiffness matrix (DSM) and the blocked reverberant force. Second, the 

power balance equation for the reverberant field is established by considering the energy 

conservation of the statistical subsystem. Finally, the above two types of equations are 

related by the diffuse-field reciprocity principle (Shorter and Langley 2005a) which is a 

non-iterative relationship between the ensemble average energy of the statistical 

subsystem and the cross-spectrum of the blocked reverberant force associated with the 

reverberant field. Hence, a non-iterative hybrid approach which combines equations of 

dynamic equilibrium and power balance for the mid-frequency vibration of the complex 

built-up system is established. 

2.1 Governing equation of the system 

The direct field and reverberant field of the 𝑗th statistical subsystem can be viewed 

as two different vectors of forces, 𝐟dir
(𝑗)

 and 𝐟rev
(𝑗)

, respectively, acting on the deterministic 
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subsystem, at the coupling region of the two types of subsystems. The governing equation 

of the deterministic subsystem can be written as (Muthalif and Langley 2012) 

 

 𝐃d𝐪 = 𝐟ext +∑𝐟rev
(𝑗)

𝑗

−∑𝐟dir
(𝑗)

𝑗

 (1) 

 

where 𝐪 represents the displacements of the deterministic subsystem, and 𝐟ext is the 

generalized force acting on the deterministic subsystem. 𝐃d  is the DSM of the 

deterministic subsystem and is written as 𝐃d = −𝜔
2𝐌+ i𝜔𝐂 + 𝐊, where 𝐌, 𝐂 and 𝐊 

are the mass, damping, and stiffness matrices, respectively. 𝜔 is the angular frequency, 

and i = √−1 is the imaginary unit. 𝐟dir
(𝑗)

 can be expressed in terms of 𝐃dir
(𝑗)

, the direct 

field DSM for the 𝑗 th statistical subsystem, and 𝐪 , and is written as (Muthalif and 

Langley 2012) 

 

 𝐟dir
(𝑗)
= 𝐃dir

(𝑗)
𝐪 (2) 

 

Inserting Equation (2) into Equation (1) gives the following expression for the governing 

equation of the system (Muthalif and Langley 2012) 

 

 𝐃tot𝐪 = 𝐟ext +∑𝐟rev
(𝑗)

𝑗

 (3) 

 

where 𝐃tot is the total DSM, which can be written as 
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 𝐃tot = 𝐃d +∑𝐃dir
(𝑗)

𝑗

 (4) 

 

The reverberant force can be expressed in terms of its square by using the diffuse-

field reciprocity relationship (Shorter and Langley 2005a), as 

 

 𝐒𝑓𝑓
rev = 〈𝐟rev𝐟rev

H 〉 =∑𝛼𝑗Im {𝐃dir
(𝑗)}

𝑗

 (5) 

 

where 𝐟rev = ∑ 𝐟rev
(𝑗)

𝑗 , 〈∙〉 is the ensemble average, ∙H is the Hermitian transpose of ∙, 

and  

 

 𝛼𝑗 =
4𝐸𝑗

𝜋𝜔𝑛𝑗
 (6) 

 

where 𝐸𝑗  and 𝑛𝑗   respectively represent the ensemble average energy and the modal 

density of the 𝑗th statistical subsystem (Lyon and DeJong 1995). Writing Equation (3) in 

cross-spectral form, averaging over an ensemble of statistical subsystems and using 

Equation (5) gives (Shorter and Langley 2005b) 

 

 𝐒𝑞𝑞 = 𝐒𝑞𝑞
ext +∑𝛼𝑗𝚼dir

(𝑗)

𝑗

 (7) 

 

with  

 

 𝐒𝑞𝑞
ext = 𝐃tot

−1𝐒𝑓𝑓
ext𝐃tot

−H (8) 
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 𝚼dir
(𝑗)
= 𝐃tot

−1 Im{𝐃dir
(𝑗)
}𝐃tot

−H (9) 

 

2.2 Power balance equation of the statistical subsystems 

The statistical subsystems are modeled by using SEA, and the power balance 

equation of the statistical subsystems are given as (Lyon and DeJong 1995) 

 

 𝐋𝐍−1𝐄 = 𝐏in
dir + 𝐏in

ext (10) 

 

where 𝐏in
dir and 𝐏in

ext are the vectors of the time and ensemble average input power to 

the statistical subsystems due to the contributions from the deterministic subsystem and 

the external excitation, respectively. 𝐄 is the vector of the time and ensemble average 

energy of the statistical subsystems. 𝐍 is a diagonal matrix with the modal densities of 

the statistical subsystems on the main diagonal. 𝐋 is the influence coefficient matrix of 

the modal energy. The matrix 𝐋  has dimensions 𝑚 ×𝑚 , where 𝑚  is the number of 

statistical subsystems, and is given by (Shorter and Langley 2005b) 

 

 𝐋 = [

𝑀1 + ℎtot,1 − ℎ11 ⋯ −ℎ1𝑚
⋮ ⋱ ⋮

−ℎ𝑚1 ⋯ 𝑀𝑚 + ℎtot,𝑚 − ℎ𝑚𝑚

] (11) 

 

where 𝑀𝑗  is the modal overlap factor for the reverberant field of the 𝑗 th statistical 

subsystem and is given as (Shorter and Langley 2005b) 

 

 𝑀𝑗 = 𝜔𝑛𝑗𝜂𝑗 (12) 
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where 𝜂𝑗 is the damping loss factor for the 𝑗th statistical subsystem. ℎtot,𝑗 represents 

the total energy leaving the reverberant field of the 𝑗 th statistical subsystem per unit 

modal energy density in the reverberant field of the 𝑗th statistical subsystem, and can be 

expressed as (Shorter and Langley 2005b) 

 

 ℎtot,𝑗 =
2

𝜋
∑Im{𝐃tot,𝑟𝑠}𝚼dir,𝑟𝑠

(𝑗)

𝑟,𝑠

 (13) 

 

ℎ𝑗𝑘 represents the ensemble average input power to the direct field of the reverberant 

field of the 𝑘th statistical subsystem per unit modal energy density in the reverberant 

field of the 𝑗th statistical subsystem, and can be expressed as (Shorter and Langley 2005b) 

 

 ℎ𝑗𝑘 =
2

𝜋
∑Im{𝐃dir,𝑟𝑠

(𝑘)
}𝚼dir,𝑟𝑠

(𝑗)

𝑟,𝑠

 (14) 

 

The time and ensemble average input power to the 𝑗th statistical subsystem is given as 

(Shorter and Langley 2005b) 

 

 𝑃in,𝑗
ext =

𝜔

2
∑Im{𝐃dir,𝑟𝑠

(𝑗)
}𝐒𝑞𝑞,𝑟𝑠

ext

𝑟,𝑠

 (15) 

 

Ref. (Shorter and Langley 2005b) details the derivation of Equations (10)-(15). 

The power balance equations of the statistical subsystems in Equation (10) are 

solved to obtain the energy of the each statistical subsystem. The energy is inserted into 

Equation (7) to obtain the cross-spectral response of the deterministic subsystem. The 
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total energy of the system can be expressed as 

 

 𝐸t = 𝐸d + 𝐸s (16) 

 

where 𝐸d  and 𝐸s  are the energy of the deterministic and statistical subsystems 

respectively, and can be written as (Muthalif and Langley 2012) 

 

 𝐸d =
𝜔2

2
∑𝐌𝑟𝑠𝐒𝑞𝑞,𝑟𝑠
𝑟,𝑠

 (17) 

 

 𝐸s =∑𝐸𝑝
𝑝

 (18) 

 

3 Optimization problem formulation under a specific 

frequency 

3.1 Optimization model 

We consider the optimum size parameters of the complex built-up system at a high 

frequency. The aim of the optimum design is to minimize the vibration level of the system. 

The total energy of the system under a specific frequency is taken as the objective function, 

and the design variables are the size parameters of the system which can be divided into 

two types according to the types of the subsystems. They are 

1) the size parameters of the deterministic subsystems, 𝐱, 

2) the size parameters of the statistical subsystems, 𝐲. 
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Hence, the optimization problem can be stated as 

 

 

find 𝐱, 𝐲
min 𝐸t = 𝐸d + 𝐸s
s. t. 𝐱l ≤ 𝐱 ≤ 𝐱u

𝐲l ≤ 𝐲 ≤ 𝐲u

𝑚l ≤ 𝑚 ≤ 𝑚u}
 
 

 
 

 (19) 

 

where 𝐱u and 𝐱l are vectors of the upper and lower bounds of the size parameters of 

the deterministic subsystems, respectively. 𝐲u  and 𝐲l  are vectors of the upper and 

lower bounds of the size parameters of the statistical subsystems, respectively. 𝑚 

represents the total mass of the whole system, and 𝑚u and 𝑚l respectively represent 

its upper and lower bounds. 

3.2 Sensitivity analysis 

The optimization model of Equation (19) is solved by a gradient-based mathematical 

programming algorithm, which requires sensitivity analysis of the objective function and 

the constraint functions with respect to the design variables. This paper derives the 

sensitivity equations for the response of the total energy of the system by direct 

differentiation. The sensitivity of the objective function with respect to the design 

variables depends on the sensitivities of the energy of the deterministic and statistical 

systems, as follows. 

3.2.1 Sensitivity of the objective function with respect to the size parameters of the 

deterministic subsystem 

According to Equation (16), the sensitivity analysis of the objective function with 
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respect to the size parameters 𝐱 of the deterministic subsystem can be determined by 

differentiating the energy of the deterministic and statistical subsystems with respect to 

𝐱. Differentiating Equation (16) with respect to the 𝑗th size parameter of the deterministic 

subsystem 𝑥𝑗 gives 

 

 
𝜕𝐸t
𝜕𝑥𝑗

=
𝜕𝐸s
𝜕𝑥𝑗

+
𝜕𝐸d
𝜕𝑥𝑗

 (20) 

 

Consider the derivative of the energy of the statistical subsystem with respect to 𝑥𝑗. 

Differentiating Equation (18) with respect to 𝑥𝑗, and using Equation (10), 
𝜕𝐸s

𝜕𝑥𝑗
 can be 

expressed as 

 

 
𝜕𝐸s
𝜕𝑥𝑗

=∑(
𝜕𝐄

𝜕𝑥𝑗
)
𝑘𝑘

 (21) 

 

with 

 

 
𝜕𝐄

𝜕𝑥𝑗
= 𝐍𝐋−1 (

𝜕𝐏in
ext

𝜕𝑥𝑗
+
𝜕𝐏in

dir

𝜕𝑥𝑗
−
𝜕𝐋

𝜕𝑥𝑗
𝐍−1𝐄) (22) 

 

Differentiating Equation (15) with respect to 𝑥𝑗, the derivative of the input power to the 

𝑘th statistical subsystem with respect to 𝑥𝑗 can be written as 

 

 
𝜕𝑃in,𝑘

ext

𝜕𝑥𝑗
=
𝜔

2
∑[Im{𝐃dir

(𝑘)
}
𝑟𝑠
{𝛘d
(𝑗)
𝐒𝑞𝑞
ext + (𝛘d

(𝑗)
𝐒𝑞𝑞
ext)

H

}
𝑟𝑠
]

𝑟,𝑠

 (23) 

 

with 
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 𝛘d
(𝑗)
= −𝐃tot

−1
𝜕𝐃d
𝜕𝑥𝑗

 (24) 

 

Differentiating Equation (11) with respect to 𝑥𝑗 , the derivative of the influence 

coefficient matrix of the modal energy with respect to 𝑥𝑗 can be written as 

 

 
𝜕𝐋

𝜕𝑥𝑗
=

[
 
 
 
 
 
𝜕ℎtot,1
𝜕𝑥𝑗

−
𝜕ℎ11
𝜕𝑥𝑗

⋯ −
𝜕ℎ1𝑚
𝜕𝑥𝑗

⋮ ⋱ ⋮

−
𝜕ℎ𝑚1
𝜕𝑥𝑗

⋯
𝜕ℎtot,𝑚
𝜕𝑥𝑗

−
𝜕ℎ𝑚𝑚
𝜕𝑥𝑗 ]

 
 
 
 
 

 (25) 

 

By using Equations (13) and (14), the elements of Equation (25) can be written as 

 

 

𝜕ℎtot,𝑘
𝜕𝑥𝑗

=
2

𝜋
∑[Im{𝐃tot}𝑟𝑠 {𝛘d

(𝑗)
𝚼dir
(𝑘)
+ (𝛘d

(𝑗)
𝚼dir
(𝑘)
)
H

}
𝑟𝑠

𝑟,𝑠

+ Im {
∂𝐃d
∂𝑥𝑗

}
𝑟𝑠

(𝚼dir
(𝑘)
)
𝑟𝑠
] 

(26) 

 

 
𝜕ℎ𝑘𝑝

𝜕𝑥𝑗
=
2

𝜋
∑[(Im{𝐃dir

(𝑝)
})
𝑟𝑠
{𝛘d
(𝑗)
𝚼dir
(𝑘)
+ (𝛘d

(𝑗)
𝚼dir
(𝑘)
)
H

}
𝑟𝑠
]

𝑟,𝑠

 (27) 

 

Inserting Equations (22)-(27) into Equation (21), the derivative of the energy of the 

statistical subsystem with respect to 𝑥𝑗 can be obtained. 

Consider now the derivative of the energy of the deterministic subsystem with 

respect to 𝑥𝑗. Differentiating Equation (17) with respect to 𝑥𝑗, 
𝜕𝐸d

𝜕𝑥𝑗
 can be expressed as 

 

 
𝜕𝐸d
𝜕𝑥𝑗

=
𝜔2

2
∑(

𝜕𝐌

𝜕𝑥𝑗
)
𝑟𝑠

(
𝜕𝐒𝑞𝑞

𝜕𝑥𝑗
)
𝑟𝑠𝑟,𝑠

 (28) 
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Differentiating Equation (7) with respect to 𝑥𝑗, and using Equations (8) and (9) gives 

 

 
𝜕𝐒𝑞𝑞

𝜕𝑥𝑗
= 𝛘d

(𝑗)
𝐒𝑞𝑞 + (𝛘d

(𝑗)
𝐒𝑞𝑞)

H

+ 𝐃tot
−1 (∑

𝜕𝛼𝑘
𝜕𝑥𝑗

Im{𝐃dir
(𝑘)
}

𝑘

)𝐃tot
−H (29) 

 

with 

 

 
𝜕𝛼𝑘
𝜕𝑥𝑗

=
4

𝜋𝜔𝑛𝑘

𝜕𝐸𝑘
𝜕𝑥𝑗

 (30) 

 

Inserting Equations (29) and (30) into Equation (28), the derivative of the energy of the 

deterministic subsystem with respect to 𝑥𝑗 can be calculated. Now using Equation (20), 

the sensitivity of the objective function with respect to 𝑥𝑗 can be obtained. 

3.2.2 Sensitivity of the objective function with respect to the size parameters of the 

statistical subsystem 

According to Equation (16), the sensitivity analysis of the objective function with 

respect to the size parameters 𝐲  of the statistical subsystem can be determined by 

differentiating the energy of the deterministic and statistical subsystems with respect to 

𝐲 . Differentiating Equation (16) with respect to the 𝑗 th size parameter of the 𝑘 th 

statistical subsystem 𝑦𝑗
(𝑘)

 gives 

 

 
𝜕𝐸t

𝜕𝑦𝑗
(𝑘)
=

𝜕𝐸s

𝜕𝑦𝑗
(𝑘)
+
𝜕𝐸d

𝜕𝑦𝑗
(𝑘)

 (31) 

 

Consider the derivative of the energy of the statistical subsystem with respect to 
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𝑦𝑗
(𝑘)

. Differentiating Equation (18) with respect to 𝑦𝑗
(𝑘)

, 
𝜕𝐸s

𝜕𝑦𝑗
(𝑘) can be written as 

 

 
𝜕𝐸s

𝜕𝑦𝑗
(𝑘)
=∑(

𝜕𝐄

𝜕𝑦𝑗
(𝑘)
)

𝑝𝑝

 (32) 

 

with 

 

 
𝜕𝐄

𝜕𝑦𝑗
(𝑘)
= 𝐍𝐋−1 (

𝜕𝐏in
ext

𝜕𝑦𝑗
(𝑘)
+
𝜕𝐏in

dir

𝜕𝑦𝑗
(𝑘)
−

𝜕𝐋

𝜕𝑦𝑗
(𝑘)
𝐍−1𝐄) +

𝜕𝐍

𝜕𝑦𝑗
(𝑘)
𝐍−1𝐄 (33) 

 

Differentiating Equation (15) with respect to 𝑦𝑗
(𝑘)

, the derivative of the input power to 

the 𝑝th statistical subsystem with respect to 𝑦𝑗
(𝑘)

 can be written as 

 

 

∂𝑃in,𝑝
ext

∂𝑦𝑗
(𝑘)

=
𝜔

2
∑[Im {

∂𝐃dir
(𝑝)

∂𝑦𝑗
(𝑘)
}

𝑟𝑠

(𝐒𝑞𝑞
ext)

𝑟𝑠
𝑟,𝑠

+ Im{𝐃dir
(𝑝)
}
𝑟𝑠
{𝛘dir
(𝑘,𝑗)

𝐒𝑞𝑞
ext + (𝛘dir

(𝑘,𝑗)
𝐒𝑞𝑞
ext)

H

}
𝑟𝑠
] 

(34) 

 

with 

 

 𝛘dir
(𝑘,𝑗)

= −𝐃tot
−1
𝜕𝐃dir

(𝑘)

∂𝑦𝑗
(𝑘)

 (35) 

 

For the case of 𝑘 ≠ 𝑝, Equation (34) can be simplified as 

 

 
∂𝑃in,𝑝

ext

∂𝑦𝑗
(𝑘)

=
𝜔

2
∑[Im{𝐃dir

(𝑝)
}
𝑟𝑠
{𝛘dir
(𝑘,𝑗)

𝐒𝑞𝑞
ext + (𝛘dir

(𝑘,𝑗)
𝐒𝑞𝑞
ext)

H

}
𝑟𝑠
]

𝑟,𝑠

 (36) 
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Differentiating Equation (11) with respect to 𝑦𝑗
(𝑘)

 , the derivative of the influence 

coefficient matrix of the modal energy with respect to 𝑦𝑗
(𝑘)

 can be written as 

 

 
𝜕𝐋

𝜕𝑦𝑗
(𝑘)
=

[
 
 
 
 
 
𝜕𝑀1

𝜕𝑦𝑗
(𝑘)
+
𝜕ℎtot,1

𝜕𝑦𝑗
(𝑘)

−
𝜕ℎ11

𝜕𝑦𝑗
(𝑘)

⋯ −
𝜕ℎ1𝑚

𝜕𝑦𝑗
(𝑘)

⋮ ⋱ ⋮

−
𝜕ℎ𝑚1

𝜕𝑦𝑗
(𝑘)

⋯
𝜕𝑀𝑚

𝜕𝑦𝑗
(𝑘)
+
𝜕ℎtot,𝑚

𝜕𝑦𝑗
(𝑘)

−
𝜕ℎ𝑚𝑚

𝜕𝑦𝑗
(𝑘)
]
 
 
 
 
 

 (37) 

 

By using Equations (12)-(14), the elements of Equation (37) can be written as 

 

 
𝜕𝑀𝑝

𝜕𝑦𝑗
(𝑘)
= 𝜔

𝜕𝑛𝑝

𝜕𝑦𝑗
(𝑘)
𝜂𝑝 (38) 

 

 

𝜕ℎtot,𝑝

𝜕𝑦𝑗
(𝑘)

=
2

𝜋
∑[Im{𝐃tot}𝑟𝑠 {𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
+ (𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
)
H

𝑟,𝑠

+ 𝐃tot
−1Im {

∂𝐃dir
(𝑝)

∂𝑦𝑗
(𝑘)
}𝐃tot

−H}

𝑟𝑠

+ Im {
𝜕𝐃dir

(𝑘)

∂𝑦𝑗
(𝑘)
}

𝑟𝑠

(𝚼dir
(𝑝)
)
𝑟𝑠
] 

(39) 

 

 

𝜕ℎ𝑝𝑛

𝜕𝑦𝑗
(𝑘)
=
2

𝜋
∑[Im{𝐃dir

(𝑛)
}
𝑟𝑠
{𝛘dir
(𝑘,𝑗)

𝚼dir
(𝑝)
+ (𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
)
H

𝑟,𝑠

+ 𝐃tot
−1 Im {

∂𝐃dir
(𝑝)

∂𝑦𝑗
(𝑘)
}𝐃tot

−H}

𝑟𝑠

+ Im {
𝜕𝐃dir

(𝑛)

∂𝑦𝑗
(𝑘)
}

𝑟𝑠

(𝚼dir
(𝑝)
)
𝑟𝑠
] 

(40) 

 

For case of 𝑘 ≠ 𝑝, Equations (39) and (40) can be, respectively, simplified as  
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𝜕ℎtot,𝑝

𝜕𝑦𝑗
(𝑘)

=
2

𝜋
∑[Im{𝐃tot}𝑟𝑠 {𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
+ (𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
)
H

}
𝑟𝑠

𝑟,𝑠

+ Im {
𝜕𝐃dir

(𝑘)

∂𝑦𝑗
(𝑘)
}

𝑟𝑠

(𝚼dir
(𝑝)
)
𝑟𝑠
] 

(41) 

 

 

𝜕ℎ𝑝𝑛

𝜕𝑦𝑗
(𝑘)
=
2

𝜋
∑[Im{𝐃dir

(𝑛)
}
𝑟𝑠
{𝛘dir
(𝑘,𝑗)

𝚼dir
(𝑝)
+ (𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
)
H

}
𝑟𝑠

𝑟,𝑠

+ Im {
𝜕𝐃dir

(𝑛)

∂𝑦𝑗
(𝑘)
}

𝑟𝑠

(𝚼dir
(𝑝)
)
𝑟𝑠
] 

(42) 

 

Equation (42) can be further simplified as Equation (43) if 𝑘 ≠ 𝑛. 

 

 
𝜕ℎ𝑝𝑛

𝜕𝑦𝑗
(𝑘)
=
2

𝜋
∑[Im{𝐃dir

(𝑛)
}
𝑟𝑠
{𝛘dir
(𝑘,𝑗)

𝚼dir
(𝑝)
+ (𝛘dir

(𝑘,𝑗)
𝚼dir
(𝑝)
)
H

}
𝑟𝑠
]

𝑟,𝑠

 (43) 

 

Inserting Equations (33)-(43) into Equation (32), the derivative of the energy of the 

statistical subsystem with respect to 𝑦𝑗
(𝑘)

 can be obtained. 

Consider now the derivative of the energy of the deterministic subsystem with 

respect to 𝑦𝑗
(𝑘)

. Differentiating Equation (17) with respect to 𝑦𝑗
(𝑘)

, 
𝜕𝐸d

𝜕𝑦𝑗
(𝑘) can be written 

as 

 

 
𝜕𝐸d

𝜕𝑦𝑗
(𝑘)
=
𝜔2

2
∑𝑀𝑟𝑠 (

𝜕𝐒𝑞𝑞

𝜕𝑦𝑗
(𝑘)
)

𝑟𝑠𝑟,𝑠

 (44) 

 

Differentiating Equation (7) with respect to 𝑦𝑗
(𝑘)

, and using Equations (8) and (9) gives 
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∂𝐒𝑞𝑞

∂𝑦𝑗
(𝑘)
= 𝛘dir

(𝑘,𝑗)
𝐒𝑞𝑞 + (𝛘dir

(𝑘,𝑗)
𝐒𝑞𝑞)

H

+ 𝚵(𝑘,𝑗) (45) 

 

where 

 

 𝚵(𝑘,𝑗) = 𝐃tot
−1 [∑(

𝜕𝛼𝑝

𝜕𝑦𝑗
(𝑘)
Im{𝐃dir

(𝑝)
})

𝑝

+ 𝛼𝑘Im {
∂𝐃dir

(𝑘)

∂𝑦𝑗
(𝑘)
}]𝐃tot

−H (46) 

 

with 

 

 
𝜕𝛼𝑝

𝜕𝑦𝑗
(𝑘)
=

4

𝜋𝜔𝑛𝑝2
(𝑛𝑝

𝜕𝐸𝑝

𝜕𝑦𝑗
(𝑘)
− 𝐸𝑝

𝜕𝑛𝑝

𝜕𝑦𝑗
(𝑘)
) (47) 

 

Inserting Equations (45)-(47) into Equation (44), the derivative of the energy of the 

deterministic subsystem with respect to 𝑦𝑗
(𝑘)

 can be calculated. Now using Equation (31), 

the sensitivity of the objective function with respect to 𝑦𝑗
(𝑘)

 can be obtained. 

The sensitivities of the constraint functions with respect to design variables are also 

passed to the optimizer. As can be seen in Equation (19), the constraint functions have 

simple expressions which results in simple formulas of their sensitivities. 

 

4 Optimization problem formulation in a given frequency band 

In practical applications, the excitation frequency is often distributed over a given 

frequency band. A small change in the excitation frequency may lead to a significant 

difference of the response of the system. Hence, in general, the optimum design of the 
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system under a specific frequency falling in the given frequency band may not be optimal 

over the whole frequency band. It is necessary to consider the optimization over the whole 

frequency band. In this study, in order to achieve a strict control on the most critical 

response of the system in a given frequency band, a frequency-aggregated energy function 

of the system is taken as the objective function to be minimized.  

4.1 Optimization model 

Considering 𝑛  selected sampling points 𝜔𝑘 (𝑘 = 1,2, … , 𝑛)  in the given 

frequency band, the maximum system energy can be expressed as 𝐸̃t =

max (𝐸t
(1)
, 𝐸t

(2)
, ⋯ , 𝐸t

(𝑛)
) . Hence, the optimization problem of Equation (19) can be 

stated as 

 

 

find 𝐱, 𝐲

min 𝐸̃t = max (𝐸t
(1)
, 𝐸t

(2)
, ⋯ , 𝐸t

(𝑛)
)

s. t. 𝐱l ≤ 𝐱 ≤ 𝐱u

𝐲l ≤ 𝐲 ≤ 𝐲u

𝑚l ≤ 𝑚 ≤ 𝑚u }
 
 

 
 

 (48) 

 

The objective function in Equation (48) is a non-smooth one, and so difficulties of 

convergence may occur when a gradient-based optimization algorithm is used to solve 

such a problem. In this paper, an approximate envelope of the objective function of the 

optimization model of Equation (48) is proposed as a new objective function by using the 

K-S function (Kreisselmeier and Steinhauser 1979). The new objective function is smooth, 

continuous and differentiable and can be written as 
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 𝐸̃t = KS[𝐸t
(1), 𝐸t

(2), … , 𝐸t
(𝑛)] =

1

𝜂
ln [∑e𝜂𝐸t

(𝑗)
𝑛

𝑗=1

] (49) 

 

where 𝜂  is the aggregation parameter. The new objective function will approach 𝐸̃t 

when 𝜂 takes a reasonably large value (Wrenn 1989). Therefore, the optimization model 

can be rewritten as 

 

 

find 𝐱, 𝐲

min 𝐸̃t =
1

𝜂
ln [∑e𝜂𝐸t

(𝑗)
𝑛

𝑗=1

]

s. t. 𝐱l ≤ 𝐱 ≤ 𝐱u

𝐲l ≤ 𝐲 ≤ 𝐲u

𝑚l ≤ 𝑚 ≤ 𝑚u }
 
 
 

 
 
 

 (50) 

 

4.2 Sensitivity analysis  

The sensitivity analysis of the objective function of the optimization model of 

Equation (50) with respect to the design variables can be obtained by using the direct 

differentiation method. Differentiating Equation (49) with respect to the 𝑘 th size 

parameter of the deterministic subsystem 𝑥𝑘 gives 

 

 𝜕𝐸̃t
𝜕𝑥𝑘

=

∑ (
𝜕𝐸t

(𝑗)

𝜕𝑥𝑘
e𝜂𝐸t

(𝑗)

)𝑛
𝑗=1

∑ e𝜂𝐸t
(𝑗)

𝑛
𝑗=1

 
(51) 

 

As can be seen in Equation (51), the sensitivity of the objective function 𝐸̃t in Equation 

(50) with respect to the 𝑘th size parameter of the deterministic subsystem can be easily 

obtained by using the formulations derived in section 3.2.1. 
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Similarly, the sensitivity of 𝐸̃t  with respect to the 𝑘 th size parameter of the 

statistical subsystem can also be easily obtained by using the formulations derived in 

section 3.2.2. As mentioned in section 3.2, the sensitivities of the constraint functions 

with respect to the design variables can be easily obtained. 

 

5 Numerical examples 

5.1 Optimization under a specific frequency 

In this section, the proposed optimization model is illustrated on a hybrid model 

consisting of two thin plates, one of which is taken as deterministic and the other as 

statistical, as shown in Figure 1. The deterministic and statistical plates are coupled via a 

spring whose stiffness is 106N/m. Properties of the plates employed in this hybrid model 

are given in Table 1. The edges of the deterministic plate are all simply supported. A unit 

excitation force is applied on the deterministic plate, with the frequency 𝑓p = 200Hz. 

 

 

Figure 1.  A hybrid model consisting of two plates coupled via a spring. 

 

Deterministic plate 

Statistical plate 

𝑓ext 
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Table 1.  Properties of the plates used in the hybrid model 

Properties Deterministic plate Statistical plate 

Length (m) 0.5 1.0 

Width (m) 0.2 0.6 

Thickness (m) 0.001 0.0015 (Initial value) 

Density (kg/m3) 7800.0 2700.0 

Young’s modulus (Pa) 2.0×1011 7.1×1010 

Loss factor 0.05 0.03 

Poisson’s ratio 0.3 0.3 

 

The thickness of the statistical plate 𝑏 is taken as the design variable, and its upper 

and lower bounds are set to 𝑏u =2mm and 𝑏l =0.4mm, respectively. The partition of 

the system can be performed based on the mode numbers of the statistical and 

deterministic plates in the frequency range. The statistical and deterministic plates 

respectively have 33 and 11 non-rigid-body modes in the frequency range of 0-200Hz. 

Since the modal densities of the statistical and deterministic plates are significantly 

different, this system exhibits mid-frequency vibration behavior, and the statistical plate 

can remain statistical while the deterministic plate can remain deterministic over the 

whole optimization process. 

The energy of the statistical plate is taken as the objective function. The optimization 
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problem is formulated as 

 

 

find 𝑏
min 𝐸s
s. t. 𝑏l ≤ 𝑏 ≤ 𝑏u

} (52) 

 

The optimization model of Equation (52) can be viewed as a special case of Equation 

(50). Therefore, the sensitivity analysis can be performed by using the formulations 

derived in section 3. 

In order to verify the efficiency and effectiveness of the present sensitivity analysis 

method, the derivatives of the statistical plate energy with respect to its thickness obtained 

by using the proposed sensitivity analysis scheme and the Finite Difference Method 

(FDM) with 10-4mm perturbation are shown in Figure 2. As can be seen, the results from 

two methods have good agreement. Moreover, the computational time taken for the 

proposed method (97s) is about half that for the FDM (195s). 

The design variable is initially set to be 𝑏Init =1.5mm. A Sequential Quadratic 

Programming (SQP) optimizer is employed here for solving the optimization problem, 

and the iterative process is terminated when the relative difference between the adjacent 

energies of the statistical plate is less than 10-6. The optimization process converged after 

2 iterations as shown in Figure 3. As can be seen, the energy of the statistical plate has 

decreased by about 6dB (ref. 10-12J). 

 



27 

 

Figure 2.  Derivatives of the statistical plate energy with respect to its thickness 

obtained using the present sensitivity analysis scheme and FDM. 

 

 

Figure 3.  Iteration history of the objective function. 

 

As a very simple optimization model, Equation (52) has only one design variable. 
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Hence, the energy of the statistical plate can easily be plotted against thickness, as shown 

in Figure 4. As can be seen, the optimum design was quickly obtained through the 

optimization. However, it is necessary to note that the dynamic optimization problem for 

a complex built-up system is highly nonconvex. In general, the optimum design obtained 

with a gradient-based mathematical programming algorithm is a local optimum (Sigmund 

and Petersson 1998). However, such solutions may provide useful guidance at the 

conceptual design stage, and thus be widely used in structural design. 

 

 

Figure 4.  Energy of the statistical plate under its different thickness. 
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with different cross sections and a thin plate as shown in Figure 5. The framework and 

plate are welded together at 24 intersections of beams, and the radii of all connection 

points are assumed to be 1mm. The material of all beams is steel, with mass density 

𝜌b =7800.0 kg/m3, Young’s modulus 𝐸b =200.0 GPa and Poisson’s ratio 𝜈b =0.33. The 

beams numbered 1-4 in Figure 5 have length 1.0m, while those numbered 5-10 have 

length 0.6m. The cross sections of all beams are rectangular and have the same width 

(0.01m), but different heights. The material of the plate is aluminum, with mass density 

𝜌p =2700.0 kg/m3, Young’s modulus 𝐸p =71.0 GPa and Poisson’s ratio 𝜈p =0.33. The 

plate has length 1.0m and width 0.6m, and the in-plane deformation of the plate is ignored. 

The loss factor of all beams and the plate are all 0.5%. A unit excitation force is applied 

at a point on the framework as shown in Figure 5, and the frequency range considered is 

from 200Hz to 400Hz. 

 

 

Figure 5.  A beam-plate system consisting of a framework and a thin plate. 
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The frequency-aggregated energy of the system in a given frequency band is taken 

as the objective function to be minimized, and the heights of the cross sections of all 

beams and the thickness of the plate are taken as the design variables. The lower and 

upper bounds of the beam cross section heights are respectively 10mm and 50mm, while 

those of the plate thickness are respectively 0.5mm and 1.0mm. The upper limit of the 

system mass is set as 60% of the system mass when all design variables are at their upper 

bounds, i.e. specifying a mass constraint factor 𝛽 =0.6. 

The partition of the system can be performed based on the mode numbers of the 

framework and the thin plate in the frequency range of interest. The thin plate and the 

framework respectively have 46 and 8 modes in the frequency range of 200-400Hz. Since 

the modal densities of the thin plate and the framework are significantly different, this 

system exhibits mid-frequency vibration behavior. The framework consisting of beams 

should be defined as the deterministic subsystem and modeled using the FE method, while 

the plate should be defined as the statistical subsystem and modeled using SEA. Here, the 

framework is discretized by Timoshenko beam elements with an element size of 25mm. 

In this optimization problem, there are 11 design variables consisting of 10 and 1 

plate thickness. Selecting 21 equidistant sampling frequencies in the frequency band of 

interest, the objective function is constructed by using Equation (49) with the aggregation 

parameter 𝜂 =10000. Therefore, the optimization problem can be stated as  
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find 𝐡, 𝑏

min 𝐸̃t =
1

𝜂
ln [∑e𝜂𝐸t

(𝑗)
𝑛

𝑗=1

]

s. t. 𝐡l ≤ 𝐡 ≤ 𝐡u

𝑏l ≤ 𝑏 ≤ 𝑏u

𝑚l ≤ 𝑚 ≤ 𝑚u }
 
 
 

 
 
 

 (52) 

 

where 𝐡 is the vector of the beam cross section heights and 𝑏 is the plate thickness. The 

iterative process will be terminated when the relative difference between the adjacent 

energies of the statistical plate is less than 10-6. 

Consider now the sensitivity analysis of the present optimization model. For 

verification purposes, setting all the beam cross section heights to 20mm, and the plate 

thickness to 0.6mm, the derivatives of the objective function with respect to the design 

variables, obtained by using the present sensitivity analysis scheme and the FDM with 

10-4mm perturbation, are given in Figure 6 and show good agreement. The computational 

time for the present method (320s) is less than 10% of that for the FDM (3573s). 

The initial values of the beam cross section heights are now set to 30mm, and the 

plate thickness is set to 0.8mm. This optimization problem is solved by using the SQP 

optimizer. The optimization process converged after 29 iterations as shown in Figure 7. 

As can be seen, the objective function first shows an upward trend, then decreases steadily, 

and eventually stops at a level less than its initial value, while the mass of the system is 

always decreasing. The initial mass of the system equals 61% of that with all design 

variables set to their upper bounds, and therefore does not satisfy the mass constraint 
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𝛽 =0.6. The first iteration pulls the system mass back to the feasible region but with a 

sacrifice of the objective function. However, in the following iterations the objective 

function decreases steadily. 

 

Table 2.  The optimized design variables. 

Design 

variables 
ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10 𝑏 

Values 

(mm) 
39.2 47.5 50.0 38.0 10.0 10.0 10.0 13.1 10.0 10.0 0.5 

 

 

Figure 6.  Derivatives of the objective function with respect to the design variables 

obtained using the present sensitivity analysis scheme and FDM. 

 

1 2 3 4 5 6 7 8 9 10 11
-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

D
er

iv
at

iv
es

 f
o
r 

th
e 

o
p
ti

m
iz

at
io

n

Number of design variables

 FDM

 Present scheme

x10-2



33 

 

Figure 7.  Iteration histories of the objective function and the mass of the system. 

 

The final optimum design variables are given in Table 2. It can be seen that the cross 

section heights of the beams numbered 1-4 increase by different amounts, while those of 

the beams numbered 5-10 decrease significantly, mainly to their lower bounds. The 

thickness of the plate is also decreased to its lower bound. Figure 8 compares the total 

energies of the system under the different frequencies in the given frequency band for the 

initial and the optimum designs. As can be seen, the energy level of the system has been 

improved at most of the frequencies in the given frequency band except in the vicinity of 

305Hz, which proves the validity of the present optimization method. It also can be seen 

in Figure 8 that optimization of the size parameters leads to a change in the natural 

frequencies of the system. 
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Figure 8.  Energies of the system under different frequencies in the given frequency 

band for the initial and the optimum designs. 

 

Figure 9 shows the energies of the framework and the plate under different 

frequencies in the given frequency band for the initial and optimum designs. As can be 

seen, the energies of both the framework and the plate are significantly decreased after 

optimization. The increase of the total system energy near 305Hz is mainly caused by an 

increase of the plate energy. The energy of the framework and the plate are very close at 

the peak for both the initial and optimum designs. Moreover, the energy level of the plate 

is higher than that of the framework over the whole frequency band both for the initial 

and the optimum designs, which illustrates that although the framework is the main load-

bearing member, the influence of the plate should not be ignored when the beam-plate 

system exhibits mixed mid-frequency behavior. 
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Figure 9.  Energies of the framework and the plate under different frequencies in the 

given frequency band for the initial and the optimum designs. 
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frequency band for the five different optimum designs are shown in Figure 10. It is found 

that the energy levels of the system for the five optimum designs are all lower than that 

for the initial design at most of the frequencies in the given frequency band. The optimum 

design corresponding to 𝛽 = 0.6 is the best of all the optimum designs. The same 
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system cannot be improved even if structural material is added. To study the intermediate 

behavior of the optimal solution between 𝛽 =0.6 and 𝛽 =0.7, the optimization program 

is executed with the mass constraint factor 𝛽 = 0.65. The energies of the system at 

different frequencies in the given frequency band for the obtained optimum designs are 

shown in Figure 11. As can be seen, the energy curve for the optimum designs under mass 

constraint factor 𝛽 =0.65 has the same trend as that under mass constraint factor 𝛽 =0.7. 

However, the former has fewer peaks than the latter, especially after 300Hz. 

 

 

Figure 10.  Energies of the system under different frequencies in the given frequency 

band for the initial and the optimum designs with different mass constraint factors. 
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Figure 11.  Energies of the system under different frequencies in the given frequency 

band for the initial and the optimum designs with different mass constraint factors 

between 0.6 and 0.7. 

 

6 Conclusions 

The sensitivity analysis of dynamic response and optimal size design of complex 

built-up systems in mid-frequency range are studied in this paper. By using the hybrid 

FE-SEA method, which combines FE and SEA as an effective method for the mid-

frequency vibration of a complex built-up system, the optimization model of the system 

at a specific frequency or in a given frequency band is established. An efficient direct 

differentiation method for sensitivity analysis is derived. The optimization problem is 

solved by using a gradient-based mathematical programming algorithm. The efficiency 

and effectiveness of the proposed method are verified by two numerical examples. The 
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energy level of a complex built-up system, whether at a single frequency or in a given 

frequency band, can be significantly improved through optimization. The influence of the 

mass constraint factor on the optimum design is also discussed, and the results show that 

when the mass reaches a certain level, an increase of material is not beneficial to 

improving the energy level of the system. 
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