
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/126800/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Madley-Dowd, Paul, Rai, Dheeraj, Zammit, Stanley and Heron, Jon 2020. Simulations and directed acyclic
graphs explained why assortative mating biases the prenatal negative control design. Journal of Clinical

Epidemiology 118 , pp. 9-17. 10.1016/j.jclinepi.2019.10.008 

Publishers page: http://dx.doi.org/10.1016/j.jclinepi.2019.10.008 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Journal Pre-proof

Simulations and directed acyclic graphs explained why assortative mating biases the
prenatal negative control design

Paul Madley-Dowd, MSc, Dheeraj Rai, PhD, Stanley Zammit, PhD, Jon Heron, PhD

PII: S0895-4356(19)30734-6

DOI: https://doi.org/10.1016/j.jclinepi.2019.10.008

Reference: JCE 9998

To appear in: Journal of Clinical Epidemiology

Received Date: 12 August 2019

Revised Date: 9 October 2019

Accepted Date: 29 October 2019

Please cite this article as: Madley-Dowd P, Rai D, Zammit S, Heron J, Simulations and directed acyclic
graphs explained why assortative mating biases the prenatal negative control design, Journal of Clinical
Epidemiology (2019), doi: https://doi.org/10.1016/j.jclinepi.2019.10.008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jclinepi.2019.10.008
https://doi.org/10.1016/j.jclinepi.2019.10.008


1 

 

Simulations and directed acyclic graphs 

explained why assortative mating biases 

the prenatal negative control design 
 

Paul Madley-Dowd MSc 
1,2, Dheeraj Rai PhD 1,2,3, Stanley Zammit PhD 1,2,4, Jon Heron PhD

 1,2 

 

1 Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University 

of Bristol, Bristol, United Kingdom 

2 NIHR Biomedical Research Centre, University of Bristol, Bristol, United Kingdom 

3 Avon and Wiltshire Partnership NHS Mental Health Trust, Bristol, United Kingdom 

4 MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK 

  

  



2 

 

Abstract 

Objective: The negative control design can be used to provide evidence for whether a prenatal 

exposure-outcome association occurs by in-utero mechanisms. Assortative mating has been 

suggested to influence results from negative control designs, though how and why has not yet been 

adequately explained. We aimed to explain why mutual adjustment of maternal and paternal 

exposure in regression models can account for assortative mating.   

Study design and setting: We used directed acyclic graphs to show how bias can occur when 

modelling maternal and paternal effects separately. We empirically tested our claims using a 

simulation study. We investigated how increasing assortative mating influences the bias of effect 

estimates obtained from models that do and do not use a mutual adjustment strategy.   

Results: In models without mutual adjustment, increasing assortative mating lead to increasing bias 

in effect estimates. The maternal and paternal effect estimates were biased by each other, making 

the difference between them smaller than the true difference. Mutually adjusted models did not 

suffer from such bias.  

Conclusions: Mutual adjustment for maternal and paternal exposure prevents bias from assortative 

mating influencing the conclusions of a negative control design.  We further discuss issues that 

mutual adjustment may not be able to resolve. 
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Introduction 

In biological research the negative control design is implemented to test whether factors other than 

the treatment of interest have led to a causal interpretation of experimental results (see [1] for 

examples). The design compares the magnitude of an estimate of a treatment-outcome association 

against the estimate of another association in which either the treatment, or the outcome, has been 

replaced with a variable such that the new association is not plausibly causal via the hypothesized 

mechanism. The negative control design has been adapted for use in epidemiological research 

where treatments are replaced by exposures [1-4]. In this paper we consider only negative control 

exposures (or more briefly, a negative exposure) and not negative control outcomes.  

Within an experimental setting we can manipulate all independent variables and use randomisation, 

which makes the interpretation of negative control experiments relatively simple. In contrast, when 

using observational data confounding factors that influence the exposure/negative exposure and the 

outcome may bias the association of interest (AOI) and the negative control association (NCA). It has 

therefore been emphasised that the AOI and the NCA should share similar confounding structures; 

in other words, the distribution of confounders across levels of the exposure and outcome should be 

similar to the distribution across levels of the negative exposure and outcome. Any biases, due to 

residual confounding should therefore influence the effect estimates of both associations equally. If 

the effect estimate of the AOI is substantially more extreme than that of the NCA then this provides 

evidence in favour of the association being causal. It is left to the researcher to subjectively interpret 

whether the size of the difference in effect sizes is clinically meaningful; bootstrapping can be used 

to create a confidence interval to allow for statistical testing of this difference.  

Negative control designs are often used to assess whether prenatal exposures are causally related to 

outcomes via an in-utero pathway. Here the association of maternal exposure with an outcome (the 

AOI) is compared to the association of the paternal exposure with the same outcome (the NCA).  

Early applications of the design assessed the association of maternal smoking in pregnancy on 

offspring low birthweight (see the commentary by Keyes et al. [5] for a brief history) while more 

recent examples using the Avon Longitudinal Study of Parents and Children (ALSPAC) are provided 

by Taylor et al. [6] and Richmond et al. [7]. These studies respectively assessed whether maternal 

smoking in pregnancy is associated with offspring depression and whether maternal body mass 

index (BMI) is associated with methylation of the offspring HIF3A gene. The paternal exposure may 

have an in-utero effect, such as would be the case in the first example where passive smoking or 

smoking related changes in sperm quality may influence offspring depression. It has been argued by 
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Davey Smith, however, that associations arising by such different mechanisms are unlikely to be 

equal in magnitude to that of the association with the maternal exposure [3].  

The estimates obtained from different statistical modelling approaches (described later) have 

previously been suggested to be influenced differently by assortative mating between parents [4]. 

Positive assortative mating describes the tendency for individuals to mate with a partner who has 

the same value of a given characteristic as themselves [8]. Negative assortative mating describes 

preference for mates with a differing value on the characteristic to one’s own value.  

Smoking [9-12], alcohol use [9, 10, 13-18], caffeine use [10] and BMI [19-21] have all been suggested 

to be characteristics correlated within pairs as a result of positive assortative mating; these 

characteristics are also commonly examined as in-utero exposures in negative control designs. 

Exposure characteristics may be similar within a pair due to (i) mate selection based on the 

characteristic itself (e.g. a non-smoking individual may limit their selection of partner to non-

smokers as they do not want to be exposed to smoke) or (ii) selection based on determinants of the 

characteristic (e.g. age, education, and psychiatric and personality traits influence smoking 

behaviours and may also be selected upon by individuals choosing a partner [20, 22-28]). Evaluation 

of the evidence of the nature of exposure characteristics being similar between parents is beyond 

the scope of this study however we believe our work will show that the impact of scenarios (i) and 

(ii) are similar in the context of negative control designs. 

The most common approach in a negative control design of a prenatal exposure is to run three 

models (irrespective of additional models adjusting for potential confounders). Model 1 assesses the 

association between maternal exposure and outcome. Model 2 assesses the association between 

paternal exposure and outcome. Model 3 mutually adjusts both maternal and paternal exposure for 

each other. The maternal and paternal effect estimates are then compared against each other 

between Model 1 and 2 and also within Model 3. 

The value of comparing estimates within Model 3 over comparing estimates between Models 1 and 

2 is mentioned briefly in the appendices of Lipsitch et al.’s early description of the negative control 

design’s use in epidemiology [1] and in Davey Smith’s letter to the editor regarding this paper. Why 

this is the case has not been adequately demonstrated or discussed in the literature so far. In this 

study we aim to explain the importance of interpreting the difference in effect sizes obtained from 

the mutually adjusted model (Model 3) where exposure and negative exposure are influenced by 

assortative mating using directed acyclic graphs (DAGs) and a simulation study.   
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Directed Acyclic Graphs (DAGs) 

We motivate the remainder of the study using an example that compares the influence of maternal 

smoking during pregnancy (the exposure) to the influence of paternal smoking during pregnancy 

(the negative exposure) on offspring intelligence quotient (IQ) score (the outcome). Fetal exposure 

to nicotine during pregnancy has been suggested to influence developmental processes in the brain 

including neurogenesis, migration, differentiation, and synaptogenesis [29]. These changes may 

influence the child’s cognitive ability, measured using an IQ score. Such an association is likely to be 

heavily confounded as factors such as socioeconomic characteristics influence both smoking 

behaviours and cognitive development [30-33]. A negative control design would therefore be useful 

to provide evidence of the causal nature of the association.  

In Figure 1 we show DAGs [34] of the relationship between variables in our example research 

question. DAGs are a useful tool to describe the causal relationship between variables and can 

highlight how bias is introduced, or removed, through different adjustment strategies. For those 

unfamiliar with DAGs, the review by Pearce and Lawlor [35] provides an accessible introduction to 

the concepts. In the DAGs, M is maternal smoking during pregnancy, P is paternal smoking during 

pregnancy and Y is the offspring outcome. CM and CP are sets of confounding variables for the 

maternal and paternal associations with the outcome. Mate selection influenced by the exposure 

variable is represented by Sexp while selection influenced by confounding variables is represented by 

SC. As any of several possible mates could have been selected, we can consider each of these to be 

random variables. When a couple has a child together then mate selection has occurred, the couple 

have selected each other, and we can treat this variable as having been controlled upon 

(represented by the box drawn around the variable). Sexp and SC are collider variables, therefore 

controlling for them will lead to correlation between maternal and paternal exposure variables and 

maternal and paternal confounder variables. For simplicity in our DAG we have assumed that 

paternal smoking during pregnancy is not causally associated with offspring outcome.   

Figure 1(i) shows a simplified example where the exposure behaviour is selected on. Confounding is 

ignored in this example. Only one variable, M, directly connects to the outcome. A single backdoor 

pathway exists that connects P to Y (P→Sexp←M→Y). The paternal coefficient of the paternal only 

model (Model 2) will be biased by the backdoor path. Mutual adjustment for M and P in a single 

model (as in Model 3) will close this backdoor path and eliminate the bias for the paternal 

coefficient. No backdoor paths exist for M. As a result, the maternal coefficient of both the maternal 

only model (Model 1) and the mutually adjusted model (Model 3) will be unbiased. 
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Figure 1(ii) provides an example in which the correlation between maternal and paternal exposure 

behaviour is caused by mate selection based on determinants of these exposures, confounders for 

the association of maternal and paternal smoking with offspring outcome. The association of CM with 

M and with Y is assumed to be equivalent to the association of CP with P and with Y. In this example 

maternal and paternal smoking during pregnancy share some but not all backdoor paths to the 

outcome. Three variables directly connect to the outcome: M, CM and CP. Backdoor paths along 

CM→Y and CP→Y exist for both M and P (e.g. M←CM→Y; M←CM→SC←CP→Y; P←CP→Y; 

P←CP→SC←CM→Y). An additional backdoor path exists for P that does not exist for M, via 

confounding variables (P←CP→SC←CM→M→Y). As a result, there will be additional bias for the NCA 

in Model 2 that will not occur for the AOI in Model 1. By mutually adjusting for M and P the 

additional backdoor paths for P will be closed. M and P will then have the same backdoor paths 

again ensuring that the biasing of the AOI and NCA are once again equivalent in Model 3.  

Figure 1(iii) combines the examples shown in Figure 1(i) and Figure 1(ii), showing the situation in 

which correlation in exposure behaviours is due to selective mating based on both the exposure and 

the confounder variables.  The backdoor paths that exist for P but not M now include both 

P←CP→SC←CM→M→Y and P→Sexp←M→Y which will lead to greater bias for the NCA than the AOI. 

Mutual adjustment for both M and P will close both of these backdoor paths leading to equivalent 

bias of the AOI and the NCA thereby making them comparable for the purpose of interpreting 

whether a causal effect may exist.  
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Figure 1: Directed acyclic graphs (DAG) of the associations between variables in a negative control design with assortative 

behaviours. Refer to the text for descriptions of what (i), (ii) and (iii) represent. M is maternal smoking during pregnancy, P 

is paternal smoking during pregnancy, Y is the offspring outcome. CM and CP are maternal and paternal specific confounders 

respectively. SC and Sexp are variables indicating mate selection based upon confounding variables and upon the exposure 

variable. SC and Sexp are collider variables that when controlled for (such as when a couple have a child) induce correlation 

between the maternal and paternal confounders/exposures.  
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Simulation study  

Methods 

Part 1: Simulation study of the influence of assortative mating on conclusions from the 

negative control design 

We empirically tested how assortative mating can influence the results and conclusions from a 

negative control design using a simulation study. The study was motivated by the same example as 

for the DAG in Figure 1i such that shared backdoor paths along confounder variables were ignored 

so that only the P→Sexp←M→Y backdoor path exists.  

We first simulated a binary exposure (maternal smoking in pregnancy, M), a binary negative 

exposure (paternal smoking in pregnancy, P) and assortative mating between the two. We simulated 

each exposure-pair to fall within one of the four categories of maternal and paternal smoking 

combinations. We fixed the prevalence of maternal smoking during pregnancy at 24% (to mimic the 

prevalence observed in ALSPAC) and allowed the prevalence of paternal smoking to vary across 

settings as we varied the extent to which smoking was assortative. Assortative mating was 

quantified using the pair sexual isolation index (IPSI, see Appendix A for formula) [36, 37], a 

commonly used measure in evolutionary biology literature that ranges from -1 to 1. Values closer to 

0 indicate no assortative mating while values closer to 1 indicate a mating pair are more likely to be 

similar on the chosen characteristic. We investigated IPSI values between 0 and 0.8, derived from the 

frequency in each smoking combination category (see Table 1).  We did not consider negative 

assortative mating (IPSI<0).  

 

 

Table 1: Frequency of observations falling into each category of maternal and paternal smoking, and the quantity of 

assortative mating, measured using the IPSI. 

Frequency in category (%) IPSI value  

(quantity of assortative 

mating) 

1) No parent 

smokes 

2) Mother only 

smokes 

3) Father only 

smokes 

3) Both parents 

smoke 

38.0 12.0 38.0 12.0 0.0 

45.6 9.6 30.4 14.4 0.2 

53.2 7.2 22.8 16.8 0.4 

60.8 4.8 15.2 19.2 0.6 

68.4 2.4 7.6 21.6 0.8 

 

 



9 

 

We then simulated a continuous outcome, which in the context of our research question we labelled 

“IQ score”. We simulated a normal distribution with mean 0 and variance 1 for the children who 

were unexposed to maternal smoking in pregnancy and a normal distribution with mean μ�	���� and 

variance 1 for those exposed to maternal smoking in pregnancy. The value of μ�	���� was varied 

between -5 and 5 in increments of 1. There was no effect of paternal smoking for all simulation 

settings. 

Three regression models were fitted to the simulated data. Model 1, the maternal only model, 

regressed the outcome on maternal smoking only. Model 2, the paternal only model, regressed the 

outcome on paternal smoking only. Finally Model 3, the mutually adjusted model, regressed the 

outcome on both maternal and paternal smoking. We calculated the difference between β� and β	, 

the coefficients for maternal and paternal smoking, between Model 1 and 2 and again within Model 

3. Confidence intervals for these differences were produced using bootstrapping with 1000 

replications.  

Across 1000 simulations we investigated sample sizes of 100, 1000, 10000. We measured the 

average bias of β� and β	 and their Monte-Carlo standard error across simulations using the 

simsum command in Stata [38]. We calculated the average difference between β� and β	, as well as 

the average lower and upper bound of the confidence interval, across simulations. 

We repeated our simulation study using a binary outcome. The findings did not differ substantially 

from those for a continuous outcome and are presented in Appendix B. 

 

Part 2: Simulation study of a negative control design with assortative mating where the 

negative exposure influences the outcome independently of the exposure 

In part 1 of the simulation study we have assumed that the negative exposure has no influence on 

the outcome. For some exposures the negative exposure may have an independent effect on the 

outcome. For example, paternal smoking may influence offspring neurodevelopment through a 

prenatal effect (reduced sperm quality), antenatal effect (exposing the mother to smoke) or a post-

natal effect (exposing the offspring to smoke). We therefore investigated how this scenario would 

influence the estimates of each model in the presence of assortative mating.  

We repeated the simulation study, this time including an association between paternal exposure to 

smoking and the outcome. The outcome for this analysis was generated by simulating normal 

distributions (all with variance 1) with mean 0 for children who were unexposed to maternal or 

paternal smoking in pregnancy, mean μ
	���� for those exposed to maternal but not paternal 
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smoking in pregnancy, mean 2 for those exposed to paternal but not maternal smoking in pregnancy 

and mean μ
	����+ 2 for those exposed to maternal and paternal smoking in pregnancy. Paternal 

smoking increased the outcome score by a value of 2 for all simulation settings and, as before, the 

value of μ
	���� was varied between -5 and 5 in increments of 1.  
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Results 

Part 1: Simulation study of the influence of assortative mating on conclusions from the 

negative control design 

The bias of coefficient estimates against IPSI is displayed in Figure 2. Part (i) of the figure shows that 

the maternal coefficient is unbiased in both Model 1 (maternal only model) and 3 (mutually adjusted 

model) for all quantities of assortative mating. This is true for positive and negative μ�	���� values. 

Part (ii) of the figure shows there is no bias for the paternal coefficient in Model 3 but there is 

increasing absolute bias for Model 2 (paternal only model) with increasing assortative mating. No 

bias is observed at an IPSI of 0. This represents the case where Sexp does not exist and so there is no 

backdoor path along P→Sexp←M→Y.  

A designed increase in the outcome in response to maternal smoking led to positive bias of the 

paternal coefficient in Model 2 while a designed decrease in the outcome in response to maternal 

smoking led to negative bias of the paternal coefficient. As a result, the modelled difference 

between the maternal and paternal coefficients from Model 1 and 2 would be smaller than the true 

difference when assortative mating occurs. We show this empirically in Figure 3 where we display 

the mean difference across simulations (and corresponding mean 95% CI for this difference) 

between the maternal and paternal coefficient against the IPSI for different sample and effect sizes. 

As the quantity of assortative mating increased the difference in coefficients between Model 1 and 2 

tended towards 0. The difference in coefficients within Model 3 were unaffected by assortative 

mating and accurately estimated the true difference.  

As the quantity of assortative mating increases the collinearity between the maternal and paternal 

coefficient within Model 3 increases also. This can be problematic, particularly when the sample size 

is small. In Figure 3 the width of the confidence interval for the difference between coefficients 

within Model 3 becomes larger with increasing assortative mating. For small effect sizes this could 

lead to the conclusion of a null difference when one in fact does exist (see row 2, column 1 of the 

figure which shows a sample size of 100 and true difference of 1). 
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Figure 2: Plots of bias against quantity of assortative behaviour for continuous outcome data for a) the maternal coefficient and b) the paternal coefficient. Error bars are 95% Monte Carlo 

confidence intervals across simulations. Sample size for data shown is 10,000. Note the large difference in Y-axis scale between the two plots. 
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Figure 3: Plot of the mean difference across simulations of maternal and paternal β coefficients against the quantity of assortative mating. 95% confidence bands are the mean lower and 

upper CI for the difference, produced using bootstrapping. We present the difference between the coefficients of the maternal and paternal only models (red band) and the mutually adjusted 

model (blue band) for sample sizes of 100, 1 000 and 10 000.  
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Part 2: Simulation study of a negative control design with assortative mating where the 

negative exposure influences the outcome independently of the exposure 

In part 2 of the simulation study we consider a scenario in which there is an independent effect of 

paternal smoking in pregnancy on the outcome. Again, this example is like that displayed in Figure 

1i, but with an additional arrow from P to Y. The AOI and NCA now have the same backdoor paths, 

but where before only the NCA was biased by the effect size of the AOI, now both the AOI and NCA 

will be biased by each other where there is assortative mating in the exposure/negative exposure. 

Mutual adjustment for M and P can again eliminate this bias (but not bias by unadjusted 

confounding structures).  

In our simulations, we show that the introduction of a paternal effect leads to bias in the maternal 

coefficient in the presence of assortative mating for models that do not employ mutual adjustment 

(see Figure 4). The bias increases with increasing assortative mating. Bias in maternal β is the same 

for true maternal effect size of -5 as it is for +5 while the bias in the paternal β appears unchanged 

compared to that of the data where there is no paternal effect. This suggests that the size and 

direction of bias for each coefficient is dependent on the size and direction of the effect size of the 

other coefficient and not on the coefficient’s own effect size. Models with mutual adjustment 

display no bias for either estimate in any setting. 

Despite the introduction of bias to the maternal coefficient for the maternal only model (data in part 

2) compared to data where there is no paternal effect on the outcome (data in part 1), there was 

little change in the pattern of results for the difference in coefficients between the data in part 1 and 

2. Supplementary Figure C1 (see Appendix C) shows the mean difference across simulations between 

the maternal and paternal coefficient against the IPSI for the data in part 2. Comparison with Figure 3 

shows very similar findings. This suggests that conclusions drawn from the maternal only and 

paternal only models will be influenced similarly by assortative mating in data where there is a 

paternal effect (NCA present) and where there is no paternal effect (null NCA).  
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Figure 4: Plots of bias against quantity of assortative mating for continuous outcome data with a maternal and paternal effect for a) the maternal coefficient and b) the paternal coefficient. 

Error bars are 95% Monte Carlo confidence intervals across simulations. Sample size for data shown is 10,000. 
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Discussion 

In the negative control design, correlation between the exposure and negative exposure as a result 

of assortative mating leads to biased effect estimates where the two exposures have not been 

mutually adjusted for one another. The effect estimate of one exposure is biased by the “other” 

exposure (i.e. the effect size of the AOI leads to bias in the effect estimate of the NCA and vice 

versa). Assortative mating can therefore lead to more similar effect estimates between the exposure 

and negative exposure. This may lead to the erroneous conclusion that there is no causal effect 

when one may exist. Mutual adjustment resolves this by blocking the backdoor pathway that exists 

via the “other” exposure. However, when the quantity of assortative mating is high the strong 

correlation between exposure and negative exposure leads to large standard errors for mutually 

adjusted model coefficients, particularly when the sample size is small. This makes the size of the 

difference between the AOI and NCA more ambiguous by enlarging the confidence interval.  

An important assumption of the negative control design is that the confounding structure of the AOI 

is equivalent or shared with that of the NCA. It is also important to remember that confounders that 

have not been accounted for in models or that have not been well measured will still lead to bias. An 

alternative approach to dealing with assortative mating has been suggested in which the father’s 

association is modelled only in families where the mother does not smoke [39]. A possible pitfall of 

this approach is that it may change the distribution of confounding factors across levels of maternal 

and paternal smoking behaviour in the dataset used for analysis, leading to bias even after mutual 

adjustment. As the AOI and NCA would no longer share the same confounding structure the two 

associations would be biased to different extents by confounders and so comparison of the two may 

not be useful. We would argue that mutual adjustment in a dataset that includes all families is a 

better strategy as it maintains equivalent confounding structures while blocking backdoor paths 

resulting from assortative mating. 

Mutual adjustment is not able to resolve non-linear combinatory effects of exposure and negative 

exposure. There is evidence for differences in the smoking behaviours between couples who are 

concordant and discordant for smoking during pregnancy [12]. Concordant couples are likely to 

smoke when their partner is present while the smoking partner in a discordant couple is likely to 

smoke more cigarettes per day than in concordant couples. This is not something we have assessed 

in our study as we have only used a binary measure of smoking which would not have the ability to 

capture quantity of smoking. The influence on risk of outcome when using such a binary variable 

may therefore not be accurately represented by a model using a simple linear combination of 

maternal and paternal effect, as is done in the mutually adjusted model. It may be better to use 
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categories of smoking concordance between parents (equivalent to using an interaction term 

between exposure and negative exposure) to account for non-linear combinatory effects. However, 

if these categories are different to one another in underlying confounding structure then the 

negative control design may not be appropriate for this research question.  

For simplicity we did not include confounding variables in the simulations. In Appendix D we present 

an applied example depicting how we would undertake an investigation into the association 

between maternal smoking during pregnancy and offspring intellectual disability in ALSPAC. Here we 

describe how correlation between maternal and paternal confounders may allow for using maternal 

confounding variables as proxies for paternal values. To our knowledge the influence of this 

adjustment strategy on the bias of maternal and paternal association estimates has not been tested. 

It is possible that adjustment for maternal but not paternal confounding variables may result in the 

NCA containing more bias than the AOI. Inclusion of confounding variables into the simulation study 

would have provided the opportunity to investigate whether imbalanced adjustment of maternal 

and paternal confounding variables influences the bias of point estimates.  

We also did not consider the influence of measurement error in our DAGs or simulation study. This is 

a pertinent issue as in some cohorts the mother provides information on both her own and her 

partners exposure; the latter may suffer more from measurement error. Sanderson et al. [40] have 

shown that measurement error in the exposure or negative exposure will lead to biased effect 

estimates. In Appendix E we explored how the introduction of measurement error to the negative 

exposure variable can influence the conclusions of a negative control study in the context of an 

exposure affected by assortative mating. Briefly, error in a binary negative exposure can lead to bias 

by artificially increasing or decreasing the correlation between the exposure and negative exposure. 
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Conclusion 

When performing a negative control study in the presence of assortative mating, the estimates used 

for interpretation should be those of the mutually adjusted model, though this will not resolve all 

issues of the negative control design. We suggest that a literature review be performed before 

carrying out a negative control study to assess whether the exposure, negative exposure and 

relevant determinant variables may be involved in mate selection.  

It is important to remember that the negative control design cannot be used to infer causality on its 

own. Single studies are prone to unusual and non-replicable results. Hence causality, or the lack 

thereof, can only be asserted through triangulation of evidence using several different causal 

inference approaches. For studies of prenatal exposure these could include Mendelian 

Randomisation [41-43] and sibling design studies [44-46].   
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WHAT IS NEW 

Key findings 

• In the negative control design, increasing assortative mating leads to increasing bias of effect 

estimates in models that do not mutually adjust for maternal and paternal exposure 

What this adds to what was known? 

• The use of a mutual adjustment strategy to prevent bias from assortative mating has been 

suggested previously. We aimed to provide an accessible explanation using directed acyclic 

graphs of how and why this strategy prevents bias. 

• A simulation study shows empirically how highly correlated maternal and paternal exposure 

values can lead to biased estimates and erroneous conclusions.   

What is the implication and what should change now?  

• We highlight the importance of drawing conclusions from the mutually adjusted model 

when performing a negative control design of prenatal exposure. 

• Mutual adjustment for maternal and paternal exposure cannot resolve all issues in the 

negative control design such as non-linear combinatorial effects of maternal and paternal 

exposure.  
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