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Abstract

The photo-sharing website Flickr has become used as an informal information source

in disciplines such as geography and ecology. Many recent studies have highlighted the

fact that Flickr tags capture valuable ecological information, which can complement

more traditional sources. A shortcoming of most of these existing methods is that

they rely on manual interpretation of Flickr content, with little automated exploitation

of the associated tags. Therefore, they fail to exploit the full potential of the data.

Automatically extracting and analysing information from unstructured and noisy data

remains a hard task. This research aims to investigate the use of Flickr meta-data for

predicting a wide variety of environmental phenomena. In particular, we consider the

problem of predicting scenicness, species distribution, land cover, and climate-related

features. To this end, we developed several novel machine learning methods that can

efficiently utilise Flickr tags as a supplementary source to the structured information

that is available from traditional scientific resources.

The first proposed method aims at modelling locations, and hence inferring environ-

mental phenomena, using georeferenced Flickr tags. Our focus was on comparing

the predictive power of Flickr tags with that of structured environmental data. This

method represents each location as a concatenation of two feature vectors: a bag-of-

words representation derived from Flickr and a feature vector encoding the numerical

and categorical features obtained from the structured dataset. We found that Flickr

was generally competitive with the structured environmental data for prediction, being

sometimes better and sometimes worse. However, combining Flickr tags with existing
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ecological data sources consistently improved the results, which suggests that Flickr

can indeed be regarded as complementary to traditional sources. The second method

that we propose is based on a collective prediction model, which crucially relies on

Flickr tags to define the neighbourhood structure. The use of a collective prediction

formulation is motivated by the fact that most environmental features are strongly spa-

tially autocorrelated. While this suggests that geographic distance should play a key

role in determining neighbourhoods, we show that considerable gains can be made by

additionally taking Flickr tags and traditional data into consideration.

The thesis considers two further novel methods which are based on a low dimensional

vector space representation. The first model, called EGEL (Embedding Geographic

Locations), learns vector space embeddings of geographic locations by integrating the

textual information derived from Flickr with the numerical and categorical informa-

tion derived from environmental datasets. We experimentally show that this method

improves on bag-of-words representation approaches, especially in cases where struc-

tured data are available. This model has been extended by considering a spatiotem-

poral representation of regions. In particular, we propose a spatiotemporal embeddings

model, called SPATE (Spatiotemporal Embeddings), which learns a vector space em-

bedding for each geographic region and each month of the year. This allows the model

to capture environmental phenomena that may depend on monthly or seasonal vari-

ation. Apart from extending our primary model, SPATE also includes a new smooth-

ing method to deal with the sparsity of Flickr tags over the considered spatiotemporal

setup.

The experimental results demonstrated in this thesis confirm our hypothesis that there

is valuable information contained in Flickr tags which can be used to predict environ-

mental features.
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Chapter 1

Introduction

1.1 Background and Motivation

Social media platforms such as Flickr1, Twitter2 and Facebook3 have become popular

vehicles for sharing and finding information. This led to the creation of a large amount

of a new form of data, which is known as social media data. These data are mostly

user-generated, informal, and unstructured, and is sometimes associated with inform-

ation about time and location. For example, the photo-sharing platform Flickr hosts

more than 10 billion photographs4, most of which are associated with short textual de-

scriptions in the form of tags to describe what is depicted in the photograph. Moreover,

the time at which these photographs were taken is available as a meta-data. The Global

Positioning System (GPS) support in current electronic devices such as smartphones

means that latitude and longitude coordinates can be easily recorded as meta-data.

For a large number of photographs on Flickr, these coordinates have been made pub-

licly available5. Together with their textual descriptions, such photographs can thus

be regarded as Volunteered Geographic Information (VGI [41]). VGI is a special case

of the larger phenomenon known as User Generated Content (UGC) [41]. It allows

people to voluntarily create, collect, and disseminate geographic information, which

1http://www.flickr.com
2http://www.twitter.com
3http://www.facebook.com
4http://expandedramblings.com/index.php/flickr-stats
5We were able to crawl around 350M georeferenced Flickr photographs in September 2015.

http://www.flickr.com
http://www.twitter.com
http://www.facebook.com
http://expandedramblings.com/index.php/flickr-stats
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has played an active role for some applications such as urban planning and mapping

[111]. The coordinates and textual meta-data associated with Flickr photographs have

already proven valuable in many disciplines. For example, in geography, Flickr tags

have been used to construct approximate boundaries for (vernacular) regions [19, 42]

or to discover events that take place in a given city [91]. In linguistics, the tags of

georeferenced Flickr photographs have been found useful for generating vector space

representations of perceptual terms [7] and the correlations between the occurrence of

Flickr tags and geographical location have been used to analyse colloquial language

[29]. In the domain of ecology, Flickr has been used to study species distribution [5].

The use of Flickr for modelling urban environments has already received considerable

attention. For instance, various approaches have been proposed for modelling urban

regions [19], and for identifying points-of-interest [117] and itineraries [21, 90]. How-

ever, the usefulness of Flickr for characterising the natural environment, which is the

focus of this thesis, is less well-understood.

Although there are many organisations that serve environmental data, the information

they provide is far from complete [5]. The idea of using Flickr as a supplementary

source of environmental information is appealing for several reasons. For example,

due to the fact that photographs are often uploaded directly after they have been taken,

Flickr can provide us with more up-to-date information than traditional citizen science

datasets. This can be important, for instance, for monitoring the spread of invasive spe-

cies and migration patterns of pollinators. Moreover, the information that is captured

by Flickr tags is broader than what is normally recorded, and includes, for example, the

subjective assessments about the scenicness of a landscape. In fact, Flickr has already

proven valuable as a resource for ecological analysis. However, most of the recent

studies rely on manual evaluations of image content with little automated exploita-

tions of the associated tags [92, 30]. Manually analysing Flickr is clearly limited and

time-consuming. Moreover, both the structure and the volume of the data present prac-

tical challenges [20], compared to formal or semi-formal citizen science monitoring

data [107]. Nonetheless, these studies prove that Flickr contains valuable information
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which could be used to support the available sources [20, 5]. All this highlights the

need for automated methods for extracting environmental information from Flickr.

The aim of the research presented in this thesis is to automate methods that can utilise

Flickr meta-data as a supplementary source of environmental information. The idea

has come from the fact that Flickr data are free to use, more up-to-date than traditional

resources, and has already proven valuable as a resource for ecological information [5,

20]. In particular, this thesis studies the usefulness of Flickr tags for predicting a wide

range of environmental phenomena, such as land cover categories, species occurrence,

scenicness of place, and climate features which include average temperature, wind

speed, precipitation, solar radiation and water vapour pressure. The most important

challenge to handle in social media mining is that its content is often sparse and noisy.

To mitigate this problem, our analysis in this research focuses on features that we can

ascribe to locations, for example, “there is a coniferous forest at this location” rather

than to individual photographs, for example, “this is a photo of a 7-spot ladybird”.

Flickr tags can be an extremely rich source of information. However, extracting useful

knowledge from it can be difficult due to its unstructured nature. To this end, we

need methods that efficiently extract and represent such potentially useful information

hidden in Flickr. Moreover, to employ Flickr tags as a supplementary source to the

structured scientific datasets, we need to develop methods that can efficiently combine

those two diverse data sources. To achieve this, several novel text mining and machine

learning algorithms have been proposed and developed in the present thesis.

1.2 Hypothesis and Research Questions

Our main hypothesis in this thesis is:

Social media can be used as a valuable source of ecological information. In particular,

we can use the meta-data associated with the photographs on the photo-sharing plat-

form Flickr as a complementary source to the publicly available scientific datasets in
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order to predict spatially and temporally grounded information about the natural en-

vironment. This meta-data allows us to improve the prediction of features such as the

scenicness of a place, species distribution, land cover categories, and several climate

related features.

In order to verify this hypothesis, the following set of research questions were ad-

dressed:

Research Question 1: Is it possible to extract large amounts of high-quality environ-

mental information from Flickr, and if so, how complementary is this information to

publicly available scientific datasets?

Research Question 2: How can we deal with the sparsity of Flickr tags for location

(and possibly time-dependent) representation?

Research Question 3: How can we best integrate these representations with the avail-

able structured environmental data to improve the predictive power?

1.3 Contributions

The primary contribution of the present PhD research is the development of methods

for utilising Flickr meta-data as a complementary source of environmental information.

The contributions made through this research are:

1. We introduce a new method for modelling locations using georeferenced Flickr

tags. The method is based on a spatially smoothed version of pointwise mutual

information. The main aim of this work is to obtain a clearer picture about

the kinds of environmental features that can be modelled using Flickr tags. To

this end, we consider the problem of predicting scenicness, species distribution,

land cover, and climate features. We focus on comparing the predictive power

of Flickr tags with that of structured data from more traditional sources. We

find that Flickr tags perform sometimes better and sometimes worse than the
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considered structured data. Nonetheless, combining Flickr tags with structured

data consistently improves the results. This suggests that Flickr can be used as a

complementary source to traditional sources. This work was published in [54].

2. We compare and combine two main strategies for using Flickr to predict the

spatial distribution of species. The first strategy is based on identifying postings

that explicitly mention the target species name, while the second is based on

exploiting all tags to construct a model of the locations where the species occurs.

We find that the second strategy works well overall. However, in a few cases,

the strategy that uses the species names only leads to better performance. We

furthermore show that even better performance is achieved with a meta-classifier

that combines data on the presence or absence of species name tags with the

predictions from using all Flickr tags. This work was published in [52].

3. We propose a novel collective prediction framework that relies on both Flickr

tags and structured data to make initial predictions that are updated iteratively

using a combination of neighbouring predictions and ground truth data. The

motivation behind the use of collective prediction is, as in conventional spatial

interpolation, that most environmental features are spatially autocorrelated. A

key feature of the approach is that, in the collective prediction model, estimation

of a location from its neighbouring data depends not only on geographic distance

but also on attribute similarity, which is estimated in our case from the Flickr tags

and structured data associated with each location. This work is still under review.

4. We develop a novel method for learning low-dimensional vector space embed-

dings of geographic locations, called EGEL, by combining textual information

in the form of Flickr tags with the numerical and categorical information con-

tained in structured scientific datasets. Our experimental evaluations show that

using such low-dimensional vector space representations allows us to integrate

the textual, numerical and categorical features in a more effective way than is

possible with bag-of-words representations. This work was published in [55].
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5. We extend the EGEL model to encode spatiotemporal information. To this end,

we propose a novel spatiotemporal embeddings model, named SPATE, which

is able to integrate Flickr tags and structured scientific information from more

traditional environmental data sources. The novelty of this work is two-fold.

First, we propose a new method based on spatiotemporal kernel density estima-

tion to handle the sparsity of the tag distribution over space and time. Then, we

efficiently integrate the spatially and temporally smoothed Flickr tags with the

structured scientific data into low-dimensional vector space representations. The

proposed model can be used for modelling and predicting a wide variety of eco-

logical features such as species distribution, as well as related phenomena such

as climate features. We experimentally show that our model is able to substan-

tially outperform baselines that rely only on Flickr or only on traditional sources.

This work is accepted for publication in [53].

1.4 Thesis Structure

The remaining chapters are organised as follows:

• Chapter 2 - Background and Related Work - provides an overview of social me-

dia in general and social media mining in particular. The chapter reviews the re-

lated work in this area and also defines the fundamental concepts of the relevant

methods for text representation, vector space embedding, and machine learning.

• Chapter 3 - Data Acquisition and Preprocessing - introduces the datasets used in

this work, covering both Flickr data and structured scientific data, and describes

the methodology that was used for collecting each of those datasets. A primary

analysis of the collected Flickr data is conducted to evaluate its usefulness toward

the considered task. It also presents a set of ground truth datasets related to the

environment and biodiversity that was used for experimentally evaluating the

methods developed in this thesis.
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• Chapter 4 - Modelling Locations using Bag-Of-Words Representation - describes

the proposed methodology for modelling geographic locations using the struc-

tured data and using Flickr tags based on a bag-of-words (BOW) representa-

tion model. The chapter introduces a set of experiments based on supervised

machine learning to evaluate, investigate, and compare the prediction power of

using Flickr tags only, structured data only, and their combination. It also fo-

cuses on evaluating the role of tags that correspond to the name of the species

for estimating species occurrence.

• Chapter 5 - Collective Prediction Model - presents the proposed collective pre-

diction framework. It investigates the usefulness of Flickr tags to make the ini-

tial prediction and defines the neighbourhood structure of a given environmental

feature. Detailed experiments are carried out to test the quality of the proposed

model.

• Chapter 6 - Modelling Locations using Vector Space Embedding - describes the

proposed Embedding GEographic Locations (EGEL) model that integrates the

georeferenced Flickr tags and structured scientific data into a low-dimensional

vector space embedding. It experimentally shows that EGEL model can integrate

Flickr tags with structured information in a more effective way than the BOW

model from Chapter 4.

• Chapter 7 - Spatiotemporal Embeddings Model - introduces the proposed SPAti-

oTemporal Embeddings (SPATE) model that handles the problem of Flickr data

sparsity and is aimed at learning a low-dimensional vector space embedding of

spatiotemporal regions based on the textual, numerical, categorical, spatial, and

temporal information. The chapter qualitatively and quantitatively evaluates how

well the SPATE model can predict the monthly and seasonal variation of a num-

ber of environmental phenomena.

• Chapter 8 - Conclusion and Future Work- concludes the thesis by summarising

our contributions, findings, as well as highlighting proposals for future work.
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1.5 Summary

In this chapter, we introduced the background and our motivation to work on the con-

sidered topic. We also discussed the hypothesis and the main research questions, and

we gave an overview of the thesis contributions and structure. Before moving to the

main technical contributions of this thesis, the next chapter will first provide more

detailed background information and put the thesis in the context of existing work.
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Chapter 2

Background and Related Work

2.1 Introduction

This thesis aims to explore the benefits of using social media, specifically the meta-

data associated with the photo-sharing platform Flickr, as a supplementary source of

ecological information. Mining social media platforms has become a very active re-

search area in many domains, as it coincides with the rapid growth and the availability

of textual user-generated content on the web. This chapter will present the required

background knowledge about the field of social media mining, which encompasses

text mining and machine learning.

In particular, this chapter serves four main purposes that are directly related to the

research presented in the thesis. First, Section 2.2 presents a general overview of social

media and the process of mining social media platforms. To address the question

of whether social media can be considered as a valuable source of information, two

closely related research areas are discussed, which are: geospatial analysis of social

media and citizen science. Then Section 2.3 attempts to define the common techniques

that are used to generate bag-of-words representations of text documents. Specifically,

we discuss methods that are used for term weighting and term selection. Subsequently,

Section 2.4 describes the state-of-the-art methods used for learning low-dimensional

vector space representations, including word embeddings and spatial or spatiotemporal

information embeddings. Section 2.5 presents and compares some of the widely used
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machine learning approaches for the task of supervised learning. It also presents a more

detailed review of the collective prediction model as well as the standard evaluation

methods. Finally, Section 2.6 summarises the main topics discussed in this chapter.

Note that there is an additional short related work section in Chapter 7, specifically

Section 7.2, on spatiotemporal modelling.

2.2 Social Media

The rapid emergence and dissemination of Web 2.0 functionalities during the first dec-

ade of the 21st century has led to a leap in the social component of Web use. In con-

trast with the first generation of Web 1.0 where people were mostly limited to view the

content of websites only, Web 2.0 applications allow users to communicate and share

information through social media platforms. Social media can be defined as a class of

web-based applications and information sources. They are typically characterised by

collaborative content creation driven by explicit or implicit social networks that repres-

ent virtual communities of shared interest. The concept of social media has a broader

meaning than the interaction platforms where a large amount of user-generated data are

now available. Kaplan and Haenlein [59] define social media as “a group of Internet-

based applications that build on the ideological and technological foundations of Web

2.0, and that allow the creation and exchange of user-generated content”. These data

are of great importance in many domains when mined and used for such purposes as

analysis, modelling and prediction.

There are many types of social media that vary with regard to the level of personalisa-

tion and the richness of the media [59]. For example, the microblogging network is

highly personalised as the authors provide content and information about themselves,

whereas collaborative projects such as Wikipedia have a low degree of personalisation.

It is difficult to propose a precise classification for social media types; however, the

most popular classes include:
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• Social Network Sites (SNSs) are a typical type of social media. The purpose

of SNSs is to provide users with a platform to connect with others, such that

they can share thoughts, knowledge, photographs and videos, and participate in

discussions. Generally, a social networking service builds on and reflects the

real-life social networks among people through online platforms. Facebook and

Linkedin are well-known examples of SNSs worldwide. Some of these platforms

provide the ability to share the user’s location information. It is also possible to

attach the location and the timestamp with the posts.

• Location-Based Social Networks (LBSNs) are social networks that use GPS

coordinates such that users can share their location information. LBSNs are

bridging the gap between the physical world and online social networking ser-

vices. Examples of LBSN sites are Foursquare and Whrrl. LBSNs do not only

add a location to an existing social network. They are also determined by the

new social structure made up of individuals connected by their geographical loc-

ations as well as their location tagged content, such as text, photographs, and

video. Furthermore, the physical location consists of the instantaneous position

of a user at a given timestamp and the location history of the user over a specific

time period [133].

• Blogging Networks, also called weblogs, blogs or online diaries, are inform-

ational or discussion platforms that are often informal and loosely connected,

with a high level of personalisation diary-style posts. Examples are Wordpress

and Blogspot.

• Microblogging Networks are blogging platforms where the amount of inform-

ation that can be shared per user is very short. The most common examples

of microblogs are Twitter and Tumblr. For instance, Twitter limits users’ posts,

which are called “tweets”, to 280 characters. These tweets can come in the form

of a variety of content formats, including text, images, video, audio, and hyper-

links as well as the location tag.
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• Wikis are platforms that allow users to collaborate in creating and editing the

content of a website which can include text, photographs and external links. The

best-known example is Wikipedia, which is a free multilingual online encyclo-

paedia written by users.

• Photo-Sharing Sites are platforms that give people a place to share, store and

find media online, with an emphasis on photographs. While the posts on the

majority of social media platforms of the aforementioned types start with a text

that may be supplemented with photographs or videos, posts on photo-sharing

sites start with a photograph (or video) as the main posts. This post can then be

supplemented with textual data in the form of a title, description and a set of tags

that express what is in the photographs. Highly popular photo-sharing sites are

Flickr, Instagram, and Snapchat.

The photo-sharing platform Flickr has been chosen as the site to be exploited in the

present research. Both professional photographers and amateurs widely use Flickr as a

platform for sharing their photographs. There are more than 90 million monthly active

users on Flickr1, and more than 10 billion photographs have been uploaded so far on

Flickr 2, many of which are publicly available. The nature of the data that is available

from Flickr will be described in more detail in Chapter 3.

2.2.1 Social Media Mining

The process of extracting useful information from large-scale user-generated data on

social media sites is usually known as social media mining. This term is an analogy

to the process of mining to extract rare minerals. Resources mining requires profes-

sional specialists and advanced technologies to sift through a vast amount of raw ore.

Similarly, social media mining requires data analysts and automated software to sift

1https://blog.statusbrew.com/social-media-statistics-2019/
2http://expandedramblings.com/index.php/flickr-stats

https://blog.statusbrew.com/social-media-statistics-2019/
http://expandedramblings.com/index.php/flickr-stats
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through massive amounts of raw social media data. It usually uses a range of data min-

ing and machine learning techniques for analysing, representing, and extracting trends

and patterns.

The availability of GPS systems in current electronic devices such as smartphones

enables GPS coordinates (latitude and longitude) to be recorded as meta-data for social

media posts. Thus, this data can be regarded as Volunteered Geographic Information

(VGI) [41]. Since time is also recorded meta-data, social media can also be utilised

as a real-time data source. The problem of mining social media data has received

significant research attention in recent years and has led to valuable contributions in

critical fields such as monitoring public health [17, 61], detecting natural disasters

such as earthquakes [116, 28, 34] and typhoons [96], or predicting criminal activities

[122].

With reference to these successful applications, ecological observations shared via so-

cial media could contribute to public participation in scientific research, something that

is often named “citizen science”. In this sense, this thesis deals with social media data,

specifically Flickr meta-data, as a passive form of citizen science. To this end, we need

a conceptual framework within which this data can be explored, assessed, and used

as an additional source of data. Below we will discuss some previous works that use

social media data in general, and Flickr data in particular for applications, including

geospatial analysis and citizen science, which are closely related to this research.

Geospatial Analysis

Geospatial analysis is the process of gathering, displaying, and manipulating GPS data,

satellite imagery or historical data in a way that can be applied to geographic models.

Many recent studies have focused on analysing georeferenced social media data, with

the aim of extracting useful geographic information. In particular, there is a large num-

ber of studies that derive such information from georeferenced Flickr photographs.

For example, [42] described two methods for the automatic delineation of imprecise
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regions based on geotagged photographs. The first one is a method based on kernel

density estimation (KDE) and the second is based on one class support vector ma-

chines (SVMs). Similarly, [19] presents an approach for automatically defining the

geographic boundaries of vague regions by using one class support vector machines

(SVMs) and learning multiple kernels. To describe regions, they rely on a combina-

tion of the Flickr tags of the photographs that were tagged with the region’s name, and

external features such as land cover data, population count, elevation and the geograph-

ical coordinates (latitude and longitude) of Flickr photographs that are tagged with the

region’s name. They showed that their method performs better than the simpler meth-

ods described by [42]. Our work in this thesis is analogous to these approaches, in

applying support vector machine learning methods to Flickr tags in combination with

other geospatial data, but we are concerned with characterising and predicting inform-

ation about the environment.

The authors of [105] presented and evaluated methods for automatically georeferen-

cing Flickr photographs using the textual annotations of photographs to predict the

single most probable location where the image was taken. They showed that location-

specific language models, based on sets of distinctive tags, can be estimated effectively

by analysing the terms people use to describe images taken at particular locations.

They furthermore demonstrated how to incorporate the GeoNames database and they

defined extensions to improve their language models. In [117], a language modelling

approach was used to discover and characterise places of interest (POIs). They exper-

imented with both Flickr data and Twitter data, finding that Flickr data on its own is

more useful than Twitter data for this task, while combining both sources led to the best

results. Similar to this latter work, we explore the possibility that sets of tags cannot

just distinguish one location from another but can contribute to classifying aspects of

the environment.
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Citizen Science

Citizen science, also known as community science, crowdsourced science, or volun-

teer monitoring [27], refers to scientific research conducted by members of the general

public, typically as part of a collaborative project with professional scientists. Consid-

erable progress has been made in recent years in citizen science projects in the envir-

onmental sciences, where participants are recruited to actively contribute to particular

campaigns such as in land cover mapping [37], hydrological surveys [75], ornithology

and many forms of ecological study [25]. In parallel with these initiatives, there is a

growing interest in the potential of “passive” survey methods that exploit social media

to provide additional useful data. For instance, [120] analysed the visual features of the

photographs on Flickr (in an automated way) to observe natural world features such as

snow cover and particular species of flowers. In [131] photographs from Flickr were

used to estimate snow cover and vegetation cover and to compare these estimations

with fine-grained ground truth collected by Earth-observing satellites and ground sta-

tions. Both the text associated with Flickr photographs and their visual features were

used in [69] to perform land-use classification. The approach was evaluated on two

university campuses and three land-use classes were considered: Academic, Resid-

ential, and Sports. In [31] and [32], they classified a sample of georeferenced Flickr

photographs according to CORINE land cover classes. They also evaluated the use

of Flickr photographs in supporting Land Use/Land Cover (LULC) classification for

the city of Coimbra in Portugal and for comparison with Corine Land Cover (CLC)

level 1 and level 2 classes (see Chapter 3 for more details on the CORINE dataset).

Note that their approach did not use machine learning and the results were evaluated

manually by experts. Their results suggest that Flickr photographs cannot be used as a

single source to achieve this purpose but they could be helpful if combined with other

sources of data.

The authors of [110] explored the relationship between CORINE land cover classes and

the valuation of natural scenery, namely scenicness, scenic beauty, landscape beauty,
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aesthetics, or cultural ecosystem services (CES), through user evaluated georeferenced

photographs from the ScenicOrNot3 website. They employed the user’s rating of a

photo in a specific area as an evaluation of the land cover of that area. The results of this

study showed that the highest rated areas belong to the forest and semi-natural areas,

and water bodies classes. In another work [14], they developed and evaluated a model

to predict the average scenicness of 5km × 5km grid cells. They used text describ-

ing the rated images in the ScenicOrNot website as input to train a regression model.

Measures of scenicness are important since they reflect human well-being and can be

taken into consideration in land planning and decision-making processes. Nonetheless,

people’s perceptions of landscapes are subjective and cannot easily be quantified [110].

Some authors have assessed the beauty of the landscape through groups of evaluators

using images, videos and/or questionnaires [110, 88], while others used geographic in-

formation system (GIS) data such as elevation together with visual assessments and/or

questionnaires to predict the scenicness [6, 100]. Another group of works, such as [12],

[40], and [114], quantify landscape aesthetics according to the number of photographs

taken near a given location [12] or the number of people who published photographs

[40] in photo-sharing sites such as Flickr and Panoramio. Considering popularity on

social media as a surrogate for the level of appreciation of a place might work with

some types of landscapes, but the results might be biased towards more accessible

places (one of our experiments reported in Section 4.3.1 provides evidence to that ef-

fect).

Another growing area of interest is in the use of social media data for ecological mon-

itoring. An overview of the potential for exploiting social media in conservation and

biodiversity was provided by [24], who conducted a study of the use of social me-

dia platforms for posting observations of nature. The most commonly used platforms

were, in order of level of sharing of nature-related content: Facebook, Instagram, Twit-

ter, Youtube, Flickr and LinkedIn. In [5], they examined Flickr biodiversity data quality

by analysing its metadata and comparing it with ground-truth data, using Snowy owls

3http://scenic.mysociety.org/

http://scenic.mysociety.org/
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and Monarch butterflies as a case study. They concluded that Flickr data has the poten-

tial to add to the knowledge of these species in terms of geographic, taxonomic, and

temporal dimensions, which tends to be complementary to the information contained

in other available sources. In another similar work, [20] performed a manual evaluation

of a sample of Twitter postings that named three invasive species (using associated im-

ages for validation). They identified factors correlated with valid observations, such

as the presence of a linked photograph and tags that describe the environment (e.g.

‘leaves’ and ‘tree’). They confirm that social media mining for ecological analysis is

as important as traditional monitoring and the features derived from Twitter could be

integrated with and hence improve the value of existing sources of such information.

An approach to validating individual observations in Flickr was described by [30] who

used Google’s reverse image-search service to find photographs similar to those in

Flickr postings. The tags of the Google photographs were then compared with those in

Flickr in an attempt to filter out non-wildlife images. In [92] the content of the Flickr

photographs was analysed manually to assess the quality of cultural ecosystem ser-

vices and derive useful information to manage Singapore’s mangroves. The research

presented in this thesis is different from these works, where we do not focus on the

content of a particular photograph (e.g. which species it may show). Instead, we focus

on exploiting and utilising the tags associated with Flickr photographs for predicting a

wide range of ecological phenomena such as species distribution, scenicness of a place,

soil type, land cover type, and climate features.

2.3 Text Representation

Text representation is one of the most fundamental problems in text mining. It aims

to numerically represent unstructured text documents to make them mathematically

computable. In the past decades, various strategies for text representation have been

proposed for different application problems such as text classification, clustering, and

information retrieval. The problem of text representation is to represent each text doc-
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ument as a vector, such that the distance between document vectors is representative

of their intuitive degree of dissimilarity.

A popular and simple method for representing text is called the bag-of-words (BOW)

model, which is commonly used in natural language processing, machine learning, and

information retrieval. This model represents a document by encoding the number of

times each word appears in it, thus disregarding any information related to word order.

Formally, we will treat bag-of-words representations as vectors, where each coordinate

captures the weight of a given word. Therefore, next in Sections 2.3.1 and 2.3.2 we

will discuss some of the widely used methods for term weighting and term selection in

the context of BOW representations.

2.3.1 Term Weighting

Term weighting is the process of assigning numerical values to terms which represent

their importance in a document [98]. It is a crucial component of any machine learning

system, which has shown great potential for improving the effectiveness of the system

[97]. For a given text document d, where we write w(t, d) to encode the weight of

term t in d. The following statistical methods are the most common examples of term

weighting:

• Term Presence (also known as Boolean, One-hot or Binary vector) is a binary

weight, taking the value of 1 or 0 based on the term’s presence or absence in

the text. If text document d does not contain term t then weight w(t, d) = 0,

otherwise the term is assigned value 1.

• Term Count, the weight of a term is the count of its occurrences in the text. If a

term t occurs five times in the text document d then weight w(t, d) = 5.

• Term Frequency (TF), similar to the ‘Term Count’ method, but taking into ac-

count the length of the document. Because every document is different in length,
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it is possible that a term would appear more times in long documents than in

shorter ones. Thus, the term frequency is often divided by the document length

(i.e. the total number of terms present in the document) as a way of normalisa-

tion. The weight w(t, d) is computed as:

TF(t, d) =
c(t, d)∑
t′∈d c(t

′, d)
(2.1)

where c(t, d) is the number of times term t appears in a document d and c(t′, d)

is the total number of terms in d.

• Term Frequency-Inverse Document Frequency (TF-IDF) is a more sophisticated

measure which reflects how important a term t is to document d given how often

t occurs in d and how frequently it appears in the entire document collection.

The TF-IDF weight is computed by:

TF-IDF(t, d) = TF(t, d) · IDF(t, d) =
c(t, d)∑
t′∈d c(t

′, d)
· log

n

nt
(2.2)

with n the number of the documents in the document collection and nt the num-

ber of documents containing the term t.

• Pointwise Mutual Information (PMI) is a measure of association between the

term and the text. It is similar to TF-IDF, essentially comparing the actual num-

ber of occurrences with the expected number of occurrences given how many

terms occur in document d and how common the term t is:

PMI(t, d) = log
P (t, d)

P (t)P (d)
(2.3)

where:

P (t, d) =
c(t, d)

m

P (t) =

∑
d′∈D c(t, d

′)

m

P (d) =

∑
t′∈T c(t

′, d)

m

m =
∑
t′∈T

∑
d′∈d

c(t′, d′)
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with T the set of all terms that appear in the document collection. It is possible

for the PMI of a term within a document to be negative. In that case, we can

change the weight of this term to zero which is called Positive Pointwise Mutual

Information (PPMI). It is then given by:

PPMI(t, d) = max

(
0, log

(
P (t, d)

P (t)P (d)

))
(2.4)

In this present research, we weight the tag occurrences based on a variant of Positive

Pointwise Mutual Information (PPMI) to associate more significance to tags that are

less common and more closely correlated with a particular geographic location. This

method will be explained in Section 4.2.1.

2.3.2 Term Selection

Term selection is the process of automatically selecting the terms that are most relev-

ant (i.e. most useful) to the considered task. It is also called feature selection, variable

selection, or attribute selection. The term selection process is an important component

for most text mining tasks. It mostly acts as a filter for cleaning out the irrelevant or

partially relevant features that can negatively impact model performance. The main

objectives of term selection are [46]: (i) improving the prediction performance by

providing the most relevant features, (ii) enabling faster training by minimising the

number of features, and (iii) making it easier to interpret and understand the nature of

the data. As term selection methods seek to reduce the number of features in the data-

set, it can be used as a special case of dimensionality reduction [80]. Whereas term se-

lection methods include and exclude terms present in the data without changing them,

other dimensionality reduction approaches (such the low dimensional vector space em-

beddings methods that will be explained in Section 2.4) create a new combination of

features.

Term selection methods often apply a statistical measure to score each term or feature.

The features are ranked by their score and the most relevant features are those with the
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highest value. Below are some examples of widely used methods for term selection

and scoring:

• Chi-Squared (χ2) is a measure for modelling the dependency between the terms

(or features) and the classes (such as gender, political preference, or land cover

type). For each class c ∈ C and each term t occurring in a document belonging

to class c, the χ2 statistic ranks terms with respect to the following quantity:

χ2(t, c) =
(Otc − Etc)2

Etc
+

(Otc̄ − Etc̄)2

Etc̄
+

(Ot̄c − Et̄c)2

Et̄c
+

(Ot̄c̄ − Et̄c̄)2

Et̄c̄
(2.5)

where Otc is the number of documents in class c where term t occurs, Otc̄ is

the number of documents outside class c where term t occurs, Ot̄c is the number

of documents in class c where term t does not occur, and Ot̄c̄ is the number of

documents outside class c where term t does not occur. Moreover, Etc is the

expected number of occurrences of term t in documents belonging to class c,

and similar for Etc̄, Et̄c, and Et̄c̄ which can be computed as:

Etc = N · P (t) · P (c)

Etc̄ = N · P (t) · (1− P (c))

Et̄c = N · (1− P (t)) · P (c)

Et̄c̄ = N · (1− P (t)) · (1− P (c))

where N here is the total number of documents, P(t) is the probability that a

document contains term t, and P(c) is the probability that a document belongs to

class c. These probabilities can be estimated by:

P (t) =

∑
c∈C Otc∑

t∈T
∑

c∈C Otc

(2.6)

P (c) =
|c|
N

(2.7)
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• Correlation Coefficient (CC) is a variant of χ2 test where CC2 = χ2. The Cor-

relation Coefficient has been defined in [82] as:

CC(t, c) =

√
N · (Otc ·Ot̄c̄ −Otc̄ ·Ot̄c)√

(Otc +Otc̄) · (Otc +Ot̄c) · (Ot̄c +Ot̄c̄) · (Otc̄ +Ot̄c̄)
(2.8)

with Otc, Otc̄, Ot̄c, Ot̄c̄, and N as defined in χ2. CC can be seen as a ‘one-sided’

version of χ2. The correlation coefficient (CC) selects those terms that are highly

related to a class, while the χ2 may also pick out terms that are indicative of non-

membership in the class.

• Log-Likelihood is an alternative to χ2. For each term t and class c ∈ C, the log

likelihood statistic is given by:

LL(t, c) = 2(Otc logOtc +Otc̄ logOtc̄ +Ot̄c logOt̄c +Ot̄c̄ logOt̄c̄ +N logN

− (Otc +Otc̄) log(Otc +Otc̄)− (Otc +Ot̄c) log(Otc +Ot̄c)

− (Otc̄ +Ot̄c̄) log(Otc̄ +Ot̄c̄)− (Ot̄c +Ot̄c̄) log(Ot̄c +Ot̄c̄)) (2.9)

where Otc, Otc̄, Ot̄c, Ot̄c̄, and N are as defined above.

• Kullback-Leibler (KL) Divergence is a measure of how much the probability dis-

tribution of term t across documents from a given class differs from the reference

probability distribution. It is given by:

KL(t) =
∑
c∈C

P (c|t) log
P (c|t)
P (c)

(2.10)

where P (c) is the probability of class c and P (c|t) is is the probability of term t

in class c which is estimated by:

P (c|t) =
Otc∑
c∈C Otc

(2.11)

Note that Kullback-Leibler divergence immediately produces a single ranking

for the term over all the classes, in contrast to the χ2, Correlation Coefficient and

log-likelihood, which provide a ranking per class.
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2.4 Low Dimensional Vector Space Representation

A bag-of-words (BOW) representation can be seen as a very high-dimensional vector

representation. An embedding is a mapping from such a high-dimensional vector rep-

resentation into a relatively low-dimensional representation (e.g. 300 dimensions). Un-

like in BOW representations, the individual dimensions in the vector space embedding

typically have no specific meaning. They represent the overall patterns of the distance

between objects by placing semantically similar objects close together in the embed-

ding space. In this thesis, we develop two novel models for learning low-dimensional

vector space embeddings by integrating the textual information derived from Flickr

with the numerical and categorical information derived from structured scientific data-

sets. The first model, named EGEL model, generates the embedding for representing

the geographic locations which will be presented in Chapter 6; The Second model,

named SPATE model, generates the embedding for representing the spatiotemporal

regions which will be presented in Chapter 7.

2.4.1 Vector Space Embeddings

The use of low-dimensional vector space embeddings for representing objects has

already proven effective in a large number of applications, including natural language

processing (NLP), image processing, and pattern recognition. In the context of NLP,

the most prominent example is that of word embeddings, which represent word mean-

ing using vectors of typically around 300 dimensions. A large number of methods

for learning such word embeddings have already been proposed, including Skip-gram

and the Continuous Bag-of-Words (CBOW) model [77], and GloVe [86]. They have

been applied effectively in many downstream NLP tasks such as sentiment analysis

[112], part of speech tagging [89, 72], and text classification [70, 38]. The model we

consider in this thesis builds on GloVe, which was designed to capture linear regular-

ities of word-word co-occurrence. In GloVe, there are two word vectors wi and w̃j for
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each word in the vocabulary, which are learned by minimizing the following objective

function:

J =
V∑

i,j=1

f(xij)(wi.w̃j + bi + b̃j − log xij)
2 (2.12)

where xij is the number of times that word i appears in the context of word j, V is

the vocabulary size, bi is the target word bias, and b̃j is the context word bias. The

weighting function f is used to limit the impact of rare terms. It is defined as 1 if

x > xmax and as ( x
xmax

)α otherwise, where xmax is usually fixed to 100 and α to 0.75.

Intuitively, the target word vectors wi correspond to the actual word representations

which we would like to find, while the context word vectors w̃j model how occurrences

of j in the context of a given word i affect the representation of this latter word. In this

thesis, we will use a similar model, specifically in Chapters 6 and 7, which will be

aimed at learning spatial or spatiotemporal region vectors instead of the target word

vectors.

Beyond word embeddings, various methods have been proposed for learning vector

space representations from structured data such as knowledge graphs [8, 126, 115],

social networks [43, 121] and taxonomies [119, 83]. The idea of combining a word

embedding model with structured information has also been explored by several au-

thors, for example, to improve the word embeddings based on information coming

from knowledge graphs [124, 109]. Along similar lines, various lexicons have been

used to obtain word embeddings that are better suited at modelling sentiment [112]

and antonymy [84], among others. The method proposed by [71] imposes the con-

dition that words that belong to the same semantic category are closer together than

words from different categories, which is somewhat similar in spirit to how we will

model categorical datasets in our embedding models.
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2.4.2 Embedding Spatial or Spatiotemporal Information

The problem of representing geographic locations using embeddings has also attrac-

ted some attention. An early example is [95], which used principal component ana-

lysis and stacked autoencoders to learn low-dimensional vector representations of city

neighbourhoods based on census data. They use these representations to predict attrib-

utes such as crime, which is not included in the given census data, and find that in most

of the considered evaluation tasks, the low-dimensional vector representations lead to

more faithful predictions than the original high-dimensional census data.

Some existing works combine word embedding models with geographic coordinates.

For example, in [16] an approach is proposed to learn word embeddings based on the

assumption that words which tend to be used in the same geographic locations are

likely to be similar. Note that their aim is dual to our aim in this thesis: while they use

geographic location to learn word vectors, we use textual descriptions to learn vectors

representing geographic locations or spatiotemporal regions.

Several methods also use word embedding models to learn representations of Points-

of-Interest (POIs) that can be used for predicting user visits [33, 73, 132]. These works

use the machinery of existing word embedding models to learn POI representations,

intuitively by letting sequences of POI visits by a user play the role of sequences of

words in a sentence. In other words, despite the use of word embedding models, many

of these approaches do not actually consider any textual information. For example, in

[73] the Skip-gram model is utilised to create a global pattern of users’ POIs. Each

location was treated as a word and the other locations visited before or after were

treated as context words. They then use a pair-wise ranking loss [123] which takes

into account the user’s location visit frequency to personalise the location recommend-

ations. The methods of [73] were extended in [132] to use a temporal embedding and

to take more account of geographic context, in particular, the distances between pre-

ferred and non-preferred neighbouring POIs, to create a “geographically hierarchical

pairwise preference ranking model”. Similarly, [127] developed a method for model-
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ling places, neighbourhoods, and users from social media check-ins. They treat the

check-ins as sentences to generate the embeddings which encode the geographical,

temporal, and functional aspects. In [128], the CBOW model was trained with POI

data. They ordered POIs spatially within the traffic-based zones of urban areas. The

ordering was used to generate characteristic vectors of POI types. Zone vectors, rep-

resented by averaging the vectors of the POIs contained in them, were then used as

features to predict land use types. The authors of [125] proposed a method that uses

the Skip-gram model to represent POI types, based on the intuition that the vector rep-

resenting a given POI type should be predictive of the POI types found in nearby places

of that type. In the CrossMap method, [129] learned unsupervised embeddings for spa-

tiotemporal hotspots obtained from social media data of locations, times and text. In

one form of embedding, intended to enable reconstruction of records, neighbourhood

relations in space and time were encoded by averaging hotspots in a target location’s

spatial and temporal neighbourhoods. They also proposed a graph-based embedding

method with different nodes for modelling location, time and text. The concatenation

of the location, time and text vectors were then used to predict peoples’ activities in

urban environments. In another work, [130] proposed the ReAct model, which is sim-

ilar to CrossMap. However, while the CrossMap model is unsupervised and handles

static data, ReAct is a semi-supervised model and handles continuous online data to

learn the activity models.

In NLP research, embedding methods have been used to measure the language vari-

ation across geographical regions as well as over time [3, 60, 65, 87, 49]. For instance,

[3] and [65] present methods to learn geographically situated word embeddings from

geo-tagged tweets. They used cosine similarities between the generated embeddings

to measure the spatial variation of the language across English speaking countries.

The authors of [49] used the Doc2Vec method [67] to learn document embeddings

from online posts in German-speaking regions. These embeddings have been used to

study language variation in German. To study the temporal variation of language, [60],

among others, trained the Skip-gram model on text from the Google Books corpus for
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the period from 1900 to 2009. They also used cosine similarity to measure the change

in word meaning between the embeddings of the same words learned in different time

periods. In [87], they used the CBOW model to learn spatiotemporal embeddings from

geo-tagged tweets. They first split the data into 8-hour windows (i.e. the temporal

granularity) for each separate country (i.e. the spatial granularity). For each time win-

dow, they then trained a joint embedding using tweets from all countries and used it to

initialise the country-specific embeddings.

Despite the considerable progress that has been made on embedding social media data,

the problem of embedding Flickr tags has so far received very limited attention. To the

best of our knowledge, [48] is the only work that generated embeddings for Flickr tags.

However, their focus was on learning embeddings that capture word meaning, which

has been evaluated on word similarity tasks.

Our work in Chapters 6 and 7 is different from all these studies, as our focus is on

spatial or spatiotemporal embeddings based on text descriptions (in the form of Flickr

tags), along with numerical and categorical features from environmental datasets.

2.5 Machine Learning

Machine Learning (ML) is a set of general algorithms which have the ability to learn

and infer based on available data [62]. Machine learning algorithms usually build a

mathematical model based on a data sample, known as “training data”, in order to

make predictions or decisions. They have been used in a wide variety of applications,

such as natural language processing, sales and marketing, computer vision, and many

others. Machine learning approaches are often categorised into supervised and unsu-

pervised learning. Supervised learning algorithms can apply what has been learned

from labelled examples to predict labels for new data. The most studied supervised

learning task is classification. Unsupervised learning is usually used when the input

data do not have labels. The goal of unsupervised learning is to model the underlying
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structure or distribution in the data to learn more about the data. The most widely stud-

ied unsupervised learning task is clustering. Our aim in this thesis is to use supervised

machine learning to learn a set of models where the supervision labels will correspond

to environmental features. Therefore, we will focus on supervised machine learning in

the following section.

2.5.1 Supervised Machine Learning

In supervised machine learning, the algorithm builds a mathematical model from a set

of data that contains both the inputs (training data) and the desired outputs (labels)

[94]. It starts by analysing the labelled training dataset and then produces an inferred

function to make predictions about the unlabelled examples (testing data). The learning

algorithm can also compare its prediction with the correct output and find errors to

modify the model accordingly. An optimal model will allow the algorithm to correctly

determine the output for entries that were not a part of the training data [79].

Most supervised learning problems belong to two broad categories: regression and

classification. Generally, classification aims to assign examples to predefined classes,

i.e. the output variable is a category. For instance, for the problem of filtering spam

emails, the output would be the prediction of either “spam” or “not spam”. However,

in regression, the goal is to predict a continuous measurement for an observation, i.e.

the output variable is a real value. Examples of a continuous value are the temperature,

length, or weight.

Some popular examples of supervised machine learning algorithms are:

• Support Vector Machines (SVMs) are discriminative learning models which

are based on maximizing the margins between the examples and a separation

hyperplane. They are known for their strong performance in many applications

including the classification of text [85, 103], images [18], and genes and proteins
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[101, 68]. A similar approach to SVMs can also be used for regression problems,

which is known as ‘Support Vector Regression (SVR)’.

SVMs represent the training examples as vectors, such that examples from dif-

ferent classes are intuitively separated by a gap which is as wide as possible.

In particular, each training example is represented by (x, y), where x indicates

the set of attributes and y indicates the class label (i.e. either 1 or -1 for binary

classification). The separating hyperplane of linear SVM can be written as:

w · x− b = 0 (2.13)

where w = (w1, w2, ...., wn) is a weight vector (support vector) and b is a bias.

The geometric intuition of the binary classification is illustrated in Figure 2.1.

The testing examples are then mapped into that same space, and the label pre-

dicted based on the side of the hyperplane in which they fall.

SVMs have also been shown effective in non-linear classification using the ker-

nel function [47]. To this end, the dot product is replaced by a kernel function.

The most commonly used kernels with SVMs are (Gaussian) radial basis func-

tions (RBF) and polynomial kernels.

• Artificial Neural Networks (ANNs) are inspired by how the human brain

works. ANNs are based on a collection of connected nodes called artificial neur-

ons, which loosely model the neurons in the brain. Each connection, like the

synapses in a brain, can transmit a signal between neurons. An artificial neuron

that receives a signal can process it and send it to other artificial neurons to which

it is connected. The general architecture is illustrated in Figure 2.2. The main

Neural Networks architectures used for classification are Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs). They treat the text

as a sequence of words, and thus implicitly assume that at least some aspects of

word order are important. In particular, RNNs analyse a text word by word and

store a representation of the already processed text as a fixed-dimensional vector

in a hidden layer [66]. However, this is not useful for the current research where
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Figure 2.1: The geometric intuition of linear SVMs.

we consider Flickr tags as a source of textual data, which is a set of unrelated

words. The major limitations of using Neural Networks methods are: (i) they

can be computationally expensive, (ii) they tend to be difficult to configure and

require careful fine-tuning of hyper-parameters, and (iii) the learned models are

often difficult to interpret [99, 78].

In this thesis, we will use Support Vector Machines in all the experiment. In partic-

ular, we will learn Support Vector Machines (SVMs) for classification problems and

Support Vector Regression (SVR) for regression problems. In both cases, we will use

the SVMlight implementation4 [57]. In addition to SVMs, we will also use methods for

learning vector space embeddings of geographic locations (possibly time-dependent)

4http://www.cs.cornell.edu/people/tj/svm_light/

http://www.cs.cornell.edu/people/tj/svm_light/
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Figure 2.2: Artificial Neural Networks architecture.

which are inspired by the Artificial Neural Networks model.

2.5.2 Collective Prediction

Collective prediction plays an important role for the research presented in this thesis,

particularly for the method we introduce in Chapter 5. Many machine learning prob-

lems involve making predictions about networks of entities, where links in the network

connect entities that are related in some way. The idea of collective prediction is to

incorporate this network structure in the learning process, by exploiting information

about the entities that are related to the considered one. A standard example is the

problem of web page categorisation [13, 2, 26]: to determine the category of a website,

in addition to the contents of the website itself, we can also take into account the cat-

egories of the websites it links to. Note that this creates a cyclic dependency between

the predictions for the different entities in the network. To address this, a variety of

collective prediction methods have been proposed. In this research, we will use the

Iterative Classification Algorithm (ICA) from [81], which is conceptually simple but

often highly effective. Other approaches are based on inference in joint probabilistic
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models using Gibbs sampling [39]. However, Gibbs sampling tends to be slow [104],

which is an important limitation in our setting, as we will need to make predictions

about hundreds of thousands of regions.

The authors of [13] experimentally demonstrated the effectiveness of taking into ac-

count the link structure for web page categorisation. More recent methods often take

into account content similarity to improve the network structure, i.e. better results can

often be obtained by only taking into account links from websites that are sufficiently

similar. For example, in [2], they select a reliable set of neighbours for each test doc-

ument by means of a similarity threshold. They only consider the links for which the

similarity between the contents of the two documents (nodes) is sufficiently high. In

[26], a method is proposed which classifies Wikipedia pages as controversial or not,

using a combination of intrinsic features (page meta-data) and predictions of contro-

versy from related pages. They constructed a subnetwork by choosing for each page

the k most similar in-links (in terms of cosine similarity between the text of the pages)

and the k most similar out-links, where k was chosen as either 10 or 300. They then use

a stacked model on top of this constructed network. The stacked approach introduced

in [63] uses a non-relational base model to produce inferred class labels on related in-

stances where the stacked relational model is trained on these predicted labels rather

than the true labels. In [56], a collective prediction algorithm based on community

structure (CPC) was proposed. Firstly, they obtained the community that each node

belongs to by using a community detection algorithm. Then they used the node at-

tribute features and community structure features as inputs to the local classification

model in an iterative way. Their experimental results show that CPC performs better

than both a standard prediction method which only utilises the node attributes and an

iterative classification algorithm which uses neighbour features in addition to the node

attributes.

Although many studies have been conducted in collective classification, less effort has

been focused on collective regression. In [15], they proposed a relational factor graph
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framework for performing regression on relational data. The proposed models are

learned with collective inferences, which take a single instance of the entire collec-

tion of samples along with their relationship structure as input. The framework was

applied to the problem of predicting house prices, taking into account spatiotemporal

influences on the price of every house. Their experiments demonstrate that identifying

and using the relational structure associated with this problem considerably improves

performance. The authors of [74] presented an algorithm called CORENA (COllective

REgression in Network dAta) which studies the transduction of collective regression

in a sparsely labelled network. In particular, they iteratively augmented the descriptive

and the target information of the labelled node set, the descriptive information of the

unlabeled node set, as well as the link structure of the network, in order to collectively

determine the numerical targets of the unlabeled part of the network. Thus, their pro-

posed method can detect the autocorrelations of labels over a group of related instances

and feedback the reliably predicted labels only. They show that their proposed method

is able to improve regression performance in the areas of social and spatial networks.

In Chapter 5 of this thesis, we focus on both collective classification and regression

problems by applying SVM/SVR models in an iterative way. We consider several nes-

ted sets of neighbours for each location based on their spatial and attribute similarity.

Then, we aggregate the true and the predicted labels of these selected neighbours to

generate the collective features.

2.5.3 Evaluation Measures

Classification Problems

Evaluating the performance of a classifier is usually done by measuring its effective-

ness rather than its efficiency, i.e. the classifier’s ability to predict the correct category,

and not its computational complexity [103]. Generally, the evaluation measures in clas-

sification problems are defined from a matrix with the numbers of examples correctly
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and incorrectly classified for each class, called a “confusion matrix”. The confusion

matrix for a binary classification problem (which has only two classes - positive and

negative), is shown in Table 2.1.

Table 2.1: Confusion matrix for binary classification.
Predicted Class

Actual Class Positive Negative

Positive TP FN

Negative FP TN

TP (true positives) is the number of examples that are correctly predicted as belonging

to the positive class; TN (true negatives) is the number of examples that are correctly

predicted as belonging to the negative class; FP (false positives) is the number of ex-

amples that are classified as positive while they are from the negative class; FN (false

negatives) is the number of examples that are classified as negative, but their true class

is positive. Common metrics for evaluating classification tasks include accuracy, pre-

cision, recall and F1-score, which are defined as:

Accuracy =
(TP + TN)

TP + FP + TN + FN
(2.14)

Precision =
TP

(TP + FP)
(2.15)

Recall =
TP

(TP + FN)
(2.16)

F1 = 2 · Precision · Recall
(Precision + Recall)

(2.17)

Accuracy is the proportion of the correctly classified examples (i.e. true positive and

true negative examples); precision measures the proportion of false positives; recall
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measures the proportion of false negatives; the F1-score is the harmonic means of pre-

cision and recall. Due to the often highly imbalanced number of positive vs. negative

examples in binary classification, as negative class usually dominates the accuracy of

a model, leading to miss-interpretation of the results. For example, when the positive

examples of a category represent only 1% of the test set, a trivial classifier that makes

negative predictions for all examples has an accuracy of 99%. However, such a system

is useless. For this reason, precision, recall and F1-score are more commonly used

instead of accuracy for evaluating unbalanced classification problems.

Regression Problems

Validation and evaluation of regression models is usually done by measuring the pre-

diction error, i.e. the difference between the actual and the predicted scores. Mean

Absolute Error (MAE) is one of the most widely used metrics for this purpose. It is

calculated as follows:

MAE =
1

n

n∑
i=1

|ai − pi| (2.18)

where ai is the actual value for example i, pi is the predicted value, and n is the total

number of examples. Note that as a measure of error the lower value is the better.

Another important metric for evaluating the performance of a regression model is by

measuring the correlation between the actual and the predicted scores [134]. Correla-

tion can be defined as a measure of the strength of association between two variables

and the direction of the relationship. In terms of the strength of the relationship, the

value of the correlation varies between +1 and -1. A value of +1 indicates a perfect

degree of association between the two variables. When the correlation value declines

towards 0, indicates that the relationship between the two variables is weaker. The

negative value correlation value indicates a negative relationship. Spearman rho is one

of the most widely used correlation functions. It is computed as follows:

ρ = 1− 6
∑n

i=1(ai − pi)2

n3 − n
(2.19)
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2.6 Summary

In this chapter, we have explored the background knowledge related to mining social

media platforms. To gain a full understanding of the topic, we reviewed the existing

work that uses social media data for geospatial analysis and citizen science. We also de-

scribe some of the commonly used methods to generate bag-of-words representations

of text documents, including the term weighting and term selection methods. These

methods will be used in the following chapters for modelling locations using Flickr

tags. Moreover, we reviewed the recent techniques used for learning low-dimensional

vector space representations, which we will be used as an alternative way to model

locations. Furthermore, we have briefly discussed some of the most commonly used

supervised machine learning methods as well as the standard evaluation methods. We

paid particular attention to reviewing the existing work that uses the collective predic-

tion approach.

With the information gained from this chapter, we can move forward in the next chapter

to discuss the datasets that will be used in this thesis.
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Chapter 3

Data Acquisition and Preprocessing

3.1 Introduction

This chapter gives an overview of the data used in this research and explains how the

datasets were collected and extracted. In particular, we consider two different data

sources: textual and structured scientific data. The textual data source comes from

the tags associated with the photographs in the photo-sharing platform Flickr1. The

structured data comes from more traditional data sources such as European Environ-

ment Agency2. This chapter also gives brief details of each of the considered ground

truth datasets which have been obtained from the ScenicOrNot website3, Natura 20004

project, and NBN Atlas5.

Section 3.2 provides an overview of the photo-sharing platform Flickr and describes

our methodology for collecting, preprocessing and analysing Flickr data. In Section 3.3

we introduce the considered structured scientific data. After that, Section 3.4 presents

the sources used to extract the ground truth data. Finally, Section 3.5 provides a sum-

mary of the chapter.

1http://www.flickr.com
2https://www.eea.europa.eu/
3http://scenic.mysociety.org/
4http://ec.europa.eu/environment/nature/natura2000/index_en.htm
5https://nbnatlas.org/

http://www.flickr.com
https://www.eea.europa.eu/
http://scenic.mysociety.org/
http://ec.europa.eu/environment/nature/natura2000/index_en.htm
https://nbnatlas.org/
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3.2 Flickr Data

Flickr is a photo-sharing and hosting platform. It was launched by Ludicorp in 2004

and changed ownership several times6. Flickr at its peak hosted more than 10 billion

photographs7, many of which are associated with textual data in the form of a title,

description and a set of up to 75 tags that express what is in the photographs and make

it easily accessible by others. Flickr offers functionality for any users to record the

timestamp and the GPS coordinates (latitude and longitude coordinates) as a meta-data

attached with their photographs, which can be done manually or automatically by the

camera or the smartphone. An example of a Flickr photo with the associated meta-data

is shown in Figure 3.1. The benefit of adding this meta-data is to improve the search

feature, as the user will be able to search for photographs taken at a specific location,

time, or with a particular tag. For a large number of photographs on Flickr, these meta-

data fields have been made publicly available. In the next section, we will explain our

methodology for collecting those publicly available meta-data.

3.2.1 Flickr Data Collection

Some social media companies, including Flickr, make their data available through

APIs. The API key (Application Programming Interface key) is a code needed as

a parameter for the request, as a form of user identification to track and control the

use of API. Two Types of API keys are available in Flickr: Non-Commercial and

Commercial. A Non-Commercial key is suitable for the needs of this research, and

usefully it does not require much validation to acquire. By providing details of the

project to Flickr, an API key was given to be used for all API calls. To perform an

action using the API a user needs to send a request to its endpoint specifying a method

and arguments, and will then receive a formatted response in the form of the XML

6https://en.wikipedia.org/wiki/Flickr
7http://expandedramblings.com/index.php/flickr-stats

https://en.wikipedia.org/wiki/Flickr
http://expandedramblings.com/index.php/flickr-stats


3.2 Flickr Data 39

Figure 3.1: Flickr photographs

file. Flickr offers many methods that can be called; the full extent can be found at

https://www.flickr.com/services/api/, examples include flickr.groups.browse,

flickr.people.findByUsername, and flickr.photos.search which is the method used for

fetching the data. Each method has different optional and required arguments that can

be applied. For the flickr.photos.search method, the api_key is the only required ar-

gument, while, for example, user_id , tags, min_upload_date, max_upload_date, and

has_geo are optionally used to refine the search. The approach that we used to collect

the meta-data associated with Flickr photographs includes the following steps:

https://www.flickr.com/services/api/
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1. Set API key using the flickr_api.set_keys method.

2. Use the flickr.photos.search method to make the request, setting the argument

has_geo to 1 to only retrieve the georeferenced photographs. However, each

API request cannot retrieve more than 4000 records. One of the ways to over-

come this restriction, which we use in our implementation, is by adding time

constraints (i.e. min_upload_date and max_upload_date arguments) to the re-

quest such that the crawler tries to determine time intervals in which the number

of results for the query is less than 4000 but close to it. To this end, we set

max_upload_date of the first request to the current time and min_upload_date

by subtracting a predefined time interval.

3. Check the status of the request to determine whether the total number of photo-

graphs is acceptable (i.e. less than 4000 but close to it) and then download the

detailed XML data if this is the case. Otherwise, increase or decrease the time

interval to obtain a total number of photographs which is just under 4000 and

re-request according to the new range.

4. Continue going back step by step until the given timestamp.

We were able to collect around 350 million georeferenced Flickr photographs world-

wide, all of which were uploaded to Flickr from January 2004 to September 2015. We

constructed the crawler in Python programming language; the source code is available

at https://github.com/shsabah84/Flickr_Crawler_Python.

3.2.2 Flickr Data Preprocessing

After describing the methodology used for collecting all the publicly available geor-

eferenced Flickr meta-data, we will now describe the methodology used for prepro-

cessing the collected data. It includes the following steps:

https://github.com/shsabah84/Flickr_Crawler_Python
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1. The raw XML data are parsed to extract the required meta-data. In particular,

the following set of meta-data is extracted: photo_id, owner, title, tags, accuracy,

upload date, taken date, place_id, latitude, longitude, and description.

2. Photographs that do not contain any tags are removed from the collection.

3. For the experiments conducted in Chapter 7 only, which depend on spatiotem-

poral analysis, the photographs in which the difference between the upload date

and taken date is more than six months are removed from the collection. The pur-

pose of this step is to avoid, as much as possible, photographs with an incorrect

timestamp.

3.2.3 Exploratory Data Analysis

Now we will analyse the dataset collected from Flickr in order to understand the nature

of the data and preliminarily assess its potential toward predicting environmental fea-

tures.

• The number of georeferenced photographs per month of each year in the col-

lected data is calculated to evaluate the availability of the data. As shown in

Figure 3.2, there is a sharp rise in Flickr’s popularity, reaching a peak of over

5,250,000 new photographs in June 2013. However, as of 2013, there is also

an evident decline in the number of photographs, which suggests that the pop-

ularity of the platform was reducing. Perhaps, this is related to the increased

popularity of the photo-sharing platform, Instagram8. Nevertheless, there is still

a valuable amount of data to carry on this research, with an average of almost

2,500,000 photographs per month. The plot demonstrates a trend that summer

months yield larger numbers of captured photographs, while the smallest num-

ber of photographs is uploaded during winter months. The reason for this is

8https://www.statista.com/chart/9157/instagram-monthly-active-users/

https://www.statista.com/chart/9157/instagram-monthly-active-users/
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presumed to be related to the weather conditions. As the public generates these

data, it is likely that fewer photographs being taken if it is cold or raining.

Figure 3.2: The number of georeferenced photographs in each month among the

collected Flickr data.

• The frequency of scientific species names available from the European Bioin-

formatics Institute (EBI)9 is calculated among the tags to evaluate the potential

of the data toward modelling species distribution. Interestingly, there are more

than 9500 scientific species names occurring in the collected data. Moreover, the

scientific names of some types of species such as Papilio Polyxenes occur just

under 16000 times, as can be seen from the overview in Figure 3.3. This sug-

gests that it would be possible to extract useful information about species from

Flickr meta-data, especially because only experts tend to use the scientific names

to refer to specific species.

9https://www.ebi.ac.uk/

https://www.ebi.ac.uk/
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Figure 3.3: Scientific species names frequency among Flickr data.

• Kullback-Leibler (KL) divergence (Equation 2.10) between tag distributions is

computed to identify tags whose occurrence is correlated with specific times of

the year or with photographs of particular species. To this end, each month of

the year or the species name is treated as a separate class. Samples of the top

ten time related or species related tags resulting from KL divergence are shown

in Table 3.1. Clearly, all the tags are informative and relevant to the considered

task, which is another promising signal about the usefulness of Flickr tags for

modelling the natural environment.

• The number of users and photographs in locations belonging to different COR-

INE land cover classes at level 3 is calculated to evaluate the availability of data

in each category. The CORINE has 44 classes at the third and most detailed

level (see Section 3.3 below for more information about CORINE), as shown in

Figure 3.4, there is a large number of users and photographs for all these classes.

This suggests that it might be possible to predict or refine the land cover type
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Table 3.1: Top 10 tags with the highest KL divergence, in relation to the months

of the year and the occurrence of species names.
Time-related Tags Species-related Tags

december pyrrhocoraxpyrrhocorax

january casuariuscasuarius

february alcedocristata

october vireogriseus

july salamandrasalamandra

christmastree toxostomacurvirostre

thanksgiving chordeilesminor

christmas thryomanesbewickii

newyearseve myiarchuscrinitus

november nasuanasua

from Flickr data.

• Several term selection methods are applied to identify tags that occur in locations

of a particular land cover type. In particular, tags that occur in photographs pos-

ted in forests (according to CORINE) are compared with all the other tags. The

top ten tags resulting from the term selection methods explained in Section 2.3.2

are listed in Table 3.2. It can be clearly seen that using Chi Squared, Correlation

Coefficient, and Log Likelihood gives similar sets of tags, which are generally

related to the forest. On the other hand, using KL divergence gives a set of tags

that describe a specific type of forest or a particular species.
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Figure 3.4: Number of photographs in each of the CORINE land cover class.

Table 3.2: Top 10 tags related to forest in different term selection methods.
Chi Squared Correlation Coefficient Log Likelihood KL divergence

forest forest forest beechforest

woods woods woods spruce

wild wild trees nadelwald

trees trees wild primevalforest

mushroom mushroom nature fagussylvatica

nature nature mushroom silverwashedfritillary

wood wood wood flyagaric

lake lake lake amanitamuscaria

tree tree tree lycoperdonperlatum

waterfall waterfall snow apaturairis
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3.3 Structured Scientific Data

There are a wide variety of structured scientific data that can be used for modelling the

environment. In this section, we give an overview of the scientific datasets that we will

use in the experiments in the remainder of this thesis.

• Land cover type, obtained from the CORINE Land Cover 2006 10 dataset. COR-

INE Land Cover (CLC) is a European dataset which describes land cover with a

100-meter spatial resolution. It uses three levels of description: a top level with 5

classes, an intermediate level with 15 classes and a detailed level with 44 classes.

A plot of the most detailed level is shown in Figure 3.5.

Figure 3.5: CORINE Land Cover dataset.

10http://www.eea.europa.eu/data-and-maps/data/

corine-land-cover-2006-raster-2

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
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• Soil type, obtained from SoilGrids11. SoilGrids is a global raster dataset, which

classifies locations into 116 types of soil, using a 250-meter spatial resolution.

• Elevation, obtained from the Digital Elevation Model over Europe (EU-DEM)12.

EU-DEM is a Europe-wide digital surface model, encoding elevation with a spa-

tial resolution of about 30 meters.

• Population, obtained from the European Population Map 200613, which is a di-

gital raster grid that reports the number of residents (night-time population) with

a 100-meter spatial resolution.

• Temperature, precipitation, solar radiation, wind speed and water vapour pres-

sure, all of which are obtained from WorldClim14. The WorldClim dataset covers

the monthly average values over the period from 1970 to 2000, using a 1 km spa-

tial resolution.

All these datasets were extracted using the QGIS application by the following steps:

1. Open the raster map in the QGIS.

2. Add the locations coordinates (i.e. latitude and longitude coordinates) as a “De-

limited Text Layer” to the map.

3. Use “Point Sampling Tools” to extract the correspondence value feature for each

location.

11https://www.soilgrids.org
12http://www.eea.europa.eu/data-and-maps/data/eu-dem
13http://data.europa.eu/89h/jrc-luisa-europopmap06
14http://worldclim.org

https://www.soilgrids.org
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://data.europa.eu/89h/jrc-luisa-europopmap06
http://worldclim.org
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3.4 Ground Truth Data

This section introduces the ground truth data that will be used in the experiments of

this thesis.

3.4.1 The ScenicOrNot project

The ScenicOrNot project was initiated in 2009 by MySociety15 and is currently hosted

by the Data Science Lab at Warwick Business School16. It is based on an online game

that allows people to evaluate places in Great Britain by rating photographs collected

from the Geograph17 photo-sharing website. The goal of the project is to crowdsource

aesthetic judgements that can be used to study the impact of scenicness on human well-

being in Britain. The dataset is available to use under the “Open Database Licence”,

so it can be downloaded directly as a TSV file. It contains ratings for 217,000 photo-

graphs at distinct locations, each of which has been rated by at least three people on a

scale from 1 (not scenic) to 10 (very scenic). In particular, each record contains: ID,

latitude, longitude, average rating, population variance, the votes (comma separated),

and the Geograph URL for the image.

3.4.2 Natura2000 project

The European network of nature protected sites, Natura 200018, is an ecological net-

work of protected areas in the European Union. It is a vital instrument to protect

biodiversity, set up to ensure the survival of Europe’s most valuable species and hab-

itats. The Natura 2000 dataset consists of data submitted by national authorities with

15http://scenic.mysociety.org/
16scenicornot.datasciencelab.co.uk
17http://www.geograph.org.uk/
18http://ec.europa.eu/environment/nature/natura2000/index_en.htm

http://scenic.mysociety.org/
scenicornot.datasciencelab.co.uk
http://www.geograph.org.uk/
http://ec.europa.eu/environment/nature/natura2000/index_en.htm
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an extensive description of the site and its ecology. This dataset contains informa-

tion about 35,600 rare species from 7 classes: Amphibians, Birds, Fish, Invertebrates,

Mammals, Plants and Reptilia. In particular, it specifies which species occur at 26,425

different sites across Europe. The dataset is available in the Microsoft Access format

and permitted to use for commercial or non-commercial purposes free of charge.

3.4.3 NBN Atlas

The National Biodiversity Network Atlas (NBN Atlas)19 is a collaborative project com-

mitted to making biodiversity information available via the NBN Atlas. The National

Biodiversity Network (NBN) registered as a charity to support the sharing of ecolo-

gical data in the UK since 2000. The goal of the project is to improve the availab-

ility of high-quality species occurrence data in the UK. It is the largest collection of

biodiversity information within the UK and Ireland and has revolutionised the use of

biodiversity data by allowing it to be shared, downloaded, analysed, and researched

by the public. NBN Atlas holds more than 220 million species occurrence records

combined from individual observations and official organisations such as the "Royal

Society for the Protection of Birds (RSPB)". Each species has a separate observations

file in the form of a comma separated values (CSV) file. Each occurrence record in

the file contains a set of meta-data including the observation’s geographic location and

time.

3.5 Summary

In this chapter, we introduced the Flickr data, structured scientific data, as well as the

considered sources of the ground truth data that will be used in the following chapters.

We also described our methodology for collecting and extracting those datasets. Now

19https://nbnatlas.org

https://nbnatlas.org
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that we have described the data necessary for this research, we can move on to address-

ing our hypotheses and research questions discussed in Chapter 1. In particular, in the

next chapter, we will present new methods for modelling geographic locations using

Flickr tags and structured data based on a bag-of-words (BOW) representation model.

We will introduce a set of experiments to explore, compare, and assess the prediction

power of using Flickr tags only, structured data only, and their combination.
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Chapter 4

Modelling Locations using

Bag-Of-Words Representation

4.1 Introduction

The main aim of this chapter is to provide a first exploration about the kind of scien-

tifically useful information that can be derived from Flickr. In particular, we focus on

comparing the predictive power of Flickr tags with that of structured data from more

traditional sources for the task of characterising the natural environment. To this end,

we introduce a new method for modelling locations using georeferenced Flickr tags.

The method is based on a spatially smoothed version of positive pointwise mutual

information (PPMI). We evaluate the proposed method for predicting a broad set of

environmental features: scenicness, species distribution, land cover, and climate data.

For the task of species distribution modelling, we will also pay particular attention to

the role that is played by tags that correspond to the name of the species.

The remainder of this chapter is organised as follows. Section 4.2 presents our meth-

odology for modelling locations based on Flickr tags and based on structured data.

In Section 4.3 we then provide a detailed discussion about our experimental results.

Subsequently, Section 4.4 evaluates the role of species name tags. Finally, Section 4.5

summarises our findings from this chapter.
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4.2 Methodology

In this section, we will explain our methodology for representing locations using the

Bag-Of-Words (BOW) model. In particular, Section 4.2.1 explains how feature vectors

describing locations can be obtained from the tags associated with georeferenced Flickr

photographs. After that, in Section 4.2.2 we describe how feature vectors can be de-

rived from structured information sources. The full model is schematically summarised

in Figure 4.1, which shows how these two vector representations are then combined to

represent locations. These representations are then used to train a classifier and predict

values at unsampled locations.

Figure 4.1: Modelling locations using a Bag-Of-Words model.

4.2.1 Modelling Locations Using Flickr Tags

Many of the tags associated with Flickr photographs tell us something about the loc-

ations where these photos were taken. For example, tags might refer to toponyms

(e.g. United Kingdom, England, London), landmarks (e.g. London Eye, Westminster

Abbey, Hyde Park) or land cover types (e.g. forest, beach, airport). From the georefer-

enced Flickr photographs that were collected in Section 3.2, there are a total of over 70
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million photographs within Europe and approximately 12 million photographs within

the UK and Ireland, which are the regions our experiments in this chapter will focus

on.

Let L = {l1, ..., lm} be a set of locations (points), each characterized by latitude and

longitude coordinates. Our aim is to associate with each of these locations a weighted

bag of tags, intuitively encoding for each tag how often it occurs in photographs near

that location. To this end, we first use a BallTree1 to retrieve the set Fl of all Flickr

photographs whose distance to the considered location l is at most D. Let us write Ut,c

for the set of users who have assigned tag t to a photograph with coordinates c. Then

we can define n(t, l) =
∑

d(c,l)≤D |Ut,c|, with d the Haversine distance. Intuitively,

n(t, l) is the number of times tag t appears among the photographs in Fl. However,

to reduce the impact of bulk uploading, we count a tag occurrence only once for all

photographs by the same user at the same location.

One problem with using n(t, l) to measure the importance of tag t for location l is

that it gives equal weight to all photographs, whereas intuitively we want photographs

which are closer to l to influence our characterisation of l more than photographs which

are further away. To this end, following [117], we use a Gaussian kernel to weight the

tag occurrences:

w(t, l) =
∑

d(c,l)≤D

|Ut,c| · exp
(
−
d2
(
l, c
)

2σ2

)
(4.1)

where σ is a bandwidth parameter.

The weight w(t, l) still has the problem that common words (e.g. iphone) are given the

same importance as more specific words. Intuitively, we want the weight of tag t to

reflect how strongly it is associated with location l. A standard way of measuring this

in bag-of-words models is to use Positive Pointwise Mutual Information (PPMI), as

was explained in Section 2.3.1 and given by Equation 2.4. We treat the set of tags that

1http://scikit-learn.org/stable/modules/generated/sklearn.

neighbors.BallTree.htm

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.htm
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.htm
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occur near location l as the document. In other words, we compare the actual number

of occurrences with the expected number of occurrences (given how many tags occur

overall near l and how common the tag t is). However, here we used the weight w(t, l)

instead of the number of occurrences. Specifically, the weight of tag t in our bag-of-

words representation of l is then given by:

PPMI(t, l) = max

(
0, log

(
P (t, l)

P (t)P (l)

))
(4.2)

where:

P (t, l) =
w(t, l)

N
(4.3)

P (t) =

∑
l′∈Lw(t, l′)

N
(4.4)

P (l) =

∑
t′∈T w(t′, l)

N
(4.5)

N =
∑
t′∈T

∑
l′∈L

w(t′, l′) (4.6)

with T the set of all tags that appear in the collection. Finally, each location l is

represented as a sparse vector vfl, encoding the weights PPMI(t, l) for all the tags in

T .

4.2.2 Modelling Locations Using Structured Data

The most obvious type of structured data are the coordinates of the photograph itself.

Clearly, latitude and longitude degrees can be helpful for predicting a range of envir-

onmental phenomena (e.g. Southern areas of Europe tend to be warmer than Northern

areas). In addition to geographic coordinates, we will consider the structured scientific

data described in Section 3.3. To encode locations, we consider a feature vector vsl

that contains one binary feature for each CORINE land cover class (being 1 if the loca-

tion belongs to that class and 0 otherwise), one binary feature for each SoilGrids class,

and 9 real-valued features encoding latitude, longitude, elevation, population, and the
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annual average of temperature, precipitation, solar radiation, wind speed and water

vapour pressure. The real-valued features have been normalised using the standard z-

score. In experiments where both Flickr data and structured data are used, we simply

concatenate the two corresponding feature vectors.

4.3 Experiments

In the following experiments, we evaluate how well we can predict a number of envir-

onmental features using Flickr tags and the considered structured data. For all experi-

ments, we have set the maximum Haversine distance D (cluster radius) to 1 kilometre

and the bandwidth σ to D/3. The choice of D represents a trade-off, where larger

values can potentially lead to more accurate results but also lead to a higher compu-

tational cost. The choice of σ = D/3 was found to be reasonable in a small set of

initial experiments. To make predictions, we use Support Vector Machines (SVMs) for

classification problems and Support Vector Regression (SVR) for regression problems

(for more details see Section 2.5.1). For each experiment, the set of locations L was

split into two-thirds for training, one-sixth for tuning the parameters of the SVM/SVR

models, and one-sixth for testing.

4.3.1 Predicting Scenicness

In this first experiment, we consider the problem of predicting people’s opinions of

landscape beauty, using the UGC dataset from the ScenicOrNot website that was de-

scribed in Section 3.4.1 as ground truth. The dataset contains 217,000 rated images at

distinct locations in Great Britain. For 25,395 of the images in this dataset, our Flickr

collection did not contain any georeferenced photographs within a 1km radius. There-

fore, we only report results for the remaining 191,605 photographs (i.e. 88.3% of the

full dataset). The number of Flickr photographs within a 1km radius of these locations

varies between 1 and 397982.
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Table 4.1: Results for predicting scenicness.
Dataset Mean Absolute Error Spearman ρ

Structured 1.031 0.556

Flickr 1.013 0.570

Structured + Flickr 1.006 0.581

For this experiment, L thus contains the locations of these 191,605 photographs. Table

4.1 shows the results for three different variants: only using structured data, only us-

ing Flickr data, and combining both. Based on the tuning data, for the SVR model,

we found a Gaussian kernel to be optimal when only structured data are used, and a

linear kernel to be optimal otherwise. The results in Table 4.1 show the mean abso-

lute error between the predicted and actual scenicness scores, as well as the Spearman

ρ correlation between the rankings induced by both sets of scores (for more details

see Section 2.5.3). Note that the mean value of this data set is 4.372 and the stand-

ard deviation is around 1.6. While the differences are small, we find that using Flickr

outperforms using structured data, and that combining both leads to the most accurate

results overall. Looking at what tags most influence the regression model, among the

highest weighted tags we find terms relating to natural and open-country landscape

such as scotland, highlands, mountains and sea, while among the lowest weighted tags

we find names of artificial and urban phenomena such as station, bus, pub and railway.

This reinforces the finding from [110] that land cover categories are strongly correlated

with scenicness scores.

We also tested whether the number of photographs (or users) could be used to predict

scenicness, as was suggested in [12, 114, 40] for particular restricted settings. How-

ever, we actually found a negative correlation of around -0.12 (resp. -0.1) between

scenicness and the number of photographs (resp. users who have posted photographs)

near a given location.
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4.3.2 Predicting Species Distribution

The next experiment we considered was to predict the distribution of species across

Europe, using as ground truth the dataset of the European network of nature protected

sites Natura 2000; see Section 3.4.2 for more details about this dataset. This dataset

specifies which species occur at 26,425 different sites across Europe. For this experi-

ment, L is defined as the set of these sites.

For species that only occur at a few of the sites in L, it is clearly not possible to estimate

a reliable distribution model. Therefore, we focused our evaluation on 100 species

which occur at more than 500 sites. For each of these species, we consider a binary

classification problem, i.e. predicting at which of the sites the species occurs. Note

that as in all analyses, we use all Flickr tags, some of which might include the species

name. The results are reported in Table 4.2, showing that combining structured data

with Flickr data leads to substantially better results than either structured data alone or

Flickr data alone. Comparing Flickr with structured data directly is more difficult, as

Flickr data led to a much higher precision, whereas the structured data led to a much

higher recall.

As an example, Figure 4.2 compares the predictions that were made by the different

models with the ground truth for a particular species: the black woodpecker (dryocopus

martius). For this species, the F1 scores were 0.594, 0.648 and 0.927 for structured

data, Flickr data, and the combined data, respectively. This example shows that highly

accurate distribution models can be learned for species that occur in sufficiently many

sites. Interestingly, while the number of occurrences is overestimated in, e.g. Spain and

the UK when only Flickr data or only structured data are used, much more accurate

predictions are made for these countries using the combined model. For species that

have a more restricted geographic scope (in terms of the number of sites), it is likely

that better results can be obtained by looking at a wider region and by specifically

counting photographs that mention the name of the species, as a separate feature. This

will be discussed in detail in Section 4.4.
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Table 4.2: Results for predicting species distribution.
Dataset Precision Recall F1 Score

Structured 0.241 0.568 0.338

Flickr 0.577 0.112 0.188

Structured + Flickr 0.650 0.506 0.569

(a) Structured data (b) Flickr

(c) Combination of structured data and Flickr (d) Ground truth data

Figure 4.2: Prediction of the black woodpecker distribution across Europe.
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4.3.3 Predicting CORINE Land Cover Classes

In this section, we consider the task of predicting CORINE land cover classes. For

this experiment, we have used the same set L of sites as for species distribution. Since

the task is about predicting CORINE land cover classes, for the results reported in

this section we do not consider any CORINE features in the representations of the

locations (as the CORINE data serve here as ground truth). We experimented with

predicting CORINE land cover classification at levels 1, 2 and 3, each time treating the

task as a binary classification problem. The results are presented in Table 4.3, showing

again that combining structured data and Flickr data clearly leads to the most accurate

results. The difference in performance between structured data alone and Flickr data

alone is mixed. For example, Flickr data performing better at level 1 but worse at level

2. For level 1, we found that Flickr outperformed structured data in 4 out of the 5

classes, with the artificial surfaces class being the only exception. This seems related

to the small number of sites for this particular class (e.g. only 4% of the training data

sites belong to this class). To illustrate how Flickr tags are used to predict CORINE

classes, Table 4.4 shows the five tags with the highest weight in the SVM classifier for

each of the classes at level 1.

By far the largest CORINE class at level 1 is Forest & semi natural areas. This class

has three subclasses at level 2. The predictions of the three models for these three

subclasses are compared with the ground truth in Figure 4.3. Clearly, in this case, the

structured data has resulted in a model that is too simplistic, essentially segmenting

Europe into Forests and Shrub and/or herbaceous vegetation. Flickr data alone leads

to more faithful predictions for these subclasses, but instances of open spaces with little

or no vegetation are underreported. This issue is alleviated in the combined model.
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Table 4.3: Results for predicting CORINE land cover classes, at levels 1, 2 and 3.
Level 1 Level 2 Level 3

Prec Rec F1 Prec Rec F1 Prec Rec F1

Structured 0.437 0.363 0.397 0.346 0.160 0.219 0.207 0.070 0.105

Flickr 0.499 0.457 0.477 0.205 0.139 0.166 0.145 0.086 0.108

Structured + Flickr 0.523 0.514 0.518 0.270 0.199 0.229 0.184 0.112 0.139

Table 4.4: Top 5 Flickr tags for CORINE level 1 classes in the SVM models.
Artificial surfaces Agricultural Forest & semi Wetlands Water

areas nat. areas bodies

Babenhausen field wald bog lake

Ceskedrahy grass forest moor island

Meppen horse mountains marsh sea

Tuplice vineyard woods swamp boat

Deutsche Reichsbahn meadow mountain saline sailing

4.3.4 Predicting Climate Data

In the last experiment in this section, we assess the usefulness of Flickr tags for the

task of predicting climate data. We again use the same set of sites L as in the species

distribution experiment. In this case, we omit all the climate-related features from the

feature vector representations as they constitute the ground truth. We consider five

different regression problems: predicting average temperature, average precipitation,

average solar radiation, average wind speed, and average water vapour pressure. The

results are reported in Table 4.5, in terms of mean absolute error (MAE) and Spearman

ρ. The mean and standard deviation of each of those features are shown in Table 4.6.

Overall, structured data and Flickr data perform comparably. However, by far the most

accurate results are obtained when combining both types of data, showing again that the

information we obtain from Flickr is complementary to what is available as structured

data. As an example of how Flickr tags are used by the regression model, the tag ‘sea’



4.3 Experiments 61

(a) Structured data (b) Flickr

(c) Combination of structured data and Flickr (d) Ground truth data

Figure 4.3: Prediction of subclasses of the CORINE class “Forest & semi natural

areas”.

has a very large weight in the model for predicting water vapour pressure, while the

tag ‘mountain’ has a very low weight in this model. In Figure 4.4, we illustrate the

predictions made by the different models for solar radiation. Clearly, the model based

on structured data is too simplistic, mostly capturing the impact of latitude.
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Table 4.5: Results for predicting average climate data.
Structured Flickr Struct+ Flickr

MAE ρ MAE ρ MAE ρ

Temperature 0.789 0.938 1.623 0.814 0.728 0.940

Precipitation 13.173 0.709 11.660 0.689 10.523 0.755

Solar Radiation 1726.5 0.747 926.3 0.832 484.8 0.939

Wind Speed 0.508 0.791 0.545 0.756 0.429 0.846

Water Vapor Pressure 0.060 0.903 0.083 0.719 0.053 0.914

Table 4.6: Mean and Standard deviation of climate data.
Mean STDEV

Temperature (◦C) 9.268 3.490

Precipitation (mm) 66.625 24.827

Solar Radiation (kJ m−2day−1) 11478 2388

Wind Speed (m s−1) 3.605 1.126

Water Vapor Pressure (kPa) 0.958 0.186

4.4 Evaluating the Role of Species Name Tags

In the fields of wildlife observation, there is clearly strong potential for exploiting

social media, reflected in the fact that searching for named species on photo-sharing

Flickr often reveals thousands of results, many of which are associated with coordin-

ates and almost all with timestamps. Although many mentions of species names in

social media might not correspond to records of actual occurrences, several studies

have confirmed the validity of significant numbers of species observations in social

media [4, 20].

The aim of this section is to evaluate the performance of predicting the occurrence

of species in a given geographic region if there is at least one photograph on Flickr

from that region which has been tagged with the name of the species (using either its
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(a) Structured data (b) Flickr

(c) Combination of structured data and Flickr (d) Ground truth data

Figure 4.4: Prediction of solar radiation.

common name or scientific name). This method is then compared with the standard

text classification method (similar to that explained above in Section 4.3.2), in which

all Flickr tags are used, and in which a species may be predicted to occur in a region

even if no photographs in that region have been tagged with its name. Furthermore,

we develop a meta-classifier that combines the prediction of the text classifier with

information about the occurrence of the species name in or near the given region to

make the final prediction.
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4.4.1 Methodology and Data

Our objective here is to find a method that can use Flickr tags for predicting the oc-

currence of wildlife species. To this end, we use the ground truth species distribution

from the National Biodiversity Network Atlas (NBN Atlas)2 (see Section 3.4.3 for

more information about NBN Atlas). The reason for choosing a different source of

ground truth than in Section 4.3.2 is because Natura 2000 project deals with rare spe-

cies which cannot be tagged by non-experts. The NBN Atlas dataset contains a total

of 302 birds with at least 1000 observations, of which 200 have a name that occurs in

at least 100 Flickr photographs. Among these, we have considered a random sample

of 50 birds for our experiments.

To use Flickr tags for predicting the occurrence of those species, we first split the target

spatial area into grid cells C = {c1, ..., cxm} and associate each cell with all the geore-

ferenced Flickr tags that occur within the cell. We then use Positive Pointwise Mutual

Information (PPMI), given by Equation 2.4, to weight how strongly tag t is associated

with cell c. There is no need for distance weighting here because we consider grid cells

instead of point locations. Consequently, each cell c is represented as a sparse vector

Vp, encoding the PPMI weight of all the tags in c. We assume that a training setK ⊂ C

is available which contains cells with known ground truth species observations and a

testing set U ⊂ C \K containing cells whose species presence our method will try to

estimate. Note that even species with a large number of occurrences may possibly only

occur in a few cells.

Our method for estimating the presence of a particular species s in cell c involves learn-

ing two classifiers SVM1 and SVM2. The aim of the first classifier SVM1 is to make

initial predictions for the cells in the testing set U using the feature vector representa-

tion Vp. To give higher confidence to tags that correspond to the name of the species,

we combined the output of SVM1 (i.e. classifier confidence score value) with informa-

tion about the presence or absence of the Common Name or the Scientific Name of that

2NBN Atlas occurrence was download from http://nbnatlas.org. Accessed 19 April 2018.
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species in the cell c or the neighbouring cells. In particular, the cell c is now represen-

ted as a feature vector Vm which contains three features: the confidence value predicted

by SVM1, the presence of the species name itself in c as a binary feature (being 1 if

c contains the actual name and 0 otherwise), and the percentage of neighbours that

contain the species name (again as a common or scientific name) as a tag. The second

classifier SVM2 is learned using the feature vector Vm to give the final estimation. This

process is illustrated below in Figure 4.5.

Figure 4.5: The training process.

4.4.2 Evaluation

For evaluation, we consider a binary classification problem for each of the selected

birds. Specifically, the task we consider is to predict in which of the grid cells the bird

occurs (i.e. for which grid cells the NBN Atlas data contains at least one observation).

We test our method at three levels of granularity, considering grid cells of size 10,

20 and 30 kilometres. The set of cells C was split into two-thirds for training, one-

sixth for testing, and one-sixth for tuning the SVM parameters. It is known that the

quality of any supervised model is strongly affected by the way in which the data are

divided. Therefore, we split the study area into geographically separated regions, as

shown in Figure 4.6, to test the ability of our method to make predictions about geo-

graphic regions for which no observation records are given. This makes the task more
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Figure 4.6: Training, Tuning, and Testing regions.

challenging than choosing the cells randomly, due to possible differences between the

training and testing regions. Finally, for our evaluation, we compared the results of

three different methods:

1. “Species Names” which predicts that the species occurs if its common or sci-

entific name appears in at least one Flickr photograph in the test cell.

2. “All Flickr Tags” (SVM1) which uses the PPMI-based feature vector modelling

all Flickr tags to train an SVM classifier.

3. “Meta features”(SVM2) which is the proposed method as described in Section

4.4.1.

4.4.3 Results and Discussion

The results of predicting species distribution are reported in Table 4.7 in terms of the

average accuracy, average precision, average recall, and average F1 score over the

50 birds. The results clearly show that “All Flickr Tags” significantly outperforms
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Table 4.7: Results for predicting the distribution of 50 species across the testing

area.
Dataset Cell Size Accuracy Precision Recall F1 Score

Species Names 10 km 0.520 0.876 0.109 0.183

All Flickr Tags 10 km 0.779 0.787 0.500 0.560

Meta features 10 km 0.825 0.820 0.603 0.637

Species Names 20 km 0.501 0.943 0.241 0.355

All Flickr Tags 20 km 0.784 0.852 0.639 0.705

Meta features 20 km 0.870 0.907 0.811 0.832

Species Names 30 km 0.567 0.970 0.384 0.515

All Flickr Tags 30 km 0.831 0.868 0.758 0.795

Meta features 30 km 0.919 0.943 0.896 0.905

“Species Names”. However, the proposed meta-classifier leads to the most accurate

results overall, especially in terms of F1 score.

While the “All Flickr Tags” approach works well overall, we found a few cases where

using only the species names led to better performance. Perhaps unsurprisingly, this

is mostly the case when the number of NBN records (i.e. True labels) in the training

region is small, as there may not be enough training data to effectively learn an SVM

classifier in such cases. To illustrate such issues, Table 4.8 shows the F1 scores of

five individual species. As can be seen, for common species such as Mallard, Dunlin,

and Green Sandpiper, the “All Flickr Tags” method performs rather well. In contrast,

for some less common species (or species which only occur in particular geographic

contexts), such as Atlantic Puffin and Nightingale, we obtained better results when

using the “Species name” method. Interestingly, our proposed meta-classifier, which

takes account of both the species presence data and the all tags classification for nearby

regions, outperforms both of the other methods for almost all the considered species.

Figures 4.7 and 4.8 visually illustrate the performance of our method. Note that these
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Table 4.8: F1 scores for predicting the distribution of individual species using

different methods.
No. No. Cell Species All Meta

NBN Flickr size Names Flickr features

records photos Tags

Mallard 1718823 11831 10 km 0.640 0.978 0.985

(Anas platyrhynchos ) 20 km 0.899 0.974 0.986

30 km 0.955 0.988 0.992

Dunlin 278872 796 10 km 0.196 0.630 0.744

(Calidris alpina ) 20 km 0.346 0.920 0.969

30 km 0.553 0.980 0.996

Green Sandpiper 103295 187 10 km 0.077 0.610 0.806

(Tringa ochropus ) 20 km 0.195 0.849 0.955

30 km 0.367 0.906 0.980

(Common) Nightingale 24437 383 10 km 0.128 0.0 0.401

(Luscinia megarhynchos ) 20 km 0.326 0.0 0.705

30 km 0.512 0.0 0.835

(Atlantic) Puffin 11551 2512 10 km 0.152 0.136 0.367

(Fratercula arctica ) 20 km 0.173 0.359 0.518

30 km 0.264 0.476 0.630

species (like most of the considered birds) occur in fewer than 50% of the cells, which

is intuitively why the “All Flickr Tags” method is more cautious in predicting occur-

rence (i.e. in the absence of any reason to predict occurrence, it is safer for a classifier

to predict non-occurrence).
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Figure 4.7: Prediction of the Dunlin distribution across the testing area with 10km

grid cells.

Figure 4.8: Prediction of the Atlantic Puffin distribution across the testing area

with 10km grid cells.

4.5 Summary

In this chapter, we have analysed how Flickr tags can be used to supplement struc-

tured scientific data in tasks that rely on characterising the environment. To this end,

we have considered four different evaluation tasks. The first experiment aimed to pre-

dict the scenicness of a place, as assessed subjectively by humans on the ScenicOrNot

website. In the second experiment, we focused on modelling the distribution of spe-

cies across Europe, using observations from the Natura 2000 dataset as ground truth.

The third experiment consisted of predicting CORINE land cover categories. Finally,

we looked at predicting five climate-related properties. Each time, we compared three
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different setups. In the first setup, we used features that were derived from several

structured scientific datasets. In the second setup, we used a bag of words representa-

tion, capturing how strongly each tag is associated with photographs that appear near

a considered location. In the final setup, we combined both data sources, concaten-

ating the corresponding feature vectors. Our main finding from these experiments is

that the combined model substantially and consistently outperformed the model that

only relied on structured data sources. This strongly suggests that Flickr can indeed

be valuable, as a supplement to more traditional datasets in environmental analyses.

While it may be possible to reduce some of the performance gaps by considering ad-

ditional scientific datasets, we found the versatility of Flickr data that was displayed in

the four experiments to be remarkable.

Additionally, to get a deeper understanding of the usefulness of using Flickr tag for

mapping the location of species occurrence. We have compared and combined two

main strategies: (i) identifying postings that explicitly mention the target species name

and (ii) using a text classifier that exploits all tags to construct a model of the locations

where the species occurs. From these experiments, we found that the first strategy has

high precision but suffers from low recall, with the second strategy achieving a better

overall performance. We furthermore show that even better performance is achieved

with a meta-classifier that combines data on the presence or absence of species name

tags with the predictions from the text classifier.

We have identified two directions to improve the results conducted in this chapter.

First, since many of the considered features are strongly spatially autocorrelated, it

may be possible to improve the predictions by formulating some of the considered

tasks as collective prediction problems, where we would intuitively take into account

the predictions for neighbouring sites. This improvement will be the focus of Chapter

5. Second, which will be explained in Chapter 6, we can expect to obtain more accurate

predictions by improving the way we have combined structured features with bag-of-

words features. In Chapter 6, this will be achieved by learning a low-dimensional
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vector space embedding that captures both kinds of data.
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Chapter 5

Collective Prediction Model

5.1 Introduction

In this chapter, we propose a collective prediction model, which takes advantage of

the fact that most environmental features are strongly spatially autocorrelated. For

instance, climate features typically do not vary much between places that are just a

few kilometres apart. Inspired by [2] and [26], a key feature of our approach is that

the neighbourhood structure of the collective prediction model does not only depend

on geographic distance but also on attribute similarity, which is estimated in our case

from the Flickr tags associated with each location. In this way, our model essentially

uses Flickr tags to improve how known measurements, as well as predictions, of a

given environmental feature are interpolated.

The problem we consider is to predict the value of a given feature (e.g. average temper-

ature or land cover category) for a given set of locations, where we assume that for a

subset of these locations (i.e. the training data), the correct value of the considered fea-

ture is available (e.g. temperature measurements). The method proceeds in two steps.

First, in the bootstrap stage, an SVM model (for discrete features) or SVR model (for

numerical features) is learned from the training data. To this end, each location is rep-

resented using a feature vector, which encodes how strongly that location is related

to each Flickr tag, as well as the available structured information about the location.

This is illustrated in the table in Figure 5.1 (where, in practice, the ground truth data
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are only available for items from the training data). This model is then used to pre-

dict the value of the considered feature for the locations which are not in the training

data. In the second step, for each location, a set of neighbours is selected, and a new

classifier is trained, which aims to improve the predictions by taking into account the

earlier predictions in addition to the true labels of the selected neighbours when they

are available. This whole process is then iterated until the predictions converge.

The second step crucially relies on how the neighbours are selected. As a baseline, we

could choose the neighbours of a given location as those locations which are geograph-

ically closest. For example, consider the locations shown on the map in Figure 5.1 for

the task of predicting scenicness. To improve the prediction for location 8, based on

geographic distance, we could select locations 2, 5 and 7 as neighbours. However, loc-

ations 1 and 4 are actually more relevant for the purposes of prediction, as they are both

more similar to the target location in that, like location 8, they are close to railway train

stations, which is an important indicator of low scenicness. To determine these more

relevant locations, we first apply a term selection method to identify those Flickr tags

that are most strongly related to the considered feature. For example, when predicting

scenicness, relevant tags include ‘mountain’ (which is predictive of high scenicness)

and ‘station’ (which is predictive of low scenicness). Then, from the geographically

sufficiently close locations, as neighbours, we select those locations whose associated

tags (after term selection) are sufficiently similar.

The remainder of the chapter is organised as follows. Section 5.2 describes our col-

lective prediction framework. Subsequently, Section 5.3 provides a detailed discussion

about our experimental results. Finally, Section 5.4 summarises the chapter.

5.2 Collective Prediction

Many real world problems can be described as graphs, where the nodes correspond

to objects about which we want to predict something, and edges denote relationships
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Figure 5.1: Modeling locations based on Flickr tags, structured features, and

neighborhood structure..

between these objects. In collective prediction frameworks, the class label (in classi-

fication problems) or feature value (in regression problems) of a given object can be

used to improve the predictions about related objects. In particular, the goal of collect-

ive prediction is to jointly determine the labels of all nodes in the graph, taking into
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Figure 5.2: The collective prediction model.

account their interrelationships. To apply the collective prediction framework to our

setting, we consider each of the locations l ∈ L as a node. Two nodes are connected by

an edge if they represent sufficiently similar locations. The underlying notion of sim-

ilarity will be partially based on geographic closeness, but will also take the Flick tags

and structured data that are associated with these locations into account. We assume

that a partition L = T1∪ T2∪ T3∪ T4 of the locations is given, where T1∪ T2∪ T3

will be used as training data and T4 will be used as testing data. Besides, we con-

sider three classifiers: P1, P2, and P3. The locations in T1 will be used for training

bootstrap classifiers (P1 and P2), while those in T2 will be used for learning how to

improve predictions based on related locations (i.e. P3). The locations in T3, finally
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will be used for tuning all the classifiers.

The overall method involves the following steps, which are illustrated in Figure 5.2.

Bootstrap

In this step, we use the feature vector representation (vectors vfl and vsl), as explained

in Section 4.2, for each location in T1 ∪ T2 to learn an SVM or SVR model. When

applying our overall model, this classifier (P1 in Figure 5.2) will be used to make

an initial prediction for the unlabeled locations (i.e. for the locations from T4). This

prediction will later be used to generate the collective features. We also learn a second

classifier (P2 in Figure 5.2), which is trained in the same way as P1 but only using

the locations from T1 as training data. This variant is needed to allow us to train an

iterative collective classifier, which will intuitively be learned by comparing the true

labels of T2 with the predictions that are made by classifier P2.

Identifying distinctive tags

A key property of our method is that it uses Flickr tags to find relevant neighbours, i.e.

to find nearby locations that are sufficiently related to the considered target location.

Clearly, the required notion of relatedness depends on what we are trying to predict.

For example, when predicting scenicness as in the locations shown on the map in

Figure 5.1, we may want to select locations 1 and 4 as the most relevant neighbours to

location 8 because all three of them are close to train stations.

To estimate relatedness, we therefore first determine which tags are most relevant for

the considered prediction problem, using a term selection method based on Kullback-

Leibler (KL) divergence that explained in Section 2.3.2. Let us first consider a clas-

sification problem with classes C1, ..., Cn. Given that we are interested in predicting

properties of locations, each class Ci here corresponds to a subset of locations from L

that share a particular property (such as, for example, having a type of land cover).
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In particular, we select the 1000 tags that score highest on the following score:

KL(t) =
n∑
i=1

P (Ci|t) log
P (Ci|t)
Q(Ci)

(5.1)

where P (Ci|t) is the probability that a photograph with tag t belongs to one of the

locations associated with class Ci, whereas Q(Ci) is the probability that a photograph

with an arbitrary tag t occurrence belongs to one of the locations associated of class

Ci. We estimate Q(Ci) as follows:

Q(Ci) =
1

N

∑
l∈Ci

∑
t′∈T

w(t′, l) (5.2)

N =
n∑
j=1

∑
l∈Cj

∑
t′∈T

w(t′, l) (5.3)

Since P (Ci|t) often has to be estimated from a small number of tag occurrences, it is

estimated using Bayesian smoothing:

P (Ci|t) =

(∑
l∈Ci

w(t, l)
)

+ δ ·Q(Ci)

N + δ
(5.4)

where δ is a parameter controlling the amount of smoothing, which will be tuned in the

experiments. Intuitively, we can think of δ as a number of samples from the background

distribution Q that are added to our data about tag t. Larger values of δ will have a

penalising effect on rare terms.

For regression problems, we discretise the feature values and then proceed in the same

way. In particular, we discretize the feature values into three classes C1, C2 and C3

based on feature dependent thresholds. For example, to identify a set of tags that

are related to scenicness, we classify tags into C1 if they occur in locations whose

scenicness rate is at least 7, C2 for the tags that occur in locations whose scenicness

rate is between 3 and 7, and C3 for the tags that occur in locations whose scenicness

rate is at most 3. Then, because the most informative tags are likely to be found in the

extreme cases, we only consider tags that are distinctive for classes C1 and C3.
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Selecting neighbours

The effectiveness of collective prediction relies on the assumption that neighbouring

nodes have similar labels. Since environmental features tend to be spatially autocor-

related, in our setting it is natural to choose nearby locations as neighbours. However,

while only taking into account geographic closeness already leads to a strong baseline,

as we will see in the experiments, further improvements are possible by additionally

taking into account the structured environmental data and Flickr tags. The underlying

motivation is that such tags can reveal whether nearby locations are actually similar.

Consider, for example, a train station which is located very close to a beach. Despite

their close locations, these places belong to different land cover classes and may have

a considerably different scenicness degree. Specifically, to select the neighbours of a

given location l, we first determine the set of nearby locations (i.e. those whose loc-

ation is within a given radius r) and then pick the k most similar ones among these

nearby locations. For this last step, locations are represented as PPMI-weighted fea-

ture vectors from Flickr data, as in Section 4.2.1 but only considering the 1000 tags

that were selected based on (5.1). As in Chapter 4, this vector is then concatenated

with the structured feature vectors from Section 4.2.2. These feature vectors are then

compared using the cosine similarity.

Iterative inference

To improve the predictions for a given target location, we train a classifier whose input

is derived from the earlier predictions of that location and its neighbours (see below).

Note that all locations from L are considered as possible neighbours, including the

locations from the training data T1 and the tuning data T3. For neighbours that come

from T1 and T3, we use the corresponding ground truth instead of a predicted value.

In this sense, we could intuitively think of our proposed method as a refinement of the

K-nearest neighbours method. Note that while we are using the actual ground truth

for neighbours from T1, we cannot do the same for neighbours from T2 during the

training phase, since that would lead the iterative SVM/SVR model (P3 in Figure 5.2)

to simply pick pL as the only relevant feature, given that this value would correspond
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to the ground truth for all training items.

In standard collective prediction, only a single set of neighbours is considered, but

in this work, we instead consider several nested sets of neighbours for each target

location. To determine the neighbours of a target location, we have to choose a radius

r and the desired number of neighbours k. Rather than fixing a single value for these

parameters, we consider a sequence of radii r1, ..., rn and a corresponding sequence of

numbers k1, ..., kn. Let Ni be the ki most similar locations within the radius ri (i.e the

set of neighbors corresponding to the choice (ri, ki)). With each set Ni we associate

a corresponding prediction xi, which is the average prediction for the locations in Ni

in the case of regression problems, and the average of the confidence scores associated

with each class in the case of classification problems. We can give higher weight

for those neighbours that have ground truth (i.e. locations from T1 and T3) when

computing xi. Let ground(l) be the ground truth value of location l, NG
i be the set

of neighbouring locations for which the ground truth is known, while pred(l) be the

prediction value or confidence score of the unlabeled neighbouring location l. We

estimate xi as follows:

xi =

∑
l∈NG

i
λ · ground(l) +

∑
l∈Ni\NG

i
pred(l)

λ · |NG
i |+ |Ni \NG

i |
(5.5)

where the weight λ is used to control how much we want to boost the evidence coming

from neighbours with known ground truth.

For this iterative classification step (P3 in Figure 5.2), the location l is represented as

the n-dimensional feature vector (pl, x1, ..., xn), where pl is the earlier prediction for

the location l itself. From these feature vectors, we learn an SVM or SVR model, using

the locations from T2 as training data, to find an improved prediction for the unlabeled

locations (i.e. for the locations from T4). This step is then repeated, using the new

predictions as input, until convergence or reaching the maximum number of iterations.

We evaluate the convergence here according to the locations in the T3 set. This is

illustrated in Figure 5.2, which provides an overview of the whole process.
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5.3 Experimental Evaluation

5.3.1 Experimental Settings

To directly evaluate the effectiveness of the proposed method, we have used the same

feature vectors as in Chapter 4, i.e. the same structured datasets and same tag weighting

scheme. We examined various smoothing values to select the distinctive tags in KL di-

vergence (δ = 10, 100, 1000) and chose the best value for each experiment separately

based on held-out tuning data (T3). The thresholds used to discretise the regression

problem data into C1, C2, and C3, which are needed for computing the KL divergence,

are listed in Table 5.1. These values were chosen as reasonable values from initial

experiments. To generate the collective feature vector, we combine the earlier predic-

tion pl with seven collective features where r1-r7 are chosen as 1, 2, 5, 10, 20, 50 and

100 kilometres for each location. We test with different numbers of similar neighbors,

choosing ki as ri + 1, ri + 10 or ri + 100, again based on the held-out tuning data (T3).

Figure 5.5 shows examples of the collective feature vectors of different locations with

their ground truth labels. We set the ground truth labels weight λ to 5. Finally, we set

the maximum number of iterations to 10.

For each experiment, the set of locations L was shuffled and split into training (T1

and T2), tuning (T3), and testing (T4) sets because the effectiveness of collective

prediction may depend quite drastically on the amount of training/testing data that are

available. In particular, we have considered three different training/test splits: 5/85,

20/70 and 80/10 while the remaining 10% of the data was each time used for tuning.

Each training set was divided into two equal size subset T1 and T2.

5.3.2 Variants and Baseline Methods

We compared the results for seven different variants and baseline methods:
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• “Structured” uses the feature vector modeling the structured scientific informa-

tion from Section 4.2.2 only to train SVM/SVR model using locations in T1 and

T2, and predict label or feature value for locations in T4.

• “Flickr” uses the PPMI-based feature vector modeling Flickr tags from Section

4.2.1 only to train SVM/SVR model using locations in T1 and T2, and predict

label or feature value for locations in T4.

• “Structured + Flickr” uses the combination of both Structured data and Flickr

data by concatenating the two corresponding feature vectors. This process is

illustrated in Figure 5.3.

• “KNN-All” computes the average result (i.e. prediction values for regression

problems and confidence scores for classification problems) over the K geo-

graphically nearest neighbours, where these neighbours are selected according

to the latitude and longitude coordinates only. We consider the neighbours from

the training data T1 and T2 sets and tune the value of K using the tuning data

T3.

• “KNN-K” computes the average result of the K most similar neighbours. The

similarity is defined here as for our collective prediction method, i.e. based on a

feature vector that contains the PPMI values of the top-1000 selected Flickr tags

together with the structured data. Again, we consider the neighbours from the

training data T1 and T2 sets and tune the value of K using the tuning data T3.

This process is illustrated in Figure 5.4.

• “Collective-All” uses the collective features derived from all neighbours. It is

very similar to the method described in Figure 5.2 except that the neighbours

are selected according to their geographical distance (latitude and longitude co-

ordinates) only.

• “Collective-K” is our proposed method, as described in Section 5.2.
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Figure 5.3: Structured+Flickr prediction model (baseline method).

Figure 5.4: K nearest neighbors prediction model (baseline method).

Figure 5.5: Modeling locations based on collective features.
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Table 5.1: High and low boundaries for discretising the features from the regres-

sion problems .
C1 C3

Scenicness ≥ 7 ≤ 3

Temperature (◦C) ≥ 15 ≤ 5

Precipitation (mm) ≥ 100 ≤ 50

Solar Rad (kJ m−2day−1) ≥ 17000 ≤ 10000

Wind Speed (m s−1) ≥ 5 ≤ 3

Water Vapor Press (kPa) ≥ 1 ≤ 0.7

5.3.3 Experimental Results

Here we use the same set of experiments as in Section 4.3. In particular, we will

consider the following tasks.

Predicting the distribution of 100 species across Europe

This experiment was described in Section 4.3.2. The results of predicting species dis-

tribution are reported in Figure 5.6 in terms of the average precision, average recall and

macro average F1 score over the 100 species. Note that we do not consider accuracy

as it is not informative here, given the high class imbalance (i.e. a baseline classifier

predicting that a species occurs nowhere would already have a very high accuracy).

The results are clearly showing that “Structured + Flickr” leads to substantially better

results than K Nearest Neighbors based models. However, the collective predictions

(Collective-K) lead to the best results overall, especially in term of F1 score. Note that

we used the same set of structured and Flickr features in “KNN-K” and “Collective-K”.

We compute KL divergence for each species separately to identify the most relevant

Flickr tags. In this case, to use the KL-divergence feature selection method, we treat

the locations where the particular species is present as one class and all the other loca-

tions as a second class. Table 5.2 contains examples of the top tags of some species as

selected by the KL-divergence feature selection method. Interestingly, most of these
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tags are place names and land cover categories, and this applies to many of the 100

species.

Figure 5.6: Results of predicting species distribution.

Predicting CORINE land cover classes at levels 1, 2 and 3

This experiment was explained in Section 4.3.3. The results of predicting CORINE

land cover classification at levels 1, 2 and 3 are presented in Figure 5.7, Figure 5.8, and

Figure 5.9 respectively in terms of the average precision, average recall and macro aver-

age F1 score. Again, the results show that the collective prediction method (Collective-

K) leads to the best results overall. We compute KL divergence for each land cover

class separately, where we treat the locations belonging to the target land cover type
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Table 5.2: Top 5 Flickr tags of Aquila chrysaetos, Dryocopus martius, and Lacerta

bilineata species in terms of KL divergence.
Aquila chrysaetos Dryocopus martius Lacerta bilineata

montagna nationalpark italy

spain forest tuscany

huesca harz umbria

aragon mountains lombardia

mountain hautesavoie lucertola

Table 5.3: Top 5 Flickr tags for some CORINE level 1 classes in terms of KL

divergence.
Forest & semi nat. areas Wetlands Water bodies

forest bog sea

woods moor beach

mountains marsh coast

trees swamp lake

wald saline pier

as one class and all the other locations as the second class. To illustrate how Flickr

tags are used to select the neighbours of CORINE land cover classes, Table 5.3 shows

examples of the top 5 tags of some CORINE level 1 classes which are clearly informat-

ive and semantically related to those classes. For some classes, especially for CORINE

level 3, we found that the collective prediction converged already after the first itera-

tion. This seems related to the small number of locations belonging to these classes.

Indeed, it is not possible to find the optimal neighbours if only a few locations belong

to that class.
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Figure 5.7: Results of predicting CORINE land cover at level 1.

Predicting people’s subjective opinions of landscape beauty

This experiment was explained in Section 4.3.1. The results reported in Figure 5.10

show the mean absolute error between the predicted and actual scenicness scores, as

well as the Spearman ρ correlation between the rankings induced by both sets of scores

for the seven considered methods. Similar to our findings in Chapter 4, using Flickr

outperforms using structured data, and combining both leads to better results than using

them separately, for all the considered training/test ratios. We also find that all these

setups (Structured, Flickr, and Structured+Flickr) perform better than the KNN and

KNN-K methods. The collective prediction method leads to the best results overall,
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Figure 5.8: Results of predicting CORINE land cover at level 2.

especially when selecting the K most similar neighbours (Collective-K). Looking at

the top tags, in terms of KL divergence, we find terms relating to natural landscapes

which represent high scenicness such as highlands, mountains, and beach as well as

names of artificial and urban phenomena which are representative of low scenicness

such as station, bus, and supermarket.
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Figure 5.9: Results of predicting CORINE land cover at level 3.

Predicting climate related features

We consider the same five regression problems as in Chapter 4. The results are repor-

ted in Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15 respectively.

Overall, using collective prediction leads to an impressive improvement over the basic

prediction methods, especially with the “collective-K” variant. Looking at the top se-

lected tags in terms of KL divergence, we find names of countries, regions, and weather

phenomena, which are indicative of either high or low values of the corresponding fea-

ture as shown in Table 5.4.
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Figure 5.10: Results of predicting scenicness.

Figure 5.11: Results of predicting average annual temperature.
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Figure 5.12: Results of predicting average annual precipitation.

Figure 5.13: Results of predicting average annual solar radiation.



92 5.3 Experimental Evaluation

Figure 5.14: Results of predicting average annual wind speed.

Figure 5.15: Results of predicting average annual water vapour pressure.
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Table 5.4: Top 5 Flickr tags for different climate related features in terms of KL

divergence.
Temperature Precipitation Solar Rad. Wind Speed Water Vapour Press.

sweden scotland finland island sea

finland ireland sweden sea sardegna

snow canaryislands spain denmark mallorca

spain nubes italy highlands portugal

italy clouds france beach spain

5.4 Summary

In this chapter, we have proposed a collective prediction model which relied on both

Flickr tags and structured data to define a neighbourhood structure. The use of a col-

lective prediction formulation was motivated by the fact that most environmental fea-

tures are strongly spatially autocorrelated. While this suggests that geographic distance

should play a key role in determining neighbourhoods, we showed that considerable

gains could be made by additionally taking Flickr tags and traditional data into consid-

eration.

In the next chapter, we will try to improve the way we have combined structured fea-

tures with bag-of-words features by learning a low-dimensional vector space embed-

ding that captures both kinds of data in an efficient way.
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Chapter 6

Modelling Locations using Vector

Space Embedding

6.1 Introduction

Our main hypothesis in this chapter is that by using vector space embeddings instead of

bag-of-words representations, the ecological information which is implicitly captured

by Flickr tags can be utilised in a more effective way. Vector space embeddings are

representations in which the objects from a given domain are encoded using relatively

low-dimensional vectors. They have proven useful in natural language processing, es-

pecially for encoding word meaning [77, 86], and in machine learning more generally.

In this chapter, we are interested in the use of such representations for modelling geo-

graphic locations. Our main motivation for using vector space embeddings is that they

allow us to integrate the textual information we get from Flickr with available struc-

tured information in a very natural way. To this end, we rely on an adaptation of the

GloVe word embedding model [86] that was explained in Section 2.4.1. However, we

learn vectors representing locations rather than learning word vectors. Similar to how

the representation of a word in GloVe is determined by the context words surround-

ing it, the representation of a location in our model is determined by the tags of the

photographs that have been taken near that location. To incorporate numerical fea-

tures from structured environmental datasets (e.g. average temperature), we associate



96 6.2 Embedding Geographic Location

with each such feature a linear mapping that can be used to predict that feature from a

given location vector. This is inspired by the fact that the salient properties of a given

domain can often be modelled as directions in vector space embeddings [45, 23, 93].

Finally, evidence from categorical datasets (e.g. land cover types) is taken into account

by requiring that locations belonging to the same category are represented using sim-

ilar vectors, similar to how semantic types are sometimes modelled in the context of

knowledge graph embedding [44].

The remainder of this chapter is organised as follows. The next section presents our

model for embedding geographic locations from Flickr tags and structured data. Sec-

tion 6.3 provides a detailed discussion about the experimental results. Finally, Section

6.4 summarizes our findings.

6.2 Embedding Geographic Location

In this section, we introduce our embedding model, which combines Flickr tags and

structured scientific information to represent a set of locations L. The full model is

illustrated in Figure 6.1. This figure shows how the Flickr tags representation from

Section 4.2.1 are combined with the structured information from Section 4.2.2 into a

low dimensional vector space embedding. The proposed embedding model aims to

minimise the following objective:

J = αJtags + (1− α)Jnf + βJcat (6.1)

where α ∈ [0, 1] and β ∈ [0,+∞] are parameters to control the importance of each

component in the model. Component Jtags will be used to constrain the representation

of the locations based on their textual description (i.e. Flickr tags), Jnf will be used

to constrain the representation of the locations based on their numerical features, and

Jcat will impose the constraint that locations belonging to the same category should be
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Figure 6.1: Modelling locations in vector space embedding

close together in the space. We will discuss each of these components in more detail

in the following sections.

6.2.1 Tag Based Location Embedding

As illustrated in Figure 6.1, we first need to obtain weighted bag-of-words representa-

tions of locations from Flickr. Subsequently, we apply a tag selection method, which

will allow us to specialise the embedding depending on which aspects of the considered

locations are of interest, after which we can apply the actual embedding model.

Tag weighting

To generate a bag-of-words representation of a given location from Flickr tags, we

have to weight the relevance of each tag to that location. To this end, we used the

PPMI weighted feature vector vfl from Section 4.2.1.
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Tag selection

Inspired by [64], we use a term selection method in order to focus on the tags that

are most important for the tasks that we want to consider and reduce the impact of

tags that might relate only to a given individual or a group of users. In particular, we

obtained good results with the set of tags that are selected with the method based on

Kullback-Leibler (KL) divergence, which was explained in Section 5.2.

Location embedding

We now want to find a vector vli ∈ V for each location li such that similar locations are

represented using similar vectors. To achieve this, we use a close variant of the GloVe

model, where tag occurrences are treated as context words of geographic locations. In

particular, with each location l we associate a vector vl and with each tag twe associate

a vector w̃t and a bias term b̃tj , and consider the following objective:

Jtags =
∑
li∈L

∑
tj∈T

(vliw̃tj + b̃tj − PPMI(tj, li))2 (6.2)

This constraint is illustrated in Figure 6.2. Note how tags play the role of the context

words in the GloVe model, but instead of learning target word vectors, we now learn

location vectors. In contrast to GloVe, our objective does not directly refer to co-

occurrence statistics but instead uses the PPMI scores. One important consequence

is that we can also consider pairs (li, tj) for which tj does not occur in li at all; such

pairs are usually called negative examples. While they cannot be used in the standard

GloVe model, some authors have already reported that introducing negative examples

in variants of GloVe can lead to improvements [51]. In practice, evaluating the full

objective above would not be computationally feasible, as we may need to consider

millions of locations and tags. Therefore, rather than considering all tags in T for the

inner summation, we only consider those tags that appear at least once near location li

together with a sample of negative examples.
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Figure 6.2: The geometric intuition of tags based embedding.

6.2.2 Structured Environmental Data

Here we have used the same datasets as in the previous chapters, where the available

information about a location is encoded as the vector vsl. This vector includes nine

(real-valued) numerical features, which are latitude, longitude, elevation, population,

and five climate-related features (avg. temperature, avg. precipitation, avg. solar radi-

ation, avg. wind speed, and avg. water vapour pressure). In addition, 180 categorical

features were used, which are the CORINE land cover classes at level 1 (5 classes),

level 2 (15 classes) and level 3 (44 classes) and 116 soil types. Note that each location

should belong to exactly four categories: one CORINE class at each of the three levels

and a soil type. For more details about these datasets see Section 3.3.

Numerical Features Based Location Embedding

Numerical features can be treated similarly to the tag occurrences, i.e. we will assume

that the value of a given numerical feature can be predicted from the location vectors

using a linear mapping. In particular, for each numerical feature fk we consider a

vector w̃fk and a bias term b̃fk , and the following objective which is illustrated in Figure

6.3:
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Figure 6.3: The geometric intuition of numerical features based embedding.

Jnf =
∑
li∈L

∑
fk∈NF

(vli .w̃fk + b̃fk − score(fk, li))
2 (6.3)

where we write NF for the set of all numerical features and score(fk, li) is the value of

feature fk for location li, after z-score normalization.

Categorical Features Based Location Embedding

To take into account the categorical features, we impose the constraint that locations

belonging to the same category should be close together in the space. To formalize

this, we represent each category type catl as a vector wcatl , and consider the following

objective which is illustrated in Figure 6.4:

Jcat =
∑
li∈R

∑
catl∈C

(vli − wcatl)2 (6.4)

All the above mentioned vectors are initialized randomly and then updated iteratively

using an Adagrad optimizer to minimize the considered objective function.
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Figure 6.4: The geometric intuition of categorical features based embedding.

6.3 Experimental Evaluation

6.3.1 Experimental Settings

As in all the experiments in this thesis, we use Support Vector Machines (SVMs) for

classification problems and Support Vector Regression (SVR) for regression problems

to make predictions from our representations of geographic locations. For each exper-

iment, the set of locations L was split into two-thirds for training, one-sixth for testing,

and one-sixth for tuning the parameters. All embedding models are learned with Ad-

agrad using 30 iterations. The number of dimensions is chosen for each experiment

from {10, 50, 300} based on the tuning data. For the parameters of our model in Equa-

tion 6.1, we considered values of α from {0.1, 0.01, 0.001, 0.0001} and values of β

from {1, 10, 100, 1000 }. In all experiments where term selection is used, we select

the top 100 000 tags. Finally, we set the number of negative examples as ten times

the number of positive examples for each location, but with a cap at 1000 negative ex-

amples in each region for computational reasons. We tune all parameters with respect

to the F1 score for the classification tasks, and Spearman ρ for the regression tasks.
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6.3.2 Variants and Baseline Methods

We will refer to our model as EGEL (Embedding GEographic Locations). The source

code is available online at https://github.com/shsabah84/EGEL-Model.git. For

evaluation, we will consider the following variants:

• “EGEL-Tags” only uses the information from the Flickr tags (i.e. component

Jtags), without using any negative examples and without feature selection.

• “EGEL-Tags+NS” is similar to “EGEL-Tags” but with the addition of negative

examples.

• “EGEL-KL(Tags+NS)” additionally considers term selection.

• “EGEL-NF+KL(Tags+NS)” uses components Jtags and Jnf (with negative ex-

amples and term selection).

• “EGEL-Cat+KL-Tags+NS” instead uses components Jtags and Jcat.

• “EGEL-All” is our full method, i.e. it additionally uses the structured informa-

tion.

We also consider the following baselines:

• “BOW-Tags” represents locations using a bag-of-words representation, with the

same tag weighting as the embedding model. In particular, this is the same

variant that called “Flickr” in Chapter 4 and 5.

• “BOW-KL(Tags)” uses the same representation of “BOW-Tags” but after term

selection, using the same KL-based method as the embedding model.

• “BOW-All” combines the bag-of-words representation with the structured in-

formation, i.e. “Structured + Flickr” that proposed in Section 4.2.

https://github.com/shsabah84/EGEL-Model.git
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• “GloVe” uses the objective from the original GloVe model for learning location

vectors, i.e. this variant differs from “EGEL-Tags” in that instead of PPMI(tj, li)

we use the number of co-occurrences of tag tj near location li.

6.3.3 Experimental Results

In this chapter, weuse the same set of experiments as in Section 4.3. In particular, we

will consider the problems of predicting the distribution of 100 species across Europe,

predicting soil type and predicting CORINE land cover classes at levels 1, 2 and level 3

as binary classification tasks. In addition, we considered six regression tasks: predict-

ing five climate-related features and predicting people’s subjective opinions of land-

scape beauty. For more information about these experiments, see Section 4.3. We

present our results for the binary classification tasks in Tables 6.1 – 6.3 in terms of

average precision, average recall and macro average F1 score. The results of the re-

gression tasks are reported in Tables 6.4 and 6.5 in terms of the mean absolute error

between the predicted and actual scores, as well as the Spearman ρ correlation between

the rankings induced by both sets of scores. It can be clearly seen from the results that

our proposed method (EGEL-All) can effectively integrate Flickr tags with the avail-

able structured information. It outperforms the baselines for all the considered tasks.

Furthermore, note that the PPMI-based weighting in EGEL-Tags consistently outper-

forms GloVe and that both the addition of negative examples and term selection lead

to further improvements. The use of term selection leads to particularly substantial

improvements for the regression problems.

While our experimental results confirm the usefulness of embeddings for predicting

environmental features, this is only consistently the case for the variants that use both

the tags and the structured datasets. In particular, comparing BOW-Tags with EGEL-

Tags, we sometimes see that the former achieves the best results. While this might

seem surprising, it is in accordance with the findings in [58, 129], where it was also

found that bag-of-words representations can sometimes lead to surprisingly effective
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Table 6.1: Results for predicting species distribution.
Prec Rec F1

BOW-Tags 0.577 0.112 0.188

BOW-KL(Tags) 0.109 0.869 0.193

GloVe 0.100 0.888 0.179

EGEL-Tags 0.102 0.884 0.182

EGEL-Tags+NS 0.124 0.827 0.215

EGEL-KL(Tags+NS) 0.157 0.644 0.252

BOW-All 0.650 0.506 0.569

EGEL-NF+KL(Tags+NS) 0.331 0.565 0.417

EGEL-Cat+KL(Tags+NS) 0.278 0.597 0.379

EGEL-All 0.563 0.601 0.581

baselines. Interestingly, we note that in all cases where EGEL-KL(Tags+NS) performs

worse than BOW-Tags, we also find that BOW-KL(Tags) performs worse than BOW-

Tags. This suggests that for these tasks there is a very large variation in the kind of

tags that can inform the prediction model, possibly including user-specific tags. Some

of the information captured by such highly specific but rare tags is likely to be lost in

the embedding.

To further analyse the difference in performance between BoW representations and

embeddings, Figure 6.5 compares the performance of the GloVe model with the bag-

of-words model for predicting place scenicness, as a function of the number of tag

occurrences at the considered locations. What is clearly noticeable in Figure 6.5 is that

GloVe performs better than the bag-of-words model for large sets of tags and worse for

smaller sets. This issue has been alleviated in our embedding method by the addition

of negative examples.
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Table 6.2: Results for predicting soil type.
Prec Rec F1

BOW-Tags 0.170 0.445 0.246

BOW-KL(Tags) 0.309 0.439 0.362

GloVe 0.329 0.392 0.358

EGEL-Tags 0.325 0.402 0.360

EGEL-Tags+NS 0.308 0.442 0.363

EGEL-KL(Tags+NS) 0.320 0.441 0.371

BOW-All 0.398 0.438 0.417

EGEL-NF+KL(Tags+NS) 0.318 0.633 0.424

EGEL-Cat+KL(Tags+NS) 0.374 0.396 0.385

EGEL-All 0.337 0.673 0.449

Figure 6.5: Comparison between the performance of the GloVe and bag-of-words

models for predicting scenicness, as a function of the number of tag occurrences

at the considered locations.
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Table 6.5: Results for predicting scenicness.
MAE ρ

BOW-Tags 1.013 0.570

BOW-KL(Tags) 1.096 0.515

GloVe 1.275 0.198

EGEL-Tags 1.121 0.376

EGEL-Tags+NS 1.145 0.407

EGEL-KL(Tags+NS) 1.058 0.537

BOW-All 1.006 0.581

EGEL-NF+KL(Tags+NS) 0.973 0.621

EGEL-Cat+KL(Tags+NS) 0.992 0.604

EGEL-All 0.946 0.645

6.4 Summary

In this chapter, we have proposed a model to learn geographic location embeddings us-

ing Flickr tags, numerical environmental features, and categorical information. While

our point-of-departure is a standard word embedding model, we found that the off-the-

shelf GloVe model performed surprisingly poorly, meaning that a number of modifica-

tions are needed to achieve good results. Our main findings are as follows. First, given

that the number of tags associated with a given location can be quite small, it is im-

portant to apply some kind of spatial smoothing, i.e. the importance of a given tag for

a given location should not only depend on the occurrences of the tag at that location,

but also on its occurrences at nearby locations. To this end, we used a formulation that

was introduced in Chapter 4. This method is based on a spatially smoothed version of

pointwise mutual information. Second, given the wide diversity in the kind of inform-

ation that is covered by Flickr tags, we find that term selection is in some cases critical

to obtain vector spaces that capture the relevant aspects of geographic locations. For

instance, many tags on Flickr refer to photography related terms, which we would nor-
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mally not want to affect the vector representation of a given location. One exception is

perhaps when we want to predict the scenicness of a given location, where e.g. terms

that are related to professional landscape photography might be a strong indicator of

scenicness. Finally, even with these modifications, vector space embeddings learned

from Flickr tags alone are sometimes outperformed by bag-of-words representations.

However, our vector space embeddings lead to substantially better predictions in cases

where structured (scientific) information is also taken into account. In this sense, the

main value of using vector space embeddings in this context is not so much about

abstracting away from specific tag usages, but rather about the fact that such represent-

ations allow us to integrate textual, numerical and categorical features in a much more

effective way than is possible with bag-of-words representations.

Given these encouraging results, in the next chapter, we will extend the proposed model

by considering a spatiotemporal representation of regions.
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Chapter 7

Spatiotemporal Embeddings Model

7.1 Introduction

In this chapter, we extend our approach from Chapter 6 by considering a spatiotem-

poral representation of regions. In particular, we learn a vector space embedding for

each geographic region and each month of the year, which allows us to capture envir-

onmental phenomena that may depend on monthly or seasonal variation. Apart from

extending our main model, we also introduce a new smoothing method to deal with

the sparsity of Flickr tags. This is motivated by the fact that when fine-grained regions

are used, and data may be sparse, the number of times that a tag is used in a particular

region and month is not a reliable indicator by itself of the relevance of that tag. For

evaluation, we consider the problem of predicting climate features and predicting the

distribution of species in a given location and a given month. The proposed method has

proven to be advantageous compared with baselines that rely only on Flickr or only on

traditional sources, in particular when we have a very small training data set. We also

qualitatively evaluate the proposed model by generating similarity maps for a number

of selected locations.

The remainder of this chapter is organised as follows. In the next section, we provide

a discussion of the related work in the area of spatiotemporal analysis and model-

ling. Section 7.3 describes our methodology. In particular, Section 7.3.1 and Section

7.3.2 present our methodology for spatiotemporal modelling using Flickr tags and us-
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ing structured data respectively, and Section 7.3.3 then describes our spatiotemporal

embeddings model. In Section 7.4, we provide a detailed discussion about the exper-

imental results as well as the qualitative evaluations. Finally, Section 7.5 summarises

our conclusions.

7.2 Related Work: Spatiotemporal Modelling

Spatiotemporal analysis and modelling have been a major interest in many research

areas. Examples include environmental science [106, 76], social science [11, 50], and

business [35, 36]. In particular, [36] developed a geographical and temporal weighted

regression (GTWR) model to account for the location variations in time and space

when modelling house prices in London from 1980 to 1998. The model is based on

a spatiotemporal kernel function using a Gaussian distribution. Similar to our work,

they allocated each spatial point to a time interval. However, while they model time on

a linear scale, we use a circular scale since our focus is on modelling seasonality. In

[11], a spatiotemporal kernel density estimation (STKDE) has been proposed which is

based on multiplying the spatial kernel function by the temporal kernel function. It is a

space-time cube method that extends the 2-dimensional grid used in the spatial kernel

to a 3-dimensional cube and computes density values at cube centres with overlapping

space-time cylinders. Time was represented on a circular scale that uses Von Mises

distribution as a time kernel. STKDE has shown promising results in many applica-

tions, such as crime hotspot detection [50], and disease patterns detection [22]. In this

chapter, we use the STKDE method [11] to smooth the distribution of Flickr tags over

space and time, as a way of alleviating the sparsity of Flickr tags.
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7.3 Methodology

Our aim in this chapter is to learn a low-dimensional vector space embedding of a set

of spatiotemporal regions. Based on our findings in Chapter 6, this representation will

allow us to combine the textual information derived from Flickr with the numerical,

categorical, spatial, and temporal information in an efficient way. Thus the ecological

information can be effectively captured by the predictive model. We will start this

section by explaining how feature vectors encoding spatiotemporal regions can be ob-

tained from the tags associated with Flickr photographs. In Section 7.3.2, we then

describe how feature vectors encoding spatiotemporal regions can be obtained from

the structured information sources that we will additionally consider. Finally, we will

introduce our proposed spatiotemporal embedding (SPATE) model that combines both

data sources.

7.3.1 Spatiotemporal Modelling Using Flickr tags

To model the spatiotemporal regions using Flickr tags, we first need to obtain weighted

bag-of-words representations. We then apply a tag selection method, which will allow

us to specialise tags that are related to space and/or time. Subsequently, we smooth out

the tags distribution over the space and time to tackle the problem of data sparsity.

Tags Weighting

With the objective of using Flickr tags for spatiotemporal modelling, we split the target

spatial area into 10km × 10km grid cells. Furthermore, we discretise the timestamps

with a granularity of 1 month. We thus view the overall dataset as 12 separate grid

layers, each layer corresponding to a month of the year. Thus there are 12 instances for

each spatial cell as illustrated in Figure 7.1. The choice of the 10km × 10km spatial

granularity and the one-month temporal granularity is to balance between resolution
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Figure 7.1: Spatiotemporal grid cells.

and computation time. Let c1, ..., cn be the spatiotemporal grid cells, each represented

by a triple (lat, lon, m) where lat is the latitude coordinate, lon is the longitude coordin-

ate, and m is the month of the year. We associate each such cell with a histogram of

Flickr tags, reflecting how many times each tag has been added to a photograph whose

coordinates and time stamp fall within the cell.

Let f(t,c) be the number of times tag t (from the set of all tags T ) occurs in the cell c.

We then use Positive Pointwise Mutual Information (PPMI), which has been used in

previous chapters and given by Equation 2.4, to weight how strongly tag t is associated

with cell c. Each cell c can thus be represented as a sparse vector vf (c) which is defined

as (PPMI(t1, c), ...,PPMI(tk, c)), where t1, ..., tk is an enumeration of the tags in T .
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Tag Selection

Our aim here is to select tags whose occurrence is correlated with specific times of the

year (e.g. summer) or with photographs that occur in particular geographic regions (e.g.

forests). When constructing the feature representation vf (c), we then only consider

those tags that have been selected. Similar to Chapters 5 and 6, we will use Kullback-

Leibler (KL) divergence method to select tags. However, our aim here is to determine

whether a given tag is time and/or location specific. Intuitively, we assess to what

extent the distribution of its occurrences across all spatiotemporal cells diverges from

the overall distribution of all tag occurrences. In particular, we select those tags TKL ⊆

T which maximize KL divergence given by Equation 2.10. Here P (c|t) is defined as

the probability that a photograph with tag t has a location and time in c and Q(c) is the

probability that an arbitrary tag occurrence is assigned to a photograph in c, both are

estimated in the same way as in Chapter 5 (Equations 5.2 and 5.4).

Now we will use the notation vKL(c) for the sparse vector representation of cell c

encoding the PPMI weight of those tags in TKL only.

Spatiotemporal Smoothing

The vector representation vKL(c) encodes which tags are most strongly correlated with

the spatiotemporal grid cell c. However, these scores are computed from sometimes

very limited amounts of data, and for some cells we may not have any photographs

at all. This is because we are only looking at the tags for a particular month, so on

average, for a given geographic region, we have 1/12th of the tags that we had in the

previous chapter. To tackle this problem, we used kernel density estimation to smooth

the PPMI weight of each tag in TKL over a larger region. For this purpose, we used

the spatiotemporal kernel density estimation method that was introduced in [11]. In

particular, we define the smoothed weight of tag t in cell c as follows:

KDE(t, c) =
ŝ(t, c)

maxc (ŝ(t, c))
(7.1)
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The reason for normalising the KDE value is to keep the weight of all the tags within

the same range and avoid the impact of the dominant tags. The ŝ(t, c) value is com-

puted as:

ŝ(t, c) =
nt∑
i=1

PPMI(t, ci) ·Ks (Λlati ,Λloni) ·Km (Λmi) (7.2)

where nt is the number of cells c with tag t, Λlati =
clat−clati

hs
, Λloni =

clon−cloni

hs
, and

Λmi =
cm−cmi

hm
. Here clat, clon and cm are respectively the latitude, longitude and the

month of cell c, while clati , cloni and cmi are respectively the latitude, longitude and

the month of cell ci. With hs the spatial smoothing bandwidth of tag t, and hm the

temporal smoothing bandwidth of tag t. For the spatial kernel function Ks, we use a

Gaussian distribution [108] given by:

Ks(clat, clon) =
1

2π
exp

(
−(clat − clati)

2 + (clon − cloni)
2

2h2
s

)
(7.3)

As the temporal kernel Km, we use a von Mises distribution [113] which is a con-

tinuous probability distribution on the circle. The Von Mises distribution was chosen

because of its wrap-around property (it is sometimes called circular Gaussian) which

is well suited to the cyclic nature of the months of the year representation. Here, we

first encode months using values in {0,...,11}, then the month value is mapped to its

corresponding point on the circle by:

θ(cm) =
2πcm

12
(7.4)

Now ‘January’ is represented as π
6
, ’February’ is represented as π

3
and so on, as ex-

plained in Figure 7.2.

The von Mises distribution is defined by:

Km(θ(cm)) =
1

2πI0(hm)
exp (hm cos(θ −Θ)) (7.5)

where I0 is the modified Bessel function of order 0.
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Figure 7.2: The representation of the months as circular data.

Finally, to model the spatiotemporal grid cell c using Flickr tags, we consider a vec-

tor vKDE(c) encoding the smoothed weight of all the tags {t1...tnt} ∈ TKL which is

defined as (KDE(t1, c), ...,KDE(tnt , c)). This vector will be used to train the proposed

embeddings model in Section 7.3.3.

Bandwidth Selection

The critical parameter in any kernel-based method is the selection of the optimal band-

width. The variables hs and hm are of key importance, and their values are generally

considered to be more important than the type of the kernel itself. In general, large val-

ues lead to over-smoothing, while small values lead to under-smoothing. Various meth-

ods have been developed for selecting the optimal kernel bandwidth. In this chapter,

we experimentally compare the performance of three of the most widely used methods.

1. The rule of thumb [108] is a simple and fast method. It estimates a fixed kernel
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bandwidth based on the data driven scale of the distribution which is defined as:

h = α̂

(
n ∗ (d+ 2)

4

)−1/(d+4)

(7.6)

where n is the size of the data, d is the number of dimensions, and α̂ is the

data standard deviation. Here we need to estimate two different bandwidths (the

spatial and the temporal bandwidths). They are both estimated using Equation

7.6. However, for estimating the temporal bandwidth hm, d is equal to 1 and

α̂ is the circular standard deviation. For estimating the spatial bandwidth hs, d

is equal to 2 and α̂ = s1+s2
2

where s1 and s2 are the standard deviations of the

latitude and the longitude coordinates respectively.

2. The adaptive kernel bandwidth [1, 10] is based on the idea of making the value

of h vary between different regions according to the local density. In particular,

a wider bandwidth is selected for regions with low density while a narrower

bandwidth is selected for regions with high density. It is usually achieved by the

following steps. Firstly, compute a pilot estimate of ŝ(t, c) (Equation 7.2) using

the fixed bandwidth as described above in Equation 7.6. This estimate is used

to give an overall approximation of the smoothed value of the data. Secondly,

compute a local bandwidth scalar, which is computed by:

bc =

√
g

ŝ(t, c)
(7.7)

where g is the geometric mean of ŝ(t, c1), ..., ŝ(t, cn), which is given by:

g =

(
n∏
i=1

ŝ(t, ci)

)1/n

(7.8)

Finally, the adaptive local bandwidths are given by hs(c) = hs · bc and hm(c) =

hm · bc which can be used in Equation 7.2 to make the final estimation for tag t.

3. The leave-one-out kernel estimator [9] is based on the idea of selecting the kernel

bandwidth estimator that minimizes the mean integrated square error (MISE)
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[102] given by:

MISE =
1

n

n∑
i=1

(ŝ(t, ci)− p(t, ci))2

p(t, ci)
(7.9)

where ŝ(t, ci) is the estimated density of tag t at the grid cell ci after removing

the cell ci from the data. Furthermore, p(t, ci) is the probability of the PPMI

weight of tag t at the grid cell ci (i.e. the true density), which is computed as:

p(t, ci) =
PPMI(t, ci)∑
c′∈C PPMI(t, c′)

(7.10)

And ŝ−i(t, ci) is computed here as:∑nt

j=1j 6=i PPMI(t, cj)Ks(Λlatij ,Λlonij)Km(Λmij)∑n
j=1j 6=iKs(Λlatij ,Λlonij)Km(Λmij)

(7.11)

The optimal bandwidths hs and hm that minimize Equation 7.9 can be used to

smooth the tag t distribution over all the spatiotemporal grid cells in Equation

7.2.

7.3.2 Spatiotemporal Modelling Using Structured Environmental

Data

In this section, we used the following external datasets as sources of numerical features

(see Section 3.3 for details):

• Monthly average of temperature, precipitation, solar radiation, wind speed and

water vapour pressure.

• Elevation.

• Population.

Several of the considered datasets have a resolution which is finer than our 10km ×

10km grid cells. To this end, we look up the feature values at 100 locations, distributed
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uniformly within the grid cell. To obtain a feature vector for the spatiotemporal grid

cell c representing these numerical features, we first average these 100 values for each

numerical feature across the grid cell. Then we normalise these features values using

the standard z-score.

In addition, we used the following datasets as sources of categorical features:

• CORINE land cover type at level 1, 2, and level 3.

• Soil type.

The categorical features are represented as a vector, encoding for each of the categories

what percentage of the grid cell (i.e. the average of the 100 locations) belongs to that

category.

Apart from the features from these external datasets, the geographic coordinates and

time stamp of the cell c are clearly also important structured features, which should

be included in the feature vector describing a spatiotemporal cell. For the spatial fea-

tures, each grid cell c has been represented by the normalised coordinate values which

computed as:

norm(lat, c) =
lat−min(latitude)

max(latitude)−min(latitude)
(7.12)

norm(lon, c) =
lon−min(longitude)

max(longitude)−min(longitude)
(7.13)

where lat and lon are respectively the latitude and longitude coordinates of the centre

of the grid cell c. And max(latitude), max(longitude), min(latitude), and min(lon

gitude) are the maximum and minimum latitude and longitude over the study area. The

reason for normalising these features is to ensure that they are within the same range

as the other features. Note that we have also tried projecting the latitude and longitude

coordinates into three-dimensional geographic coordinates, but that gave worse res-

ults. Finally, the month m corresponding to the cell c is represented as the coordinates

(cos(θ(m)), sin(θ(m))) of that month, as before (see Figure 7.2).
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We will use the notation vs(c) for the feature vector representation of cell c encoding

all the above mentioned structured features.

7.3.3 Spatiotemporal Embeddings

Our aim in this Section is to learn a low-dimensional vector space embedding of a

set of spatiotemporal cells C. This representation will allow us to combine the textual

information derived from Flickr with the corresponding numerical, categorical, spatial,

and temporal information in an efficient way. The proposed embedding model has the

following objective function:

J = (1− 2α− 2β)Jtags + α(Jnf + Jcat) + β(Jspatial + Jtemp) (7.14)

where α, β ∈ [0, 1] are parameters to control the importance of each component in

the model with 2α + 2β < 1. The components Jtags, Jnf, Jcat, Jspatial and Jtemp intuit-

ively encode the information we have about the spatiotemporal cells from the different

sources. The objective function J thus encodes the available information in the form

of an optimization problem. In particular, our goal is to learn vector representations

for the spatiotemporal cells which minimize J .

Component Jtags will be used to constrain the representation of the cells based on their

textual description (i.e. Flickr tags), Jnf will be used to constrain the representation of

the cells based on their numerical features, Jcat will impose the constraint that cells be-

longing to the same category should be close together in the space, Jspatial will be used

to constrain the representation of the cells based on their spatial feature (i.e. the latit-

ude and longitude coordinates), and Jtemp will be used to constrain the representation

of the cells based on their temporal feature (i.e. month of the year). The components

Jnf and Jcat share the same weight (α) as they have the same key importance in our

model and a relatively similar number of features (i.e. similar impact on the embed-

dings model). The components Jspatial and Jtemp share the same weight (β) for the same
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reasons. However, the component Jtags has a different weight as it involves a larger

number of features, these features are of a different nature and their relative import-

ance may also be quite different (e.g. the number of occurrences of a single tag is

likely to be less important than the land cover class).

Tags Based Embedding

We now want to find a vector vemb(c) ∈ V for each spatiotemporal grid cell c. The

component Jtags intuitively encodes the requirement that we want spatiotemporal cells

whose associated Flickr tag distributions are similar to be represented by similar vec-

tors. This is achieved by requiring that the scores KDE(tj, c) for each tag tj can be

predicted from the vector representation of the cell c. To this end, we use the same tag

based objective function as in Chapter 6 (EGEL model) that is given by Equation 6.2.

Numerical Features Based Embedding

Numerical features have been treated similarly to the KDE(tj, c) scores. In particular,

we consider the same objective function as is given by Equation 6.3.

Categorical Features Based Embedding

For the categorical features, we again consider the same objective function as in Chapter

6, which is given by Equation 6.4.

Spatial Features Based Embedding

Latitude and longitude coordinates can be incorporated in the same way as the numer-

ical features. However, we treat them as a separate constraint because this allows us to

tune the importance of the geographic location of a grid cell c, relative to the numerical

and categorical features, based on how we choose the parameters α and β. Therefore,



7.4 Experimental Evaluation 123

for sc ∈ {lat, lon}, we consider a vector w̃sc and a bias term b̃sc , and the same objective

function given by Equation 6.3.

Temporal Features Based Embedding

We represent the temporal features, specifically the months of the year, as equidistant

points on the unit circle (as shown in Figure 7.2). To encode temporal information in

the embedding, we assume that there is a linear transformation that maps the vector

representations of the spatiotemporal cells onto a 2-dimensional plane, such that all

cells from a given month are (approximately) projected onto the vector representation

of that month. This is similar to how we handle the spatial features, where the two

linear lat/lon constraints could also be seen together as mapping the grid cells onto

a 2-dimensional plane such that the projection reflects their geographic location. To

formalize this constraint, we encode each month mi by a 2-dimensional vector w̃m

representing the coordinates (cos(θ(m)), sin(θ(m))) of mi on the temporal circle. We

define a projection matrix P as a 2×n matrix that maps the spatiotemporal cell vector

vemb(c) into 2-dimensional space and a 2-dimensional bias term b̃m, and consider the

following objective:

Jtemp =
∑
c∈C

||vemb(c).P + b̃m − w̃m||2 (7.15)

7.4 Experimental Evaluation

In this section, we will formally evaluate our proposed SPAtioTemporal Embeddings

(SPATE) model. The SPATE source code is available online at https://github.

com/shsabah84/SPATE-model.git. The full model is illustrated in Figure 7.3. This

figure shows how the Flickr tags representation from Section 7.3.1 is combined with

the structured information from Section 7.3.2 to represent the spatiotemporal cells C

that can be used to predict values at un-sampled regions.

https://github.com/shsabah84/SPATE-model.git
https://github.com/shsabah84/SPATE-model.git
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Figure 7.3: The spatiotemporal embeddings (SPATE) model.

We will start this section by evaluating the bandwidth selection methods that were

described in Section 7.3.1 and choose the best method for our problem. Then we will

define our experimental setting and the proposed baseline methods. Subsequently, we

will introduce our experiments and provide a detailed discussion about the results.

Finally, we will qualitatively evaluate our generated vectors.

7.4.1 Selecting the Optimal Bandwidth for Each Tag

We evaluate the performance of the considered bandwidth selection methods from Sec-

tion 7.3.1 in term of MISE (see Equation 7.9) on a randomly selected sample of 100

cells for each tag in TKL. For the leave-one-out kernel estimator method, we con-

sidered the range {2, 1, 0.5, 0.25, 0.125, 0.05, 0.025, 0.0125, 0} in latitude/longitude

degrees for the spatial bandwidth hs value and the range {2π, π, π/2, π/6, 0} for the



7.4 Experimental Evaluation 125

Figure 7.4: The average MISE of all the considered tags when using the rule of

thumb (ROT), the adaptive kernel bandwidth (Adaptive), and the leave-one-out

kernel estimator (LOO).

temporal bandwidth hm value. The choice of these two ranges was found to be reason-

able for most of the tags based on a small set of initial experiments. Note that a spatial

bandwidth of value 0 would mean only temporal smoothing is applied, and vice versa

if the temporal bandwidth is set to 0.

The results are summarised in Figure 7.4. We found that the fixed bandwidth selected

by the rule-of-thumb method works reasonably well for tags with a uni-modal distri-

bution (e.g. the name of a city). However, for tags with a multi-modal distribution (e.g.

supermarket, beach and rain), it leads to a significant over-estimation of the bandwidth.

The adaptive kernel bandwidth method performs better than the fixed bandwidth estim-

ator in many cases, especially those with a multi-modal distribution, but it is computa-

tionally expensive. However, we found that the leave-one-out kernel estimator method

outperforms both of them. Therefore, in the remaining experiments, we will use the

spatial and temporal bandwidths (hs and hm) estimated from the leave-one-out kernel

estimator method as the optimal bandwidths. In particular, when applying KDE (see

Equation 7.1), for each tag we use the specific bandwidth parameters that were selected

with this method.
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7.4.2 Experimental Settings

In all experiments, we use Support Vector Machines (SVMs) for classification prob-

lems and Support Vector Regression (SVR) for regression problems. We randomly

split the set of spatiotemporal grid cells C into one-third for testing and two-thirds for

training and tuning. To evaluate the impact of the training data size on the model per-

formance, we experimented with 1%, 10% and 100% of the training and tuning set.

Each time we hold out 10% of the considered set for tuning the parameters and use

the rest for training. In fact, the setting with a small amount of training data makes the

problem more challenging and provides additional insight into the performance of our

proposed model.

To compute KL divergence, the smoothing parameter δ was selected from {100, 1000,

10000} based on the tuning data. Table 7.1 shows the ten tags with highest KL diver-

gence weight resulting from these smoothing values. Clearly, using δ = 100 gives a set

of tags that are specifically related to small geographic regions and/or particular times,

while using δ = 1000 gives a set of tags describing larger regions. Using δ = 10000

gives a set of more general tags or even more general regions, as well as names of

well-known cities. We select the top 100 000 tags from the ranking with δ = 1000,

where it gave us the best results based on initial experiments. However, for a grid cell

c, we only consider those tags t for which KDE(t|c) > 1
3

for computational reasons.

All embedding models are learned with an Adagrad optimiser, which is used to min-

imise the objective function using 30 iterations and an initial learning rate of 0.5. The

number of dimensions is chosen for each experiment from {10, 50, 300} based on the

tuning data. For the parameters of our model in Equation 7.14, we considered values

of α from {0.01, 0.02, 0.04, 0.06, 0.08, 0.1} and we considered values of β between

0 and 1 with an increment of 0.05. While we chose the best values of the parameters

for each experiment separately, based on the tuning data, we noticed that consistently

good results were obtained when using α = 0.04 and β = 0.45. Note that we tune all

parameters with respect to the F1 score for the classification tasks and Spearman ρ for
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Table 7.1: Top 10 Flickr tags in terms of KL divergence.
δ = 100 δ = 1000 δ = 10000

struy islay cambridge

may gairloch bournemouth

tiree ashford chester

strathglass longleat york

march orkney cornwall

waterfordhalf2009 sywell cardiff

stmelliongolfclub braintree sheffield

bawdeswell snetterton lakedistrict

stkilda popham oxford

helmsdale dungeness norfolk

the regression tasks.

7.4.3 Variants and Baseline Methods

For the formal evaluation, we will compare our proposed “SPATE” model with the

following main baseline representations:

• “Structured” uses the feature vector vs(c) modelling the structured information

from Section 7.3.2.

• “Flickr” uses the KDE-based feature vector vKDE(c) modelling Flickr tags from

Section 7.3.1.

• “Structured + Flickr” uses the combination of both structured data and Flickr

data by concatenating the vectors vs(c) and vKDE(c).

To evaluate the impact of the spatiotemporal smoothing on Flickr tag representation,

we will consider the following variants:
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• “Flickr-noKDE” uses the PPMI-based feature vector vf (c) modelling Flickr tags

from Section 7.3.1 (i.e. without including the tag selection and spatiotemporal

smoothing steps).

• “Flickr(1BW)” uses the KDE-based feature vector modelling Flickr tags from

Section 7.3.1. However, here we select the value of the bandwidths hs and hm

that minimise the average MISE over all the considered tags when computing

KDE weight (i.e. using the same bandwidths for all the tags). This variant will

thus allow us to assess the effectiveness of using tag-specific bandwidth values.

7.4.4 Experimental Results

We consider two tasks to evaluate our proposed SPATE model: predicting species

distribution and predicting climate-related features.

Predicting Species Distribution

For this task, we use ground truth data from the National Biodiversity Network Atlas

(NBN Atlas); see Section 3.4.3 for more information about NBN Atlas. We focused

our evaluation on the same 50 birds sample that has been considered in Section 4.4.1.

These birds have at least 1000 observations in the NBN Atlas. This restriction to

species with a sufficient number of observations is necessary to ensure that the ground

truth is sufficiently reliable. Note that even species with a large number of observations

may sometimes only occur in a few spatiotemporal cells. In NBN Atlas, each species

record contains a set of meta-data including the observation’s latitude, longitude and

month, which is the information that we need in our experiments. For each of these

50 birds, we consider a binary classification problem, i.e. predicting whether or not the

bird occurs in a particular cell (i.e. whether a grid cell contains at least one observation

in the NBN Atlas data).
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The results are reported in Table 7.2 in terms of macro-average precision, recall, and

F1 score over the 50 birds. Note that we have tuned all the parameters with respect

to F1 score. The results clearly show that combining Flickr tags with the available

structured data leads to better results than using them separately. Moreover, combining

them in our proposed spatiotemporal embeddings (SPATE) model leads to the best

results. It significantly outperforms all the considered baselines, especially for the

setting with the least amount of training data. Furthermore, note that the proposed KDE

based spatiotemporal smoothing of Flickr tags leads to substantial improvements over

the non-smoothed version in “Flickr-noKDE” and smoothing each tag with different

bandwidths in Flickr consistently outperforms the method of smoothing all the tags

with the same bandwidth in “Flickr-1BW”. We also found the normalisation of the

spatiotemporal KDE in Equation 7.1 to be critical to obtain good results. Based on the

tuning data, for the SVM model, we found a linear kernel to be optimal when using

Flickr data only and the combination of “Structured + Flickr”, and a Gaussian kernel

to be optimal for the “Structured”, and “SPATE” models. For the embedding model,

we found that the best results were obtained for 300 dimensions.

As an example, Figure 7.5 visually compares the predictions that were made by the

different models with the ground truth for a particular bird: the Swift (Apus apus).

The seasons in Figure 7.5 are defined as winter (December, January, February), spring

(March, April, May), summer (June, July, August) and autumn (September, October,

November). It can be clearly seen from Figure 7.5 that the predictions made by using

“Structured” only, “Flickr” only, or “Structured + Flickr” are under-reported for winter

and imbalanced (i.e. overestimated in some regions and underestimated in another) for

the other seasons. However, “SPATE” leads to superior predictions over all the sea-

sons. To get further insight into the performance of the considered models, Figure

7.6 shows the monthly average F1 score for the predictions made for this particular

species. Although using “Flickr” outperforms using “Structured”, and “Structured +

Flickr” further improves the results, “SPATE” leads to the best results over all months.

Interestingly, for the months with low numbers of occurrences, such as January and
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Table 7.2: Results for predicting the monthly distribution of 50 species across the

UK and Ireland.
1% 10 % 100 %

Prec Recall F1 Prec Recall F1 Prec Recall F1

Structured 0.424 0.246 0.311 0.501 0.345 0.409 0.525 0.422 0.468

Flickr-noKDE 0.091 0.005 0.010 0.141 0.022 0.038 0.388 0.034 0.063

Flickr-1BW 0.400 0.342 0.369 0.469 0.406 0.435 0.494 0.415 0.451

Flickr 0.436 0.373 0.402 0.529 0.454 0.489 0.631 0.466 0.536

Struc + Flickr 0.448 0.384 0.414 0.536 0.465 0.498 0.629 0.474 0.541

SPATE 0.485 0.423 0.452 0.540 0.476 0.506 0.610 0.487 0.542

November, “SPATE” is the only model that made positive predictions while other mod-

els predicted all negatives. This example suggests that highly accurate distribution

models can be learned using any of the considered models when we have sufficiently

large numbers of occurrences as in the spring and summer months. However, our pro-

posed “SPATE” model still performs better in the months with very low numbers of

occurrences, as in the winter and autumn months. Additionally, when we look at the

prediction confidence score of this species over the spatiotemporal grid cells, we found

that our proposed SPATE model makes much higher confidence predictions than the

other proposed baselines. As an example, Figure 7.7 shows the prediction confidence

score obtained from different models for a particular location (latitude= 54.81503616

and longitude= -2.086120293) over all the testing months. Clearly, as can be seen in

Figure 7.7 the predictions made by the SPATE model have very high confidence for

the correct predictions and very low confidence for the incorrect predictions (see the

incorrect prediction in August) which further illustrates the strong performance of our

proposed model. Note that all the results reported in Figure 7.5, 7.6, 7.7 are for the

setting where only 1% of the training/tuning data was used.
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(a) Structured data

(b) Flickr data

(c) Structured + Flickr data

(d) SPATE

(e) Ground truth data

Figure 7.5: Prediction of the seasonal distribution of Swift across the UK and

Ireland using 1% of the data for training/tuning.
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Figure 7.6: F1 score of predicting the monthly distribution of Swift.

Figure 7.7: The prediction confidence score for location coordinate (54.81503616,

-2.086120293) over the testing months. Jan, Oct, Nov and Dec are not shown in

the figure because the corresponding cells are in the training set for that location.

Note that Swift has positive ground truth observations in that location in April,

May, June, July and August, and negative ground truth observations in February,

March and September.

Predicting Climate Features

For this task, we consider five different regression problems: predicting the monthly

average of precipitation, solar radiation, temperature, wind speed, and water vapour
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pressure. For these experiments, we do not include any of these climate features in

the structured representations (and embeddings derived from them) as they serve here

as ground truth. The results of these experiments are reported in Table 7.3 in terms

of mean absolute error (MAE) and Spearman ρ correlation between the predicted and

actual values for all spatiotemporal cells in the testing set. The mean and standard

deviation of each of those features are shown in Table 7.4. Note that we tune all the

parameters with respect to Spearman ρ. We can see from the results that combining

structured and Flickr data outperforms using them separately. However, combining

them using our proposed spatiotemporal embeddings (SPATE) model leads to a sub-

stantial improvement over the baseline methods, especially when we consider only 1%

of the training/tuning data. Note that, for settings with more training data, it is not

surprising that all methods perform well as climate features are strongly autocorrelated

in time and space. For these experiments, based on the tuning data, we found that the

best results for the SPATE model were obtained for 10 dimensions.

In Figure 7.8, we visually illustrate the predictions made by the different models for

seasonal precipitation. The model based on structured data performs worst while the

“SPATE” model is the best for all the seasons. While the overall differences between

the results for precipitation (especially in term of Spearman ρ in Table 7.3) are small,

clear differences between their performance are still noticeable in Figure 7.8. To get

a clearer picture about the performance of each model, Figure 7.9 shows the monthly

average MAE and Spearman ρ for predicting the precipitation. Although “Flickr” per-

forms better than “Structured” in terms of MAE, it performs worse in term of Spearman

ρ. The combination of “Structured + Flickr” performs in between them. Interestingly,

our proposed “SPATE” model has the best performance in terms of MAE and Spear-

man ρ for all the months. Looking at the prediction of a particular location (latitude=

55.26469626 and longitude= -4.784080876) over all the testing months, we can see

that the “Structured” model predictions do not deviate too far from the mean value,

which have not affected the Spearman ρ score as much as MAE. The “Flickr” model

makes more varied predictions, although they are still far from the ground truth. The
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combination of “Structured + Flickr” leads to more faithful predictions. However, the

“SPATE” model performs significantly better. Again, all the results reported in Figure

7.8, 7.9, 7.10 are when using only 1% of the training/tuning data.

7.4.5 Location Similarity

In this section, we qualitatively evaluate the nature of the vectors generated by the

SPATE model. Figure 7.11 and Figure 7.12 show the similarity maps of a number of

selected locations in July and January, respectively. The selected locations include the

cities of London, Dublin and Hull, the sparsely populated but popular tourist areas of

Snowdonia and Skye, which are mountainous, and the tourist area of Roseland Heritage

Coast which is coastal and scenic, non-intensive agricultural land with small villages.

The similarity has been measured according to the Euclidean distance between the

vector representation of the cell, which the considered location belongs to and the

other cells using 300 vector dimensions.

As a general observation, in all cases, the maps do succeed in highlighting regions that

are very similar in several respects to the respective selected location. Thus London

and Dublin are both similar to other major urban conurbations such as Birmingham,

Manchester, Glasgow, Newcastle upon Tyne, Bristol, Cardiff and Belfast. They are

least similar to sparsely populated, mountainous rural areas such as the Highlands of

Scotland and, in the case of London, the west of Ireland. Note that Dublin, the capital

of Ireland is more similar to the rural west of Ireland, to which it is culturally related,

than is London, just as London, the capital of England, is more similar, than is Dublin,

to the geographically much closer rural areas of East Anglia in England. This latter

distinction can be attributed to the general vocabulary of Flickr which is more similar,

in references to places and activities, between regionally adjacent places. Hull is an

industrial seaport and city. Similar locations in Summer and Winter are other commer-

cial and industrial coastal locations such as Liverpool, Newcastle upon Tyne, Bristol,

Cardiff and Southampton, along with other relatively highly populated industrial in-
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Table 7.3: Results for predicting the monthly average climate features.
1% 10 % 100 %

MAE ρ MAE ρ MAE ρ
Pr

ec
ip

ita
tio

n

Structured 31.492 0.509 26.758 0.683 22.354 0.742

Flickr-noKDE 32.214 0.125 31.724 0.202 30.808 0.268

Flickr-1BW 28.750 0.538 23.492 0.697 22.865 0.725

Flickr 28.240 0.549 23.601 0.698 22.562 0.741

Structured + Flickr 27.385 0.562 22.999 0.711 20.780 0.773

SPATE 24.509 0.669 22.971 0.714 21.402 0.767

So
la

rR
ad

ia
tio

n

Structured 4867.2 0.776 2476.0 0.895 1083.1 0.947

Flickr-noKDE 5266.1 0.333 4603.9 0.386 4440.6 0.419

Flickr-1BW 2434.5 0.829 1621.6 0.895 1534.4 0.914

Flickr 2359.4 0.841 1575.9 0.901 1480.3 0.928

Structured + Flickr 2045.2 0.884 1076.4 0.950 936.5 0.973

SPATE 1415.3 0.907 1041.4 0.955 1030.6 0.960

W
in

d
Sp

ee
d

Structured 1.072 0.246 0.956 0.429 0.901 0.492

Flickr-noKDE 1.081 0.082 1.070 0.130 1.063 0.170

Flickr-1BW 1.099 0.217 0.963 0.418 0.897 0.493

Flickr 1.084 0.251 0.959 0.421 0.874 0.512

Structured + Flickr 1.001 0.347 0.938 0.456 0.873 0.522

SPATE 0.953 0.442 0.930 0.467 0.848 0.523

W
at

er
V

ap
Pr

es
s.

Structured 0.193 0.586 0.154 0.699 0.126 0.760

Flickr-noKDE 0.234 0.110 0.226 0.250 0.225 0.279

Flickr-1BW 0.187 0.607 0.155 0.698 0.136 0.748

Flickr 0.186 0.612 0.152 0.707 0.134 0.752

Structured + Flickr 0.176 0.661 0.143 0.738 0.126 0.777

SPATE 0.135 0.752 0.122 0.771 0.119 0.779

Te
m

pe
ra

tu
re

Structured 2.060 0.826 1.063 0.929 0.837 0.953

Flickr-noKDE 3.415 0.228 3.142 0.350 2.979 0.397

Flickr-1BW 1.653 0.849 1.372 0.888 1.074 0.919

Flickr 1.636 0.845 1.306 0.891 1.034 0.931

Structured + Flickr 1.302 0.907 1.054 0.932 0.823 0.961

SPATE 1.164 0.920 1.010 0.939 0.935 0.946
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(a) Structured data

(b) Flickr data

(c) Structured + Flickr data

(d) SPATE

(e) Ground truth data

Figure 7.8: Prediction of the seasonal precipitation across the UK and Ireland

using 1% of the data for training/tuning..
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Table 7.4: Mean and Standard deviation of the monthly average climate data.
Mean STDEV

Precipitation (mm) 94.750 44.037

Solar Radiation (kJ m−2day−1) 9243.9 5847.7

Wind Speed (m s−1) 4.750 1.454

Water Vapor Press (kPa) 0.897 0.302

Temperature (◦C) 9.021 3.970

(a) Mean absolute error

(b) Spearman ρ

Figure 7.9: The monthly prediction results of precipitation.
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Figure 7.10: The monthly average value of predicting the amount of precipita-

tion for location coordinate (latitude= 55.26469626 and longitude= -4.784080876)

over the testing months. April, July, October, November, and December are not

shown in the figure because the corresponding cells are in the training set for that

location.

land regions such as Birmingham, Leeds and Manchester. It is most different from the

west of Ireland and the highlands of Scotland, which are mountainous regions with low

population and pastoral agriculture.

Differences between summer and winter are much less marked than the differences

between regions at the same times of the year, particularly for the cities. However,

an example of a seasonal city difference can be observed for London, which is more

different in the summer (July) from relatively remote rural areas such as parts of Wales

and Cornwall. In the latter regions (Wales and Cornwall) there might be higher levels of

observations in Summer of the natural environment and outdoor leisure activities when

there are more tourists than in winter. The nature of different types of tourist activity

might also explain the pronounced differences in summer between the mountainous

but popular tourist area of Snowdonia and the also popular coastal tourism areas of

south-west Ireland and south-east England. The Isle of Skye, while generally similar in

summer and winter to other relatively low populated rural areas, has a more significant
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(a) London (b) Dublin

(c) Snowdonia (d) Skye

(e) Port of Hull (f) The Roseland Heritage Coast

Figure 7.11: Location’s similarity maps in July.
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(a) London (b) Dublin

(c) Snowdonia (d) Skye

(e) Port of Hull (f) The Roseland Heritage Coast

Figure 7.12: Location’s similarity maps in January
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difference from the south-east of England in winter than in summer. Speculatively,

this might reflect the fact that, in winter, Skye with its low indigenous population and

much lower levels of tourism (in winter) will have relatively low levels of contribution

to social media than the more populated areas of south-east England.

7.5 Summary

In this chapter, we have proposed a novel model for learning vector space embeddings

of spatiotemporal entities which is able to integrate structured environmental inform-

ation and textual information from Flickr tags. Furthermore, to handle the problem

of Flickr data sparsity, we presented a method based on kernel density estimation to

smooth the distribution of Flickr tags over space and time. For evaluation, we have

considered two experimental tasks. The first experiment aimed to predict the monthly

distribution of species across the UK and Ireland, using observations from the National

Biodiversity Network Atlas as ground truth. In the second experiment, we looked at

predicting five climate-related features.

The experimental results show that smoothing the distribution of Flickr tags leads to

substantial improvements in comparison with the non-smoothed version. Moreover,

combining Flickr tags with structured data consistently outperformed using them sep-

arately. This strongly suggests that Flickr can be a valuable supplement to more tra-

ditional datasets. Notably, our proposed spatiotemporal embeddings (SPATE) model

provides an efficient integration of Flickr tags with structured information that outper-

forms all the considered baselines, especially when we considered very small training

datasets.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

This final chapter provides a summary of the research conducted in the thesis. First,

it relates the contributions to the thesis hypothesis and summarises the main findings.

Subsequently, we address each of the considered research questions. It ends by high-

lighting some possible directions for future work.

8.2 Thesis Summary and Contributions

The main point of departure for this thesis was the observation that with the popular-

ity of social media, a large amount of user-generated textual data that is grounded in

time and space has become available. In particular, the photo-sharing platform Flickr

hosts more than 10 billion photographs1, most of which are associated with short tex-

tual descriptions in the form of tags to describe what is depicted in the photograph. In

addition, the time at which these photographs were taken and their geographical co-

ordinates are available as meta-data for many photographs. The tags associated with

such georeferenced photographs often describe the location where they were taken,

and Flickr can thus be regarded as a source of environmental information. Several

1http://expandedramblings.com/index.php/flickr-stats

http://expandedramblings.com/index.php/flickr-stats
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previous works have shown the potential of Flickr tags for characterising the environ-

ment, which can complement more traditional sources. However, most of these studies

are based on manual analysis, with little automated exploitation of the associated tags

[92, 30]. This motivates us to automate methods that can utilise Flickr as an additional

source of environmental information.

The research hypothesis for this thesis was presented in Chapter 1. To remind the

reader, the hypothesis is: “Social media can be used as a valuable source of ecological

information. In particular, we can use the meta-data associated with the photographs on

the photo-sharing platform Flickr as a complementary source to the publicly available

scientific datasets in order to predict spatially and temporally grounded information

about the natural environment. This meta-data allows us to improve the prediction of

features such as the scenicness of a place, species distribution, land cover categories,

and several climate-related features”. We have developed several methods to test this

hypothesis to the point where it is possible to say that it is true. In fact, all the research

presented in this thesis, mainly Chapters 4, 5, 6, and 7, supports this hypothesis.

After summarising the related work in Chapter 2 and introducing the considered data-

sets and preprocessing strategies in Chapter 3, Chapter 4 presented a new method that

uses georeferenced Flickr tags for modelling locations and predicting environmental

features. This method represents each location as a concatenation of a bag-of-words

representation derived from Flickr and a feature vector encoding the numerical and

categorical features obtained from the structured datasets. The main aim was to com-

pare the predictive power of Flickr tags with that of structured environmental data from

more traditional sources for the task of predicting environmental phenomena. To this

end, we have considered four different evaluation tasks. The first experiment aimed

to predict the scenicness of a place, as assessed subjectively by humans on the Scen-

icOrNot website. In the second experiment, we focused on modelling the distribution

of species across Europe, using observations from the Natura 2000 dataset as ground

truth. The third experiment consisted of predicting CORINE land cover categories.
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Finally, we looked at predicting five climate-related properties. We have found that

combining Flickr tags with available environmental data substantially improves the

predictions. This indicates that Flickr can be considered as a complementary source of

ecological information. Furthermore, in Section 4.4 of the same chapter, we presented

a method for mapping the location of wildlife species occurrence using Flickr tags. We

have shown that while a method based simply on the presence or absence of the spe-

cies name provides good precision, higher recall with similar precision can be achieved

with a meta-classifier that combines the presence-absence data with predictors based

on all the tags.

In Chapter 5, we proposed a novel collective prediction model, which takes advantage

of the fact that most environmental features are strongly spatially autocorrelated. For

example, climate features typically do not vary much between places that are just a

few kilometres apart. While this indicates that geographic distance should play a sig-

nificant role in determining neighbourhoods, we found that substantial gains can be

made by considering Flickr and traditional data. In this way, our model essentially

uses Flickr tags to improve how known measurements, as well as predictions, of a

given environmental feature are interpolated.

To improve the way of combining Flickr tags with structured environmental features,

Chapter 6 developed a novel model, named EGEL (Embedding GEographic Loca-

tions). This model integrates both Flickr and environmental data into low-dimensional

vector space embeddings. We found that this approach led to more accurate predic-

tions than the previous approach from Chapter 4 that concatenated the bag-of-words

data with the structured data.

Following on from that approach, in Chapter 7 we considered the SPATE (SPAtioTem-

poral Embeddings) model. In particular, SPATE learns a vector space embedding for

each geographic region and each month of the year. Besides the added consideration

of time, we also introduced a new smoothing method to deal with the sparsity of Flickr

tags. This was motivated by the fact that when fine-grained regions are used, and data
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may be sparse, the number of times that a tag is used in a particular region and month

is not a reliable indicator by itself of the relevance of that tag. For evaluation, we have

considered two experimental tasks. The first experiment aimed to predict the monthly

distribution of species across the UK and Ireland, using observations from the National

Biodiversity Network Atlas as ground truth. In the second experiment, we looked at

predicting five climate-related features. The experimental results show that smoothing

the distribution of Flickr tags leads to substantial improvements in comparison with the

non-smoothed version. Furthermore, combining Flickr tags with structured data con-

sistently outperformed using them separately, especially when our embedding model

is used as the considered representation.

In conclusion, the experimental results obtained from this thesis support our hypo-

thesis. Flickr tags have been used successfully for (a) modelling geographic locations,

(b) building neighbourhood structure, and (c) spatiotemporal modelling. This thesis

proposed the use of user-generated content as a rich source of information to identify a

wide variety of environmental phenomena. We have proposed and evaluated methods

and techniques for developing algorithms that can efficiently utilise Flickr tags as an

additional source of ecological information. Overall, the research conducted in this

thesis has made significant advances in web mining and geographic information re-

trieval and analysis, particularly with respect to knowledge discovery and data mining

in social media.

8.3 Research Questions

In this section, the research questions previously identified in Section 1.2 will be dis-

cussed in relation to the research undertaken in this thesis. Each research question will

be repeated, and the relevant research will be discussed, including any related analysis,

evaluation approaches and new knowledge that has been acquired.

Research Question 1: Is it possible to extract large amounts of high-quality environ-
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mental information from Flickr, and if so, how complementary is this information to

publicly available scientific datasets?

Our main finding in Chapters 4, 5, 6, and 7 is that the combined model substantially

and consistently outperformed the model that only relied on structured data sources.

This strongly suggests that Flickr can be valuable as a supplement to more traditional

datasets in environmental analyses. While we have not been able to precisely identify

the nature of the information contained in Flickr tags, we found them to be consistently

helpful in a variety of different ways.

Research Question 2: How can we deal with the sparsity of Flickr tags for location

(and possibly time-dependent) representation?

To handle the problem of Flickr data sparsity, we proposed two methods. The first

method, which was presented in Chapter 4, is aimed at the representation of geographic

locations. Given that the number of tags associated with a given location can be quite

small, we applied a kind of spatial smoothing, i.e. the importance of a given tag for

a given location should not only depend on the occurrences of the tag at that location

but also on its occurrences at nearby locations. To this end, we use a formulation

in Equation 4.2 which is based on a spatially smoothed version of pointwise mutual

information. The second method, which was presented in Chapter 7, is based on kernel

density estimation to smooth the distribution of Flickr tags over space and time. This

second method is more sophisticated because the smoothing is more important in the

considered spatiotemporal setting. The experimental results show that smoothing the

distribution of Flickr tags leads to substantial improvements in comparison with the

non-smoothed version. This confirms that smoothing the distribution of Flickr tags

over space (and possibly time-dependent) is an effective way of alleviating the sparsity

of Flickr tags, especially when fine-grained regions are considered.

Research Question 3: How can we best integrate these representations with the avail-

able structured environmental data to improve the predictive power?
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To answer this question, Chapter 6 introduced a model for representing the geographic

location by combining the feature vector derived from Flickr datasets with that derived

from the numerical and categorical datasets into low dimensional vector space em-

beddings. The method has been extended in Chapter 7 for modelling spatiotemporal

regions. The experimental results obtained from both chapters prove that vector space

embeddings provide more effective integration than bag-of-words (BOW) representa-

tion.

8.4 Future Work

In this section, we discuss some of the ways in which the research in this thesis can be

extended further in future.

Identifying photographs of sightings. We can develop a classifier to identify when a

Flickr photograph tagged with the name of a particular organism actually corresponds

to a sighting. To this end, we could use Amazon Mechanical Turk (AMT) workers

to obtain an initial training set, which could then be used to obtain a much larger

amount of training data in an automated way. The classification would be based on

the tags associated with the photograph, the tags associated with other photographs

from that user, and the tags associated with other photographs near the corresponding

location. We could then consider the use of visual features to improve the classification

of borderline cases. Relevant instances could be obtained by retrieving all photographs

which have been tagged with either the scientific name or a known common name for

an organism listed in, for example, the encyclopedia of life (EOL)2.

Georeferencing photographs. Only about 0.03% of Flickr photographs have coordin-

ates. Using methods developed in [118], we can accurately estimate the coordinates

for many of the remaining photographs. This would allow us to increase the number of

2http://eol.org

http://eol.org
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sighting records for a particular species or phenomena. It would also be useful to get

more photographs for learning the embedding models.

Users validation. Few of the users who tag photographs of organisms are experts,

which means that the classification we obtain from Flickr may not always be accurate.

To cope with this, we can estimate a degree of confidence we have in the classifications

we obtained, for example by putting higher confidence in users who use scientific

names.

Embedding species. We could learn a low dimensional vector space embedding for

each species. This can be done by encoding the available ecological and habitat inform-

ation about the considered species as well as all Flickr tags that occur in photographs

tagged by the species name. We can also consider the textual and structured data about

the considered species from other resources such as the encyclopedia of life. All these

features would be integrated into a low dimensional vector space embedding repres-

enting this species which can be used to predict or confirm species observation.

Integrating data sources. Flickr is just one possible source of data. Extending the

same analysis to data collected from other social media platforms such as Twitter,

Instagram, and Wikipedia may alleviate the problem of data sparsity and improve the

quality of the prediction. We could also consider additional scientific data sources, for

example, remote sensing and earth observation data. Any new dataset can be added as

an additional constraint in our embedding model.

8.5 Summary

In this thesis, we have shown that it is possible to extract scientifically useful informa-

tion from unstructured and noisy social media platforms like Flickr. We have proposed

several novel methods which have the potential to make an impact in the area of social

media mining and geographic information retrieval.
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[80] Dunja Mladenić. Feature selection for dimensionality reduction. In Interna-

tional Statistical and Optimization Perspectives Workshop" Subspace, Latent

Structure and Feature Selection", pages 84–102, 2005.



Bibliography 161

[81] Jennifer Neville and David Jensen. Iterative classification in relational data.

In Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational

Data, pages 13–20, 2000.

[82] Hwee Tou Ng, Wei Boon Goh, and Kok Leong Low. Feature selection, per-

ceptron learning, and a usability case study for text categorization. In SIGIR,

volume 97, pages 67–73, 1997.

[83] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hier-

archical representations. In Advances in Neural Information Processing Sys-

tems, pages 6341–6350, 2017.

[84] Masataka Ono, Makoto Miwa, and Yutaka Sasaki. Word embedding-based ant-

onym detection using thesauri and distributional information. In Proceedings of

the 2015 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, pages 984–989, 2015.

[85] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment

classification using machine learning techniques. In Proceedings of the ACL-02

conference on Empirical methods in natural language processing-Volume 10,

pages 79–86, 2002.

[86] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on em-

pirical methods in natural language processing, pages 1532–1543, 2014.

[87] Lawrence Phillips, Kyle Shaffer, Dustin Arendt, Nathan Hodas, and Svitlana

Volkova. Intrinsic and extrinsic evaluation of spatiotemporal text representa-

tions in twitter streams. In Proceedings of the 2nd Workshop on Representation

Learning for NLP, pages 201–210, 2017.

[88] Chad D Pierskalla, Jinyang Deng, and Jason M Siniscalchi. Examining the

product and process of scenic beauty evaluations using moment-to-moment data



162 Bibliography

and GIS: The case of Savannah, GA. Urban Forestry & Urban Greening,

19:212–222, 2016.

[89] Lin Qiu, Yong Cao, Zaiqing Nie, Yong Yu, and Yong Rui. Learning word rep-

resentation considering proximity and ambiguity. In Twenty-eighth AAAI con-

ference on artificial intelligence, pages 1572–1578, 2014.

[90] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. The shortest path

to happiness: Recommending beautiful, quiet, and happy routes in the city. In

Proceedings of the 25th ACM conference on Hypertext and social media, pages

116–125, 2014.

[91] Tye Rattenbury, Nathaniel Good, and Mor Naaman. Towards automatic extrac-

tion of event and place semantics from flickr tags. In Proceedings of the 30th

annual international ACM SIGIR conference on Research and development in

information retrieval, pages 103–110, 2007.

[92] Daniel R Richards and Daniel A Friess. A rapid indicator of cultural ecosystem

service usage at a fine spatial scale: content analysis of social media photo-

graphs. Ecological Indicators, 53:187–195, 2015.

[93] Sascha Rothe and Hinrich Schütze. Word embedding calculus in meaningful

ultradense subspaces. In Proceedings of the 54th Annual Meeting of the Associ-

ation for Computational Linguistics (Volume 2: Short Papers), pages 512–517,

2016.

[94] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited, 2016.

[95] Marzieh Saeidi, Sebastian Riedel, and Licia Capra. Lower dimensional rep-

resentations of city neighbourhoods. In Workshops at the Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.



Bibliography 163

[96] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twit-

ter users: real-time event detection by social sensors. In Proceedings of the 19th

international conference on World wide web, pages 851–860, 2010.

[97] Gerard Salton and Christopher Buckley. Term-weighting approaches in auto-

matic text retrieval. Information processing & management, 24(5):513–523,

1988.

[98] Gerard Salton and Michael J McGill. Introduction to modern information re-

trieval. McGraw-Hill, Inc., 1986.

[99] Kl Saravanan and S Sasithra. Review on classification based on artificial neural

networks. International Journal of Ambient Systems and Applications (IJASA),

2(4):11–18, 2014.

[100] Uta Schirpke, Erich Tasser, and Ulrike Tappeiner. Predicting scenic beauty of

mountain regions. Landscape and Urban Planning, 111:1–12, 2013.

[101] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Support Vector Ma-

chine Applications in Computational Biology. 2004.

[102] D Erran Seaman and Roger A Powell. An evaluation of the accuracy of kernel

density estimators for home range analysis. Ecology, 77(7):2075–2085, 1996.

[103] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

computing surveys (CSUR), 34(1):1–47, 2002.

[104] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI magazine,

29(3):93, 2008.

[105] Pavel Serdyukov, Vanessa Murdock, and Roelof Van Zwol. Placing flickr photos

on a map. In Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval, pages 484–491, 2009.



164 Bibliography

[106] Gavin Shaddick and James V Zidek. Spatio-temporal methods in environmental

epidemiology. 2015.

[107] S Andrew Sheppard, Andrea Wiggins, and Loren Terveen. Capturing quality:

retaining provenance for curated volunteer monitoring data. In Proceedings of

the 17th ACM conference on Computer supported cooperative work & social

computing, pages 1234–1245, 2014.

[108] B. W. Silverman. Density Estimation for Statistics and Data Analysis. 1986.

[109] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open

multilingual graph of general knowledge. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, pages 4444–4451, 2017.

[110] B Stadler, R Purves, and M Tomko. Exploring the relationship between land

cover and subjective evaluation of scenic beauty through user generated content.

In Proceedings of the 25th International Cartographic Conference, 2011.

[111] Stefan Steiniger, M Ebrahim Poorazizi, and Andrew JS Hunter. Planning with

citizens: Implementation of an e-planning platform and analysis of research

needs. Urban Planning, 1(2):46–64, 2016.

[112] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learn-

ing sentiment-specific word embedding for twitter sentiment classification. In

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 1555–1565, 2014.

[113] Charles C Taylor. Automatic bandwidth selection for circular density estimation.

Computational Statistics & Data Analysis, 52(7):3493–3500, 2008.

[114] Patrizia Tenerelli, Urška Demšar, and Sandra Luque. Crowdsourcing indicators

for cultural ecosystem services: a geographically weighted approach for moun-

tain landscapes. Ecological Indicators, 64:237–248, 2016.



Bibliography 165

[115] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guil-

laume Bouchard. Complex embeddings for simple link prediction. In Inter-

national Conference on Machine Learning, pages 2071–2080, 2016.

[116] George Valkanas and Dimitrios Gunopulos. Event detection from social media

data. IEEE Data Eng. Bull., 36(3):51–58, 2013.

[117] Steven Van Canneyt, Steven Schockaert, and Bart Dhoedt. Discovering and

characterizing places of interest using flickr and twitter. International Journal

on Semantic Web and Information Systems (IJSWIS), 9(3):77–104, 2013.

[118] Olivier Van Laere, Steven Schockaert, and Bart Dhoedt. Finding locations of

flickr resources using language models and similarity search. In Proceedings of

the 1st ACM International Conference on Multimedia Retrieval, page 48. ACM,

2011.

[119] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings

of images and language. arXiv preprint arXiv:1511.06361, 2015.

[120] Jingya Wang, Mohammed Korayem, and David Crandall. Observing the nat-

ural world with flickr. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, pages 452–459, 2013.

[121] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang.

Community preserving network embedding. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, pages 203–209, 2017.

[122] Xiaofeng Wang, Donald E Brown, and Matthew S Gerber. Spatio-temporal

modeling of criminal incidents using geographic, demographic, and twitter-

derived information. In 2012 IEEE International Conference on Intelligence

and Security Informatics, pages 36–41, 2012.



166 Bibliography

[123] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annota-

tion: Learning to rank with joint word-image embeddings. Machine. Learning,

81(1):21–35, October 2010.

[124] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T.-Y. Liu. Rc-net: A general

framework for incorporating knowledge into word representations. In Proceed-

ings of the 23rd ACM International Conference on Conference on Information

and Knowledge Management, pages 1219–1228, 2014.

[125] Bo Yan, Krzysztof Janowicz, Gengchen Mai, and Song Gao. From itdl to

place2vec: Reasoning about place type similarity and relatedness by learning

embeddings from augmented spatial contexts. In Proceedings of the 25th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems, pages 35:1–35:10, 2017.

[126] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embed-

ding entities and relations for learning and inference in knowledge bases. 2014.

[127] Jing Yang and Carsten Eickhoff. Unsupervised learning of parsimonious

general-purpose embeddings for user and location modeling. ACM Transac-

tions on Information Systems (TOIS), 36(3):32, 2018.

[128] Yao Yao, Xia Li, Xiaoping Liu, Penghua Liu, Zhaotang Liang, Jinbao Zhang,

and Ke Mai. Sensing spatial distribution of urban land use by integrating points-

of-interest and google word2vec model. International Journal of Geographical

Information Science, 31(4):825–848, 2017.

[129] Chao Zhang, Keyang Zhang, Quan Yuan, Haoruo Peng, Yu Zheng, Tim Han-

ratty, Shaowen Wang, and Jiawei Han. Regions, periods, activities: Uncovering

urban dynamics via cross-modal representation learning. In Proceedings of the

26th International Conference on World Wide Web, pages 361–370, 2017.

[130] Chao Zhang, Keyang Zhang, Quan Yuan, Fangbo Tao, Luming Zhang, Tim

Hanratty, and Jiawei Han. React: Online multimodal embedding for recency-



Bibliography 167

aware spatiotemporal activity modeling. In Proceedings of the 40th Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 245–254, 2017.

[131] Haipeng Zhang, Mohammed Korayem, David J Crandall, and Gretchen Le-

Buhn. Mining photo-sharing websites to study ecological phenomena. In Pro-

ceedings of the 21st international conference on World Wide Web, pages 749–

758, 2012.

[132] Shenglin Zhao, Tong Zhao, Irwin King, and Michael R. Lyu. Geo-teaser: Geo-

temporal sequential embedding rank for point-of-interest recommendation. In

Proceedings of the 26th International Conference on World Wide Web Compan-

ion, pages 153–162, 2017.

[133] Yu Zheng. Tutorial on location-based social networks. In Proceedings of the

21st international conference on World wide web, WWW, volume 12, 2012.

[134] Daniel Zwillinger and Stephen Kokoska. CRC standard probability and statist-

ics tables and formulae. Crc Press, 1999.


	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Hypothesis and Research Questions
	Contributions
	Thesis Structure
	Summary

	Background and Related Work
	Introduction
	Social Media
	Social Media Mining

	Text Representation
	Term Weighting
	Term Selection

	Low Dimensional Vector Space Representation
	Vector Space Embeddings
	Embedding Spatial or Spatiotemporal Information

	Machine Learning
	Supervised Machine Learning
	Collective Prediction
	Evaluation Measures

	Summary

	Data Acquisition and Preprocessing
	Introduction
	Flickr Data
	Flickr Data Collection
	Flickr Data Preprocessing
	Exploratory Data Analysis

	Structured Scientific Data
	Ground Truth Data
	The ScenicOrNot project
	Natura2000 project
	NBN Atlas

	Summary

	Modelling Locations using Bag-Of-Words Representation
	Introduction
	Methodology
	Modelling Locations Using Flickr Tags
	Modelling Locations Using Structured Data

	Experiments
	Predicting Scenicness
	Predicting Species Distribution
	Predicting CORINE Land Cover Classes
	Predicting Climate Data

	Evaluating the Role of Species Name Tags
	Methodology and Data
	Evaluation
	Results and Discussion

	Summary

	Collective Prediction Model
	Introduction
	Collective Prediction
	Experimental Evaluation
	Experimental Settings
	Variants and Baseline Methods
	Experimental Results

	Summary

	Modelling Locations using Vector Space Embedding
	Introduction
	Embedding Geographic Location
	Tag Based Location Embedding
	Structured Environmental Data

	Experimental Evaluation
	Experimental Settings
	Variants and Baseline Methods
	Experimental Results

	Summary

	Spatiotemporal Embeddings Model
	Introduction
	Related Work: Spatiotemporal Modelling
	Methodology
	Spatiotemporal Modelling Using Flickr tags
	Spatiotemporal Modelling Using Structured Environmental Data
	Spatiotemporal Embeddings

	Experimental Evaluation
	Selecting the Optimal Bandwidth for Each Tag
	Experimental Settings
	Variants and Baseline Methods
	Experimental Results
	Location Similarity

	Summary

	Conclusions and Future Work
	Introduction
	Thesis Summary and Contributions
	Research Questions
	Future Work
	Summary

	Bibliography

