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Abstract— In this paper, we propose a deep neural net-
work that can estimate camera poses and reconstruct the
full resolution depths of the environment simultaneously using
only monocular consecutive images. In contrast to traditional
monocular visual odometry methods, which cannot estimate
scaled depths, we here demonstrate the recovery of the scale
information using a sparse depth image as a supervision signal
in the training step. In addition, based on the scaled depth,
the relative poses between consecutive images can be estimated
using the proposed deep neural network. Another novelty lies
in the deployment of view synthesis, which can synthesize a
new image of the scene from a different view (camera pose)
given an input image. The view synthesis is the core technique
used for constructing a loss function for the proposed neural
network, which requires the knowledge of the predicted depths
and relative poses, such that the proposed method couples the
visual odometry and depth prediction together. In this way,
both the estimated poses and the predicted depths from the
neural network are scaled using the sparse depth image as the
supervision signal during training. The experimental results on
the KITTI dataset show competitive performance of our method
to handle challenging environments.

Index Terms— Visual odometry, depth prediction, deep learn-
ing, view synthesis

I. INTRODUCTION

Visual odometry (VO) is a key technique for estimating
camera poses through analyzing sequential camera images
and has been used in a broad range of real-world applications
of localization, mapping, and navigation for autonomous
driving, robots, advanced driver assistance systems and aug-
mented reality. Geometric VO estimates camera poses by
minimizing the projection error of the three-dimensional
(3D) points to consecutive image planes or minimizing the
gradients of pixel intensities across consecutive images [1].
Previous works show that geometric VO has achieved great
success in structured and controlled environments. However,
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Fig. 1: The architecture of our system comprises the pose
estimation convolution neural network (Pose CNN) and the
depth prediction convolution neural network (Depth CNN).
The input of the Depth CNN is the target image of current
view, whereas the input of the Pose CNN consists of three
consecutive images, with the target image located in the
middle of the image sequence. The output of the Depth CNN
is a per-pixel disparity map (inverse of predicted depth) of
the target image, whereas the output of the Pose CNN is
the relative pose between consecutive images. To recover the
scale information of predicted depth and relative pose, the
sparse depth images are used as supervision signals during
the training step.

it is sensitive to the camera parameters and, consequently, can
result in decreased performance in challenging environments,
such as low textures, motion blur, and illumination variations.

With the rapid advances of computing power and the
emergence of large-scale visual datasets, deep learning based
VO shows a great potential for enhancing the robustness in
handling challenging images due to illumination variations,
image noises, image motion blur and low textures. However,
supervised deep learning for VO would require the ground-



Fig. 2: The details of proposed neural network for testing.
The neural network can simultaneously output visual odom-
etry and depth prediction by the proposed pose network (pose
estimator) and depth network (depth estimator), whereas the
inputs of the system are consecutive monocular images. The
depth network reconstructs the depth of the target view in
full resolution based on the encoder-decoder structure. The
pose network consists of 5 stride-2 convolutions followed by
3 fully-connected layers. Due to the high non-linearity of the
rotation, we decouple the translation and the rotation with
two separate groups of fully-connected layers after the last
convolutional layer.

truth of the camera poses as the supervision data for training
that imposes a challenge to acquire accurate labels. Recently,
Zhou et al. [2] used an unsupervised learning method to
estimate the camera motion and predict the depth using
consecutive monocular images, which achieved impressive
results since the view synthesis is employed to handle
geometric constraints between the depth and relative pose.
However, scale information from monocular images cannot
be recovered from their system. Inspired by Ma et al. [3],
we attempt to recover the scale information by using sparse
depth measurements to augment the supervision data for
training the network. In this work, as shown in Fig. 1, we
propose a dual-network architecture that comprises a pose

estimation convolution neural network (Pose CNN) and a
depth prediction convolution neural network (Depth CNN).
The input of the Depth CNN is the target image of current
view, whereas the input of the Pose CNN consists of three
consecutive images, with the target image located in the
middle of the image sequence. The output of the Depth CNN
is a per-pixel disparity map (inverse of predicted depth) of
the target image, whereas the output of the Pose CNN is
the relative pose between consecutive images. To recover the
scale information of predicted depth and relative pose, the
sparse depth images are used as supervision data during the
training step.

In the work, a novel loss function is developed by fusing
the view synthesis, depth difference between sparse depth and
the predicted depth, and depth smoothness information. The
sparse depth measurements can be easily obtained through
various technologies, such as LiDARs, structured light cam-
eras (e.g. Microsoft Kinect, Xtion, and RealSense), and stereo
vision. In this paper, we generate depth maps by sparsely
sampling the laser data, and projecting these depth samples
to the image coordinates. The sparse depth map is used as
supervision data for the depth network to recover the scale
of the scene depth, and then this scale information is shared
to the pose network by view synthesis, as shown in Fig. 1.
Our main contributions are as follows:

• The proposed neural network can output scaled full res-
olution depth of the target view using monocular images
as input. The novelty in solving the scale recovery of the
depth is the employment of corresponding sparse depth
images for supervised training of the proposed neural
network.

• The visual odometry with the absolute scale can be
estimated by sharing scale information with the depth
neural network using view synthesis. Meanwhile, the
view synthesis also improves the accuracy of dense
depth reconstruction.

Finally, we evaluate the proposed method on the public
KITTI dataset [4]. The experiment results show the effective-
ness of our method for simultaneous depth reconstruction and
visual odometry estimation compared to some state-of-the-art
methods.

II. METHODOLOGY
In this section, we introduce the proposed neural network

architecture of our system, which mainly includes the pose
network for visual odometry and the depth network for full
resolution depth prediction. We also present the sparse depth
generation method and the novel loss functions by combining
the view synthesis and the supervision sparse depth for
training.

A. Network Architecture
As shown in Fig. 2, the proposed dual-network architecture

comprises two parallel networks for the estimation of depths



TABLE I: Comparison of VO results on KITTI datasets

seq. Ours Liu et al. [5] UnDeepVO[6]
Trans[%] Rot[deg/m] Trans[%] Rot[deg/m] Trans[%] Rot[deg/m]

00 3.90 0.0171 5.14 0.0213 4.14 0.0192
02 5.52 0.0240 4.88 0.0226 5.58 0.0244
05 3.12 0.0152 3.84 0.0129 3.40 0.0150
07 2.40 0.0211 3.80 0.0171 3.15 0.0248
08 5.22 0.0189 2.95 0.0158 4.08 0.0179

mean 4.03 0.0192 4.122 0.0179 4.07 0.0202

and camera poses respectively. We aim to use monocular
images as inputs to the proposed neural network, while
can also recover the scale of the reconstructed depths and
estimated camera poses, as a result of the deployment of
the sparse depth measurements as supervision signals to
train the network. The pose network consists of 5 stride-2
convolution layers followed by 3 fully-connected layers. The
pose network takes three consecutive frames of unlabelled
monocular images as input, and outputs camera relative poses
between these frames. The middle frame of the nearby views
is called the target view, and other two frames are source
views. Similar to [6], we decouple the translation and the
rotation with two separate groups of fully-connected layers
after the last convolutional layer. The reason is that rotations
have high non-linearity, which means it is usually difficult to
train rotations compared to translations.

The depth network reconstructs the scene depth based on
the encoder-decoder structure. The target view is the input of
the depth network, and a per-pixel disparity map (inverse of
the depth) is the output.

B. Sparse Depth Generation

Sparse depth measurements can be obtained using a low-
resolution depth sensor, e.g., LiDAR, and can also be inferred
from view differences in a pair of stereo images. In this paper,
the sparse depth measurements are derived from a LiDAR
device.

A homogeneous 3D spatial point coordinate Xs can be
acquired from the LiDAR measurement that can be converted
to the homogeneous coordinate in the camera coordinate
system as:

Xc = TcXs, (1)

where Tc denotes the 4 × 4 transformation matrix from the
laser coordinate system to the camera coordinate system,
which includes a rotation matrix and a translation vector. The
parameters of the transformation matrix Tc can be calibrated
after the laser and camera are set up [4]. Then, the non-
homogeneous version of Xc is projected onto the camera
imaging plane based on the pinhole camera model to get the
homogeneous pixel coordinates u:

u = KXc, (2)

K =



fx 0 cx
0 fy cy
0 0 1


 , (3)

where K indicates the camera intrinsic matrix, fx and fy
denote the focal lengths of the camera on the x-axis and y-
axis respectively, (cx, cy) is the principal point, the center po-
sition of the aperture of the camera. Applying this operation
for each spatial point coordinate acquired by LiDAR, we can
get a pixel set U on the depth image D∗ which includes pixel
coordinates u with real depth measurements from LiDARs.
For these pixels that do not have depth measurement, we set
them as zero on the depth image D∗.

To generate a sparse depth map, we use a Bernoulli
probability p = m

n [3], where m is the target number of
sampled depth pixels, and n is the total number of valid
depth pixels in set D∗. For each pixel (i, j), we have

D(i, j) =

�
D∗(i, j), (i, j) ∈ U and w < p

0, otherwise
(4)

where w is a random number in the interval [0, 1]. Applying
this operation for each pixel, we generate a sparse depth map
D. In this way, we can create more training data given a depth
image from LiDAR.

C. Loss Function

Our loss function for training the neural network includes
three parts: view synthesis loss, depth loss and depth smooth-
ness loss. The view synthesis is to generate a different view
image of current image using the predicted relative pose. The
generated image is then compared to the real image, such that
we can define a loss function to minimize their difference.
The main steps of view synthesis are as follows: we can
project the pixel pt in the target image It to p̃s in the source
image Is using the estimated relative pose transformation
T̂ , predicted depth value D̂(pt) and the internal camera
parameter matrix K as:

p̃s = KT̂D̂(pt)K
−1pt (5)

The pixel value of p̃s on the source image can be found
by using bilinear interpolation. Therefore, a warped source
image Ĩs in the target view can be obtained by performing



the projection operation on each pixel in the target image It.
Finally, we adopt a robust image similarity measurement [7]
for the photometric loss:

Lv = α
1− SSIM(It, Ĩs)

2
+ (1− α)

���It − Ĩs

��� (6)

where SSIM defined in [8] denotes the structural similarity
index with the weight α. However, using the loss function
Lv , we cannot get the scale of the dense depth map and
the relative pose. To solve such a problem, we propose to
use a sparse depth map as a supervision signal for the depth
network. Let p denote a pixel coordinate in the generated
sparse depth image d, and D̂ denote the predicted depth
image. The depth loss Ldepth can be calculated by

Ldepth =
�

p

���D̂(p)− d(p)
��� , d(p) > 0 (7)

In addition, we also employ an edge-aware depth smoothness
loss Lsmooth [2] weighted by image gradients to our neural
network as

Lsmooth =
�

p

����D̂(p)
��� · (e−|�I(p)|)T (8)

where � is the vector differential operator, and T denotes
the transpose operator. Therefore, the final loss function is

Lfinal = Lv + λdLdepth + λsLsmooth (9)

where λd and λs are the weights of the depth loss and
smoothness loss respectively.

III. EXPERIMENTS

In this section, we first introduce the implementation
details of the training process, followed by the performance
evaluation of our system in comparison with some state-of-
the-art algorithms.

We implement the proposed method using TensorFlow
[9], which is trained on a PC with an Intel(R) E5-1650 v3
@3.50GHz CPU and a TITAN X (Pascal) GPUs with 12GB
of memory. To ensure a fair performance comparison, we
use the same training data from the KITTI odometry dataset
[4] presented by Zhou et al. [2], Li et al. [6] and Liu et al.
[5]. The KITTI odometry dataset includes driving sequences
with ground truth data obtained from the IMU/GPS readings.
Because LiDAR has no measurement for the upper area of
the image, we only use the lower part of the image, which
results in a fixed crop size of 228×1226. We generate a sparse
depth image by projecting depth samples of the LiDAR
measurements onto image plane as described in Section II-
B. During training, the sparse depth images with real depth
values are used as the supervision signals. Finally, we resize
the RGB images and sparse depth images to 96×416 using a
bilinear interpolation method for training our network. Since
the size of the KITTI odometry dataset is relatively limited,

two online data augmentation techniques are used to enlarge
the training dataset, as follows:

• Scaling: The input monocular and depth images are
scaled by a random number s ∈ [1, 1.15], and depths
are divided by s.

• Cropping: Randomly crop the color and depth images
to meet the size requirement of the neural network.

We then input the consecutive monocular images with their
sparse depth images into the pose estimation network and the
depth prediction network respectively, and train the network
from scratch. We here do not use any ground truth data of
relative poses for training. In the experimental stage, we set
the weights of the loss functions as α = 0.85,λs = 0.5/(l),
λd = 0.6, where l corresponds to the downsampling scale
of the predicted depth image. The Adam optimizer [10] is
used to train the network for up to 300K iterations with
learning rate of 0.0002 and mini-batch size of 4. We follow
the recommended parameters of the Adam optimizer with
β1 = 0.9 and β2 = 0.999. In addition, we use a batch
normalization [11] method for all the layers except the output
layer.

A. Performance Evaluation of Pose Estimation on the KITTI
Odometry Dataset

For testing, our neural network takes consecutive monoc-
ular images as input, and directly generates scaled poses.
To demonstrate the performance of our method, we compare
our pose estimator with the work of Liu [5] and UnDeepVO
[6] The method proposed by Liu, UNDeepVO are based on
unsupervised deep learning, while our method is based on
the semi-supervised deep learning.

We use the evaluation method suggested in [4] to compare
the performance of various methods as shown in Table I,
where the average translational root mean square error drift
(in percentage, %) and the average rotational root mean
square error drift (in deg/m) are used as the basic metrics.
It is clear that our pose estimator has better performance
than the SfMLearner. In addition, our pose estimation has
comparable performance with UnDeepVo for the monocular
inputs. It is be noted that we only use 600 sparse depth
samples during training. As the number of samples increases,
the performance of our system can be further improved.
Compared to the work of Liu et al. [5], we require only
external sparse depth information, while they require accurate
dense depth measurements. However, from the evaluation
results, our method has achieved comparable performance
with Liu’s work, even if only a few depth samples are
used for our training step. This is attributed to the fact
that the depth reconstruction module and visual odometry
module are mutually optimized by view synthesis. For visual
comparison, we also plot the trajectories of the proposed
method compared to VISO M and SfmLearner.



TABLE II: Comparison of depth prediction on KITTI datasets

Method Error metric Accuracy metric
Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Zhou et al. [2] 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Li et al. [6] 0.183 1.730 6.57 0.268 - - -
Ma et al. [3] 0.073 - 3.378 - 0.935 0.976 0.989
Ours 0.069 0.169 1.240 0.116 0.940 0.981 0.994

Fig. 3: Our depth prediction results on the KITTI dataset. The pictures in the left column are raw RGB images, and the
pictures in the right column are the estimated dense depth images.

B. Performance Evaluation of Depth Estimation on the
KITTI Dataset

We evaluate our depth predictor on the KITTI dataset as in
[12]. During the testing, the network takes only a monocular
image as input and directly generates a scaled scene dense
depth image. Fig. 3 shows the depth reconstruction results
of our model in several scenarios, where the depths of thin
structures are successfully predicted, such as poles, signs, etc.
The qualitative comparisons of depth estimation methods are
summarized in Table II, where K denotes the KITTI dataset
and CS denotes the Cityscapes dataset [13]. It is clear that
our depth estimation method has significant improvement
compared to the works proposed by Zhou et al. [2], Li
et al. [6], Ma et al. [3]. For instance, we use 600 depth
samples can reduce the RMSE (Root Mean Square Error)
from 6.86 meters to 1.24 meters, and boosts δ1 from 67.8% to
94.0% compared to SfmLearner proposed by Zhou et al [2].
UNDeepVO proposed by Li et al. [6] cannot achieve similar
performance to our depth estimator, because of the inherent
limitation of binocular depth estimation, i.e., maximum depth
is limited by the baseline and the focal length. Sparse-to-
Dense propsoed by Ma et al. [3] uses RGBd, where d
denotes the sparse depth map, images for training and testing,
whereas our method only takes monocular images as inputs
for testing.

IV. CONCLUSION

In this paper, we propose a simultaneous monocular visual
odometry and depth prediction method using semi-supervised
deep learning. We use a sparse depth map as a supervision

signal for training the depth prediction network to recover
the scale of the dense depth map, which is then shared
to the pose estimation network by the view synthesis. Ex-
tensive experiments have been carried out on the prevalent
KITTI dataset. The proposed neural network demonstrates
competitive performance, outperforming several state-of-the-
art algorithms in both scaled dense depth reconstruction and
ego-motion estimation using monocular images. Considering
the benefit of directly estimating scaled depths and camera
poses, we believe the work presented in this paper will be of
interest to further advance the technologies in autonomous
vehicles, 3D reconstruction, robot navigation, and so on.
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