
Multi-level Anomaly Detection in Industrial Control
Systems via Package Signatures and LSTM networks

Cheng Feng, Tingting Li and Deeph Chana
Institute for Security Science and Technology

Imperial College London
London, United Kingdom

Email: {c.feng, tingting.li, d.chana}@imperial.ac.uk

Abstract—We outline an anomaly detection method for indus-
trial control systems (ICS) that combines the analysis of network
package contents that are transacted between ICS nodes and
their time-series structure. Specifically, we take advantage of
the predictable and regular nature of communication patterns
that exist between so-called field devices in ICS networks. By
observing a system for a period of time without the presence of
anomalies we develop a base-line signature database for general
packages. A Bloom filter is used to store the signature database
which is then used for package content level anomaly detection.
Furthermore, we approach time-series anomaly detection by
proposing a stacked Long Short Term Memory (LSTM) network-
based softmax classifier which learns to predict the most likely
package signatures that are likely to occur given previously
seen package traffic. Finally, by the inspection of a real dataset
created from a gas pipeline SCADA system, we show that
an anomaly detection scheme combining both approaches can
achieve higher performance compared to various current state-
of-the-art techniques.

Keywords—industrial control systems; anomaly detection; sig-
nature database; long short term memory networks; Bloom filters;

I. INTRODUCTION

Composed of combinations of hardware, software, net-
works and operators, industrial control systems (ICS) orches-
trate and control the myriad of functions needed to execute
complex tasks such as the delivery of utility services and
the execution of intricate and disparate manufacturing pro-
cesses. The range of ICS application scenarios include water
treatment[1], gas pipelines [2], power plants [3] and indus-
trial manufacture [4]. Depending on implementation specifics,
ICS instances are typically described as combinations of
supervisory control and data acquisition (SCADA) systems,
distributed control systems (DCS), and programmable logic
controllers (PLC).

Traditional ICS are not networked and hence are considered
to be well protected by so-called “air-gapped” separation. To
further promote efficient remote-control and higher throughput,
smart ICT technologies have been widely merged into ICS
where most of components are old, originally insecure-by-
design and hard to upgrade. Such evolution of ICS builds
up a connection between physical and cyber worlds, but also
makes them vulnerable to cyber attacks. NIST summarises the
main security issues posed to modern ICS in [5], including
insecure-by-design communication protocols [6], insecure net-
work segregation and access controls [7], the lack of ICS-
specific firewalls and anomaly detection systems [8].

Cyber attacks against ICS would lead to disruption to
controlling those critical infrastructures and result in harmful
physical damage to plants, environment and humans [9].
According to ICS-CERT, the ICS-targeted attacks have been
continuously increasing in the past few years. There were 73
incidents reported to ICS-CERT by trusted industrial partners
in 2013 [10], then 245 reported in 2014 [11] and 295 incidents
in 2015 [12].

The typical architecture of modern ICS roughly consists
of three parts : (i) a Corporate Network provides business-
to-business and business-to-customer services, which is often
directly exposed to the Internet, with VPN access, email and
web servers. (ii) a Control Network receives and processes data
from field devices, and responses with proper control com-
mands. Human Machine Interfaces (HMIs), control worksta-
tions, alarm and anomaly detection systems are often situated
in this zone. (iii) a Field Network that is the fusion of PLCs,
actuators and sensors for measurement data transmission and
the direct control of industrial processes. Cyber attacks against
ICS often start with gaining access to the Corporate Network
via social engineering based methods, then propagate virus
across the whole network in search of valuable targets (e.g.
assets in Control Network with direct access to field devices),
and finally sabotage control programs running on field devices.
The first widely documented ICS cyber attack was Stuxnet,
disclosed in 2011 [13]. Here the virus was introduced by a
removal drive, and eventually managed to change the program
controlling field devices. Two more recent examples are the
security breach to a German steel mill initiated by spear-
phishing emails in 2014 [14], and the attack leading to massive
outage for Ukrainian power companies in 2015 [15].

Intrusion (or anomaly) detection systems (IDS) are able
to monitor the network activities from data logs or network
traffic, and effectively generate alarms of potential or attempted
intrusions. Although this topic has been extensively studied in
conventional IT security community, limited effort has been
conducted to develop ICS-specific anomaly detection systems.
Accurate anomaly detection systems are able to further fa-
cilitate fast accident-response mechanism, and also initiate the
interaction between security and control practitioners such that
potential security breaches can be found more quickly and
accurately. Therefore, there is an urgent need of effective ICS-
specific anomaly detection systems.

Anomaly detection in ICS is a challenging problem for the
following reasons: (i) ICS-specific communication protocols
(e.g. DNP3, Modbus) are not considered by conventional

IDS. (ii) the lack of real-world ICS datasets for training and
evaluation of anomaly detectors. (iii) anomaly detection for
ICS cannot solely depend on network protocol information;
additional information related to physical process control also
need to be examined. This significantly increases the dimen-
sionality and complexity of data samples. (iv) physical process
control variables may exhibit noisy behaviours by nature,
which is likely to result in high false positive rates for anomaly
detectors and low detection rates of attacks.

ICS-specific IDS has been an active topic for several
years, and there exists some work in the area. Conventional
intrusion detection methods have been applied such as the
model-based approach [16] and the behaviours-based approach
[17]. These works specifically incorporated ICS protocols in
IDS (e.g. Modbus/DNP3 [18], IEC standards [19] [20]). A
detailed discussion about them can be found in the next
related work section. However, there are several limitations
with most existing work: (i) Most methods rely highly on
predefined models and signatures to detect anomalous be-
haviours, requiring massive human effort at the preliminary
stage. (ii) Such models and signatures are often constructed
from known attacks and hence are not capable of detecting
unknown or zero-day attacks. (iii) The existing IDS methods
are mostly tailored for specific protocols and systems, which
lack sufficient generality and flexibility to adapt to other
systems. (iv) The temporal dependencies between packages
have been least studied in the literature, which, however, is of
great help to identify advanced persistent attacks and collective
anomalies.

To address the above issues, we have developed a gen-
eralized multi-level anomaly detection framework based on
network package signatures and machine learning techniques
to enable the construction of an ICS-specific IDS with highly
reduced human input. Moreover, our framework combines both
package content level and time-series level anomaly detection.
Specifically, a signature database for normal behaviours of
network packages is first constructed by observing regular
communication patterns between field devices in a given ICS
for a certain period of time. The established signature database
is then incorporated into a Bloom filter to find anomalous net-
work packages. To address the temporal dependencies between
consecutive packages, we develop an additional time-series
anomaly detector based on an effective deep learning technique
– Long Short Term Memory (LSTM) networks [21] [22]
to learn the most likely package signatures from previously
seen network packages. With the help of the time-series
anomaly detector, our two-level anomaly detector demonstrates
highly accurate detection performance and timely detection of
anomalies.

Furthermore, most currently proposed IDS lack common
datasets for testing and evaluation, making it hard to compare
with other frameworks. We apply our framework to a public
ICS dataset [23], created from a SCADA system for a gas
pipeline, for validation, and show that it significantly outper-
forms other existing approaches, producing the state-of-the-art
detection results.

The remaining part of this paper is organized as follows.
We discuss the related work including the current state of
ICS-specific IDS, machine learning based IDS and other work
related to this paper in Section II. Then, we outline the research

problem of this paper in Section III. This is followed by the
formal introduction of the Bloom filter package content level
anomaly detector in Section IV and the explanation of the
LSTM network-based time-series level anomaly detector in
Section V. The combined framework is presented in Section
VI. We then explain the ICS dataset used in this work in
Section VII, with a series of experiments we have conducted
in Section VIII. The last section draws the conclusion and
discusses possible extensions.

II. RELATED WORK

In this section, we discuss the existing related work to
develop intrusion detection tools for ICS. Anomaly detection
has been a widely applied defensive measure for decades,
e.g. detecting anomalous behaviours of programs [24] [25]
[26], botnet detection [27] and intrusion detection in Internet
of Things [28]. Although conventional defensive measures
may be adapted and strategically deployed to protect ICS
from cyber attacks [29][30], there are several difficulties that
hinder this tactic. The survey paper [31] provides a tax-
onomy and metrics for SCADA-specific intrusion detection
and prevention systems. The authors discuss the difficulties
and specific requirements to develop SCADA-specific IDS
such as insecure-by-design components, hard real-timeliness,
limited computing resources and strict availability requirement.
Existing approaches have been categorized as knowledge-
based approaches, behavioural-based approaches and hybrid
approaches in the paper, and evaluated in terms of a set of
metrics such as degree of SCADA-specific-ness, self-security,
fallacy analysis, etc. The authors of [31] also provide open
issues and recommendations for SCADA-specific IDS. An-
other related survey paper [32] focuses on IDS developed for
the broader class of systems – Cyber-Physical Systems (CPS),
which have been classified based on two design metrics: detec-
tion technique (i.e. knowledge-based or behaviour-based) and
audit material (i.e. host-based or network-based). The paper
firstly discusses the main differences between ICT and CPS
intrusion detection mechanisms, and then compares existing
work in terms of the two aforementioned design metrics.
Particularly the authors summarise the key advantages and
disadvantages of each different type of IDS, as well as their
effectiveness when applying to CPS.

One of the earliest IDS for SCADA was proposed in
[16]. The IDS constructs models to capture normal system be-
haviours. A protocol-level model for characterizing behaviours
of Modbus TCP is developed and then encoded by Snort
rules to detect anomalous behaviours in this paper. Due to
the static topology and regular communication pattern within
process control systems, the authors claim that such a model-
based approach is feasible for control networks and has the
potential to detect unknown attacks. To complement conven-
tional blacklist-based approaches, which are highly effective
to detect well-known attack patterns, an anomaly-based IDS
is proposed in [33][17] to construct normal behaviours models
over time by correlating system events in terms of their
dependencies and occurrences. Particularly, the authors suggest
that the proposed system provides a promising basis to combat
Advanced Persistent Threat (APT) where deliberately slow-
moving attack methods are normally used. The proposed IDS
has been demonstrated in a small-scale pilot case under real-
world conditions. A similar type of attack for ICS is addressed

in [34] by introducing a sequence-aware method to detect
attacks involving a sequence of events (i.e. termed as semantic
attacks).

As emphasised by both survey papers, SCADA-specific
IDS need to incorporate SCADA-specific protocols and stan-
dards. The work presented in [19] provides an IDS specifically
for the international standard IEC 60870-5 for ICS by using a
Deep Packet Inspection technique, where signature-based rules
are implemented by Snort to identify suspicious behaviours,
with a complementary model-based mechanism for unknown
attacks. The authors in [20] propose a stateful intrusion de-
tection framework for smart grid systems, and demonstrate an
application of such framework for IEC 61850 implemented
by the open source IDS tool Suricata. The proposed method
defines a set of stateful rules which are then examined with
incoming network traffic. In addition to the IEC standards, the
paper [18] concentrates on IDS for Modbus/DNP3 specifically.
The authors suggest that network-based IDS is more suitable
for SCADA than host-based IDS as they require less resources
and seamlessly integrate with SCADA. A state-based IDS is
proposed in this paper where a virtual image (i.e. a digital
representation of the system) is setup up by predefined system
knowledge. The virtual system image keeps updated by means
of analysing network packages changing the physical states
of the system. An alert would be raised if any packet brings
the system into a critical state. The method presented in [18]
has the potential to detect unknown attacks, because the alert
would be triggered by critical state patterns rather than a
specific attack. Based on this, the authors further conduct
Critical State Analysis and State Proximity in the work [35].
Collective anomalies that are caused by a chain of seemingly
licit commands can be detected by this framework.

Recently, many machine learning techniques which can
automatically learn patterns from past examples and construct
self-evolving models for further classification, have been ap-
plied to develop anomaly-based IDS for ICS. Specifically,
these anomaly-based IDS employ available data to create nor-
mal behaviour profiles of ICS network, then detect anomalies
which are deviant with the profiles, and thus are able to detect
new attacks. For example, the paper [36] used one-class classi-
fication techniques which are the Support Vector Data Descrip-
tion (SVDD) and the Kernel Principal Component Analysis
(KPCA) for intrusion detection in SCADA systems. Statistical
Bayesian Networks were used in the work [37] to improve
the accuracy of anomaly detection for SCADA systems. The
work effectively reduced the false positive rate by combining
multiple anomaly detection mechanisms such as n-grams and
invariant induction. The authors in [38] applied common path
mining techniques for intrusion detection of power systems. A
Bloom filter based IDS for smart grid SCADA was proposed
in [39] where the regular communication patterns of SCADA
and the physical states of power systems have been leveraged
to develop a light-weight and fast IDS for SCADA. A Bloom
filter is also used in our work for a package content level
anomaly detector, but we also greatly enhance our detection
mechanism with an extra LSTM network-based time-series
level detection model to further improve the performance. To
our knowledge, this is the first time that LSTM networks have
been used for anomaly detection in ICS networks. More impor-
tantly, we also show that the combination of the Bloom filter
and the LSTM network model can significantly outperform the

existing machine learning techniques on anomaly detection for
ICS networks. Detailed performance comparison between our
model and other machine learning techniques on a gas pipeline
dataset can be found in Table IV.

III. PROBLEM STATEMENT

Anomaly detection systems for ICS are often deployed
by monitoring the network traffic between field devices such
as PLCs, actuators and sensors. Without loss of general-
ity, we represent the network packages exchanged between
field devices in an ICS network as a time series X =
{x(1),x(2), . . . ,x(n)}, where each point x(t) in the time series
is an m-dimensional vector {x(t)1 , x

(t)
2 , . . . , x

(t)
m }, whose ele-

ments correspond to m features that can be extracted from
a package between the devices. A package level anomaly
detection model will classify whether a network package x(t)

is anomalous solely depending on the features of x(t), whilst
a time-series level will conduct the classification based on the
package together with a limited number of previously seen
packages. In this work, we show a method which combine
these two levels into a single anomaly detection framework.
Moreover, both models in this work are trained only by using
a time series dataset without any presence of anomalous pack-
ages, but can nevertheless be used to detect unseen anomalies.

IV. PACKAGE LEVEL ANOMALY DETECTION

Since, in many cases the network configuration and com-
munication patterns between field devices in ICS are consid-
ered to be relatively stable, we assume the normal behaviour
of network packages exchanged between field devices can be
observed given a sufficiently large time-series dataset XN

without the presence of anomalies (XN can be obtained by
operating the ICS in “air-gapped” separation for a period of
time). We capture the normal profile of network packages by
establishing a signature database for the network packages in
the dataset XN , and any packages whose signature cannot be
found in the database are classified as anomalies during the
detection phase.

A. Generating Signatures for Packages

All the features in network packages can be used to define
signatures. We try to maximise the use of them. Specifically,
the generation of package signatures involves an important
step in which we transform the original feature vector x(t) =

{x(t)1 , x
(t)
2 , . . . , x

(t)
m } of an arbitrary network package to an o-

dimensional (o ≤ m) vector c(t) = {c(t)1 , c
(t)
2 , . . . , c

(t)
o }, in

which each element c(t)i is either a discrete-valued feature as
the same within the original feature vector or the discretized
representation of one or several continuous features (including
numerical features with a large value domain) in the original
feature vector. Then, the signature of a package is generated
by the function:

s(x(t)) = g(c
(t)
1 , c

(t)
2 , . . . , c(t)o)

which satisfies:

g(c
(t)
1 , c

(t)
2 , . . . , c(t)o) = g(c

(t′)
1 , c

(t′)
2 , . . . , c(t

′)
o) ⇐⇒ c

(t)
i = c

(t′)
i

∀i ∈ (1, 2 . . . , o)

Intuitively, g(·) is a generating function which assigns a unique
value to each different combination of its parameters, and the
simplest way to define g(·) is to concatenate the parameters
to a string with a special character as the separator of the
parameters.

B. The Granularity of Feature Discretization

Clearly, the functions for discretizing continuous features
are of vital importance for establishing a proper signature
database which captures the normal profile of network pack-
ages. Some continuous features, such as the time interval
between consecutive packages sent by a field device, exhibit
clustering characteristics by nature, and thus can be easily dis-
cretized. However, many other continuous features do not have
natural clusters, and thus may be discretized in many different
possible ways. In these cases, the granularity of discretization
is a critical factor which can affect the performance of our
package level anomaly detector. Specifically, if the granularity
of discretization is too coarse-grained, many anomalies will be
classified as normal packages (high false negative). Otherwise,
many normal packages will be classified as anomalies (high
false positive) if the granularity of discretization is too fine-
grained. For this reason, we propose a method which can be
used to find the most fine-grained granularity of discretization
(which is expected to minimize the false negative rate) below
an acceptable false positive rate.

Specifically, we split the dataset XN into a training set XN
T

and a validation set XN
V . Let {n1, n2, . . . , nl} be the number of

discretized values for the continuous features (excluding those
with natural clusters), θ be the acceptable false positive rate.
Then, we establish the signature database from the training
set XN

T with the discretization granularity {n1, n2, . . . , nl},
and the false positive rate can be estimated by the validation
error, which is proportion of packages in the validation set XN

V
whose signatures cannot be found in the established signature
database. Therefore, we can plot the validation error denoted as
errv by the following function: errv = f(n1, n2, . . . , nl), and
the optimal choice of discretization granularity can be found
by

argmax
n1,n2,...,nl

l∑
i=1

wini, f(n1, n2, . . . , nl) < θ.

where wi is a weight which denotes the relative importance of
the degree of discretization for the continuous feature(s).

C. The Bloom Filter Anomaly Detector

Since there can be limited memory and computing re-
sources in ICS network traffic monitors, we use a Bloom filter
to efficiently store the signature database of normal network
packages and detect anomalies thereafter.

Specifically, a Bloom filter is a probabilistic data structure
that is used to test whether an element is a member of a set.
It consists of two components: a m-bit vector v in which
all elements are initialized to 0, and a set of k different
predefined hash functions h1, h2, . . . , hk, each of which maps
an element to one of the m positions in v. The insertion of an
element e is conducted by hashing the element k times using
the predefined hash functions, and then setting the positions
h1(e), h2(e), . . . , hk(e) in the bit vector v to 1. The lookup

of an element e can be simply conducted by hashing e k
times using the same hash functions, and then checking if
all the positions h1(e), h2(e), . . . , hk(e) in the bit vector v
are 1. False positive lookup results are possible but false
negatives are not. The trade-off between the false positive rate
and the memory requirement can be controlled by tuning the
parameters m and k.

Taking advantages of its constant lookup time and memory-
efficient merits, we use a Bloom Filter as a fast and light-
weighted package level anomaly detector. Specifically, let B be
our Bloom filter, S be the set of all normal package signatures
in the database, we insert all the package signatures s ∈ S into
B during the training phase. Thus, the package level anomaly
detection function can be described as:

Fp(x
(t)) =

{
1 if s(x(t)) /∈ B
0 otherwise

where we say x(t) is classified as anomaly if Fp(x
(t)) =

1, otherwise we say the package passed our package level
anomaly detector.

V. TIME-SERIES LEVEL ANOMALY DETECTION

Network packages which pass the Bloom filter anomaly
detector can still exhibit anomalous behaviour which can
only be detected given the observation of previous packages.
Therefore, we also propose a stacked LSTM neural network
model for time-series level anomaly detection.

LSTM networks [21], [22], a type of recurrent neural
network (RNN) with special units called ’memory cells’, have
been successfully applied to many sequence learning tasks
such as speech recognition [40], machine translation [41] and
natural language generation [42]. It has been shown that LSTM
networks can also outperform traditional RNNs and feed-
forward networks using fixed size time windows on numerous
temporal processing tasks [43], [44]. More specifically, LSTM
networks have a complex structure which allows them to
“memorize” information for an extended number of timesteps,
and then use the information to predict the behaviour in the
next timestep. The “memory” is stored in a vector of memory
cells. In each memory cell, the flow of information into and out
of the cell is scaled by the learned input and output gates. The
forget gates can be learned to reset memory cells to remember
useful old information and discard irrelevant old information.
The architecture of a memory cell with input vector xt,
hidden input vector ht−1 (from previous timestep) and output
vector ht is illustrated in Figure 1. The implementation of the
memory cell can be represented by the following equations:

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf)

ot = σ(Woxt +Uoht−1 + bo)

gt = τ(Wgxt +Ught−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � τ(ct)

In the above: σ is the logistic sigmoid function; τ is the
cell input and output non-linear activation functions, generally
using the hyperbolic tangent function; it, ft, ot, gt, ct are
respectively the input gate, forget gate, output gate, cell

Cell

Fig. 1: The architecture of a LSTM memory cell

input activation and cell state vectors; Wα, Uα, bα where
α ∈ {i, f, o, g} are the paramter matrices and vectors to be
learned; and � means element-wise product. Because of these
memory cells, LSTM networks which are composed by them
can obviate the need for a predefined fixed size time window,
and can accurately model multivariate time-series sequences.

A. The Stacked LSTM Network-based Anomaly Detector

In general, LSTM network-based time-series anomaly de-
tectors take the input of time-series {x(t−1),x(t−2), . . .}, learn
their higher dimensional feature representations, and then use
those features to predict the next data point x̂(t). Furthermore,
the predicted data point can be used to classify if x(t) is
anomalous by checking the similarity between x(t) and x̂(t)

[45], [46]. However, in our case, due to the high dimensionality
and the coexistence of various feature types (continuous,
numerical, categorical) in the network packages, it is rather
difficult or even impossible to precisely reconstruct x(t) as
well as to define meaningful similarity metrics between two
packages. In order to overcome these problems, our model
learns to predict the signature of the next package instead of the
package itself. Specifically, letting c(t) = {c(t)1 , c

(t)
2 , . . . , c

(t)
o }

denote the discretized feature vector of a package x(t) as
described in the previous section, S be the set of all package
signatures in our signature database, our model will output

Pr(s | c(t−1), c(t−2), . . .) ∀s ∈ S,

where s is a package signature in the signature database.
Furthermore, let S(k) = {s1, s2, . . . , sk} be the set which
contains the top kth most probable signatures predicted by our
model given {c(t−1), c(t−2), . . .}, then, our time-series level
anomaly detection function takes the form as follows:

Ft(x
(t) | c(t−1), c(t−2), . . .) =

{
1 if s(x(t)) /∈ S(k)

0 otherwise.

1) The Model Structure: Figure 2 shows the structure of
our stacked LSTM network model. Specifically, the input of
the model are the previous network packages with discretized
feature representation (each feature is one hot encoded), the
features will be passed to several LSTM layers to learn high

LSTM Layer

LSTM Layer

Softmax Activation Layer

...

...

...

Fig. 2: The architecture of the stacked LSTM-based softmax
classifier model

dimensional temporal features. The vector z ∈ R|S| is the
output vector from the last LSTM layer, where |S| is the
number of unique signatures in the signature database. It is
followed by a softmax activation layer which transfers the
vector z to a |S|-dimensional vector of real values in the range
(0, 1) that add up to 1. The output layer contains |S| units after
the softmax activation layer, where the value in each output
unit is the probability of the signature of next package being
a particular value given the time-series input:

Pr(si | c(t−1), c(t−2), . . .) =
ezi∑|S|
k=1 e

zk
∀i ∈ {1, 2, . . . , |S|}

, and it is guaranteed that

|S|∑
i=1

Pr(si | c(t−1), c(t−2), . . .) = 1.

The model is then trained to minimize the softmax loss
function (which is also known as the multiclass cross-entropy
loss and is often used as the last layer in deep neural nets for
multiclass classification [47], [48]) defined as follows:

L = −
∑
t

|S|∑
i=1

1(s(x(t)) = si) lnPr(si | c(t−1), c(t−2), . . .)

where 1(x) is an indicator function which yields one only if x
is true, and outputs zero otherwise. The authors in [49] show
that the softmax loss is indeed top-k calibrated, which means
we can obtain a classifier which is guaranteed to achieve lower

top-k error with more available training data by minimizing
the loss function L. Intuitively, this means the model is well-
matched with our time-series level anomaly detection function
Ft which is based on the prediction of the top-k most likely
signatures given the time-series input.

2) The Choice of k: Just like the discretization granularity
of continuous features in the package level anomaly detection,
the value of k in our time-series level anomaly detection
function Ft is also a critical factor which can affect the
performance of our time-series level anomaly detector. Here,
we explain how to choose a reasonable value of k.

Specifically, let errk denote the top-k error of the stacked
LSTM network model on a dataset without the presence of
anomalies:

errk =

∑
t 1(s(x

(t)) /∈ S(k))

T

where T is the total number of predictions made in the dataset.
Since our time-series level anomaly detection function will
classify packages whose signature is not included in S(k)

as anomalies, errk can be thought as an estimation of the
false positive rate of the model when it is used for anomaly
detection.

Therefore, we split the dataset XN into a training set XN
T

and a validation set XN
V . We train the stacked LSTM network

model using the training set. Then, the optimal choice of k
can be found by:

argmin
k

errk < θ for XN
V ,

which means we choose the minimal k which satisfies errk <
θ on the validation set, where θ is the threshold on the
estimated false positive rate when using the model for time-
series level anomaly detection.

3) Adding Probabilistic Noise During Model Training:
Since the dataset XN does not contain any anomalous pack-
ages, the model we trained using XN might be too sensitive to
anomalous packages which will bring down the performance
of our time-series level anomaly detector during the detection
phase. More specifically, our stacked LSTM network model
uses previous packages for the prediction of the signature of
next package. However, if the previous packages contain one or
several anomalies, the model is likely to fail in predicting the
correct signature of next package. As a result, it is likely that a
normal package will be classified as anomaly if the package is
right after some anomalous packages. Consequently, the false
positive rate of our time-series level anomaly detector will be
increased unexpectedly. Therefore, in order to make our model
more robust to time-series input with anomalies, we propose
a strategy to train our model with artificial probabilistic noise.

Concretely, during the training phase, for each package
x(t), when it is used in the time-series input for the prediction
of latter package signatures, with probability:

p =
λ

λ+#(s(x(t)))
,

we add some noise to the discretized feature vector c(t), where
#(s(x(t))) is the times of the signature s(x(t)) appearing in
the training dataset, λ is a real number which reflects the
expected frequency of anomalies. Note that by this probability

definition, packages whose signatures with low frequencies in
the training dataset are more likely to be chosen as noisy input.
This is because that we expect these packages are more close
to real anomalous packages, thus the model trained in this
way shall be more generalised to the real situation during the
detection phase.

More specifically, the noise is added by the following rule:
let ct = {c(t)1 , c

(t)
2 , . . . , c

(t)
o } be the discretized feature vector

of package xt, we first generate a random number d uniformly
sampled between [1, l], where l < o. Then, d features in ct

which are chosen randomly will be artificially changed to a
different value. Furthermore, we add a new feature c

(t)
o+1 to

all packages, where c(t)o+1 is set to 1 if the package contains
probabilistic noise, otherwise it is set to 0, Intuitively, this
additional feature can be thought as an extra bit of information
to tell the model that the particular package is an anomaly
or not, and thus the model should be more easily trained
to be robust to noisy input. Furthermore, when the model is
used during the detection phase, the additional feature of any
packages classified as anomalies will be set to 1, otherwise it
is set to 0. Then, the package will be used as the input for the
classification of latter packages without any further processing.

VI. THE COMBINED ANOMALY DETECTION
FRAMEWORK

Having presented both our package level and time-series
level anomaly detection model, we now introduce the com-
bined framework of these two models.

Specifically, the schematic structure of the combined
framework is given in Figure 3. As can be seen from the figure,
the combined framework is rather straightforward. Concretely,
when a package is being analysed, its signature will be firstly
checked by our Bloom filter anomaly detector. If its signature
is not contained in the Bloom filter, then the package will
be classified as an anomaly. There is no need to pass the
detected anomaly by the Bloom filter to the time-series level
anomaly detector since its signature is not even in the signature
database, thus it will always be classified as anomalous in the
time-series level. Note that this mechanism should work well
since the false positive rate of the Bloom filter detector can
be estimated by the validation error during the training phase,
and thus can be well controlled by tuning the granularity of
feature discretization.

Furthermore, if the package passed our package level de-
tector, then our time-series level detector will classify whether
or not it is actually anomalous by checking whether or not its
signature is within the predicted top k most probable signatures
based on the discretized feature vectors of previous packages.
Packages no matter classified as normal or anomalous, will be
used as the time series input for the classification of future
packages.

VII. DATASET

The dataset used in this paper for training and testing
our combined anomaly detection framework was originally
proposed in [23]. The network traffic data log was captured
from a SCADA system for a laboratory-scale testbed of a
gas pipeline system including both normal operation and real

0
1
1
0
1
1

1

...
...

anomaly
detected

Time-series
Anomaly Detector

Bloom Filter
Detector

anomaly
detected

normalnormal

Fig. 3: The schematic structure of the combined framework
for package and time-series level anomaly detection

cyber attacks. Specifically, the gas pipeline system consists of
a small airtight pipeline connected to a compressor, a pres-
sure meter and a solenoid-controlled relief valve. The system
attempts to maintain the air pressure in the pipeline using
a proportional integral derivative (PID) control scheme. The
associated SCADA system uses the Modbus application layer
protocol. An AutoIt automation and scripting language script
[50] is used to initiate attacks which can inject, delay, drop
and alter network traffic. Network packages are timestamped
and recorded in a log file. Each network packet includes header
and Modbus payload, with 20 unique features that are stored in
Attribute Relationship File Format (ARFF). Table I enumerates
these features in details.

TABLE I: Features in ARFF format [23]

Feature Description
address The station address of the Modbus slave device
crc rate The Cyclic-Redundant Checksum rate
function Modbus function code
length The length of the Modbus packet
setpoint The pressure set point for the automatic mode
gain PID gain
reset rate PID reset rate
deadband PID dead band
cycle time PID cycle time
rate PID rate
system mode automatic (2), manual (1) or off (0)
control scheme Either pump (0) or solenoid (1)

pump Pump control – open (1) or off (0)
only for manual mode

solenoid Valve control – open (1) or closed (0)
only for manual mode.

pressure
measurement Pressure measurement

command
response Command (1) or response (0)

time Time stamp

The AutoIt script randomly chooses to send legal com-
mands or launch cyber attacks. There are four main cat-
egories of attacks considered in this dataset – command
injection, response injection, denial of service and reconnais-
sance. These four categories are further divided into seven
specific types of attacks as outlined in Table II. There are

214,580 normal network packages and 60,048 packages with
attacks in total created in the dataset. More details about
this dataset can be found in [23][51]. The dataset can be
accessed from the webpage https://sites.google.com/a/uah.edu/
tommy-morris-uah/ics-data-sets.

TABLE II: Attack types and description in the dataset [23]

ID Type Description
1 NMRI Inject random response packets
2 CMRI Hide the real state of the controlled process
3 MSCI Inject malicious state commands
4 MPCI Inject malicious parameter commands
5 MFCI Inject malicious function code commands
6 DoS Denial of service targetting communication link
7 Recon. Pretend of reading from devices

VIII. EXPERIMENTS

In our experiments, we split the dataset into three groups
according to the proportion 6 : 2 : 2. Specifically, 60%
of the data is used as our training set, 20% is used for
validation set, and the remaining 20% is used for testing our
anomaly detection framework. Moreover, both the training and
validation set do not contain any anomalies, whereas there
are anomalies distributed all over the testing set. Note that
anomalous packages in the training and validation set are
manually removed. After removing the anomolous packages
in the training and validation set, the normal package time-
series sequence is divided into many fragments. Thus, we
also remove time-series fragments which are shorter than 10
packages in order to guarantee the functionality of our time-
series anomaly detector.

A. Model Training and Validation

1) The Bloom Filter Anomaly Detector: In order to setup
the Bloom filter which stores the signature database of normal
packages for anomaly detection, we first need to discretize
the continuous features in the packages of the gas pipeline
dataset. Specifically, there are 9 continuous features in the
packages which are the time interval between consecutive
packages (calculated by the difference of the time stamp
between consecutive packages), crc rate, setpoint, pressure
measurement and the five PID control parameters. The five PID
control parameters shall be clustered together since they are
strongly correlated. Furthermore, according to the distribution
of the values of the remaining four features as illustrated in
Figure 4, we cluster both the time interval and crc rate into
two groups using Kmeans clustering. Setpoint and pressure
measurement do not have natural clusters. Therefore, in order
to decide the optimal granularity of discretization, we plot
the validation error (proportion of packages in the valida-
tion set treated as anomalies by our Bloom filter anomaly
detector) under different granularities of feature discretization
in Figure 5. Finally, the discretization strategies for all the
continuous features in the gas pipeline dataset are summarised
in Table III. Specifically, the values of pressure measurement
and setpoint are evenly partitioned into 20 and 10 intervals
respectively because we think the discretization granularity of
pressure measurement is more important than setpoint, and
the PID control parameters are clustered into 32 groups using

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

Fig. 4: The histograms for the continuous feature values each
with 200 bins

Kmeans clustering. Note that we also assign an additional
discrete value to each feature to represent those values that
cannot be assigned to any of the clusters (e.g., if the value
is more far away from any centroids than any other values
in the training set) or intervals. These additional values are
useful for adding probabilistic noise during the training of our
time-series level anomaly detector to make it more generalised
to anomalous packages with out-of-range feature values. With
this discretization granularity, there are 613 unique signatures
in our signature database, and the expected false positive rate
of package level anomaly detection is tuned to below 0.03 as
can be seen in Figure 5.

Feature Discretization method Value No.
time interval Kmeans clustering 2+1

crc rate Kmeans clustering 2+1
pressure measurement Even interval partition 20+1

setpoint Even interval partition 10+1
PID parameters Kmeans clustering 32+1

TABLE III: Feature discretization strategies for the gas
pipeline dataset

2) The Stacked LSTM Network-based Anomaly Detector:
The model we used for time-series level anomaly detection for
the gas pipeline dataset is a stacked two layer LSTM network
with a structure as illustrated in Figure 2. Specifically, each
LSTM layer has 256 fully connected memory units. The output
layer has 613 units as expected which is equal to the size
of our signature database. We train the LSTM network with
and without adding probabilistic noise, both with 50 training
epochs to minimize the softmax loss function. We set λ = 10
for adding probabilistic noise since the frequency of anomalies
in the dataset is rather high in our experiments. However, in
practice, λ should be set to a much smaller value because the
frequency of anomalies should be very low in reality.

Figure 6 shows the top-k error on the training set and the
validation set in both scenarios after the 50 training epochs.

Fig. 5: The validation error under different granularities of
feature discretization

It can be seen that in both cases, the error ratio converges
quickly to 0 with the increase of k. This means our model
is rather appropriate for time-series level anomaly detection
since the expected false positive rate should be quite low even
with a small value of k. Moreover, with a smaller value of
k, our time-series level anomaly detector should also have a
lower expected false negative rate. Furthermore, the model
we trained with probabilistic noise has similar top-k error
with the model trained without noise (after k=3). This means
the stacked LSTM network model can be actually trained to
be more robust to noisy inputs which mimic the behaviour
of anomalies. Lastly, according to Figure 6, by setting the
acceptable false positive rate of the time-series level anomaly
detector to 0.05, we can choose k = 4 since it is the minimal
value of k with which the top-k error of the model trained
with probabilistic noise on the validation set is below 0.05.
More importantly, we can also observe that the top-k error on
validation set drops rather steeply when k < 4, but it falls
slowly when k > 4. This also indicates that k = 4 should be
the optimal choice.

The training time of the LSTM network model for the 50
epochs which allows the the softmax loss function to converge
is about 35 minutes on a Linux Machine with 3.4 GHz Intel
CPUs, 15.6 GB memory size. This is rather acceptable since
the training can always be conducted in a standalone, non-
operational ICS mode. The average total time cost of making
a classification using our combined framework is about 0.03
milliseconds on the same machine. The memory cost to store
the two level anomaly detection models is 684 KB. Both
should be acceptable for contemporary ICS network traffic
monitors.

B. Anomaly Detection Results

We evaluate the performance of our combined anomaly
detection framework on the classification results for the test
set. Four metrics (precision, recall, accuracy, F1-score) which
are commonly used for evaluating the effectiveness of anomaly

Fig. 6: The top-k error of the stacked LSTM network model
on the training and validation set with and without adding
probabilistic noise

detection models are analysed in our experiments. Specially,
let TP denote the true positives (anomalous packages correctly
identified), TN denote true negatives (normal packages cor-
rectly identified), FP denote false positives (normal packages
incorrectly classified as anomalies), and FN denote false neg-
atives (anomalous packages incorrectly classified as normal
packages). The precision is then calculated as TP/(TP+FP),
which measures the probability of a detected anomaly is
correct. The recall is given by TP/(TP + FN), which mea-
sures the fraction of anomalies that are successfully identified.
The accuracy is (TP + TN)/(TP + TN + FP + FN),
which measures the fraction of data samples that are correctly
classified. Lastly, the F1-score is computed as 2×Precision×
Recall/(Precision+Recall), which measures the harmonic
mean of precision and recall. The F1-score is often considered
as a more rounded measure of the performance for anomaly
detectors.

We illustrate the results of our combined anomaly detection
framework on the four metrics in Figure 7. It can be seen that
by adding probabilistic noise during the training phase for the
time-series level anomaly detector, the precision, accuracy and
F1-score of our model can be improved especially with small
values of k, this is because the trained model with probabilistic
noise is less sensitive to anomalous time-series input, thus
can avoid many false positives. Furthermore, we find that
the stacked LSTM network is robust to anomalous time-
series input even without adding probabilistic noise during
the training phase since the performance of both models
converges quickly with the increase of k. This means our
stacked LSTM network model is robust with respect to real-
wold noisy inputs (e.g., packages and sensor reading may be
lost randomly) from ICS networks. The recall of both models
falls quickly with the increase of k, which indicates some
anomalous packages (caused by mimicry attacks) are rather
close to normal packages, thus in order to detect them, a
high false positive rate has to be induced. This means the
choice of k plays an important role for the performance of our
framework. More importantly, we also note that our choice

Fig. 7: The performance metrics of anomaly detection using
the combined framework trained with and without probabilistic
noise with different values of k

of k = 4, which is only chosen by observing the training
and validation datasets without any anomalous packages, can
achieve the highest F1-score in the detection phase, meaning
the tuning of the parameters in our model is effective.

C. Comparison with other Anomaly Detection Models

In order to convincingly show the effectiveness of our
combined framework for anomaly detection, we also compare
its performance with other commonly used anomaly detection
models for ICS.

Specifically, we have implemented four models: a Bloom
Filter (BF) model; a Bayesian Network (BN) model whose
structure is automatically learned from training data [53]; a
Support Vector Data Description (SVDD) model [54]; and
an Isolation Forest (IF) model which is often considered to
be more suitable for outlier detection for hybrid data [55]
for anomaly detection on the same dataset. In order to make
these models also consider time-series behaviour, we combine
four consecutive packages, representing a complete command
response cycle in the gas pipeline dataset, as a single data
sample for training and testing (thus the Bloom filter used here
is different than the one we used for package level anomaly
detector). Moreover, all the models are also trained using the
same dataset without presence of anomalous packages.

Furthermore, we also compare the results with two un-
supervised models (where training dataset contains anomalies
but whether a package is normal or abnormal is not labelled)
which are a Gaussian Mixture Model (GMM) and a Princi-
pal Component Analysis with Singular Value Decomposition
model (PCA-SVD) that are directly taken from [52] since the
authors have already used them for anomaly detection on the
same gas pipeline dataset.

The detailed results are summarised in Table IV, in which
the time-series anomaly detector in our combined framework
is trained with probabilistic noise, and k is set to 4. For
other models excluding GMM and PCA-SVD, their hyper-
parameters are tuned to get best F1-score with accuracy above
0.7. It can be seen that our framework displays significantly
higher performance compared to the other models. The two
models exhibiting closest performance to ours are the Bayesian
network model and the Bloom filter model. But, their ability
in detecting anomalies is still considerably lower than ours.
The other four models have relatively poor performance mainly

Model Precision Recall Accuracy F1-score
Our framework 0.94 0.78 0.92 0.85

BF 0.97 0.59 0.87 0.73
BN 0.97 0.59 0.87 0.73

SVDD 0.95 0.21 0.76 0.34
IF 0.51 0.13 0.70 0.20

GMM 0.79 0.44 0.45 0.59
PCA-SVD 0.65 0.28 0.17 0.27

TABLE IV: Performance comparison with other anomaly
detection models on the same dataset (the figures for the GMM
and the PCA-SVD model are directly taken from [52], but we
notice that the precision, recall and F1-score do not match for
the PCA-SVD model).

Attack Type Model Detected Ratio

NMRI

Our framework 0.88
BF 0.77
BN 0.77

SVDD 0.01
IF 0.13

GMM 0.31
PCA-SVD 0.45

CMRI

Our framework 0.67
BF 0.53
BN 0.53

SVDD 0.02
IF 0.08

GMM 0.33
PCA-SVD 0.19

MSCI

Our framework 0.62
BF 0.18
BN 0.53

SVDD 0.19
IF 0.46

GMM 0.66
PCA-SVD 0.62

MPCI

Our framework 0.80
BF 0.49
BN 0.34

SVDD 0.26
IF 0.08

GMM 0.64
PCA-SVD 0.66

MFCI

Our framework 1.00
BF 1.00
BN 1.00

SVDD 1.00
IF 0.00

GMM 0.32
PCA-SVD 0.54

DOS

Our framework 0.94
BF 0.93
BN 0.93

SVDD 0.40
IF 0.12

GMM 0.15
PCA-SVD 0.58

Recon.

Our framework 1.00
BF 1.00
BN 1.00

SVDD 1.00
IF 0.12

GMM 0.72
PCA-SVD 0.54

TABLE V: The detected ratio (recall) of anomalous packages
in each attack type

because they are not capable of dealing with such complicated
data formats.

We also depict the detected ratio (recall) of anomalous
packages in each attack type by all models in Table V. It
can be seen that our framework has better ability in detecting
anomalies in almost every scenario. GMM has a slightly
better detected ratio than our framework for MSCI, but its
performance in other scenarios is much worse. The most sig-
nificant improvement of our framework in detecting anomalies
compared with BN and BF is for MPCI, suggesting our model

for time-series level anomaly detection is much more sensitive
to random parameter changes than both BN and BF.

D. Further Discussion

We also note that the detection rates of our framework
for CMRI, MSCI, MPCI attack types are lower than other
attack types. These three attack types are all related to the
physical processes which exhibit naturally noisy behviour. As
a result, some attacks may be regarded as normal behaviour
since the deviation caused by these attacks can be treated
as normal noise. To mitigate this problem, we believe one
effective strategy is to collect more training data and increase
the degree of discretization of continuous features so as to
improve the sensitivity to physical-process related variable’
changes during the training of our models. The other strategy is
to allow the value of k for time-series level anomaly detection
to be adjusted dynamically during the detection phase. This
requires additional work to design mechanisms for learning
optimized k given previous predictions, which is outside the
scope of this work.

IX. CONCLUSION

In this paper, we have proposed a novel ICS-specific
anomaly detection framework which coherently combines a
Bloom filter package level anomaly detector and a LSTM
network-based time-series level anomaly detector. Just like
most deep learning models, our detection framework requires
a large dataset to allow the models to be properly trained.
We summarize the merits of our framework as follows: (i) it
is able to learn normal behaviour solely from normal data,
and thus can detect unseen attacks, (ii) it is able to deal with
complicated data samples with hybrid features, (iii) the training
of our models is straightforward since all the parameters (the
granularity of feature discretization and the value of k for time-
series prediction) can be effectively set to reasonable values by
our proposed methods, (iv) it has high detection performance
which is demonstrated on a real gas pipeline dataset compared
with many other existing anomaly detection models.

There are several promising lines of research that could
proceed. First, we are seeking ways to collect larger-scale
SCADA datasets to further test our framework. We expect our
framework will perform better with larger datasets. Further-
more, with larger and more complicated dataset, we plan to use
more complicated deep neural networks such as convolutional
LSTM networks [56] which can learn local temporal features
from time-series input to improve the performance of our
anomaly detection framework. Lastly, in our current work, the
value of k for time-series level anomaly detection is fixed. In
our future work, we will design effective approaches to adjust
the value of k dynamically based on previous predictions so as
to improve the performance of our time-series level anomaly
detector.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their helpful comments. Cheng Feng and Deeph Chana are
supported by the EPSRC project Security by Design for In-
terconnected Critical Infrastructures, EP/N020138/1. Tingting
Li is supported by the EPSRC project RITICS: Trustworthy
Industrial Control Systems, EP/L021013/1.

REFERENCES

[1] S. Adepu and A. Mathur, “An investigation into the response of a
water treatment system into cyber attacks,” in IEEE Symposium on High
Assurance Systems Engineering (HASE), 2015.

[2] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, and L. Pietre-Cambacedes,
“Safety and security interactions modeling using the bdmp formalism:
case study of a pipeline,” in International Conference on Computer
Safety, Reliability, and Security. Springer, 2014, pp. 326–341.

[3] A. J. Wood and B. F. Wollenberg, Power generation, operation, and
control. John Wiley & Sons, 2012.

[4] M. P. Groover, Automation, production systems, and computer-
integrated manufacturing. Prentice Hall Press, 2007.

[5] U. S. Department of Homeland Security. (2011) Common
cybersecurity vulnerabilities in industrial control systems.
”www.ics-cert.us-cert.gov/sites/default/files/documents/DHS
Common Cybersecurity Vulnerabilities ICS 20110523.pdf”.

[6] D. Dzung, M. Naedele, T. P. Von Hoff, and M. Crevatin, “Security for
industrial communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1152–1177, 2005.

[7] L. Obregon, “Secure architecture for industrial control systems,” SANS
Institute InfoSec Reading Room, 2015.

[8] D. Yang, A. Usynin, and J. W. Hines, “Anomaly-based intrusion detec-
tion for scada systems,” in 5th intl. topical meeting on nuclear plant
instrumentation, control and human machine interface technologies
(npic&hmit 05). Citeseer, 2006, pp. 12–16.

[9] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, 2011, ”http://csrc.nist.
gov/publications/nistpubs/800-82/SP800-82-final.pdf”.

[10] ICS-CERT. (2013) Ics-cser year in review. ”https://ics-cert.us-cert.
gov/sites/default/files/Annual Reports/Year In Review FY2013 Final.
pdf”.

[11] ——. (2014) Ics-csrt monitor september 2014 - february 2015. ”www.
ics-cert.us-cert.gov/monitors/ICS-MM201502”.

[12] ——. (2015) Incident response activity november 2014 - de-
cember 2015. ”https://ics-cert.us-cert.gov/sites/default/files/Monitors/
ICS-CERT Monitor Nov-Dec2015 S508C.pdf”.

[13] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, 2011.

[14] R. Lee, M. Assante, and T. Connway, “ICS cyber-to-physical or process
effects case study paper–german steel mill cyber attack,” Sans ICS, Dec,
2014.

[15] ICS-CERT. (2016) Cyber-attack against Ukrainian critical infrastruc-
ture. ”www.ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01”.

[16] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, vol. 46.
Citeseer, 2007, pp. 1–12.

[17] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, “Combating
advanced persistent threats: From network event correlation to incident
detection,” Computers & Security, vol. 48, pp. 35–57, 2015.

[18] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera,
“Modbus/dnp3 state-based intrusion detection system,” in 2010 24th
IEEE International Conference on Advanced Information Networking
and Applications. IEEE, 2010, pp. 729–736.

[19] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, and
H. Wang, “Intrusion detection system for iec 60870-5-104 based scada
networks,” in 2013 IEEE Power & Energy Society General Meeting.
IEEE, 2013, pp. 1–5.

[20] B. Kang, K. McLaughlin, and S. Sezer, “Towards a stateful analysis
framework for smart grid network intrusion detection,” in Proceedings
of the 4rd International Symposium for ICS & SCADA Cyber Security
Research. British Computer Society, 2016, pp. 124–131.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,
pp. 107–116, 1998.

"www.ics-cert.us-cert.gov/sites/default/files/documents/DHS_Common_Cybersecurity_Vulnerabilities_ICS_20110523.pdf"
"www.ics-cert.us-cert.gov/sites/default/files/documents/DHS_Common_Cybersecurity_Vulnerabilities_ICS_20110523.pdf"
"http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf"
"http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf"
"https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_In_Review_FY2013_Final.pdf"
"https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_In_Review_FY2013_Final.pdf"
"https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_In_Review_FY2013_Final.pdf"
"www.ics-cert.us-cert.gov/monitors/ICS-MM201502"
"www.ics-cert.us-cert.gov/monitors/ICS-MM201502"
"https://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Nov-Dec2015_S508C.pdf"
"https://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Nov-Dec2015_S508C.pdf"
"www.ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01"

[23] T. H. Morris, Z. Thornton, and I. Turnipseed, “Industrial control system
simulation and data logging for intrusion detection system research,” in
7th Annual Southeastern Cyber Security Summit, 2015.

[24] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self:
Probabilistic reasoning of program behaviors for anomaly detection with
context sensitivity,” in Dependable Systems and Networks (DSN), 2016
46th Annual IEEE/IFIP International Conference on. IEEE, 2016, pp.
467–478.

[25] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy program
attacks buried in extremely long execution paths,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 401–413.

[26] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic program
modeling for high-precision anomaly classification,” in Computer Se-
curity Foundations Symposium (CSF), 2015 IEEE 28th. IEEE, 2015,
pp. 497–511.

[27] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, vol. 5, no. 2, 2008, pp.
139–154.

[28] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion de-
tection in the internet of things,” Ad hoc networks, vol. 11, no. 8, pp.
2661–2674, 2013.

[29] A. Fielder, T. Li, and C. Hankin, “Modelling cost-effectiveness of
defenses in industrial control systems,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2016, pp. 187–
200.

[30] T. Li and C. Hankin, “Effective defence against zero-day exploits using
bayesian networks,” in International Conference on Critical Information
Infrastructures Security. Springer, 2016.

[31] B. Zhu and S. Sastry, “Scada-specific intrusion detection/prevention
systems: a survey and taxonomy,” in Proceedings of the 1st Workshop
on Secure Control Systems (SCS), 2010.

[32] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, p. 55, 2014.

[33] F. Skopik, I. Friedberg, and R. Fiedler, “Dealing with advanced per-
sistent threats in smart grid ict networks,” in Innovative Smart Grid
Technologies Conference (ISGT), 2014 ieee pes. IEEE, 2014, pp. 1–5.

[34] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware intrusion de-
tection in industrial control systems,” in Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security. ACM, 2015, pp. 13–24.

[35] A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. N. Fovino, and
A. Trombetta, “A multidimensional critical state analysis for detecting
intrusions in scada systems,” IEEE Transactions on Industrial Informat-
ics, vol. 7, no. 2, pp. 179–186, 2011.

[36] P. Nader, P. Honeine, and P. Beauseroy, “lp-norms in one-class classifi-
cation for intrusion detection in scada systems,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 4, pp. 2308–2317, 2014.

[37] J. Bigham, D. Gamez, and N. Lu, “Safeguarding scada systems
with anomaly detection,” in International Workshop on Mathematical
Methods, Models, and Architectures for Computer Network Security.
Springer, 2003, pp. 171–182.

[38] S. Pan, T. Morris, and U. Adhikari, “Developing a hybrid intrusion
detection system using data mining for power systems,” IEEE Trans-
actions on Smart Grid, vol. 6, no. 6, pp. 3104–3113, 2015.

[39] S. Parthasarathy and D. Kundur, “Bloom filter based intrusion detection
for smart grid scada,” in Electrical & Computer Engineering (CCECE),
2012 25th IEEE Canadian Conference on. IEEE, 2012, pp. 1–6.

[40] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[41] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[42] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder
for paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.

[43] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:

Continual prediction with LSTM,” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[44] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, vol. 3. IEEE, 2000, pp.
189–194.

[45] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based encoder-decoder for multi-sensor anomaly
detection,” arXiv preprint arXiv:1607.00148, 2016.

[46] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[47] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[49] M. Lapin, M. Hein, and B. Schiele, “Loss functions for top-k error:
Analysis and insights,” arXiv preprint arXiv:1512.00486, 2015.

[50] J. Brand and J. Balvanz, “Automation is a breeze with autoit,” in
Proceedings of the 33rd annual ACM SIGUCCS conference on User
services. ACM, 2005, pp. 12–15.

[51] T. Morris and W. Gao, “Industrial control system traffic data sets for
intrusion detection research,” in International Conference on Critical
Infrastructure Protection. Springer, 2014, pp. 65–78.

[52] S. N. Shirazi, A. Gouglidis, K. N. Syeda, S. Simpson, A. Mauthe,
I. M. Stephanakis, and D. Hutchison, “Evaluation of anomaly detection
techniques for scada communication resilience,” in Resilience Week
(RWS), 2016. IEEE, 2016, pp. 140–145.

[53] J. Cheng, D. Bell, and W. Liu, “Learning bayesian networks from data:
an efficient approach based on information theory,” On World Wide Web
at http://www. cs. ualberta. ca/˜ jcheng/bnpc. htm, 1998.

[54] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45–66, 2004.

[55] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 413–
422.

[56] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 4580–4584.

