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Abstract:  

Since the first commercialization of surface acoustic wave (SAW) devices, the technology is 

being steadily developed, improving the device performances without compromising their 

power handling nor increasing their size and price. In this work, one-port SAW resonators are 

fabricated on scandium aluminum nitride (Sc0.26Al0.74N)/polycrystalline diamond 

heterostructures. The SAW propagation properties are studied by using three different 

piezoelectric thin film thicknesses within the heterostructure. The Rayleigh and Sezawa 

resonance frequencies are above 1.5 GHz and 2.5 GHz respectively, achieving Sezawa mode 

reflection coefficients below -50 dB.  

The polycrystalline diamond substrate was synthesized by microwave plasma chemical vapor 

deposition (CVD) on top of 500 µm thick Si (001) substrate. The Sc0.26Al0.74N thin films were 

synthesized by reactive sputtering at nominally room temperature. The thin film composition 

was analyzed by Rutherford backscattering spectrometry (RBS). The full width at half 

maximum of the x-ray diffraction (XRD) ω scans below 3º indicate that the synthesized 

Sc0.26Al0.74N thin films are highly c-axis oriented. 

The electromechanical coupling coefficient, the quality factor and the dielectric loss 

parameters are computed by curve fitting the device electrical measurements to the simulation 

results of a modified Butterworth Van Dyke (mBVD) model implemented in the advance 

design system (ADS) tool. 
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((1)) Introduction 

Surface acoustic wave (SAW) technologies are widely used in telecommunications. 

Especially during the last decade, in which the demand of reliable SAW technological 

solutions has grown exponentially in wireless communication systems. SAW based devices 

are small, stable, provide high power handling, compatibility with standard integrated circuits 

manufacturing processes and low-cost production. 

Moreover, when the consideration turns into SAW resonators, their performances provide 

very large quality factors together with low insertion losses [1]. 

The SAW acoustic velocity (Equation (1)) depends on the elastic modulus (𝐸) and density (𝜌) 

of the material through which the wave propagates [2].  

𝑉 = √𝐸
𝜌⁄  (1) 

However, when the surface acoustic wave is generated with a SAW device which design 

comprises a stacking of layers (heterostructure), the velocity of the propagating wave is a 

compromise between the acoustic velocities of the layers through the wave propagates. 

Thereby, a suitable solution for fabricating SAW devices with high operating frequencies is to 

design heterostructures comprising a layer with high acoustic velocity. For this, diamond 

outstands, since it exhibits the highest acoustic velocity. Several studies have reported SAW 

devices fabricated on heterostructures with diamond substrates working in the 2 GHz – 15 

GHz frequency range [1][3][4]. 

There have been several fabrication routes proposed for diamond-based SAWs: piezoelectric 

thin film on the nucleation surface of the diamond substrate (this work) [5][6][7], embedding the 

IDTs either depositing the piezoelectric thin film on the nucleation surface of as-grown 

diamond substrates[8] or coating the IDT and piezoelectric thin film with a diamond layer 

grown by chemical vapor deposition (CVD)[9]. 

Among the most important requirements for SAW based devices on telecommunication 

technologies are devices with increased performances such as temperature stability and a 
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strong electromechanical coupling coefficient (K2). Thermal stability issues can be tackled by 

applying thermal engineering, using, for example, compensation layers to optimize the 

effective thermal expansion coefficient of the heterostructure [10], or using platinum (Pt) as 

electrode material [11]. 

However, a strong electromechanical coupling coefficient demands a high piezoelectric d33 

constant, which thin film polycrystalline piezoelectric materials like aluminum nitride (AlN) 

and zinc oxide (ZnO) do not provide [12]. New progresses in material engineering have 

demonstrated that doping these thin film piezoelectric compounds increases their piezoelectric 

constant [13][14]. Increasing their piezoelectric response, without counterpart compromising 

other properties for which these polycrystalline materials outstand (e.g. high hardness, wide 

energy band gap and high thermal conductivity at room temperature), expands their 

application scope. 

The scandium aluminum nitride compound, which has been extensively studied during the 

last decade, is a representative example of the former.The introduction of scandium (Sc) 

atoms into the AlN wurtzite-like phase increases the compound piezoelectric d33 constant. The 

maximum increase (~500 %) is provided by a Sc0.43Al0.57N thin film composition [15]. When 

the intrinsic properties of the ScAlN compound are taken into account, the addition of Sc 

atoms into the AlN lattice not only alters the d33 constant but also reduces its elastic constants, 

which is reflected on the SAW acoustic velocity [16][17]. 

In this work, we fabricate surface acoustic devices on scandium aluminum 

nitride/polycrystalline diamond heterostructures. Highly c-axis oriented ScAlN thin films can 

be obtained by means of reactive sputtering [18]. The influence of the piezoelectric thin film 

thickness on the generated Rayleigh and Sezawa resonance frequency modes is assessed with 

the electrical characterization of the devices. By curve fitting the simulation results of a 

modified Butterworth Van Dyke (mBVD) model to the electrical measurements, the 
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electromechanical coupling coefficient, the quality factor and the dielectric losses of the 

fabricated devices are obtained. 
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((2)). Experimental Section  

A. (1) Polycrystalline diamond substrate and the Sc0.26Al0.74N thin film synthesis 

Polycrystalline diamond films were synthesized by microwave plasma chemical vapour 

deposition (MPCVD) on top of 500 µm thick Si (001) substrates. The silicon substrates were 

cleaned with standard RCA SC1 processes. Following this, they were immersed into an 

aqueous colloid of diamond nanoparticles under ultrasound, a process known to produce 

nucleation densities in excess of 1011 cm-2 [19]. These substrates were then rinsed, spun dry and 

loaded into a Seki 6500 microwave plasma chemical vapour deposition system. Diamond was 

grown at approximately 0.6 µm/hour at 900 ºC. The gas phase was 478 H2, 20 CH4, 2 O2 at 

12000 Pa. The microwave power was 5 kW and the films were grown to 10 µm thick. These 

films were subsequently polished by a combination of lapping and chemical mechanical 

polishing [20]. The polished polycrystalline diamond substrates were analysed by means of 

atomic force microscopy (Veeco Dimension 3100 AFM). 

Three different thicknesses of the piezoelectric thin film namely 1700 nm, 2000 nm and 2300 

nm have been synthesized on the polycrystalline diamond substrates. The Sc0.26Al0.74N thin 

films were deposited in a home-built reactive balanced magnetron sputter deposition system. 

The synthesis, carried out at room temperature, was performed using a 101.6 mm diameter 

ScAl alloy target (40 wt.% Sc), with a purity of 99.99%. During the deposition, the admixture 

ratio of the N7.0 process gases, namely argon (Ar) and nitrogen (N2), was kept constant at 

𝐴𝑟 (𝐴𝑟 + 𝑁2)⁄ = 25 %. 

The Sc0.26Al0.74N thin films were synthesized with a discharge power of 700 W, a process 

pressure of 0.53 Pa and a target to substrate distance set to 45 mm. Further information about 

the Sc0.26Al0.74N thin film synthesis can be found elsewhere[21].The thin film composition, 

Sc0.26Al0.74N, was analysed by means of Rutherford backscattering spectrometry (RBS) at a 

backscattering angle of 160°. 
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The presence of the c-axis oriented phase in the synthesized Sc0.26Al0.74N thin film was 

studied by x-ray diffraction (Phillips X-Pert Pro MRD diffractometer) analysis. θ-2θ scans 

were first performed in order to determine the Sc0.26Al0.74N thin film texture. ω scans were 

performed afterwards on the reflection of the wurtzite like phase.  
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B. IDT fabrication 

The synthesized Sc0.26Al0.74N thin films were rinsed in acetone at 60 ºC for 5 minutes 

followed by 5 minutes in a methanol sonication bath. Following this two-solvent cleaning 

method, the polycrystalline piezoelectric thin films were blown dried with N2 and subjected to 

an oxygen (O2) plasma (plasmaetch PE-50) cleaning. The ZEP520 resist was spun afterwards. 

Because of the insulating behaviour of the Sc0.26Al0.74N thin film, as well as of the 

underlaying polycrystalline diamond layer, an organic anti-static layer (Espacer 300Z, Showa 

Denko) was spun on top of the ZEP520 resist to avoid charge accumulation during the e-beam 

lithography process [3]. 

The resonator interdigital transducer (IDT) was then exposed using a Crestec CABL-9500C e-

beam lithography system. In order to remove suspected resist residues, the developed resist 

was subjected to an O2 plasma. The 350 nm resist thickness was assessed using a KLA 

Tenkor Alpha Step IQ profilometer.  

An e-beam evaporator system (Varian VT 118) was used to metalize the SAW device. The 

platinum (Pt) target material (99.99%) was placed at a distance between the target and 

substrate of 45 cm, ensuring a uniform metallization thickness. The 250 nm thick Pt 

electrodes were evaporated with a 2.5 Å/s rate. Finally, the resist was stripped with N-Methyl-

2-pyrrolidone at 80 ºC. 

The resonator design (Figure 1) had an IDT periodicity set to λ=2800 nm and a metallization 

ratio of 0.5. 
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Figure 1((Figure Caption IDT design 
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C. Frequency analysis 

Standard, 300 µm pitch, ground-source-ground (GSG) probes (Picoprobe 40A; C style 

adaptor) were connected to a vector network analyser Agilent N5230 A model to electrically 

characterize the fabricated devices at room temperature. The electrical measurements were 

carried out using a standard short, open, load, through (SOLT), 50 Ω, one-port calibration. 

This calibration was performed before each measurement in order to remove systematic 

errors. The measurement resolution was set to 16001 points in the 1.25 to 4.25 GHz frequency 

range and the output power set to 0 dBm. 
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D. Modified Butterworth Van Dyke model 

Simulations with a modified Butterworth Van Dyke (mBVD) model (Figure 2), implemented 

in the Keysight advanced design system (ADS), were employed to curve fitting the electrical 

response of the fabricated devices. The resistor Rs represents the ohmic loss from the IDT 

fingers and bonding pads, C0 is the substrate plate capacitance and R0 represents the dielectric 

loss of the heterostructure. The Rayleigh and Sezawa resonance frequency modes are 

modelled using a series branch of motional inductance Lm, capacitance Cm, and resistance Rm 

for each particular mode. The Lm, Cm, and Rm  values corresponding to the Rayleigh and 

Sezawa resonance frequency modes can be found in Table 1.  

 

 
Figure 2. ((Figure Caption. Equivalent one-port parallel mBVD circuit model)) 
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2. Results 

A large substrate roughness complicates the promotion of highly c-axis ordered ScAlN thin 

film synthesis [22]. Additionally, the most relevant loss mechanism for a SAW propagating 

through polycrystalline materials is scattering due to the inhomogeneities within the 

synthesized thin films [23]. For these reasons, the polished polycrystalline diamond substrates 

were analysed by AFM. The root mean squared roughness (RRMS) value (0.59 nm in a square 

area of 5x5 µm2) report the low surface roughness of the polished polycrystalline diamond 

film (see supplementary material, Figure S1). 

The ω scan FWHM values of the 1700 nm, 2000 nm, 2300 nm ScAlN thick ScAlN thin films 

are 2.58º, 2.98º, and 2.65º respectively, indicating that the piezoelectric thin film is highly c-

axis textured (see supplementary material, Figure S2). These values are comparable to those 

reported for ScAlN thin films using synthesis temperatures above 400 ºC on Si (100) 

substrates [24][25]. 

The electrical characterization (Figure 3) shows that several resonance frequency modes are 

generated in the SAW resonator fabricated in the heterostructure comprising a 2000 nm thick 

ScAlN thin film. Among these propagating resonance frequency modes, the reflection 

coefficient (Figure 3 A) above -50 dB of the Sezawa resonance frequency mode (2.654 GHz) 

outstands when compared to the Rayleigh resonance frequency mode one (1.579 GHz) and 

those reflection coefficients of the harmonics propagating above 3 GHz. 

There is a necessary piezoelectric thin film layer of about 0.2 λ for the Sezawa resonance 

frequency mode to propagate unattenuated [2]. However, this is not the only condition for 

achieving a large reflection coefficient. For that, the dielectric properties of the Sc0.26Al0.74N 

thin film together with the IDT design were thoroughly considered for matching the 

impedance to 50 Ω. 

The admittance characteristic (Figure 3 B) confirms that there are no transverse mode 

resonances, indicating that no spurious resonances are generated close to the Rayleigh and 
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Sezawa resonance frequencies [23]. Furthermore, the close fitting between the mBVD model 

simulation with the experimental results validates the parameter extraction and their analysis 

in this work. Additionally, the series (fs) (Equation (2))and parallel (fp) (Equation (3)) 

resonance frequencies of the Rayleigh (º) and Sezawa (1) resonance frequency modes can be 

employed for obtaining the experimental SAW velocity (see below). 

𝑓𝑠 = 1 2π√𝐿𝑚𝐶𝑚⁄  
(2) 

𝑓𝑝 = 1 2π√
𝐿𝑚𝐶𝑚𝐶0

(𝐶𝑚 + 𝐶0)⁄⁄  
(3) 

Comparing the electrical performance of our devices with those reported by Fujii et al. [1], we 

have observed a displacement towards ~0.02 S of the conductance base (not shown) 

indicating our device has a larger substrate dielectric loss. According to them, one of the 

reasons for the high substrate dielectric loss is the polycrystalline diamond employed in this 

work heterostructures. 

 
Figure 3 ((Figure Caption. Electrical characterization and mBVD model simulation result 

(dotted line) of the one-port SAW resonator with a 250 nm Pt/2000 nm 

Sc0.26Al0.74N/polycrystalline-diamond layered structure. A) Reflection coefficient (S11 

parameter) B) Admittance characteristics (Y11 parameter))) 
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The shift that the ScAlN thin film thickness causes on the propagating Rayleigh and Sezawa 

mode resonance frequencies is remarkable. This is observed in the electrical characterization 

of the one-port resonators fabricated on heterostructures with a varying piezoelectric thin film 

thickness (Figure 4). The effective SAW velocity is determined by the predominant 

propagation of the generated wave (λ=2800 nm), either through the Sc0.26Al0.74N thin film or 

through the polycrystalline diamond substrate [23]. This is the reason behind the different 

frequency shifts experienced by the propagating Rayleigh and Sezawa modes. 

The Smith chart (Figure 4 (inset)) depicts the impedance matching of the Sezawa resonance 

frequency mode with the characteristic impedance (50 Ω). The predominant capacitive 

behavior of the fabricated SAW resonators becomes apparent in all three thicknesses under 

study. 

The electrical performance of the fabricated SAW devices is comparable to those previously 

reported for the ScAlN/diamond heterostructures. However, their reflection coefficient in the 

Rayleigh and Sezawa resonance modes are, to the best of our knowledge, the largest reported 

in the ScAlN thin film SAW technology [4][17][26]. 

The three ScAlN thin film thicknesses were selected after studying the dispersion curves 

reported by Hashimoto et al. [4][27], for ScAlN thin film/polycrystalline diamond 

heterostructures. With these thicknesses, the frequency range of the generated Sezawa modes 

is targeted to be between 2.4 GHz to 2.7 GHz, providing high electromechanical coupling 

coefficient. 
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Figure 4. ((Figure Caption. Electrical characterization and mBVD model simulation results 

(dotted lines) of 250 nm Pt/Sc0.26Al0.74N /polycrystalline-diamond heterostructures with 

different ScAlN thin film thickness. The reflection coefficient shows the Rayleigh and 

Sezawa propagation modes together with second and third resonance modes. (inset) Device 

impedance Smith chart. d stands for the Sc0.26Al0.74N thin film thickness)) 
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In the following, the thin film thickness ratio (d/λ) is employed for a better comparison 

between the heterostructures fabricated in this work and those found in the literature. It relates 

the piezoelectric thin film thickness (d) and the IDT wavelength (λ). 

The series and (𝑓𝑠) and parallel (𝑓𝑝) resonance frequencies for the Rayleigh and Sezawa 

modes are employed for computing the effective SAW velocity (Equation (4)) [12][26].  

𝑣𝑒𝑓𝑓 = 𝜆(𝑓𝑝 − 𝑓𝑠) 2⁄  
(4) 

As commented above, the effective SAW velocity (Figure 5) is determined by the 

predominant propagation of the SAW through the heterostructure layers. Therefore, the SAW 

velocity resembles the acoustic velocity of the Sc0.26Al0.74N thin film when the SAW is 

mainly confined within the piezoelectric layer. In other words, when the d/λ ratio is close to 1, 

a larger fraction of the generated SAW propagates through the piezoelectric thin film 

approaching the intrinsic acoustic speed of the Sc0.26Al0.74N thin film. 

However, as the piezoelectric thin film thickness increases, the effective SAW velocity 

corresponding to the Sezawa and Rayleigh modes are altered differently. The effective SAW 

velocity of the Rayleigh mode experiences a slight deceleration (5 %) whereas the Sezawa 

mode speed undergoes a steeper deceleration (11 %). 

This behavior agrees with the dispersion curves reported by Hashimoto et al. [4][27] which 

show how, within the d/λ range used in this work, the propagation velocity of the Rayleigh 

mode approaches the characteristic velocity of the piezoelectric ScAlN compound whereas 

the Sezawa mode velocity is affected by the increase of the d/λ ratio.  

The propagation speeds presented here are slightly larger than those previously reported [4][27]. 

As commented in the introduction, the acoustic velocity depends on the elasticity constants 

and density of the material the wave propagates through. The discrepancy between the 

simulated and our experimentally obtained effective SAW velocities arises because of the 

decrease of the ScxAl1-xN compound elasticity constants due to the higher scandium 

concentration (x) [16]. The values employed by Hashimoto et al. [4][27] correspond to a thin film 
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composition of Sc0.40Al0.60N whereas, in this work, the Rutherford backscattering 

spectrometry analysis report a thin film composition of Sc0.26Al0.74N. 

 
Figure 5. ((Figure Caption. Effective SAW velocity of the generated Rayleigh and Sezawa 

modes in the Sc0.26Al0.74N /polycrystalline-diamond heterostructure with different 

piezoelectric thin film thicknesses. λ=2800 nm)) 
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According to the mBVD model simulation results (Table 1) the fabricated SAW resonators 

possess relatively high ohmic losses (Rs) caused by the thick Pt electrodes. Although this 

metal is more resistive than other metals usually employed in microfabrication technologies 

such as Au or Cu, it is extensively used for high temperature applications due its high thermal 

stability [11]. Several authors have modelled FBAR resonators on AlN and ScAlN thin films 

[28][29]. However, a proper comparison with those values cannot be performed for the different 

device technologies. 

Table 1 ((Table Caption. ADS simulation results)) 

 

ScAlN 

thin film 

thickness 

[nm] 

fs 

[GHz] 

fp 

[GHz] 

Rs 

[Ω] 

C0 [F] 

(·10-12) 

R0 

[Ω] 

Lm [H] 

(·10-06) 

Cm [F] 

(·10-14) 

Rm 

[Ω] 
tanδ 

Rayleigh 

mode 

1700 1.57 1.59 7.90 1.57 67.6 1.70 0.60 170 0.86 

2000 1.57 1.58 11.8 1.61 54.9 1.61 0.63 83.7 0.94 

2300 1.50 1.51 9.50 1.89 140 1.71 0.65 184 0.37 

Sezawa 

mode 

1700 2.71 2.75 7.90 1.57 67.6 0.10 3.20 8.27 0.55 

2000 2.62 2.66 11.8 1.61 54.9 0.09 3.82 8.60 0.68 

2300 2.43 2.47 9.50 1.89 140 0.11 3.62 16.92 0.24 

 

The substrate permittivity is a significant parameter in the device design, as it determines the 

impedance of the interdigital transducer. This parameter is closely related to the substrate 

dielectric loss (Equation (5))which is related to the material properties within the 

heterostructure [30]. 

tan 𝛿 = (2𝜋𝑓𝑝𝐶0𝑅0)−1 
(5) 

The dependency of the tan 𝛿 value with the modelled dielectric loss (R0) takes on importance 

in the heterostructure comprising a ScAlN thin film thickness of 2300 nm. This device 

presents the lower tan 𝛿 value for the Rayleigh and Sezawa modes among the three fabricated 

devices. 

Larger effective electromechanical coupling coefficients (Equation (6)) are obtained for the 

Sezawa mode than for the Rayleigh mode (Figure 6) [4][27].  
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𝐾𝑒𝑓𝑓
2 = (

𝜋2

8
) (

𝐶𝑚

𝐶0
) (

𝐶0 − 𝐶𝑚

𝐶0
) 

(6) 

The largest effective electromechanical coupling coefficient for the Rayleigh (0.48 %) and the 

Sezawa (2.86 %) modes are obtained for a thin film thickness ratio of 0.714. On the other 

hand, the smallest Rayleigh (0.42 %) and Sezawa (2.32 %) mode 𝐾𝑒𝑓𝑓
2  coefficients correspond 

to the heterostructure with a 2300 nm thick ScAlN thin film.  

Within the d/λ range employed in this work, there is a larger variation in the Sezawa mode 

𝐾𝑒𝑓𝑓
2  coefficients (23 %) than for those of the propagating Rayleigh mode (14 %). The former 

is in agreement with the electromechanical coupling coefficient dispersion curves reported in 

[4] and [27]. However, while the Rayleigh mode effective electromechanical coupling 

coefficients are in agreement with those reported in the literature [4][27], the calculated Sezawa 

mode 𝐾𝑒𝑓𝑓
2  coefficients are reduced by a 40 % as compared to those of the simulated 

dispersion curves. The reason behind this is the mismatch between the material constants 

employed for the simulation (a Sc0.40Al0.60N composition) and the ones of the synthesized 

Sc0.26Al0.74N thin film together with the device IDT design. 

 
Figure 6. ((Figure Caption. Variation of the Rayleigh and Sezawa mode effective 

electromechanical coupling coefficient (𝐾𝑒𝑓𝑓
2 ) with ScAlN thin film thickness and thin film 

thickness ratio. λ=2800 nm)) 
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The quality factor (Equation (7)) of a SAW resonator depends on the device design and the 

properties of the materials within the heterostructure. 

(𝑄𝑠 = 2𝜋𝑓𝑠

𝐿𝑚

𝑅𝑚
) 

(7) 

Fujii et al. [1] report on the influence that the grain boundaries of several polycrystalline 

substrates have on the admittance characteristics of SAW devices. Using single-crystal 

diamond substrates reduce the propagation losses which in turns increases the quality factor. 

Therefore, in heterostructures comprising a polycrystalline diamond layer, the quality factor is 

limited by the scattering from its grain boundaries and the substrate dielectric loss tan 𝛿 [1].  

Because of the linear proportionality of the quality factor with the series resonance frequency 

the Sezawa mode 𝑄𝑠 of the fabricated devices in this work is larger than those of the Rayleigh 

mode ones (Figure 7). The quality factor of the propagating Sezawa mode decreases linearly, 

as the Sc0.26Al0.74N thin film thickness increases from 1700 nm to 2300 nm, by a 50 %. On the 

other hand, the largest quality factor (166.8) among the propagating Rayleigh mode 

corresponds to the heterostructure with a 2000 nm thick ScAlN thin film. As commented 

above, the series branches of motional inductance, capacitance, and resistance represent the 

resonating wave modes in the mBVD model. After the curve fitting procedure of the modified 

Butterworth Van Dyke model, different inductance and resistance values are obtained in the 

series branches that correspond to the Rayleigh and Sezawa modes. The Rayleigh mode Rm 

value for the 2000 nm resonator is approximately half the value corresponding to the 1700 nm 

and 2300 nm resonator. Due to this, the Rayleigh mode quality factor does not show the linear 

dependency shown by the Sezawa mode quality factor.  

The quality factors obtained in this work are above those previously reported values for SAW 

devices fabricated on Sc0.27Al0.73N/Si (100) heterostructures [17], indicating that the 

heterostructure presented in this work is a promising device configuration for future 

applications in the SAW technologies.  
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Figure 7. ((Figure Caption. Variation of the Rayleigh and Sezawa quality factor (QS) with the 

Sc0.26Al0.74N thin film thickness. λ=2800 nm)) 
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((4)). Conclusion 

Highly c-axis oriented Sc0.26Al0.74N thin films were synthesized on polycrystalline diamond 

substrates. Using e-beam lithography, one-port SAW resonators were fabricated on three 

heterostructures comprising a polycrystalline diamond substrate, a scandium aluminium 

nitride thin film and platinum electrodes. The piezoelectric thin film thickness was varied in 

these three heterostructures and the electrical response of the fabricated one-port resonators 

analysed. In these devices a remarkable reflection coefficient at the Sezawa resonance 

frequency mode is observed in the fabricated SAW devices. The corresponding effective 

electromechanical coupling coefficient factor (𝐾𝑒𝑓𝑓
2 ), the quality factor (Qs) and the dielectric 

loss (tanδ) for the Rayleigh and the Sezawa resonance modes are computed from the curve 

fitting of the modified Butterworth Van Dyke model simulation implemented in the ADS 

design tool.  

A slight variation of the Rayleigh mode electromechanical coupling coefficient 𝐾𝑒𝑓𝑓
2  is 

observed. This is in agreement with the dispersion curves that have been previously reported 

for the ScAlN thin film/diamond heterostructure. On the other hand, the Sezawa mode 

electromechanical coupling coefficient is largely influenced by the ratio between the 

piezoelectric thin film thickness and the designed IDT wavelength. However, the Sezawa 

mode 𝐾𝑒𝑓𝑓
2 coefficients obtained here are a 40% below those previously reported from the 

simulations. This is due to the different thin film compositions employed. Whereas in this 

work the Rutherford backscattering spectrometry analysis report a Sc0.26Al0.74N thin film 

composition, the simulations are performed for a Sc0.40Al0.60N thin film [4][27]. 

The quality factors (Qs) obtained in this work are within those previously reported for 

IDT/ScAlN/polycrystalline-diamond heterostructures and are largely related to the device 

design. 

According to the obtained SAW characteristics, the presented Sc0.26Al0.74N thin film based 

heterostructures are a promising candidate for fabricating SAW devices. They are not only a 
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feasible candidate for the 5G telecommunication products but also in SAW based sensory 

applications. 
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Figure 1. ((Figure Caption. IDT design)) 
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Figure 2. ((Figure Caption. Equivalent one-port parallel mBVD circuit model)) 
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Figure 3. ((Figure Caption. Electrical characterization and mBVD model simulation result 

(dotted line) of the one-port SAW resonator with a 250 nm Pt/2000 nm 

Sc0.26Al0.74N/polycrystalline-diamond layered structure. A) Reflection coefficient (S11 

parameter) B) Admittance characteristics (Y11 parameter)))  
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Figure 4. ((Figure Caption. Electrical characterization and mBVD model simulation results 

(dotted lines) of 250 nm Pt/Sc0.26Al0.74N /polycrystalline-diamond heterostructures with 

different ScAlN thin film thickness. The reflection coefficient shows the Rayleigh and 

Sezawa propagation modes together with second and third resonance modes. (inset) Device 

impedance Smith chart. d stands for the Sc0.26Al0.74N  thin film thickness))  
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Figure 5. ((Figure Caption. Effective SAW velocity of the generated Rayleigh and Sezawa 

modes in the Sc0.26Al0.74N /polycrystalline-diamond heterostructure with different 

piezoelectric thin film thicknesses. λ=2800 nm))  
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Figure 6. ((Figure Caption. Variation of the Rayleigh and Sezawa mode effective 

electromechanical coupling coefficient (𝐾𝑒𝑓𝑓
2 ) with ScAlN thin film thickness and thin film 

thickness ratio. λ=2800 nm))  
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Figure 7. ((Figure Caption. Variation of the Rayleigh and Sezawa quality factor (QS) with the 

Sc0.26Al0.74N thin film thickness. λ=2800 nm))  
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Table 1 ((Table Caption. ADS simulation results))  

 

ScAlN 

thin film 

thickness 

[nm] 

fs 

[GHz] 

fp 

[GHz] 

Rs 

[Ω] 

C0 [F] 

(·10-12) 

R0 

[Ω] 

Lm [H] 

(·10-06) 

Cm [F] 

(·10-14) 

Rm 

[Ω] 
tanδ 

Rayleigh 

mode 

1700 1.57 1.59 7.90 1.57 67.6 1.70 0.60 170 0.86 

2000 1.57 1.58 11.8 1.61 54.9 1.61 0.63 83.7 0.94 

2300 1.50 1.51 9.50 1.89 140 1.71 0.65 184 0.37 

Sezawa 

mode 

1700 2.71 2.75 7.90 1.57 67.6 0.10 3.20 8.27 0.55 

2000 2.62 2.66 11.8 1.61 54.9 0.09 3.82 8.60 0.68 

2300 2.43 2.47 9.50 1.89 140 0.11 3.62 16.92 0.24 
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