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ABSTRACT

We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measure-
ments. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller
uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and
lensing data determine the spectral index of scalar perturbations to be ns = 0.9649 ± 0.0042 at 68% CL. We find no evidence for a scale depen-
dence of ns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4%
at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar
ratio, r0.002 < 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r0.002 < 0.056. In the framework of
standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave
potential, V ′′(φ) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we
find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum
consistently confirm a pure power law in the range of comoving scales 0.005 Mpc−1 . k . 0.2 Mpc−1. A complementary analysis also finds no
evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic
or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polariza-
tion data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and
isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95%
CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of
compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization
data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial
fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support
the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.

Key words. inflation – cosmic background radiation
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1. Introduction

This paper, one of a set associated with the 2018 release of
data from the Planck1 mission, presents the implications for
cosmic inflation of the 2018 Planck measurements of the cos-
mic microwave background (CMB) anisotropies. In terms of
data, analysis, and scientific interpretation, this paper updates
Planck Collaboration XXII (2014, henceforth PCI13), which
was based on the temperature data of the nominal Planck mis-
sion (“PR1”), including the first 14 months of observations, and
Planck Collaboration XX (2016, henceforth PCI15), which used
temperature data and an initial set of polarization data from the
full Planck mission (“PR2”), comprising 29 and 52 months of
observations for the high frequency instrument (HFI) and low
frequency instrument (LFI), respectively.

The ideas underlying cosmic inflation were developed dur-
ing the late 1970s and early 1980s in order to remedy a num-
ber of defects of the hot big-bang cosmological model (e.g., the
horizon, smoothness, flatness, and monopole problems) (Brout
et al. 1978; Starobinsky 1980; Kazanas 1980; Sato 1981; Guth
1981; Linde 1982, 1983; Albrecht & Steinhardt 1982). Subse-
quently, it was realized that, on account of quantum vacuum fluc-
tuations, cosmic inflation also provides a means to generate the
primordial cosmological perturbations (Mukhanov & Chibisov
1981, 1982; Hawking 1982; Guth & Pi 1982; Starobinsky 1982;
Bardeen et al. 1983; Mukhanov 1985). The development of cos-
mic inflation is one of the major success stories of modern cos-
mology, and in this paper we explore how the latest 2018 release
of the Planck data constrains inflationary models.

Planck data currently provide the best constraints on the
CMB anisotropies, except on very small angular scales beyond
the resolution limit of Planck. The Planck data set has enabled
a precision characterization of the primordial cosmological
perturbations and has allowed cosmological parameters to be
constrained at the sub-percent level. One of the main data prod-
ucts, described in more detail in the following section, is the
Planck TT, TE, EE, and lensing power spectra, which are shown
in Fig. 1, together with the residuals from the six-parameter con-
cordance Λ cold dark matter (ΛCDM) model using the best-fit
parameter values.

In order to provide a quantitative estimate of the improve-
ment achieved by Planck, as well as to show where Planck
stands compared to an ultimate cosmic-variance-limited survey,
we consider an idealistic estimator for the number of modes (i.e.,
the effective number of a`m’s measured; Planck Collaboration I
2016):

NXY
modes(`) ≡ 2

∑̀
`′=2

 CXY
`′

∆CXY
`′

2

, (1)

where CXY
` (∆CXY

` ) is the (error on the) angular power spectrum
of the XY channel (Planck Collaboration I 2016; Scott et al.
2016). The number of modes measured by Planck is 1 430 000
and 109 000 for temperature (XY = TT up to ` = 2500)
and polarization (XY = EE up to ` = 2000), respectively
(Planck Collaboration I 2020). The number of modes measured
is increased by approximately a factor of 7 (570) for temperature
(polarization) with respect to the WMAP 9-year measurement,

1 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency (ESA) with instruments provided by two scientific
consortia funded by ESA member states and led by Principal Investi-
gators from France and Italy, telescope reflectors provided through a
collaboration between ESA and a scientific consortium led and funded
by Denmark, and additional contributions from NASA (USA).

but there is still a factor of 3 (40) to gain for a cosmic-variance-
limited experiment up to ` = 2500 accessing 70% of the sky. The
additional modes measured by Planck play a key role in improv-
ing the constraints on the initial conditions for the cosmological
perturbations and on models of inflation with respect to previous
measurements of CMB anisotropies.

Planck data have also greatly improved the constraints
on bispectral non-Gaussianity, both for the “local” pattern, as
predicted by many inflationary models, and for other tem-
plates such as the equilateral one, as analysed and reported in
detail in the dedicated Planck non-Gaussianity papers (Planck
Collaboration XXIV 2014; Planck Collaboration XVII 2016;
Planck Collaboration IX 2020). The constraints on the non-
Gaussianity parameter fNL are limited by a combination of cos-
mic variance and instrumental noise. An order-of-magnitude
estimate for the signal-to-noise ratio for the local pattern (with
f loc
NL = 1) is given by( S
N

)2

∝ Ωsky`
2
max ln

(
`max

`min

)
. (2)

For the local shape, the logarithm enters because most of the
signal derives from detecting the modulation of the small-scale
power by the large-scale CMB anisotropy, highlighting the
importance of full-sky maps for this kind of analysis. For other
shapes such as equilateral, one instead has (S/N)2 ∼ Ωsky`

2
max.

Planck has significantly sharpened the constraints on fNL, largely
on account of its measurement of high multipoles with higher
signal-to-noise ratio compared to past surveys. Some improve-
ment has also been obtained from including polarization.

The Planck measurements have significantly constrained the
physics of inflation. The hypothesis of adiabatic Gaussian scalar
fluctuations with a power spectrum described by a simple power
law, which is the key prediction of the standard single-field
slow-roll inflationary models, has been tested to unprecedent
accuracy (PCI13; PCI15; Planck Collaboration XXIV 2014;
Planck Collaboration XVII 2016). Planck has set tight con-
straints on the amount of inflationary gravitational waves by
exploiting the shape of the CMB temperature spectrum (PCI13).
These results have inspired a resurgence of activity in infla-
tionary model building. For more details, see, for example, the
following review articles and references therein: Linde (2015),
Martin et al. (2014a), Guth et al. (2014), and Burgess et al.
(2013). Planck analysis and interpretation have also sparked a
debate on the likelihood of initial conditions for some inflation-
ary models (Ijjas et al. 2013; Ijjas & Steinhardt 2016; Linde
2017), which is primarily of theoretical interest and is not
addressed in this paper. In combination with more sensitive B-
mode ground-based polarization measurements, as from BICEP-
Keck Array (BICEP2/Keck Array and Planck Collaborations
2015, henceforth BKP), Planck has convincingly ruled out the
slow-roll inflationary model with a quadratic potential (PCI15).
In terms of physics beyond the simplest slow-roll inflationary
models, the pre-Planck hints of a running spectral index (Hou
et al. 2014) or of large non-Gaussianities (Bennett et al. 2012)
have disappeared as a result of the Planck measurements. How to
interpret anomalies on the largest angular scales and at high mul-
tipoles is a question motivating the search for new non-standard
inflationary models. We discuss how the Planck 2018 release
data further test these ideas.

This paper is organized as follows. In Sect. 2 we describe the
statistical methodology, the Planck likelihoods, and the comple-
mentary data sets used in this paper. In Sect. 3 we discuss the
updated constraints on the spectral index of the scalar pertur-
bations, on spatial curvature, and on the tensor-to-scalar ratio.
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Fig. 1. Planck 2018 CMB angular power spectra. The data are compared with the base-ΛCDM best fit to the Planck TT,TE,EE+lowE+lensing
data (blue curves). For each panel we also show the residuals with respect to this baseline best fit. Plotted areD` = `(` + 1)C`/(2π) for TT and TE,
C` for EE, and L2(L + 1)2Cφφ

L /(2π) for lensing. For TT, TE, and EE, the multipole range 2 ≤ ` ≤ 29 shows the power spectra from Commander (TT)
and SimAll (TE, EE), while at ` ≥ 30 we display the co-added frequency spectra computed from the Plik cross-half-mission likelihood, with
foreground and other nuisance parameters fixed to their best-fit values in the base-ΛCDM cosmology. For the Planck lensing potential angular
power spectrum, we show the conservative (orange dots; used in the likelihood) and aggressive (grey dots) cases. Note some of the different
horizontal and vertical scales on either side of ` = 30 for the temperature and polarization spectra and residuals.

Section 4 is devoted to constraining slow-roll parameters and
to a Bayesian model comparison of inflationary models, tak-
ing into account the uncertainties in connecting the inflation-
ary expansion to the subsequent big-bang thermalized era. In
Sect. 5 the potential for standard single-field inflation is recon-
structed using two different methodologies. Section 6 describes
the primordial power spectrum reconstruction using three dif-
ferent approaches. In Sect. 7, the parametric search for features
in the primordial scalar power spectrum is described, including
a dedicated study of the axion monodromy model. In Sect. 8,
the Planck power spectrum data are combined with information
from the Planck bispectrum in a search for oscillations in the
primordial spectra. The constraints on isocurvature modes are
summarized in Sect. 9. Section 10 updates and extends the con-
straints on anisotropic inflationary models of inflation. We sum-
marize our conclusions in Sect. 11, highlighting the key results
and the legacy of Planck for inflation.

2. Methodology and data

The general theoretical background and analysis methods
applied in this paper closely match those of the previous Planck
inflation papers (PCI13; PCI15). Consequently, in this section

we provide only a brief summary of the methodology and focus
on changes in the Planck likelihood relative to previous releases.

2.1. Cosmological models and inference

For well over a decade, the base-ΛCDM model has been estab-
lished as the simplest viable cosmological model. Its six free
parameters can be divided into primordial and late-time parame-
ters. The former describe the state of perturbations on observable
scales (corresponding to a wavenumber range of 10−4 Mpc−1 .
k . 10−1 Mpc−1 today) prior to re-entering the Hubble radius
around recombination. In base ΛCDM, the initial state of per-
turbations is assumed to be purely adiabatic and scalar, with the
spectrum of curvature perturbations given by the power law

lnPR(k) = ln As + (ns − 1) ln(k/k∗) ≡ lnP0(k), (3)

where k∗ denotes an arbitrary pivot scale. The late-time parame-
ters, on the other hand, determine the linear evolution of pertur-
bations after re-entering the Hubble radius. By default we use the
basis (ωb, ωc, θMC, τ)2 for the late-time parameters, but occasion-
ally also consider non-minimal late-time cosmologies. Because

2 Refer to Table 1 for definitions.
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Table 1. Baseline and optional late-time parameters, primordial power spectrum parameters, and slow-roll parameters.

Parameter Definition

ωb ≡ Ωb h2 . . . . . . . . . . . . Baryon density today
ωc ≡ Ωc h2 . . . . . . . . . . . . Cold dark matter density today
θMC . . . . . . . . . . . . . . . . . Approximation to the angular size of sound horizon at last scattering
τ . . . . . . . . . . . . . . . . . . . Optical depth to reionization

Neff . . . . . . . . . . . . . . . . . Effective number of neutrino species
Σmν . . . . . . . . . . . . . . . . . Sum of neutrino masses
ΩK . . . . . . . . . . . . . . . . . Spatial curvature parameter
w0 . . . . . . . . . . . . . . . . . . Dark energy equation of state parameter

As . . . . . . . . . . . . . . . . . . Scalar power spectrum amplitude
ns . . . . . . . . . . . . . . . . . . Scalar spectral index
dns/d ln k . . . . . . . . . . . . . Running of scalar spectral index
d2ns/d ln k2 . . . . . . . . . . . Running of running of scalar spectral index
r . . . . . . . . . . . . . . . . . . . Tensor-to-scalar power ratio
nt . . . . . . . . . . . . . . . . . . Tensor spectral index

ε1 = −Ḣ/H2 . . . . . . . . . . . First Hubble slow-roll parameter
εn+1 = ε̇n/(Hεn) . . . . . . . . . (n + 1)st Hubble slow-roll parameter (n ≥ 1)
εV = M2

plV
2
φ/(2V2) . . . . . . . First potential slow-roll parameter, where φ ≡ d/dφ

ηV = M2
plVφφ/V . . . . . . . . . Second potential slow-roll parameter

ξ2
V = M4

plVφVφφφ/V2 . . . . . . Third potential slow-roll parameter
$3

V = M6
plV

2
φVφφφφ/V3 . . . . Fourth potential slow-roll parameter

Notes. All primordial quantities are evaluated at a pivot scale of k∗ = 0.05 Mpc−1, unless otherwise stated.

of the inflationary perspective of this paper, we are mainly inter-
ested in exploring modifications of the primordial sector and
their interpretation in terms of the physics of the inflationary
epoch.

Perturbations produced by generic single-field slow-roll
models of inflation are typically well approximated by the fol-
lowing form of the adiabatic scalar and tensor components:

lnPR(k) = lnP0(k) +
1
2

d ln ns

d ln k
ln(k/k∗)2

+
1
6

d2 ln ns

d ln k2 ln(k/k∗)3 + . . . , (4)

lnPt(k) = ln(rAs) + nt ln(k/k∗) + . . . , (5)

which allows for a weak scale dependence of the scalar spec-
tral index, ns, modelled by a running, d ln ns/d ln k, or a running
of the running, d2 ln ns/d(ln k)2.3 The power spectrum parame-
terization in Eq. (4) can be extended to address wider classes
of inflation-related questions, (e.g., the search for isocurvature
perturbations, specific primordial features in the spectra, etc.),
as described in subsequent sections. We also go beyond sim-
ple functions to parameterize the primordial power spectrum.
In the spirit of reconstructing the primordial spectrum from the
data, we consider some general parameterizations (e.g., taking
the power spectrum as an interpolation between knots of freely
varied amplitudes at fixed or varying wavenumbers).

One could argue that the primordial power spectra are merely
intermediate quantities and assess theories directly from more
fundamental parameters. By using the slow-roll approximation,
or by evolving the mode equations to obtain exact numerical
predictions for the spectra without resorting to the slow-roll

3 Unless explicitly stated otherwise, we adopt a default pivot scale k∗ =
0.05 Mpc−1 in this work. As in previous Planck releases, we will also
quote the tensor-to-scalar ratio r0.002 at k∗ = 0.002 Mpc−1 in order to
facilitate comparison with earlier primordial tensor-mode constraints.

approximation, we can relate the primordial perturbations to
the dynamics of the Hubble parameter during inflation or to
the inflaton potential and its derivatives, thus constraining these
quantities directly.

For any given model, theoretical predictions of CMB-related
and other cosmological observables are calculated using appro-
priately modified versions of the Boltzmann codes CAMB (Lewis
et al. 2000) or CLASS (Blas et al. 2011). As in (PCI13;
PCI15), we compare models M1 and M2 by the difference
in the logarithm of the likelihood of their best fits, or effec-
tive ∆χ2 ≡ 2 [lnLmax(M1) − lnLmax(M2)]. We apply Bayesian
statistical methods to infer the posterior probability distribu-
tions of the model parameters and select between compet-
ing models (Trotta 2008), using either the Metropolis-Hastings
Markov-chain Monte Carlo (MCMC) sampling algorithm, as
implemented in CosmoMC (Lewis & Bridle 2002) and Monte
Python (Audren et al. 2013), or software based on nested sam-
pling (Skilling et al. 2004), such as MultiNest (Feroz et al.
2009, 2013) or PolyChord (Handley et al. 2015a,b). The lat-
ter can simultaneously estimate the Bayesian evidence Ei of a
model Mi, allowing the comparison between different models
via the Bayes factor, B = E2/E1, where |ln B| > 5 is commonly
considered “strong” evidence for or against the respective model
(Jeffreys 1998; Trotta 2007a).

2.2. Data

2.2.1. Planck data

The Planck data processing has improved in a number of
key aspects with respect to the previous 2015 cosmological
release. We briefly summarize the main points here, referring the
interested reader to Planck Collaboration II (2020) and Planck
Collaboration III (2020) for details.

The flagging procedure in the LFI 2018 pipeline has been
made more aggressive, in particular for the first 200 operational
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days. However, the most important improvement in the LFI
pipeline is in the calibration approach. Whereas in the 2015
release, the main calibration source for LFI was the Planck
orbital dipole (i.e., the amplitude modulation of the CMB dipole
induced by the satellite orbit) of each single radiometer model,
the 2018 procedure also includes the Galactic emission along
with the orbital dipole in the calibration model and becomes iter-
ative (Planck Collaboration II 2020).

The HFI data for the 2018 release have also been made
more conservative, cutting approximately 22 days of observa-
tions under non-stationary conditions with respect to 2015. The
main change in the HFI data processing is the use of a new
map making and calibration algorithm called SRoll, whose
first version was introduced in Planck Collaboration Int. XLVI
(2016) for the initial analysis of HFI polarization on large angu-
lar scales. This algorithm employs a generalized polarization
destriper which uses the redundancy in the data to extract sev-
eral instrumental systematic-effect parameters directly from the
data (Planck Collaboration III 2020).

These improvements have a minor impact on Planck tem-
perature maps, but are much more important for polarization,
particularly on large angular scales, allowing, for instance, the
removal of the high-pass filtering adopted in the 2015 study of
isotropy and statistics Planck Collaboration XVI (2016).

In the following, we summarize the essentials of the Planck
inputs used in this paper (i.e., the Planck likelihood approach to
the information contained in the 2-point statistics of the tem-
perature and polarization maps and the Planck CMB lensing
likelihood). As for previous cosmological releases, the Planck
likelihood approach is hybridized between low- and high-
multipole regions, which therefore are summarized separately
below. We refer the interested reader to the relevant papers
Planck Collaboration V (2020, henceforth PPL18) and Planck
Collaboration VIII (2020, henceforth PPLe18) for a more com-
plete description of these inputs.

Planck low-` likelihood

As in the Planck 2015 release, several options are available for
evaluating the temperature likelihood on large angular scales,
each with its own computational complexity and approxima-
tions. One option is based on the Commander framework and
implements full Bayesian sampling of an explicit paramet-
ric model that includes both the cosmological CMB signal
and non-cosmological astrophysical signals, such as thermal
dust, CO, and low-frequency foregrounds. This framework is
described in earlier papers (see Planck Collaboration XI 2016,
and Planck Collaboration Int. XLVI 2016, and references therein
for details). The only changes since the 2015 implementation
concern the data and model selection. As described in Planck
Collaboration IV (2020), we only use the Planck 2018 data in the
current data release, whereas the previous 2015 version addition-
ally included WMAP (Bennett et al. 2013) and Haslam (Haslam
et al. 1982) observations. With fewer frequencies available, this
requires a simpler model, and in particular we now fit for only
a single low-frequency foreground component, rather than indi-
vidual synchrotron, free-free, and spinning dust emission com-
ponents, and we only fit a single CO component, rather than for
individual CO line components at 100, 217, and 353 GHz. On the
one hand, this results in fewer internal foreground degeneracies
compared to the 2015 version, and a likelihood that only depends
on Planck data, but at the same time the simpler foreground mod-
elling also requires a slightly larger Galactic mask. Overall, the
two versions are very compatible in terms of the recovered CMB

power spectra, as discussed in PPL18. For additional details on
the Commander temperature analysis, see Planck Collaboration
IV (2020).

The HFI low-` polarization likelihood is based on the full-
mission HFI 100-GHz and 143-GHz Q and U low-resolution
maps cleaned through a template-fitting procedure with LFI 30-
GHz and HFI 353-GHz information4 used as tracers of polar-
ized synchrotron and thermal dust, respectively (see PPL18 for
details about the cleaning procedure). The likelihood method,
called SimAll, represents a follow-up of the SimBaL algorithm
presented in Planck Collaboration Int. XLVI (2016) and uses the
FFP10 simulations to construct empirically the probability for
the EE and BB spectra. The method is based on the quadratic
maximum likelihood estimation of the cross-spectrum between
100 and 143 GHz, and its multipole range spans from ` = 2 to
` = 29. We only built the likelihood for EE and BB and not for
TE, due to the poor statistical consistency of the TE spectrum for
` > 10, and due to the difficulty of describing accurately the cor-
relation with TT and EE, given the limited number of simulations
available; see discussions in Sect. 2.2.6 of PPL18. Further details
about the method and consistency tests are presented in PPL18.
When combined with the low-` temperature likelihood (based on
the CommanderCMB solution), the low-` polarization likelihood
implies τ = 0.051 ± 0.009 and r0.002 < 0.41 at 95% CL.

As an alternative to the Commander and SimAll low-` like-
lihood, an update of the joint temperature and polarization pixel-
based low-` LFI likelihood used in 2015 is part of this Planck
data release. Its methodology (see PPL18 for details) is similar to
that of 2015 (Planck Collaboration XI 2016), i.e., a pixel-based
approach in T QU at Nside = 16, and employs the Commander
solution in temperature along with the LFI 70-GHz linear polar-
ization maps, foreground cleaned using the Planck 30-GHz and
353-GHz channels as tracer templates for synchrotron and dust,
respectively. This 2018 version allows for a larger sky frac-
tion in polarization (66.4%, compared to the previous 46%) and
retains the sky surveys 2 and 4 that were excluded in 2015. By
performing a two-parameter estimate for As and τ restricted to
` < 30, we find using this likelihood that τ = 0.063 ± 0.020 and
ln(1010As) = 2.975 ± 0.056 at 68% CL. The latter values have
been derived by varying the TT, EE, and TE CMB spectra.

Planck high-` likelihood

The 2018 baseline high-` likelihood (Plik) is an update of the
2015 baseline version. The CamSpec likelihood (Efstathiou &
Gratton 2019) is also used to explore alternative data cuts and
modelling of the data and is described below. Both approaches
implement a Gaussian likelihood approximation using cross-
spectra between the 100-, 143-, and 217-GHz maps. Plik
covers the multipoles 30 ≤ ` ≤ 2509 in temperature and
30 ≤ ` ≤ 1997 in polarization (i.e., for TE and EE). In
order to avoid noise bias, the high-` likelihood relies only on
half-mission map cross-spectra, which have been demonstrated
to be largely free of correlated noise. The spectra are com-
puted on masked maps in order to reduce the anisotropic Galac-
tic contamination (dominated by dust emission), and in the
case of TT also strong point sources and CO emission. The
Plik masks, identical to the 2015 masks, are tailored to each

4 The polarized synchrotron component is fitted only at 100 GHz,
being negligible at 143 GHz. For the polarized dust component, follow-
ing the prescription in Planck Collaboration III (2020), the low-` HFI
polarization likelihood used the 353-GHz map constructed only from
polarization-sensitive bolometers.
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frequency channel and differ in temperature and polarization
to take into account differing foreground behaviour and chan-
nel beams. The Plik intensity (polarization) masks effectively
retain 66, 57, and 47% (70, 50, and 41%) of the sky after
apodization for the 100-, 143-, and 217-GHz channels, respec-
tively. Unlike in 2015, when the map beams were computed for
an average sky fraction, they are now computed for the exact sky
fraction used at each frequency. The data vector used in the like-
lihood approximation discards multipoles that are highly con-
taminated by foregrounds or have low signal-to-noise ratios.

The Plik power spectra are binned using the same scheme
as in 2015. Unbinned likelihoods are also available. When form-
ing the data vector, individual cross-frequency spectra are not
co-added. This allows for independent exploration of the calibra-
tion, nuisance, and foreground parameter space for each cross-
spectrum using dedicated templates in the theory vector.

The Plik (and CamSpec) covariance matrices are com-
puted for a fixed fiducial CMB including the latest estimate of
the foreground and systematics, which are all assumed to be
Gaussian. As verified in 2015, after the masks have been applied
this is a reasonable assumption. The covariance matrix compu-
tation uses an approximation to account for mask-induced cor-
relations. Plik uses only the large Galactic mask in the analytic
computation and then takes extra correlations due to the point-
source mask into account using a Monte Carlo estimate of the
extra variance induced. Missing pixels are ignored in the covari-
ance. In 2015 its was shown that this approach (i.e., Gaussian
approximation and approximate covariance) induced only a less
than 0.1σ bias on ns (from the 30 < ` < 100 modes).

The Plik noise model has been re-estimated on the lat-
est HFI maps using the same methodology as in 2015, based
on a comparison between noise-biased auto-spectra and cross-
spectra. This procedure avoids correlated glitch residuals, which
had biased previous noise estimates (Planck Collaboration XI
2016), particularly in polarization at ` . 500.

The 2018 HFI data processing pipeline has refined the maps
used in the likelihood relative to 2015. For example, an improved
destriping procedure reduced the residual scatter in the polariza-
tion maps, in particular at 143 GHz (yielding about 12% lower
noise on the half-mission cross-spectrum). More stringent selec-
tion cuts resulted in the discarding of the last 1000 rings of data,
increasing the noise in the temperature half-mission spectrum
by about 3%. Also, a higher threshold was imposed on the con-
ditioning of the T QU intra-pixel noise covariance matrix for a
pixel to be considered well-measured, resulting in more missing
pixels relative to 2015.

The data modelling has also significantly improved, in par-
ticular for polarization, making cosmological constraints from
polarization more reliable. In 2015, the polarization spectra (TE
and EE) displayed relatively large inter-frequency disagreements.
A plausible explanation (at least for TE) was the temperature-
to-polarization leakage induced by beam and calibration differ-
ences (so-called “beam leakage”). The beam-leakage modelling
has improved substantially in 2018 (Hivon et al. 2017) so that
we can now propagate the beams, gain differences, polarization
angles, etc. to compute a reliable template for the beam leakage
and thus remove these leakage effects. These improvements sub-
stantially reduce the TE inter-frequency disagreements.

We also reassessed the estimates of the polarization effi-
ciency for the polarized channels. Comparing different data-
based estimates demonstrates that the ground-based polarization
efficiency uncertainty estimates (of the order of a fraction of a
percent) were too optimistic by a factor of 5–10. Correcting for
the observed polarization efficiency errors (at the percent level)

very significantly reduces the EE inter-frequency disagreements.
This calibration correction relies on cosmological priors (using
the TT best-fit cosmology). Calibrating using either the TE or the
EE spectra yields generally consistent results, except at 143 GHz
where there is disagreement at more than 2σ. At this level, this
discrepancy can be caused either by a statistical fluctuation, or
by an unknown residual.

The Plik baseline likelihood implements a map-based cal-
ibration. The TE calibration is deduced from the TT and EE
calibrations, including at 143 GHz. Other improvements over
the 2015 version are the following. The dust model has been
improved in temperature and polarization, using also the lat-
est version of the 353-GHz maps. The level of synchrotron
contamination in the 100-GHz and 143-GHz maps has been esti-
mated and shown to be negligible. Sub-pixel noise has been
included in TT and EE (and demonstrated to have a negligi-
ble effect on the cosmological parameters). Finally, a correlated
component of the noise has been observed in the end-to-end HFI
simulation, affecting the large scales and very small scales of the
EE auto-frequency spectra. The large-scale contribution affects
the dust correction and the ns constraints. We constructed an
empirical model of this correlated noise from our simulations,
which is included in the Plik likelihood.
CamSpec was the baseline for the 2013 release and was

described in detail in Planck Collaboration XV (2014), and
used cross-spectra formed from detector-set temperature maps
using data from the nominal mission period. It was extended for
the 2015 release to include both polarization and temperature-
polarization cross-spectra and to use the data from the full
mission period. Similarly to Plik, CamSpec switched from
detector-set cross-spectra to cross-spectra formed from frequency
maps constructed from separate halves of the full mission data in
order to mitigate the effects of noise correlated between detectors.
In 2015, the foreground modelling was also modified and the sky
fraction retained at each frequency was increased, using common
masks with Plik in temperature. CamSpec used a more conserva-
tive mask in polarization than Plik.

Differently from Plik, CamSpec corrects each TE and EE
cross-frequency spectrum with a fixed dust and temperature-to-
polarization leakage template before co-adding them to form the
EE and TE components of its data vector and bases its noise esti-
mate on differences between maps constructed using alternating
pointing periods. Note also that CamSpec uses an individual-
spectrum-based calibration scheme, where the TE calibrations
are not fixed to be those inferred from the TT and EE ones.

In the 2018 release further improvements in the CamSpec
foreground modelling have been implemented. The dust model
in temperature has been updated in a way similar to Plik.
CamSpec now uses a richer model of the cosmic infrared back-
ground, allowing for the exploration of any impact on the cos-
mological parameters. As explained above, the noise modelling
was also modified. Further modifications of the masking have
been made for polarization, still using the same masks for each
frequency channel, but different from the Plik mask. As we
discussed above, beam-leakage and polarization-efficiency cor-
rections are applied to the individual polarization spectra before
their addition for inclusion in the likelihood. More details on the
Plik and CamSpec likelihoods can be found in PPL18.

As in 2015, the high-` Plik and CamSpec likelihoods are in
excellent agreement for temperature. The different assumptions
for the polarization-efficiency parameters and the masks (Planck
Collaboration XI 2016) propagate into differences in cosmo-
logical parameter estimates. For the baseline ΛCDM model,
the difference in cosmological parameters between the Plik
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likelihood and the CamSpec likelihood (using joint TT,TE,EE in
combination with Commander, SimAll, and lensing) is at most
0.5σ (for Ωbh2) (Planck Collaboration XIII 2016, henceforth
PCP15). Similar differences in cosmological parameters occur
in extended cosmological models. The differences between the
Plik and CamSpec parameters are dominated by calibration-
model differences for the joint TT,TE,EE and TE-only cases,
and by mask differences for the EE-only case. To a large extent,
the CamSpec results can be reproduced within the Plik frame-
work simply by changing in Plik the calibration model (for
TE) and the polarization mask (for EE). Below we use Plik
as the Planck baseline high-` likelihood. CamSpec results are
used to assess the residual uncertainty from modelling and mask
choices. We quote values obtained with CamSpec only for a few
cases.

We use the following conventions for naming the Planck
likelihoods: (i) Planck TT+lowE denotes the combination of
the high-` TT likelihood at multipoles ` ≥ 30 and the low-`
temperature-only Commander likelihood, plus the SimAll low-
` EE-only likelihood in the range 2 ≤ ` ≤ 29; (ii) Planck TE
and Planck EE denote the TE and EE likelihood at ` ≥ 30,
respectively; (iii) Planck TT,TE,EE+lowE denotes the combi-
nation of the combined likelihood using TT, TE, and EE spectra
at ` ≥ 30, the low-` temperature Commander likelihood, and the
low-` SimAll EE likelihood; and (iv) Planck TT,TE,EE+lowP
denotes the combination of the likelihood using TT, TE, and
EE spectra at ` ≥ 30 and the alternative joint temperature-
polarization likelihood at 2 ≤ ` ≤ 29, based on the tem-
perature Commander map and the 70-GHz polarization map.
Unless otherwise stated, high-` results are based on the Plik
likelihood and low-` polarization information is based on
SimAll.

Planck CMB lensing likelihood

The Planck 2018 lensing likelihood, presented in PPLe18,
uses the lensing trispectrum to estimate the power spectrum
of the lensing potential Cφφ

L . This signal is extracted using a
minimum-variance combination of a full set of temperature- and
polarization-based quadratic lensing estimators (Okamoto & Hu
2003) applied to the SMICA CMB map over approximately 70%
of the sky using CMB multipoles 100 ≤ ` ≤ 2048, as described
in PPLe18. We use the lensing bandpower likelihood, with bins
spanning lensing multipoles 8 ≤ L ≤ 400, which has been val-
idated with numerous consistency tests. Because its multipole
range has been extended down to L = 8 (compared to L = 40
for the Planck 2015 analysis), the statistical power of the lensing
likelihood used here is slightly greater.

2.2.2. Non-Planck data

While the data derived exclusively from Planck observations
are by themselves already extremely powerful at constraining
cosmology, external data sets can provide helpful additional
information. The question of consistency between Planck and
external data sets is discussed in detail in Planck Collaboration
VI (2020, henceforth PCP18). Here we focus on two data sets
that are particularly useful for breaking degeneracies and whose
errors can be assessed reliably. We consider the measurement
of the CMB B-mode polarization angular power spectrum by
the BICEP2/Keck Array collaboration and measurements of the
baryon acoustic oscillation (BAO) scale. The supplementary B-
mode data provide independent constraints on the tensor sector,

which are better than those that can be derived from the Planck
data alone (based on the shape of the scalar power spectrum).
The BAO data, on the other hand, do not directly constrain the
primordial perturbations. These data, however, provide invalu-
able low-redshift information that better constrains the late-time
cosmology, especially in extensions of ΛCDM, and thus allows
degeneracies to be broken.

BICEP2/Keck Array 2015 B-mode polarization data

Although Planck measured the CMB polarization over the
full sky, its polarization sensitivity in the cosmological fre-
quency channels is not sufficient to compete with current subor-
bital experiments surveying small, particularly low-foreground
patches of the sky very deeply using many detectors. In PCI15,
constraints on r using the joint BICEP2/Keck Array and Planck
(BKP) analysis (BKP) were reported. Here we make use of the
most recent B-mode polarization data available from the anal-
ysis of the BICEP2/Keck field (Ade et al. 2018, henceforth
BK15), unless otherwise stated. The BK15 likelihood draws on
data from the new Keck array at 220 GHz in addition to those
already in use for the BK14 (Ade et al. 2016) likelihood, i.e., the
95- and 150-GHz channels, as well as from Planck and
WMAP to remove foreground contamination. The BK15 obser-
vations measure B-mode polarization using 12 auto- and
56 cross-spectra between the BICEP2/Keck maps at 95, 150, and
220 GHz, the WMAP maps at 23 and 33 GHz, and the Planck
maps at 30, 44, 70, 100, 143, 217, and 353 GHz, using nine bins
in multipole number. By using B-mode information only within
the BK15 likelihood, a 95% upper limit of r < 0.07 is found
(BK15), which improves on the corresponding 95% CL r < 0.09
(BK14) based on the BK14 likelihood.

Baryon acoustic oscillations

Acoustic oscillations of the baryon-photon fluid prior to recom-
bination are responsible for the acoustic peak structure of the
CMB angular power spectra. The counterpart to the CMB acous-
tic peaks in the baryon distribution are the BAOs, which remain
imprinted into the matter distribution to this day. In the position-
space picture, the BAOs of the power spectrum correspond to
a peak in the correlation function, defining a characteristic,
cosmology-dependent length scale that serves as a standard ruler
and can be extracted (e.g., from galaxy redshift surveys). The
transverse information of a survey constrains the ratio of the
comoving angular diameter distance to the sound horizon at the
drag epoch (i.e., when the baryon evolution becomes unaffected
by coupling to the photons), DM/rd, whereas the line-of-sight
information yields a measurement of H(z)rd. Sometimes, these
two observables are combined to form the direction-averaged
quantity DV/rd ≡

[
czD2

M(z)H−1(z)
]1/3

/rd.
For our BAO data compilation, we use the measurements

of DV/rd from the 6dF survey at an effective redshift zeff =
0.106 (Beutler et al. 2011), and the SDSS Main Galaxy Sam-
ple at zeff = 0.15 (Ross et al. 2015), plus the final interpretation
of the SDSS III DR12 data (Alam et al. 2017), with separate con-
straints on H(z)rd and DM/rd in three correlated redshift bins at
zeff = 0.38, 0.51, and 0.61. In Addison et al. (2018), the same
set of BAO data combined with either non-Planck CMB data or
measurements of the primordial deuterium fraction was shown
to favour a cosmology fully consistent with, but independent of,
Planck data.
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Table 2. Confidence limits for the cosmological parameters in the base-ΛCDM model from Planck temperature, polarization, and temperature-
polarization cross-correlation separately and combined, in combination with the EE measurement at low multipoles.

Parameter TT+lowE EE+lowE TE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing

Ωbh2 0.02212 ± 0.00022 0.0240 ± 0.0012 0.02249 ± 0.00025 0.02236 ± 0.00015 0.02237 ± 0.00015
Ωch2 0.1206 ± 0.0021 0.1158 ± 0.0046 0.1177 ± 0.0020 0.1202 ± 0.0014 0.1200 ± 0.0012
100θMC 1.04077 ± 0.00047 1.03999 ± 0.00089 1.04139 ± 0.00049 1.04090 ± 0.00031 1.04092 ± 0.00031
τ 0.0522 ± 0.0080 0.0527 ± 0.0090 0.0496 ± 0.0085 0.0544+0.0070

−0.0081 0.0544 ± 0.0073
ln(1010As) 3.040 ± 0.016 3.052 ± 0.022 3.018+0.0020

−0.0018 3.045 ± 0.016 3.044 ± 0.014
ns 0.9626 ± 0.0057 0.980 ± 0.015 0.967 ± 0.011 0.9649 ± 0.0044 0.9649 ± 0.0042
H0 66.88 ± 0.92 69.9 ± 2.7 68.44 ± 0.91 67.27 ± 0.60 67.36 ± 0.54
Ωm 0.321 ± 0.013 0.289+0.026

−0.033 0.301 ± 0.012 0.3166 ± 0.0084 0.3153 ± 0.0073
σ8 0.8118 ± 0.0089 0.796 ± 0.018 0.793 ± 0.011 0.8120 ± 0.0073 0.8111 ± 0.0060

3. Planck 2018 results for the main inflationary
observables

As in PCI13 and PCI15, we start by describing Planck measure-
ments of the key inflationary parameters. Some of the results
reported in this section can be found in the Planck Legacy
Archive5.

3.1. Results for the scalar spectral index

Planck temperature data in combination with the EE measure-
ment at low multipoles determine the scalar spectral tilt in the
ΛCDM model as

ns = 0.9626 ± 0.0057 (68% CL,Planck TT+lowE). (6)

This result for ns is compatible with the Planck 2015 68% CL
value ns = 0.9655 ± 0.0062 for Planck TT+lowP (PCP15). The
slightly lower value for ns is mainly driven by a corresponding
shift in the average optical depth τ, now determined as

τ = 0.052 ± 0.008 (68% CL,Planck TT+lowE), (7)

which is to be compared with the Planck 2015 value τ =
0.078 ± 0.022 (PCP15). This more precise determination of
τ is due to better noise sensitivity of the HFI 100- and 143-
GHz channels employed in the low-` SimAll polarization
likelihood, compared to the joint temperature-polarization likeli-
hood based on the LFI 70-GHz channel in 2015. Because of the
degeneracy between the average optical depth and the amplitude
of the primordial power spectrum, As and σ8 are also lower than
in the Planck 2015 release. These shifts from the Planck 2015
values for the cosmological parameters have been anticipated
with the first results from the HFI large-angular polarization pat-
tern (Planck Collaboration Int. XLVI 2016; Planck Collaboration
Int. XLVII 2016).

The trend toward smaller values for (ns,τ) with respect to the
Planck 2015 release also occurs for different choices for the low-
` likelihood. By substituting Commander and SimAll with the
updated joint temperature-polarization pixel likelihood coming
from the LFI 70-GHz channel, we obtain in combination with
high-` temperature data:

ns = 0.9650 ± 0.0061 (68% CL,Planck TT+lowP); (8)
τ = 0.072 ± 0.016 (68% CL,Planck TT+lowP). (9)

Although with larger errors, these latter results are consistent
with the shifts induced by a determination of a lower optical

5 http://www.cosmos.esa.int/web/planck/pla

depth than in the Planck 2015 release6, as found in Eqs. (6) and
(7). Given this broad agreement and the consistency in the values
of τ derived with SimAll separately from the three cross-spectra
70 × 100, 70 × 143, and 100 × 143 (PPL18), we will mainly use
the baseline low-` likelihood in the rest of the paper.

As anticipated in 2015, the information in the high-` polar-
ization Planck data is powerful for breaking degeneracies in the
parameters and to further decrease parameter uncertainties com-
pared to temperature data alone. The addition of high-` polariza-
tion leads to a tighter constraint on ns:

ns = 0.9649 ± 0.0044 (68% CL,Planck TT,TE,EE+lowE).
(10)

This is in good agreement with the Planck 2015 TT,TE,EE+
lowP 68% CL result, ns = 0.9645 ± 0.0049. In this 2018 release
the mean value of ns is approximately 0.5σ larger than the tem-
perature result in Eq. (6). This pull is mainly due to a higher
value for the scalar tilt preferred by Planck 2018 polarization
and temperature-polarization cross-correlation data only:

ns = 0.969 ± 0.009 (68% CL,Planck TE,EE+lowE). (11)

This pull is then mitigated in combination with temperature due
to the larger uncertainty in the determination by TE,EE only.
Similar considerations hold for the alternative CamSpec high-`
likelihood, which leads to a 68% CL result ns = 0.9658±0.0045,
consistent with the baseline Plik reported in Eq. (10). Overall,
the cosmological parameters from Planck baseline temperature,
polarization, and temperature-polarization cross-correlation sep-
arately and combined are very consistent, as can be seen from
Table 2 and Fig. 2 for the ΛCDM model.

After combining with Planck lensing, we obtain

ns = 0.9634 ± 0.0048
(68% CL, Planck TT+lowE+lensing), (12)

ns = 0.9649 ± 0.0042
(68% CL, Planck TT,TE,EE+lowE+lensing). (13)

The shift in ns (and, more generally, in the cosmological
parameters of the base-ΛCDM model) obtained when Planck
lensing is combined with TT,TE,EE+lowE is smaller than in
2015 because of the improved polarization likelihoods. The
combination with lensing is, however, powerful for breaking

6 As in 2015, the combination with high-` data pulls τ to larger values
than the low-` pixel likelihood alone, i.e. τ = 0.063± 0.020 at 68% CL;
see Sect. 2. This effect is less pronounced for the SimAll likelihood.

A10, page 8 of 61

http://www.cosmos.esa.int/web/planck/pla


Planck Collaboration: Planck 2018 results. X.

0.240.300.36
Ωm

0.020

0.025

Ω
b
h

2

0.10

0.11

0.12

0.13

Ω
ch

2

2.96

3.04

3.12

ln
(1

010
A

s)

0.96

1.00

n s

0.025

0.050

0.075

τ

64

72

80

H
0

0.76

0.80

0.84

σ
8

1.039 1.042
100θMC

0.24

0.30

0.36

Ω
m

0.020 0.025
Ωbh2

0.100.110.120.13
Ωch2

2.96 3.04 3.12
ln(1010As)

0.96 1.00
ns

0.0250.0500.075

τ

64 72 80
H0

0.76 0.80 0.84
σ8

Planck EE+lowE

Planck TE+lowE

Planck TT+lowE

Planck TT,TE,EE+lowE

Fig. 2. Marginalized joint 68% and 95% CL regions for the cosmological parameters in ΛCDM with Planck TT, EE, TE, and joint TT,TE,EE, all
in combination with the EE likelihood at low multipoles.

parameter degeneracies in extended cosmological models, and,
therefore, for this 2018 release we will consider the full infor-
mation contained in temperature, polarization, and lensing,
i.e., TT,TE,EE+lowE+lensing, as the baseline Planck data set.
Figure 3 shows a comparison of the Planck 2018 baseline results
with those from alternative likelihoods and from the 2015 base-
line for the ΛCDM cosmological parameters.

As in 2013 and 2015, BAO measurements from galaxy sur-
veys are consistent with Planck. When BAO data are combined,
we obtain for the base-ΛCDM cosmology:

ns = 0.9665 ± 0.0038 (14)
(68% CL,Planck TT,TE,EE+lowE+lensing+BAO).

The combination with BAO data decreases (increases) the
marginalized value of Ωch2 (Ωbh2) obtained by Planck, and this

effect is compensated for by a shift in ns towards slightly larger
values.

3.2. Ruling out ns = 1

One of the main findings drawn from previous Planck releases
was that the scale-independent Harrison–Zeldovich (HZ)
spectrum (Harrison 1970; Zeldovich 1972; Peebles & Yu 1970)
is decisively ruled out. This conclusion is reinforced in this
release: in standard ΛCDM late-time cosmology, the scalar spec-
tral index from Table 2 lies 6.6, 8.0, and 8.4σ away from
ns = 1, for Planck TT+lowE, Planck TT,TE,EE+lowE, and
Planck TT,TE,EE+lowE+lensing, respectively. The correspond-
ing effective ∆χ2 between the power-law spectrum and the best-
fit HZ model are ∆χ2 = 43.9, 66.9, and 72.4.
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Simple one-parameter modifications of the cosmological
model are not sufficient to reconcile a scale-invariant power
spectrum with Planck data. For instance, when the effective
number of neutrino species Neff is allowed to float for a cos-
mology with a scale-invariant spectrum, the effective ∆χ2 with
respect to the power-law spectrum are ∆χ2 = 12.9, 27.5, and
30.2, respectively.

When instead the assumption of flat spatial sections is
relaxed7, we obtain effective ∆χ2 values of ∆χ2 = 11.8,
28.8, and 40.9, respectively, for the same data sets. Therefore,
the corresponding closed cosmological models fitting Planck
TT+lowE (ΩK = −0.122+0.039

−0.029, H0 = 44.2+3.1
−4.3 km s−1 Mpc−1 at

68% CL), Planck TT,TE,EE+lowE (ΩK = −0.095+0.029
−0.019, H0 =

47.1 ± 3.2 km s−1 Mpc−1 at 68% CL), and Planck TT,TE,EE+
lowE+lensing (ΩK = −0.032+0.006

−0.007, H0 = 58.9 ± 2.0 km s−1

Mpc−1 at 68% CL) provide a worse fit compared to the tilted
flat ΛCDM model.8

3.3. Constraints on the scale dependence of the scalar
spectral index

The Planck 2018 data are consistent with a vanishing running
of the scalar spectral index. Using Planck TT,TE,EE+lowE+
lensing we obtain
dns

d ln k
= −0.0045 ± 0.0067 (68% CL). (15)

7 For non-flat models the power spectra encode the eigenvalues of
the corresponding Laplacian operator of the spatial sections and scale
invariance holds at scales much smaller than the curvature radius.
8 This is not a new result based on the Planck 2018 release, but just an
update of a similar conclusion also reached with the Planck 2015 data.
Compared to the flat ΛCDM tilted model, we obtain ∆χ2 = 12.3, 34.8,
and 45 with Planck 2015 TT+lowP, Planck 2015 TT,TE,EE+lowP, and
Planck 2015 TT,TE,EE+lowP+lensing, respectively. Therefore, even
with Planck 2015 data, a closed model with ns = 1 provides a worse
fit than tilted ΛCDM and is not compelling as claimed in Ooba et al.
(2018).

These results are consistent with, and improve on, the Planck
2015 result, dns/d ln k = −0.008 ± 0.008 (PCP15).

As discussed in PCI13 and PCI15, a better fit to the temper-
ature low-` deficit was found in 2015, thanks to a combination
of non-negative values for the running and the running of the
running. The Planck 2018 release has significantly reduced the
parameter volume of this extension of the base-ΛCDM model.
The Planck 2018 TT(TT,TE,EE)+lowE+lensing constraints for
the model including running of running are

ns = 0.9587 ± 0.0056 (0.9625 ± 0.0048), (16)
dns/d ln k = 0.013 ± 0.012 (0.002 ± 0.010), (17)

d2ns/d ln k2 = 0.022 ± 0.012 (0.010 ± 0.013), (18)

all at 68% CL. It is interesting to note that the high-` temper-
ature data still allow a sizable value for the running of the run-
ning, although slightly decreased with respect to the Planck 2015
results (PCI15). However, when high-` Planck 2018 polariza-
tion data are also included, dns/d ln k and d2ns/d ln k2 are tightly
constrained.

The model including a scale-dependent running can produce
a better fit to the low-` deficit at the cost of an increase of power
at small scales; this latter effect is constrained in this release. As
an example of a model with suppression only on large scales, we
also reconsider the phenomenological model with an exponential
cutoff:

PR(k) = P0(k)

1 − exp
− (

k
kc

)λc
 , (19)

which can be motivated by a short stage of inflation (Contaldi
et al. 2003; Cline et al. 2003) (see also Kuhnel & Schwarz 2010;
Hazra et al. 2014a; Gruppuso et al. 2016 for other types of large-
scale suppression). We do not find any statistically significant
detection of kc using either logarithmic or linear priors and for
different values of λc, with any combination of Planck baseline
likelihoods. Compared to the 2015 release, we find models with
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power suppression on large scales lead to a smaller improve-
ment in χ2 with respect to ΛCDM. This is also connected to
a small increase between the 2015 and 2018 Commander CMB
solution for the low-` temperature power spectra (see Sect. 2 of
PPL18). We have also checked that these results depend only
weakly on the exclusion of the EE quadrupole in SimAll and
are stable to the substitution of Commander and SimAll with the
joint temperature-polarization likelihood based on the 70-GHz
channel.

3.4. Constraints on spatial curvature

Since the vast majority of inflation models predict that the Uni-
verse has been driven towards spatial flatness, constraints on the
spatial curvature provide an important test of the standard sce-
nario. Therefore in this subsection we extend the base-ΛCDM
model with the addition of the spatial curvature parameter, ΩK .
For the case of Planck TT,TE,EE+lowE+lensing, we find a con-
straint of

ΩK = −0.011+0.013
−0.012 (95% CL). (20)

The inclusion of Planck lensing information only weakly breaks
the geometrical degeneracy (Efstathiou & Bond 1999) which
results in the same primary fluctuations while varying the total
matter density parameter, Λ, and H0. The degeneracy can be
effectively broken with the addition of BAO data, in which case
Planck TT,TE,EE+lowE+lensing+BAO gives

ΩK = 0.0007 ± 0.0037 (95% CL). (21)

Although ΩK is one of the cosmological parameters exhibiting
some differences between Plik and Camspec, the constraints in
Eqs. (20) and (21) are quite robust due to the inclusion of lensing
(and BAO) information.

A constraint on the curvature parameter can be translated
into a constraint on the radius of curvature, RK , via

RK =
(
a0H0

√
|ΩK |

)−1
, (22)

in units such that c = 1. For the case of Planck TT,TE,EE+
lowE+lensing+BAO we find

RK > 67 Gpc (open), (23)
RK > 81 Gpc (closed), (24)

both at 95% confidence. These lengths are considerably greater
than our current (post-inflation) particle horizon, at 13.9 Gpc.

Our tightest constraint, Eq. (21), tells us that our observa-
tions are consistent with spatial flatness, with a precision of
about 0.4%. However, even if inflation has driven the back-
ground curvature extremely close to zero, the presence of
fluctuations implies a fundamental “cosmic variance” for mea-
surements of curvature confined to our observable volume. In
particular, the known amplitude of fluctuations implies a stan-
dard deviation for ΩK of roughly 2 × 10−5 (Waterhouse &
Zibin 2008). Therefore our best constraint is still a factor of
roughly 102 above the cosmic variance limit for a flat universe.
A future measurement of negative curvature above the cosmic
variance floor would point to open inflation (Gott 1982; Gott
& Statler 1984; Bucher et al. 1995; Yamamoto et al. 1995;
Ratra & Peebles 1995; Lyth & Stewart 1990), while a mea-
surement of positive curvature could pose a problem for the
inflationary paradigm due to the difficulty of producing closed
inflationary models (Kleban & Schillo 2012).

Alternatively, excess spatial curvature might be evidence for
the intriguing possibility that there was “just enough” inflation
to produce structure on the largest observable scales. Indeed an
upper limit on spatial curvature implies a lower limit on the total
number of e-folds of inflation (see, e.g., Komatsu et al. 2009).
We can relate these limits to the number of e-folds of inflation,
N∗ = N(k∗), after scale k∗ left the Hubble radius during inflation,
to be given explicitly in Eq. (47). We define the (constant) curva-
ture scale, kK , as the inverse of the comoving radius of curvature,
i.e.,

kK ≡ aH
√
|ΩK |. (25)

In the absence of special initial conditions, inflation will begin
with a curvature parameter of order unity. Equation (25) then
implies that kK ∼ aH at the start of inflation, i.e., the curvature
scale is “exiting the horizon” at that time. Then the lower limit
on the number of e-folds of inflation will simply be NK ≡ N(kK),
i.e., the number of e-folds after scale kK left the Hubble radius
during inflation. With Eq. (47) this gives9

NK = ln
k∗

a0H0
−

1
2

ln |ΩK | + N∗. (26)

With the pivot scale of k∗ = 0.002 Mpc−1 (for comparison with
the values in Sect. 4.2) and our tightest upper limit on ΩK from
Eq. (21), this becomes

NK & 4.9 + N∗. (27)

That is, our constraint on spatial curvature implies that inflation
must have lasted at least about 5 e-folds longer than required
to produce the pivot scale k∗. Equation (27) provides a model-
independent comparison between the e-folds required to solve
the flatness problem (to current precision) and to produce large-
scale fluctuations (at scale k∗). We stress that this limit assumes
a unity curvature parameter at the start of inflation (although the
dependence on this assumption, being logarithmic, is weak).

For comparison with the result of Komatsu et al. (2009), we
can simplify to the case of instantaneous thermalization and con-
stant energy density during inflation. Then we find

NK & 34.2 + ln
Tth

1 TeV
, (28)

where Tth is the reheating temperature.

3.5. Constraints on the tensor-to-scalar ratio

This subsection updates constraints on the tensor-to-scalar ratio
r assuming that the tensor tilt satisfies the consistency relation,
nt = −r/8, which is the case for slow-roll inflation driven by a
single scalar field with a canonical kinetic term.

By combining Planck temperature, low-` polarization, and
lensing we obtain

r0.002 < 0.10 (95% CL,Planck TT+lowE+lensing). (29)

This constraint slightly improves on the corresponding Planck
2015 95% CL bound, i.e., r0.002 < 0.11 (PCI15), and is
unchanged when high-` polarization data are also combined.
Note that by using CAMspec instead of Plik as the high-` joint
temperature-polarization likelihood, we obtain a slightly looser
bound, i.e., r0.002 < 0.14 at 95% CL. By including the Planck

9 This expression ignores a negligible correction, (1/2) ln VkK /Vk∗ , due
to the different inflationary potential scales at k∗ and kK exit.
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Table 3. Constraints on the tensor-to-scalar ratio r and scalar tilt ns for the ΛCDM+r model and some important extensions and different data
sets.

Cosmological model Parameter Planck TT,TE,EE Planck TT,TE,EE Planck TT,TE,EE
ΛCDM+r +lowEB+lensing +lowE+lensing+BK15 +lowE+lensing+BK15+BAO

r <0.11 <0.061 <0.063
r0.002 <0.10 <0.056 <0.058

ns 0.9659 ± 0.0041 0.9651 ± 0.0041 0.9668 ± 0.0037
r <0.16 <0.067 <0.068

r0.002 <0.16 <0.065 <0.066
+dns/d ln k ns 0.9647 ± 0.0044 0.9639 ± 0.0044 0.9658 ± 0.0040

dns/d ln k −0.0085 ± 0.0073 −0.0069 ± 0.0069 −0.0066 ± 0.0070
r <0.092 <0.061 <0.064

r0.002 <0.085 <0.055 <0.059
+Neff ns 0.9607+0.0086

−0.0084 0.9604 ± 0.0085 0.9660 ± 0.0070
Neff 2.92 ± 0.19 2.93 ± 0.19 3.02 ± 0.17

r <0.097 <0.061 <0.061
r0.002 <0.091 <0.056 <0.056

+mν ns 0.9654 ± 0.0044 0.9649 ± 0.0044 0.9668 ± 0.0036∑
mν [eV] <0.24 <0.23 <0.11

r <0.12 <0.066 <0.062
r0.002 <0.12 <0.062 <0.057

+ΩK ns 0.9703+0.0045
−0.0046 0.9697 ± 0.0046 0.9663 ± 0.0044

ΩK −0.012+0.007
−0.006 −0.012+0.006

−0.007 0.0006 ± 0.0019
r <0.11 <0.064 <0.062

r0.002 <0.10 <0.059 <0.057
+w0 ns 0.9675 ± 0.0042 0.9669 ± 0.0042 0.9659 ± 0.0040

w0 −1.58+0.14
−0.34 −1.58+0.14

−0.34 −1.04 ± 0.05

Notes. For each model we quote 68% confidence limits on measured parameters and 95% upper bounds on other parameters.

B-mode information at 2 < ` < 30 in the low-` polarization
likelihood, the 95% CL constraint is essentially unchanged.

Since inflationary gravitational waves contribute to CMB
temperature anisotropies mostly at ` . 100, the low-` temper-
ature deficit contributes in a nontrivial way to the Planck bound
on r. By excising the 2 ≤ ` ≤ 29 temperature data, the constraint
on r with Planck TT,TE,EE+lensing+lowEB relaxes to

r0.002 < 0.16 (95% CL). (30)

This result improves on the 2015 95% CL result, i.e., r . 0.24
(PCI15), because of the inclusion of high-` polarization and of
the improved determination of τ.

Since this Planck constraint on r relies on temperature and
E-mode polarization, the Planck-only limit depends somewhat
on the underlying cosmological model. Table 3 shows the con-
straints on ns and r for a few important extensions of ΛCDM
plus tensors, which include a non-zero running, a non-zero spa-
tial curvature, and a non-minimal neutrino sector. We observe
that the bound on r is relaxed by at most 30% when the scale
dependence of the scalar tilt is allowed to vary. In all the other
extensions the Planck r bound is modified at most by 10%,
demonstrating the constraining power of the Planck 2018 release
in reducing the degeneracy of the tensor-to-scalar ratio with
other cosmological parameters. As far as the scalar tilt is con-
cerned, we find the largest shift (by roughly 1σ higher) when the
assumption of spatial flatness is relaxed.

A B-mode polarization measurement can further tighten the
constraint on r and help in reducing its degeneracies with other
cosmological parameters that may appear when using only tem-
perature and E-mode polarization data. After the release of the

first BICEP-Keck Array-Planck (BKP) joint cross-correlation,
constraints on r from B-mode polarization data alone have
become tighter than those based on Planck data alone, thanks
to the inclusion of the 95-GHz channel (BK14) and of the 220-
GHz channel (BK15). By combining the Planck 2018 and BK15
data we obtain

r0.002 < 0.056 (95% CL,Planck TT,TE,EE
+lowE+lensing+BK15). (31)

This bound improves on the corresponding one obtained in com-
bination with BK14, i.e., r0.002 < 0.064 at 95% CL. Note that by
using CAMspec instead of Plik as high-` TT,TE,EE likelihood,
we obtain a slightly looser bound, i.e., r0.002 < 0.069 at 95% CL.
The effectiveness of the combination with the BK15 likelihood
in constraining r is also remarkable in the extensions of ΛCDM
plus tensors, as can be seen from Table 3. By further combining
with BAO the limits for r are only slightly modified.

The Planck 2018 baseline plus BK15 constraint on r is
equivalent to an upper bound on the energy scale of inflation
when the pivot scale exits the Hubble radius of

V∗ =
3π2As

2
r M4

Pl < (1.6 × 1016 GeV)4 (95% CL). (32)

Equivalently, this last result implies an upper bound on the Hub-
ble parameter during inflation of

H∗
MPl

< 2.5 × 10−5 (95% CL). (33)

A10, page 12 of 61



Planck Collaboration: Planck 2018 results. X.

0.025 0.050 0.075 0.100

r0.002

P
/

P
m

a
x

0.08 0.16 0.24 0.32

r0.020

0.025 0.050 0.075 0.100

r0.01

P
/

P
m

a
x

−1 0 1 2 3

nt

Planck TT,TE,EE+lowE+lensing+BK15

+LIGO&Virgo2016

Fig. 4. Posterior probability density of the tensor-to-scalar ratio at two
different scales in the ΛCDM+r0.002+r0.02 model, i.e., when the infla-
tionary consistency relation is relaxed (top panels). The solid contours
show the results when r0.002 and r0.02 are used as sampling parame-
ters with uniform priors, which leads to non-uniform priors for the
derived parameters r0.01 and nt (bottom panels). The dotted contours
indicate the results after weighting the posterior by the Jacobian J =
r0.01/[r0.002r0.02 ln(0.02/0.002)] of the transformation (r0.002, r0.02) →
(r0.01, nt), giving the result we would have obtained had we assigned
uniform priors on r0.01 and nt.

3.6. Beyond the tensor-to-scalar ratio consistency condition

The increasing constraining power of B-mode polarization data
allows us to set upper bounds on r without imposing the consis-
tency condition for the tensor tilt, nt = −r/8, which is motivated
by standard slow-roll single-scalar-field inflation. Deviations can
occur in multifield inflation (Bartolo et al. 2001; Wands et al.
2002; Byrnes & Wands 2006), in the models with generalized
Lagrangians (Garriga & Mukhanov 1999; Kobayashi et al. 2010),
in gauge inflation (Maleknejad et al. 2013), or in a more radi-
cal way in alternative models to inflation (Gasperini & Veneziano
1993; Boyle et al. 2004; Brandenberger et al. 2007).

As the current data do not lead to a detection of a non-zero
tensor amplitude, virtually any value of nt would give a good
fit as long as r is close enough to zero. Therefore, as in PCI15,
we characterize the tensor perturbations by two well-constrained
parameters that we choose to be r at two different scales,
(rk1 , rk2 ), with k1 = 0.002 Mpc−1 and k2 = 0.02 Mpc−1, and
assume a power-law power spectrum. We call this two-parameter
extension of the ΛCDM model the “ΛCDM+r0.002+r0.02” model.
We also quote our results in terms of (rk̃, nt), calculated from the
primary parameters as nt = [ln(rk2/rk1 ) / ln(k2/k1)] + ns − 1 and
rk̃ = rk1 (k̃/k1)nt−ns+1. For k̃ we choose 0.01 Mpc−1, which corre-
sponds roughly to the decorrelation scale of r and nt when using
the Planck and BK15 data.

The one-dimensional posteriors are displayed in Fig. 4
(which also shows an additional data set, “LIGO&Virgo2016,”
discussed at the end of this subsection). We obtain for the
ΛCDM+r0.002+r0.02 model:

r0.002 < 0.05
r0.02 < 0.19

}
(95% CL, Planck TT,TE,EE
+lowE+lensing+BK15). (34)

The constraints on the derived tensor parameters are r0.01 < 0.08
and −0.6 < nt < 2.6 at 95% CL.

The left and right panels of Fig. 5 show the two-dimensional
contours for the primary parameters (r0.002, r0.02) and the derived

ones (r0.01, nt), respectively. The consistency condition, nt =
−r/8, denoted by the dashed lines, is fully compatible with
Planck+BK15 data. However, a very blue tensor tilt with nt ' 2
and r0.01 ' 0.05 is still within the 68% CL region. Indeed, despite
the larger amplitude of the primordial tensor power spectrum at
small scales for blue nt, the tensor modes are suppressed when
re-entering the Hubble radius, which leads to damping of the
observational signal at high k. This explains why the 68% CL
CMB constraint on r0.02 is about a factor of four weaker than
the one on r0.002. Figure 5 also shows a slight improvement of
constraints by BK15 compared to the older BK14 data.

A stochastic background of gravitational waves (GWs) with
a blue tensor tilt could be further constrained at much shorter
wavelengths, such as those probed by ground-based interferom-
eters dedicated to the direct detection of GWs. For example,
assuming a scale-invariant tensor spectrum and using the fre-
quency range (20–85.8) Hz, which corresponds to the wavenum-
bers k = 2π f = (1.3–5.5) × 1016 Mpc−1, LIGO and Virgo set
an upper bound on the GW density parameter of ΩGW( f ) ≤
1.7 × 10−7 at 95% CL (Abbott et al. 2017). While these scales
are likely to be dominated by astrophysical sources, such as
GWs from binary mergers, we next examine what constraints
the LIGO&Virgo upper bound sets on primordial tensor pertur-
bations, if we assume that they had a power-law spectrum all the
way from CMB scales to ultra-short scales. We refer the inter-
ested reader to Meerburg et al. (2015) and Cabass et al. (2016)
for the use of alternative data on short scales or of additional con-
straints on the effective energy-momentum tensor of the stochas-
tic background of GWs averaged over wavelengths.

We obtain a conservative upper limit on the primordial con-
tribution by demanding that the GW density from our scale-
dependent primordial tensor perturbations (Meerburg et al. 2015;
Abbott et al. 2017; Cabass et al. 2016),

ΩGW(k) =
k

ρcritical

dρGW

dk
=

At(k)
24zeq

=
At1(k/k1)nt

24zeq
, (35)

stays below the above-quoted limit at least at k = 1.3 ×
1016 Mpc−1 ( f = 20 Hz). The posterior probability densi-
ties when this constraint is included in the analysis as a
half-Gaussian prior are compared with those obtained by
Planck+BK15 alone in Figs. 4 and 5. LIGO&Virgo sets a very
high upper bound10 on r at ultra-high k, separated from CMB
scales by a factor of 1018 in k. Due to the long arm length, this
effectively provides a cutoff for nt and excludes the bluest spectra
that were allowed by the CMB alone, leading to

r0.002 < 0.07
r0.02 < 0.09

}
(95% CL, Planck TT,TE,EE+lowE
+lensing+BK15+LIGO&Virgo2016), (36)

or r0.01 < 0.07 and −0.8 < nt < 0.6. The consistency condition
nt = −r/8 is also compatible with these tighter constraints, as
can be seen by comparing the red contours and dashed black
lines in Fig. 5. As LIGO&Virgo pushes r0.02 down (and we
assume a power-law tensor spectrum), the upper bound on r0.002
becomes weaker than with the CMB alone. This is not surpris-
ing, since the system is analogous to a see-saw with a pivot point
at k ∼ 0.01 Mpc−1, where the data are the most sensitive to the

10 Using Eq. (35), the upper bound ΩGW( f = 20 Hz) ≤ 1.7 × 10−7 cor-
responds to a tensor perturbation amplitude At(k = 1.3× 1016 Mpc−1) ≤
24zeq × 1.7 × 10−7 = 1.4 × 10−2, where we used zeq ' 3400. Assuming
further for the scalar perturbations that ns = 0.9659 and ln(1010As) =
3.044 at k = 0.05 Mpc−1, this can be converted into an upper bound
r ≤ 2.6 × 107 at k = 1.3 × 1016 Mpc−1.
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Fig. 5. 68% and 95% CL constraints on tensor perturbations in the ΛCDM+r0.002+r0.02 model, i.e., when the inflationary consistency relation is
relaxed. Filled contours in the left panel show the results for our independent primary parameters r0.002 and r0.02, which have uniform priors, and
in the right panel for the derived parameters nt and r0.01, which have non-uniform priors. The dotted lines assume uniform priors on r0.01 and nt,
calculated as in Fig. 4. The scale k = 0.01 Mpc−1 is near the decorrelation scale of (nt, r) for the Planck+BK15 data. In both panels the dashed
black line indicates the inflationary consistency condition, nt = −r0.01/8. (The grey contours follow if we use the older BK14 data instead of the
BK15 data.)

tensor perturbations (taking into account also the transfer func-
tion from primordial tensor perturbations to the observable B-
mode signal). Once one end of the see-saw is pushed down the
other end can go up without disturbing the spectrum too much
at the middle scales. We will observe analogous behaviour with
isocurvature perturbations, for which we also assume a power-
law spectrum and have only an upper bound (not a detection);
see Sect. 9.3.

4. Implications for single-field slow-roll inflationary
models

In this section we discuss the implications of the Planck 2018
likelihood for standard single-field slow-roll inflation. We first
update the results for the Hubble flow functions (HFFs) εi and
the potential slow-roll parameters obtained by the analytic per-
turbative expansion in terms of the HFFs for the primordial spec-
tra of fluctuations. For definitions of the HFF hierarchy and the
potential slow-roll parameters see Table 1. We then present a
Bayesian comparison for a representative selection of standard
slow-roll inflationary models.

4.1. Constraints on slow-roll parameters

Exploiting the approximate analytic expressions for the primor-
dial power spectrum of scalar and tensor fluctuations obtained
by the Green’s function method (Stewart & Lyth 1993; Gong &
Stewart 2001; Leach et al. 2002), we can construct constraints
on the slow-roll parameters.

When restricting to parameters first order in the HFFs, we
obtain with Planck TT,TE,EE+lowE+lensing(+BK15)

ε1 < 0.0063 (0.0039) (95% CL), (37)

ε2 = 0.030+0.007
−0.005 (0.031 ± 0.005) (68% CL). (38)

The Planck TT,TE,EE+lowE+lensing(+BK15) constraints on
the slow-roll potential parameters εV and ηV can be obtained by
an exact remapping of the constraints on the HFF parameters
(Leach et al. 2002; Finelli et al. 2010) given above:

εV < 0.0063 (0.0039) (95% CL), (39)

ηV = −0.010+0.004
−0.008

(
−0.012+0.004

−0.005

)
(68% CL). (40)

As can be seen from Fig. 6, the 95% CL allowed contours are in
the region of concave potentials when BK15 is combined with
Planck 2018 data.

When contributions to the primordial power spectra that
are second-order in the HFFs are included, for Planck
TT,TE,EE+lowE+lensing(+BK15) we obtain the following con-
straints on the slow-roll HFFs:

ε1 < 0.0097 (0.0044) (95% CL), (41)

ε2 = 0.032+0.009
−0.008 (0.035 ± 0.008) (68% CL), (42)

ε3 = 0.19+0.55
−0.53

(
0.12+0.36

−0.42

)
(95% CL), (43)

and on the slow-roll potential parameters we obtain:

εV < 0.0097 (0.0044) (95% CL), (44)

ηV = −0.010+0.007
−0.011 (−0.015 ± 0.006) (68% CL), (45)

ξ2
V = 0.0035+0.0078

−0.0072

(
0.0029+0.0073

−0.0069

)
(95% CL). (46)

The marginalized 68% and 95% CLs for the slow-roll HFF and
potential parameters, allowing ε3 , 0, with Planck data alone or
in combination with BK15, are displayed in Fig. 7.

4.2. Implications for selected slow-roll inflationary models

The predictions for (ns, r) to first order in the slow-roll approxi-
mation for a few inflationary models are shown in Fig. 8, which
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Fig. 6. Marginalized joint two-dimensional 68% and 95% CL
regions for (ε1, ε2) (top panel) and (εV , ηV ) (bottom panel) for
Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck
TT,TE,EE+lowE+lensing+BK15 (blue contours). The dashed lines
divide between convex and concave potentials.

updates Fig. 12 of PCI15 and Fig. 1 of PCI13 with the same nota-
tion. These predictions are calculated for scale k = 0.002 Mpc−1

and include an uncertainty in the number of e-folds of 50 < N∗ <
60.

In the following we discuss the implications of the Planck
2018 data release by taking into account the uncertainties in
the entropy generation stage for a selection of representative
standard single-field slow-roll inflationary models, updating the
analysis reported in PCI13 and PCI15. As in PCI15, we use the
primordial power spectra of cosmological fluctuations generated
during slow-roll inflation parameterized by the HFFs, εi, to sec-
ond order, which can be expressed in terms of the parameters of
the inflationary model and the number of e-folds to the end of
inflation, N∗ (Liddle & Leach 2003; Martin & Ringeval 2010),
given by (PCI13)

N∗ ' 67 − ln
(

k∗
a0H0

)
+

1
4

ln

 V2
∗

M4
pl ρend


+

1 − 3wint

12(1 + wint)
ln

(
ρth

ρend

)
−

1
12

ln(gth), (47)

where ρend is the energy density at the end of inflation, a0H0
is the present Hubble scale, V∗ is the potential energy when
k∗ left the Hubble radius during inflation, wint characterizes the
effective equation of state between the end of inflation and the
thermalization energy scale ρth, and gth is the number of effec-
tive bosonic degrees of freedom at the energy scale ρth. We fix
gth = 103 and εend = 1, and we use modified routines of the
public code ASPIC11 (Martin et al. 2014b). In order to make

11 http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html

contact with Fig. 8, we consider the pivot scale k∗ = 0.002 Mpc−1

in this subsection. We assume the uniform priors for the cos-
mological parameters listed in Table 4, and logarithmic pri-
ors on 1010As (over the interval [e2.5, e3.7]) and ρth (over the
interval [(1 TeV)4, ρend]). Prior ranges for additional parame-
ters in the inflationary models considered are listed in Table 5.
In this paper we consider the implications of the Planck 2018
data for the selection of representative models studied in PCI15
by restricting ourselves to wint = (p − 2)/(p + 2), when
the potential can be approximated as V(φ) ∝ φp during the
coherent oscillation regime after inflation, or simply wint = 0
when the potential considered describes only the inflationary
stage12. For data we use the full constraining power of Planck,
i.e., Planck TT,TE,EE+lowE+lensing, in combination with
BK15.

The ∆χ2 and the Bayesian evidence values for a selection of
inflationary models with respect to the R2 model (Starobinsky
1980, 1983; Mukhanov & Chibisov 1981) are shown in Table 5.
Figure 9 shows the resulting marginalized probability densities
of ns and r at k = 0.002 Mpc−1 for a few inflationary models with
the above specified priors, compared to the corresponding 68%
and 95% CL limits obtained from a ΛCDM-plus-tensor fit. We
refer the interested reader to PCI15 for a concise description of
the inflationary models studied here and we limit ourselves here
to a summary of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns − 1 ' −
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirming the
previous 2013 and 2015 results. The 95% CL allowed range 49 <
N∗ < 59 is compatible with the R2 basic predictions N∗ = 54,
corresponding to Treh ∼ 109 GeV (Bezrukov & Gorbunov 2012).
A higher reheating temperature Treh ∼ 1013 GeV, as predicted in
Higgs inflation (Bezrukov & Shaposhnikov 2008), is also com-
patible with the Planck data.

– Monomial potentials (Linde 1983) V(φ) = λM4
Pl (φ/MPl)p

with p ≥ 2 are strongly disfavoured with respect to the R2

model. For these values the Bayesian evidence is worse than in
2015 because of the smaller level of tensor modes allowed by
BK15. Models with p = 1 or p = 2/3 (Silverstein & Westphal
2008; McAllister et al. 2010, 2014) are more compatible with the
data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential V(φ) in
single-field inflationary models. Important examples are a sub-
luminal inflaton speed of sound due to a non-standard kinetic
term (Garriga & Mukhanov 1999), a non-minimal coupling to

12 Note that some inflationary potentials in this selection are a valid
model for all stages, from the slow-roll phase all the way to coher-
ent oscillations around the minimum during reheating, while others
are “incomplete” in the sense that they only describe the slow-roll
regime. The hilltop, D-brane, potential with exponential tails, and spon-
taneously broken SUSY models fall into the latter category and rely on
additional terms, denoted by the ellipses, to complete the potential at the
end of inflation. With the increasing precision of CMB data and accom-
panying accuracy requirements for theoretical predictions, the precise
form of the additional terms may affect the scientific interpretation of
some incomplete models, as pointed out for the case of quadratic hilltop
and double-well inflationary models in PCI15.
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Table 4. Priors for cosmological parameters used in the Bayesian com-
parison of inflationary models.

Parameter range Prior type

0.019 < Ωbh2 < 0.025 Uniform
0.095 < Ωch2 < 0.145 Uniform
1.03 < 100θMC < 1.05 Uniform
0.01 < τ < 0.4 Uniform

gravity (Spokoiny 1984; Lucchin et al. 1986; Salopek et al. 1989;
Fakir & Unruh 1990), or an additional damping term for the
inflaton due to dissipation in other degrees of freedom, as in
warm inflation (Berera 1995; Bastero-Gil et al. 2016). In the fol-
lowing we report on the constraints for a non-minimal coupling
to gravity of the type F(φ)R, with F(φ) = M2

Pl+ξφ
2, and a quartic

potential. For this model we compute the theoretical predictions
in terms of HFFs and number of e-folds to the end of inflation
in the Einstein frame as for the R2 model above, but we omit

A10, page 16 of 61

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833887&pdf_id=7
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833887&pdf_id=8


Planck Collaboration: Planck 2018 results. X.

Table 5. Bayesian comparison for a selection of slow-roll inflationary models with wint fixed (see text for more details).

Inflationary model Potential V(φ) Parameter range ∆χ2 ln B

R + R2/(6M2) Λ4
(
1 − e−

√
2/3φ/MPl

)2
. . . . . . . . .

Power-law potential λM10/3
Pl φ2/3 . . . 4.0 −4.6

Power-law potential λM3
Plφ . . . 6.8 −3.9

Power-law potential λM8/3
Pl φ

4/3 . . . 12.0 −6.4
Power-law potential λM2

Plφ
2 . . . 21.6 −11.5

Power-law potential λMPlφ
3 . . . 44.7 −13.2

Power-law potential λφ4 . . . 75.3 −56.0
Non-minimal coupling λ4φ4 + ξφ2R/2 −4 < log10 ξ < 4 0.4 −2.4
Natural inflation Λ4 [

1 + cos (φ/ f )
]

0.3 < log10( f /MPl) < 2.5 9.9 −6.6
Hilltop quadratic model Λ4

(
1 − φ2/µ2

2 + . . .
)

0.3 < log10(µ2/MPl) < 4.85 1.3 −2.0
Hilltop quartic model Λ4

(
1 − φ4/µ4

4 + . . .
)

−2 < log10(µ4/MPl) < 2 −0.3 −1.4
D-brane inflation (p = 2) Λ4

(
1 − µ2

D 2/φ
p + . . .

)
−6 < log10(µD 2/MPl) < 0.3 −2.0 0.6

D-brane inflation (p = 4) Λ4
(
1 − µ4

D 4/φ
p + . . .

)
−6 < log10(µD 4/MPl) < 0.3 −3.5 −0.4

Potential with exponential tails Λ4 [
1 − exp (−qφ/MPl) + . . .

]
−3 < log10 q < 3 −0.4 −1.0

Spontaneously broken SUSY Λ4 [
1 + αh log (φ/MPl) + . . .

]
−2.5 < log10 αh < 1 6.7 −6.8

E-model (n = 1) Λ4
{

1 − exp
[
−
√

2φ
(√

3αE
1 MPl

)−1]}2n

−2 < log10 α
E
1 < 4 0.8 −0.3

E-model (n = 2) Λ4
{

1 − exp
[
−
√

2φ
(√

3αE
2 MPl

)−1]}2n

−2 < log10 α
E
2 < 4 0.8 −1.6

T-model (m = 1) Λ4 tanh2m
[
φ
(√

6αT
1 MPl

)−1]
−2 < log10 α

T
1 < 4 −0.1 −1.2

T-model (m = 2) Λ4 tanh2m
[
φ
(√

6αT
2 MPl

)−1]
−2 < log10 α

T
2 < 4 0.8 −0.6

Notes. We quote 0.3 as the error on the Bayes factor. Models are strongly disfavoured when ln B < −5.

the technical details for the sake of brevity13. Our results show
that a quartic potential, which would be excluded at high statis-
tical significance for a minimally-coupled scalar inflaton as seen
from Table 5, can be reconciled with the Planck and BK15 data
for ξ > 0: we obtain a 95% CL lower limit log10 ξ > −1.5 with
ln B = −2.4.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
strongly disfavoured by the Planck 2018 plus BK15 data with a
Bayes factor ln B = −6.6.

– Within the class of hilltop inflationary models (Boubekeur
& Lyth 2005) we find that a quartic potential provides a better
fit than a quadratic one. In the quartic case we find the 95% CL
lower limit log10(µ2/MPl) > 1.0.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; García-Bellido et al. 2002) provide a good fit to Planck
and BK15 data for a large portion of their parameter space.

– For the simple class of inflationary potentials with expo-
nential tails (Goncharov & Linde 1984; Stewart 1995; Dvali
& Tye 1999; Burgess et al. 2002; Cicoli et al. 2009) we find
ln B = −1.0.

– Planck 2018 and BK15 data strongly disfavour the hybrid
model driven by logarithmic quantum corrections in sponta-
neously broken supersymmetric (SB SUSY) theories (Dvali
et al. 1994), with ln B = −6.8.

– Planck and BK15 data set tight constraints on α attractors
(Kallosh et al. 2013; Ferrara et al. 2013). We obtain log10 α

E
1 <

13 In this model the potential in the Einstein frame is known only in
implicit form (see, for instance, García-Bellido et al. 2009) and the alge-
bra is therefore more complicated.

1.3 and log10 α
E
2 < 1.1 at 95% CL for the E-model. We obtain

slightly tighter 95% CL bounds for the T-model, i.e., log10 α
T
1 <

1.0 and log10 α
T
2 < 1.0. Given the relation |RK | = 2/(3α) between

the curvature of the Kähler geometry RK and α in some of the T-
models motivated by supergravity, Planck and BK15 data imply
a lower bound on |RK |, which is still in the low-curvature regime.
The discrete set of values α = i/3 with an integer i in the range
[1,7] motivated by maximal supersymmetry (Ferrara & Kallosh
2016; Kallosh et al. 2017) is compatible with the current data.

5. Reconstruction of the inflaton potential

5.1. Taylor expansion of V(φ) in the observable region

In this section, as in Sect. 6 of PCI13 and Sect. 7.1 of PCI15,
we try to reconstruct the inflaton potential only in its observable
window, making no assumptions about the end of inflation. The
motivation for being so conservative is that what happens after
the inflaton rolls down beyond this range might not be captured
by the simplest descriptions. More elaborate treatments would be
required, for instance, in the case of a non-trivial potential shape
before the end of inflation, a waterfall transition involving extra
scalar fields, or several short inflationary stages between the time
at which CMB scales exit the Hubble radius and the nucleosyn-
thesis epoch. The analysis of this section relies, however, on
the assumption that the potential is smooth enough inside the
observable window to be described by a Taylor expansion up
to order four. Note that this assumption is much weaker than
assuming that a Taylor expansion is valid up to the end of infla-
tion. However, it excludes from the analysis potentials with sharp
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Fig. 9. Marginalized probability densities of the scalar tilt ns (top panel)
and r (bottom panel) at k = 0.002 Mpc−1 for natural, R2, hilltop quartic,
and V(φ) ∝ φ2/3 inflation, obtained by marginalizing over the uncer-
tainties in the entropy generation stage, compared to the corresponding
68% and 95% CL limits obtained from a ΛCDM-plus-tensor fit.

features in the observable window, such as those studied in the
next sections.

We perform the Taylor expansion around the value φ∗ of the
inflaton field evaluated precisely at the time t∗ when the pivot
scale k∗ = 0.05 Mpc−1 fulfills the relation k∗ = a(t∗)H(t∗). We
separately study the cases where the expansion is performed at
order n = 2, n = 3, or n = 4. We compute the primordial spec-
trum with a full integration of the Fourier mode evolution, using
the inflationary module of the CLASS code. Although this method
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Fig. 10. Taylor expansion of V(φ) at order n = 2, 3, and 4 in the
observable region, making no assumption about the end of inflation.
The parameters are combinations of Taylor coefficients with flat priors.
Dashed contours are Planck TT,TE,EE+lowE, while solid contours are
Planck TT,TE,EE+lowE+lensing+BK15. The scales are the same as in
PCI15.

assumes no slow-roll approximation at any point, we speed up
the convergence of the Markov chain by taking flat priors not
directly on the five Taylor coefficients {V,Vφ, . . . ,Vφφφφ}, but on
combinations of them matching the definitions of the poten-
tial slow-roll parameters {εV , ηV , ξ

2
V , $

3
V } presented in table 2 of

PCI13. Even beyond the slow-roll approximation, these combi-
nations provide nearly linear contributions to the tilt, running,
running of the running, etc., of the scalar and tensor spectrum.
Hence, they are directly related to observable quantities and well
constrained by the data. Instead, if we ran with flat priors on
{V,Vφ, . . . ,Vφφφφ}, the convergence would be plagued by com-
plicated parameter degeneracies.

The results of this analysis are shown in the panels of
Fig. 10 and Table 6 for n = 2, 3, and 4, using two
data sets for each: Planck TT,TE,EE+lowE alone; or Planck
TT,TE,EE+lowE+lensing+BK15. The plot in Fig. 10 deliber-
ately has a lot of white space because, for the sake of com-
parison, we plotted it over the same parameter ranges as the
same plot in PCI15. We notice some significant improve-
ment. Comparing Planck TT,TE,EE+lowE results from 2015
and 2018, we find that error bars on individual parameters
have typically been reduced by 30% thanks to improved polar-
ization data. Including BK data provides further constraining
power. Comparing Planck 2015 TT+lowP+BAO and Planck
2018 TT,TE,EE+lowE+lensing+BK15, we find that the error
bars on {εV , ηV , ξ

2
V , $

3
V } shrink by factors of 2–4. The new data

tend to resolve degeneracies which previously appeared in the
n = 4 case and could be understood as a compensation mech-
anism between potentials with large running of the tilt, running
of the running, tensor contribution, etc. The parameters ξ2

V and
$3

V are perfectly compatible with zero (see Fig. 10 and Table 6),
and so are Vφφφ and Vφφφφ (see the contours on the parameters
{V,Vφ, . . . ,Vφφφφ} in Fig. 11). This is consistent with the fact that
the new data set brings no evidence for running or running of the
running. It also explains why the results of this section are close
to those of Sect. 4.1, obtained under the slow-roll approximation.
Similar to 2015, the best-fit value of running for n = 3 is nega-
tive, but has moved down from −0.013 to −0.007, and remains
compatible with zero at the 1.0σ level. For n = 4, the trend
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Table 6. Numerical reconstruction of the potential slow-roll param-
eters beyond any slow-roll approximation, when the potential is
Taylor-expanded to nth order, using Planck TT,TE,EE+lowE+lensing+
BK15.

n 2 3 4

εV <0.0042 <0.0045 <0.0048
ηV −0.0124+0.0033

−0.0052 −0.0163+0.0057
−0.0063 −0.0082+0.0096

−0.0120

ξ2
V . . . 0.0036+0.0035

−0.0037 −0.004+0.011
−0.009

$3
V . . . . . . 0.0048+0.0052

−0.0067

τ 0.0546+0.0072
−0.0075 0.0559+0.0074

−0.0080 0.0571+0.0077
−0.0085

ns 0.9650+0.0042
−0.0042 0.9639+0.0043

−0.0048 0.9623+0.0047
−0.0050

103 dns
d ln k −0.37+0.29

−0.19 −7.3+7.0
−6.7 −1.9+9.0

−9.2

r0.002 <0.060 <0.063 <0.069
∆χ2

eff
. . . ∆χ2

3/2 = −0.22 ∆χ2
4/3 = −0.82

Notes. We also show the corresponding bounds on some related param-
eters (here ns, dns/d ln k, and r0.002 are derived from the numerically
computed primordial spectra). All error bars are at the 68% CL and all
upper bounds at the 95% CL. The effective χ2 value of model n is given
relative to model n − 1.

observed in 2015 to fit the data slightly better with a non-zero
tensor contribution has disappeared. The decrease of the mini-
mum effective χ2 when moving from n = 2 to n = 3 is insignif-
icant and even smaller than in 2015, showing that the data do
not require anything more complicated than an approximately
parabolic shape for the inflaton potential within the observable
window.

This can be checked by considering the random sample of
well-fitting potentials presented in Fig. 12. Actually, for n = 4,
a few of the plotted potentials have a non-parabolic “spoon-
like” shape (with a kink and a plateau), because non-negligible
values of |Vφφφφ| are still allowed. However, this sub-class of
models is by no means preferred over simpler parabolic-like
potentials with a negligible |Vφφφφ|; otherwise, we would have
obtained a better χ2

eff
for n = 4. Hence one should not take from

Fig. 12 the message that special potentials with a kink and a
plateau are favoured by the Planck data. Comparing this plot
to Fig. 15 of PCI15, we see that the models with the largest
V(φ) amplitude are excluded by stronger bounds on the tensor
modes.

Finally, it is interesting to notice that the predictions for the
parameters of the minimal ΛCDM model, such as ns or τ, remain
extremely stable when increasing the freedom in the inflaton
potential.

5.2. Taylor expansion of H(φ) in the observable region

To assess the robustness of our method, in this section we repeat
the analysis with a Taylor expansion of the Hubble function H(φ)
in the observable window, as we did in 2015. We refer the reader
to Sect. 7.2 of PCI15 for a precise description of this analy-
sis, and we recall that the difference with respect to the V(φ)
reconstruction is more than a mere change of priors. For each
value of n, the new parameterization covers a slightly different
range of potentials, and, more importantly, it naturally includes
a marginalization over the uncertainty in the initial value of the
derivative φ̇ when the inflaton enters the observable window.
Instead, in the previous analysis, φ̇ was assumed to have reached
the inflaton attractor solution, i.e., there was an implicit assump-
tion that inflation started well before that time. In the analysis
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Fig. 11. Taylor expansion of V(φ) at order n = 2, 3, and 4 in the
observable region, making no assumption about the end of inflation. In
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√
8πMPl = 1). The parameters are the Taylor coeffi-

cients, obtained here as derived parameters with non-flat priors. Dashed
contours are Planck TT,TE,EE+lowE, while solid contours are Planck
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We use the same scales as in PCI15. Note that there is another branch
of solutions that is symmetric under (φ − φ∗)→ −(φ − φ∗).

based on H(φ), inflation models with a minimal duration are not
excluded by the priors.

The improvement with respect to the 2015 results is even
more impressive in this case. Bounds on the n = 4 parameters
are typically 3–4 times stronger compared with 2015, as can be
checked from Table 7 and Fig. 13. We found that a factor of 2
improvement comes from switching to the new set of low-` like-
lihoods, and another factor of 2 from adding the BK likelihood.
On the other hand, the use of more recent high-` and lensing
likelihoods has a modest impact.

A consequence of these improved constraints can be seen
in Fig. 14, when we compare it to its counterpart from 2015
(Fig. 20 in PCI15). Again, for a better comparison Fig. 14 uses
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Table 7. Numerical reconstruction of the Hubble slow-roll parame-
ters beyond any slow-roll approximation, using Planck TT,TE,EE+
lowE+lensing+BK15.

n 2 3 4

εH <0.0041 <0.0046 <0.0041
ηH −0.0139+0.0026

−0.0038 −0.0170+0.0044
−0.0048 −0.0158+0.0057

−0.0056
ξ2

H . . . 0.046+0.043
−0.045 0.021+0.071

−0.076
$3

H . . . . . . 0.16+0.64
−0.37

τ 0.0548+0.0075
−0.0074 0.0556+0.0076

−0.0078 0.0563+0.0073
−0.0078

ns 0.9651+0.0040
−0.0044 0.9637+0.0042

−0.0046 0.9637+0.0042
−0.0048

103 dns
d ln k −0.25+0.20

−0.12 −7.5+7.0
−6.7 −5.1+7.8

−8.1
r0.002 <0.059 <0.065 <0.057
∆χ2

eff
. . . ∆χ2

3/2 = −1.60 ∆χ2
4/3 = −2.32

Notes. We also show the corresponding bounds on some related param-
eters (here ns, dns/d ln k, and r0.002 are derived from the numerically
computed primordial spectra). All error bars are at the 68% CL and all
upper bounds at the 95% CL. The effective χ2 value of model n is given
relative to model n − 1.
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Fig. 13. Taylor expansion of H(φ) at order n = 2, 3, and 4 in the
observable region, making no assumption about the end of inflation.
The parameters are combinations of Taylor coefficients with flat priors.
Dashed contours are Planck TT,TE,EE+lowE, while solid contours are
Planck TT,TE,EE+lowE+lensing+BK15. The scales are the same as in
PCI15.

the same scale as Fig. 20 of PCI15. For n = 4, the previously
best-fitting models included many scenarios starting with a fast-
roll stage, producing a tail with large V(φ) before pivot-scale
crossing. These models are now excluded by better polarization
data and tensor constraints.

Going beyond the parabolic approximation for H(φ) does not
improve the goodness-of-fit: as in the potential-based analysis
of Sect. 5.1, the ∆χ2s between n = 2, n = 3, and n = 4 are
negligible, and the parameters ξ2

H and $3
H related to Hφφφ and

Hφφφφ are compatible with zero.

5.3. Taylor expansion of full V(φ)

We now present a new analysis with less conservative assu-
mptions than in the previous subsections. We switch to the
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Fig. 14. Representative sample of the observable region of inflaton
potentials allowed at the 95% CL, inferred from H(φ) when that func-
tion is Taylor-expanded at order n = 2, 3, and 4 in the observable region,
making no assumption about the end of inflation, and using Planck
TT,TE,EE+lowE+lensing+BK15. In natural units (where

√
8πMPl =

1). The scales are the same as in PCI15. Note that there is another branch
of solutions symmetric under (φ − φ∗)→ −(φ − φ∗).

hypothesis that the inflaton potential is very smooth not only
within its observable window, but also until the end of inflation,
such that its whole shape can be captured by a Taylor expansion.
We further assume that inflation ends when the first slow-roll
condition is violated (εV = 1), without invoking any other field.
Finally, we fix the number of e-folds between Hubble crossing of
the pivot scale and the end of inflation to N∗ = 55, which implic-
itly relies on the hypothesis that no further inflationary stage took
place at a later epoch.

Technically, the analysis pipeline for this case is similar to
that of Sect. 5.1, except for an extra step in which the CLASS
inflationary module integrates the background equations until
the end of inflation, goes backwards in time by 55 e-folds,
and imposes that the Hubble crossing for the pivot scale k∗ =
0.05 Mpc−1 matches that time.

These models are much more constrained than those of
Sects. 5.1 and 5.2, since the e-fold condition is imposed in
addition to having a potential with a good shape within the
observable window. The constraining power is then sufficient
for running the MCMC chains directly with flat priors on
{V,Vφ, . . . ,Vφφφφ}.

Our results are presented in Figs. 15 and 16 and in Table 8.
For models with a purely quadratic potential, the numerically
computed tilt and tensor-to-scalar ratio depend almost exclu-
sively on N∗, thus they remain fixed to ns = 0.963 and r0.002 =
0.136. Such a large r is in tension with the Planck data, and even
more so with the Planck+BK data. Thus the effective χ2 is poor
in the n = 2 case and improves considerably when adding some
freedom in going to n = 3. Indeed, the presence of an additional
cubic term allows us to reach smaller values of the tensor-to-
scalar ratio for roughly the same scalar tilt, and lowers χ2

eff
by

more than 13. Instead, when also adding a quartic term, we find
no significant improvement in the goodness of fit, and the coef-
ficient of the φ4 term is consistent with zero.

These findings are consistent with the global picture that
Planck data prefer potentials which are concave in the observ-
able window. The blue and green curves in the lower left panel
of Fig. 16 illustrate the preference of the Planck+lensing+
BK15 data for potentials with an inflection point, appearing
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Fig. 15. Taylor expansion of the full V(φ) at order n = 3 and 4, trusted
until the end of inflation, in natural units (where

√
8πMPl = 1). The

parameters are the Taylor coefficients with flat priors. Dashed con-
tours are Planck TT,TE,EE+lowE, while solid contours are Planck
TT,TE,EE+lowE+lensing+BK15.

qualitatively similar to scalar field potentials associated with
spontaneous symmetry breaking models, hilltop models, new
inflation, natural inflation, etc.

In these runs, the value of the scalar tilt running is always
very precisely constrained around a value of dns/d ln k ' −6 ×
10−4. This does not come as a surprise if we keep in mind that
these bounds are not imposed directly by the data, but rather by
the class of inflationary potentials considered here, with potential
parameters fixed by observational bounds on the amplitude and
tilt of the scalar and tensor spectra. In other words, the running
is not directly measured, but rather predicted as a function of the
scalar and tensor amplitudes and scalar tilt. Interestingly, if com-
binations of future CMB and large-scale structure data with a
wide lever arm in wavenumber space could become directly sen-
sitive to such tiny values (which would require a factor of around
10 improvement in sensitivity compared to current CMB+BAO
data), a very large class of currently successful inflationary mod-
els could be either confirmed or ruled out.

5.4. Free-form potential reconstruction

As a complementary analysis to the previous three subsections,
we next perform a free-form reconstruction of the inflationary
potential with cubic splines, in a manner akin to the reconstruc-
tions of PCI15 and Sect. 6.2.1. Further plots and theoretical
detail can be found in Handley et al. (2019).

A free-form reconstruction usually proceeds by parame-
terizing the function of interest via a spline and taking the
locations of the interpolation knots as free parameters in a pos-
terior distribution. These are then varied along with any other
model parameters, and then marginalized out to yield a model-
independent reconstruction of the function of interest. The anal-
ysis is run for differing numbers of knots, N, and the Bayesian
evidence is computed to allow for model comparison to deter-
mine how many knots are appropriate from the perspective of the
data.

To reconstruct the inflationary potential V(φ), one cannot
take a linear interpolating spline (as in Sect. 6.2.1), since the
equations of motion in general depend on first (and sometimes

second) derivatives of V . We therefore choose to parameter-
ize the second derivative of the log-potential as a linear spline.
The log-potential is computed by integrating this function twice,
yielding a function with two additional free parameters – a
global offset and a gradient. Our reconstruction function is there-
fore

ln V = ln V∗ + (φ − φ∗)
dln V∗

dφ

+

∫ φ

φ∗

dφ′
∫ φ′

φ∗

dφ′′ LS(φ′′; θ), (49)

θ =

(
φ1, . . . , φN ,

d2ln V1

dφ2 , . . . ,
d2ln VN

dφ2

)
, (50)

LS(φ; θ) =

{ d2ln Vi
dφ2

φ−φi+1
φi−φi+1

+ d2ln Vi+1
dφ2

φ−φi
φi+1−φi

: φi < φ < φi+1
. (51)

Here LS(φ; θ) is a standard linear spline dependent on N knots,
ln V∗ is the potential at the pivot scale, and dln V∗/dφ is the gra-
dient of the log-potential at the pivot scale.

In general, any reconstruction of the potential will be sen-
sitive only to the observable window of inflation in φ ∈

[φmin , φmax ], where φmin and φmax are defined as the field val-
ues when the largest and smallest observable scales kmin and
kmax exit the Hubble radius during inflation. Regions of the
potential outside these φ values are unconstrained by current
CMB data. In our analysis, we take kmin = 10−4 Mpc−1 and
kmax = 10−0.3 Mpc−1, which encompasses the multipole range
constrained by Planck (see Sect. 6.2.1). The locations φ1, . . . , φN
of the reconstruction knots should be distributed throughout this
observable window. Whilst the locations φ1, . . . φN and heights
d2ln V1/dφ2, . . . , d2ln VN/dφ2 themselves influence the size of
the observable window, a reasonable approach is to first esti-
mate it using the unperturbed potential (i.e., setting N = 0). This
gives an alternative range φ ∈ [φ̃min , φ̃max ]. The priors on all our
variables are indicated in Table 9.

Our results are detailed in Fig. 17. The Bayesian evidence
shows that the reconstruction preferred by the data is that using
N = 1, corresponding to a constant non-zero d2ln V/dφ2. This
indicates that the Planck data do not significantly constrain the
inflationary potential within the window any further than up to a
quadratic term in a Taylor expansion. It is illuminating, however,
to consider adding further structure to the potential, and Fig. 17
shows reconstructions for N = 8.

Considering the predictive posterior of the primordial power
spectrum, we see that our parameterization is sufficient to exhibit
the deficit at ` ' 30, cosmic variance at low `, and the loss of res-
olution at high `, as seen in Sect. 6.2.1. Consistent with the rest
of the analyses, εV is unconstrained, whilst the Planck data pro-
vide relatively powerful constraints on ηV within the observable
window of inflation.

6. Primordial power spectrum reconstruction

This section reports results for the non-parametric reconstruction
of the primordial scalar power spectrum using the new Planck
2018 likelihoods, as well as comparisons with the previously
reported results for the Planck 2013 and 2015 releases. The
objective here is to search for deviations from a simple power-
law primordial power spectrum (i.e., PR(k) = As(k/k∗)ns−1)
in a manner that does not presuppose any particular theoreti-
cal model giving rise to such deviations. This work is comple-
mentary to the searches considered in Sect. 7, where particular
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Fig. 16. Representative sample of the inflation potentials allowed at the 95% CL, when the potential is Taylor-expanded at order n = 2, 3, and
4 and trusted until the end of inflation, and under the assumption of N∗ = 55 e-folds of inflation between Hubble-radius crossing for the pivot
scale and the end of inflation. In natural units (where

√
8πMPl = 1). Left panels: full potential from the beginning of the observable window

till the end of inflation. Right: zoom on the observable window directly constrained by inflation. Top: Planck TT,TE,EE+lowE. Bottom: Planck
TT,TE,EE+lowE+lensing+BK15. Note that there is another branch of solutions that is symmetric under φ→ −φ.

functional forms for such deviations motivated by theory are
investigated.

Here we apply three distinct nonparametric methods. In 2013
only the first method was used to reconstruct the primordial
power spectrum, the so-called “penalized likelihood” method,
for which the 2018 results are presented in Sect. 6.1. In 2015
two additional methods were also used: a linear spline method
(discussed in Sect. 6.2) for which both the number of knots and
their positions were allowed to vary, and ideas from Bayesian
model selection were applied to determine the appropriate num-
ber of knots; and a method using cubic splines (discussed in
Sect. 6.3). Although the discussion below includes some descrip-
tion of each method in order to make the paper self-contained,
for details the reader is referred to the 2013 and 2015 papers.
Here we specify only those details specific to the 2018 analysis
or different from the choices in the 2013 and 2015 analyses. See
references in PCI13 and Hunt & Sarkar (2014, 2015) and Hazra
et al. (2014b) for other approaches to non-parametric reconstruc-
tion of the primordial power spectrum.

6.1. Penalized likelihood

The underlying idea of the penalized likelihood approach is to
add a term to the log-likelihood that penalizes deviations from

a perfect power-law spectrum. We parameterize the power spec-
trum as

PR(k) = P0(k) exp
[
f (k)

]
, (52)

where P0(k) = As(k/k∗)ns−1, and add the following term to
−2 lnL:

f T R(λ, α) f ≡ λ
∫ κmax

κmin

dκ
(
∂2 f (κ)
∂κ2

)2

+ α

∫ κmin

−∞

dκ f 2(κ) + α

∫ +∞

κmax

dκ f 2(κ), (53)

where κ = ln k. The interval [κmin, κmax] is chosen to cover the
range over which the likelihood is able to constrain the data. The
two α terms serve to pin the reconstruction to the simple power
law where the data have almost no constraining power. One may
imagine that α > 0 should be infinite, but for numerical reasons
a large but finite value is used to simplify the numerics. Numer-
ically, for each λ the dimension of f is chosen to be so large
that the continuum version of the penalty given in Eq. (53) has
been accurately approximated. For more details see Gauthier &
Bucher (2012) and the extensive references therein to prior liter-
ature, as well as PCI13 and PCI15.
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Fig. 17. Free-form potential reconstructions using Planck TT+TE+EE+lowE+lensing (Sect. 5.4). Top-right panel: Bayes factors for the free-form
potential reconstruction. The preferred reconstruction has N = 1, corresponding to a constant non-zero d2ln V1/dφ2. The remaining panels show
reconstructions for the N = 8 knot case, focusing on the scalar primordial power spectrum, and the inflationary slow-roll parameters εV and ηV .
Red lines indicate sample trajectories from the prior, whilst black lines are from the posterior. Technically the slow-roll parameters are defined as
functions of φ, but we instead substitute this for the Hubble-radius-exit value to make for clearer comparison between posterior samples. In all
plots, the approximate link between ` and k is via the Limber approximation, ` ' k/DA, where DA = r∗/θ∗ is the comoving angular distance to
recombination, which is at comoving distance r∗.

In Fig. 18 we show the results using Planck TT+lowE and in
Fig. 19 we show the results for Planck TT,TE,EE+lowE. In both
cases we have assumed the usual base-ΛCDM model specified
in PCP18, except that the power spectrum is now parameterized
by a set of spline points. In addition to these spline points, we
also maximize the likelihood with respect to the dimensionless
Hubble parameter, h, and the baryon, Ωbh2, and CDM, Ωch2,
densities. All other cosmological and nuisance parameters are
the same as those quoted in PCP18.

For the TT-only case, the maximum deviations are 1.55σ,
2.10σ, 1.80σ, and 1.65σ for λ = 103, 104, 105, and 106, respec-
tively, for which the probabilities to exceed are 13%, 28%, 31%,
and 23% (where we have taken into account the look-elsewhere
effect). Similarly, for the TT,TE,EE case, the maximum devia-
tions are 2.07σ, 1.77σ, 1.77σ, and 1.08σ for λ = 103, 104, 105,
and 106, respectively, for which the probabilities to exceed are
29%, 23%, 32%, and 25%. We consequently find no statistically
significant evidence for a deviation from the simple power-law
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Table 8. Numerical reconstruction of the potential parameters beyond
any slow-roll approximation, when the potential is Taylor-expanded to
nth order, trusted until the end of inflation, and using Planck high-`
TT,TE,EE+lowE+lensing+BK15.

n 2 3 4

1012V2 1.631+0.022
−0.022 1.81+0.12

−0.06 1.86+0.25
−0.23

1012V3 . . . 0.89+0.10
−0.03 0.85+0.46

−0.64

1012V4 . . . . . . 0.044+0.26
−0.35

τ 0.0518+0.0066
−0.0066 0.0501+0.0078

−0.0069 0.05628+0.0075
−0.0087

ns 0.963 0.9599+0.0034
−0.0018 0.9656+0.0035

−0.0043

103 dns
d ln k −0.6731+0.0005

−0.0005 −0.534+0.079
−0.096 −0.74+0.16

−0.13

r0.002 0.136 0.066+0.010
−0.016 0.042+0.009

−0.014

∆χ2
eff

. . . ∆χ2
3/2 = −13.18 ∆χ2

4/3 = −3.50

Notes. We also show the corresponding bounds on some related param-
eters (here ns, dns/d ln k, and r0.002 are derived from the numerically
computed primordial spectra). All error bars are at the 68% CL and all
upper bounds at the 95% CL. The effective χ2 value of model n is given
relative to model n − 1.

Table 9. Parameters of the free-form potential reconstruction analysis
and details of the priors.

Parameters Prior type Prior range

N Discrete uniform [0, 8]
ln V∗ Uniform [−25,−15]
d ln V∗/dφ Log-uniform [10−3, 10−0.3]
d2ln V1/dφ2, . . . , d2ln VN/dφ2 Uniform [−0.5, 0.5]
φ1, . . . , φN Sorted uniform [φ̃min , φ̃max ]
ln 1010PR(k) Indirect constraint [2,4]

Notes. There is a further prior constraint in that we require that the
inflaton should evolve in an inflating phase throughout the observable
window, that the inflaton should be rolling downhill from negative to
positive φ throughout, and that any primordial power spectra generated
sit in the range 2 < ln 1010PR(k) < 4.

hypothesis. This result is consistent with the results previously
reported for the Planck 2013 and 2015 releases using essentially
the same method. It is likewise consistent with the results below
in Sects. 6.2 and 6.3, which use different methods.

6.2. Bayesian reconstruction

To reconstruct the primordial power spectrum of curvature per-
turbations, we follow the methodology of Sect. 8.2 of PCI15,
using an N-point interpolating logarithmic spline with the posi-
tions of the knots considered as free parameters in the full
posterior distribution. The positions of the points in the (k,P)
plane are treated as likelihood parameters with log-uniform
priors. Further, the k-positions are sorted a priori such that
k1 < k2 < . . . < kN , with k1 and kN fixed. We compute posteri-
ors and evidence values (conditioned on N) using PolyChord
(Handley et al. 2015a,b), also varying all cosmological and nui-
sance parameters. We then use evidence values for each model
to correctly marginalize out the number of knots N.

To plot our reconstructions of P(k), we compute the
marginalized posterior distribution of lnP conditioned on k. The
iso-probability confidence intervals are then plotted in the (k,P)
plane (see, e.g., Fig. 20), using code recorded in Handley (2018).
To quantify the constraining power of a given experiment, we

use the conditional Kullback–Leibler (KL) divergence as exem-
plified by Hee et al. (2016). For two distributions P(θ) and Q(θ),
the KL divergence is defined as

DKL(P|Q) =

∫
ln

[
P(θ)
Q(θ)

]
P(θ)dθ, (54)

and may be interpreted as the information gain in moving from
a prior Q to a posterior P (Raveri et al. 2016). For our recon-
structions, we compute the KL divergence of each distribution
conditioned on k and N, and then marginalize over N using evi-
dence values to produce a k-dependent number which quantifies
the compression or information that each data set provides at
each value of k. Further plots and theoretical detail can be found
in Handley et al. (2019).

6.2.1. Update on Planck 2015

In PCI15, our analysis focussed predominantly on the TT+
lowTEB data set. Here we present results for TT,TE,EE+lowE
+lensing. First, in updating to the lowE likelihood, we find that
there is a marked tightening in the constraint on the amplitude of
the reconstructed spectrum at all values of k. The improvement in
the constraint can be seen directly in the predictive posterior plots
(Fig. 20, top-left panel, and Fig. 21), and is quantified in Fig. 20
(bottom-right) via the KL divergence. The reason for the high-
` constraint provided by a low-` likelihood change is due to the
reduced uncertainty on τ that SimAll EE provides. This can be
seenbyexaminingtheshiftsintheunderlyingcosmologicalparam-
eters in Fig. 2.

Upon adding TE and EE data, we find that the hint of a fea-
ture at ` ' 30 is still present, in spite of the additional constrain-
ing power provided by polarization. Using polarization data, the
N = 3 case is now the most strongly favoured model by the
evidence criterion. This indicates that there is some scope for
models which account for low-` cosmic variance to be preferred
in a Bayesian sense. The other underlying cosmological param-
eters are unaffected by the additional degrees of freedom in the
primordial power spectrum provided by the reconstruction.

In order to combine Planck polarization data with BK15, we
also allow the tensor-to-scalar ratio r to vary, and fix the tensor
tilt nt via the inflationary consistency condition. As can be seen
in the bottom-left panel of Fig. 20, upon adding BK15, the effect
of the low-` deficit is softened, but with otherwise little change
to the reconstruction. We repeated our analysis with CamSpec
in place of Plik and found our results to be qualitatively and
quantitatively unchanged.

6.2.2. Free-form search for features

Next we examine the effect that sharp features in the primor-
dial power spectrum can have on cosmological parameters. We
model sharp features in the spectrum as a variable number of top-
hat functions with varying widths, heights, and locations. On top
of the traditional As, ns parameterization of the power spectrum,
we place N sharp top-hat features into the spectrum at locations
ki with widths di and heights hi (i = 1, . . . ,N). That is, we set

lnPR(k) = ln As + (ns − 1) ln
(

k
k∗

)
+

N∑
i=1

hi

[
|k − ki| <

di

2

]
, (55)

where the square brackets in the summation denote a logical
truth function as introduced by Graham et al. (1994). For values
of N = 0, . . . , 8, we treat the variables in parameterization (55)
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feature such that the mean square deviation of the reconstruction is less than 10%). The grey regions display where the minimum reconstructible
width is undefined, meaning that the reconstruction in these regions is untrustworthy. The hatched region in the λ = 106 plot indicates where the
fixing penalty has been applied. Lower three panels: ±1σ error bars for the three non-primordial-specctrum cosmological parameters included in
the reconstruction. The respective best-fit fiducial model values are indicated by the dashed lines.

as parameters in a posterior distribution along with the tradi-
tional cosmological and Planck nuisance parameters, with priors
as detailed in Table 10. We run with both linear and logarith-

mic priors on the k-locations of the features, as this alters the
sensitivity to the type of features uncovered. We sample the pos-
teriors using PolyChord (Handley et al. 2015a,b).
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Fig. 19. Penalized likelihood reconstruction, as Fig. 18 but for Planck TT,TE,EE+lowE.

Figures 22 and 23 show our results. With the linear pri-
ors case, there are statistically insignificant features correspond-
ing to the peaks of the TT spectrum, which arise due to the
enhanced cosmic variance at these locations. With the logarith-
mic priors case, a stronger but still statistically insignificant fea-
ture is detected at ` ' 30, with a small deficit and surrounding
enhancement of power. This case reproduces the results found in
Sect. 6.2.1. In both cases, the Bayesian evidence shows prefer-
ence for a no-features spectrum, and steadily declines as more

features are added. The cosmological parameters remain unper-
turbed despite the introduction of features.

6.3. Cubic spline reconstruction

In this subsection we update the third method of reconstruc-
tion used in PCI15, in which lnPR(ln(k)) was expanded in
cubic splines localized in ln(k) about uniformly spaced “knots,”
{ln(kb), b = 1, . . . ,N}, whose range was chosen to cover all
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Fig. 20. Free-form Bayesian reconstruction of the primordial power spectrum (Sect. 6.2.1) using Planck TT,TE,EE+lowE+lensing. Top-right:
evidence values for each N-knot reconstruction. The evidence is maximal for the N = 2 and N = 3 knot cases, and semi-competitive for the
remaining higher knots. Marginalizing over the number of knots produces a predictive posterior plot, shown in the top-left panel. Here we see
generic features, with the limit of resolution of Planck at ` ' 2400 and cosmic variance at low `. Bottom-left: same as top-left, but using the
additional BK15 data and allowing r to vary. Bottom-right: Kullback–Leibler divergence conditional on k, marginalized over the number of knots,
showing the increase in compression of the primordial power spectrum over several past CMB missions. The difference in constraining power
between Planck 2013 and 2015 is driven entirely by the shift in the τ constraint.

relevant cosmological scales, from 10−4 Mpc−1 to O(1) Mpc−1.
We single out the standard scalar power spectrum pivot scale as
a “pivot knot” b = p, with kp = k∗ = 0.05 Mpc−1. Its associated
power ln As = lnPR(k∗) is assigned a uniformly distributed prior.
A tilted primordial power spectrum PR,fid ≡ As(k/k∗)ns,fid−1, with
fixed spectral index ns,fid is used as the fiducial baseline from
which deviations are measured, expressed in terms of N − 1 rel-
ative spectral shape parameters: qb = ln

(
PR(kb)/PR,fid(kb)

)
for

b , p. For the results presented here, ns,fid = 0.967 was chosen.
As in PCI15 we continue to use cubic splines for the k-space

modes we expand in, with natural boundary conditions (i.e., van-
ishing second derivatives at the first and last knots). The treat-
ment here is therefore quite analogous to that in Sect. 5.4, where
the inflaton potential rather than the curvature power spectrum is
expanded in cubic splines. Knot numbers up to 18 were reported
in PCI15, and it was shown that 12 were sufficient to capture the
variations desired by the Planck CMB data. The mode functions
were also varied. For example, linear interpolation leads to sim-
ilar reconstructions as long as enough knots are used. A weak
uniform prior (−1 ≤ qb ≤ 1) was imposed on qb. Outside of the
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Fig. 21. Free-form Bayesian reconstruction of the primordial power spectrum for varying numbers of knots (Sect. 6.2.1) using
TT,TE,EE+lowE+lensing. The amplitude and tilt are consistent with the rest of the results with the same combination of likelihoods. As more
knots are added, the ` ' 30 feature in the C` temperature spectrum is visible as a dip to lower power.

Table 10. Priors for the search for sharp features in the primordial power
spectrum.

Parameter Prior Range

ki, kmax Sorted uniform 0 < k1 < · · · < kN < 0.2 Mpc−1

di Uniform 0 < d1, . . . , dN < 0.01 Mpc−1

ki, kmax Sorted log-uniform −4 < log10 k1 · · · log10 kN < −0.3
di Log-uniform 0 < log10 d1, . . . , log10 dN < 1
hi Uniform −1 < h1, . . . , hN < 1
ln(1010As) Uniform 2 < ln(1010As) < 4
ns Uniform 0.8 < ns < 1.2

Notes. Units for k and d are Mpc−1.

spline coverage region [k1, kN] we set ln
(
PR(k)/PR,fid(k)

)
to be

q1 for k < k1 and qN for k > kN . The prior on qb and boundary
condition choices have little impact on the reconstructions over
most of the k-range.

The current Planck TT,TE,EE+lowE+lensing+BK15 data
give only upper limits to the allowed values of the tensor ampli-
tude, r < 0.06. Consequently, adding shape degrees of freedom
to the tensor power spectrum would yield a completely prior-
driven result. Instead we adopt the standard model power-law
parameterization for tensors, Pt(k) = rAs(k/k∗)nt , with the ten-
sor spectral index constrained by the consistency relation nt =
−r/8. Without B-mode constraints and with enough knots one
could deform the primordial scalar spectrum to mimic a tensor
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Fig. 22. Free-form Bayesian search for features (Sect. 6.2.2) with Planck TT,TE,EE+lowE+lensing. Upper panels: runs with linear priors on the k-
locations. Lower panels: runs with logarithmic priors on the k-features. Left panels: reconstruction for N = 8 features. Right panels: reconstruction
marginalized over N = 0, . . . , 8 features.

contribution to the CMB power. However, this near-degeneracy
is broken with direct B-mode observations, effectively so even
if there are only upper limits as for the BK15 data. Our recon-
structions here focus on letting r float over a prior range 0 ≤
r ≤ 1, but the posterior is strongly constrained by the BK15
data.

The joint probability distributions of {qb, b , p}, ln As, and
the other cosmic and nuisance parameters are determined by
CosmoMC modified to incorporate the N-knot parameterization
for fixed knot number N. Figure 24 shows the reconstruction.
Apart from the mean and 1σ and 2σ limits on the ensemble of
trajectories allowed by the posterior probability, we also show
a set of individual trajectories with parameters taken from 1σ

samples to illustrate the knot-to-knot coherence (dashed curves).
The tensor trajectories are straight lines, as required by the
adopted tensor power model.

In spite of the extra scalar shape freedom in the k-space
region over which the tensor modes affect the CMB, the 12 knot
reconstruction still leads to a strong constraint of r < 0.069,
rather close to the r < 0.06 limit obtained if the only shape
parameter is ns. In fact we find that the current limits on r
are such that the scalar-power reconstructions are not sensitive
to the details of the r distribution. To illustrate this, the lower
panel of Fig. 24 shows the spectrum when r is fixed at the
tiny value of r = 0.001. One could regard this as a theoret-
ical prior for low-energy inflation models or a forecast for a
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Fig. 23. Effect on the underlying cosmological parameters of the free-form Bayesian search for features (Sect. 6.2.2), for N = 0, . . . , 3 features
with linear k-priors. The parameters remain stable up to N = 8 features, and when changing to logarithmic k-priors.

future in which r is measured or tightly constrained by B-mode
experiments.

In PCI15, the main cubic spline reconstruction included non-
CMB data to help pin down cosmological parameters such as H0,
τ, and the late-time expansion history. The improvements in the
data from 2015 to 2018, especially the decreased errors on τ,
result in no non-CMB data being needed. Although τ and ln As
are about 90% correlated, as they are in the standard power-law
model, neither are very correlated with the qb. The strongest is
about 40% for q3 at k ' 0.0006 Mpc−1, corresponding to ` ∼ 10
where reionization is kicking in. The second strongest is about
30% for k ' 0.02 Mpc−1, similar to the correlation of τ and ns in
the standard power-law model. (The correlations among the qb
are also relatively small, except for the high k bands b = 10 and
11, where the data are not constraining.)

The middle panel in Fig. 24 shows the effect of adding the
BAO constraint. Although apparently visually identical, there
are slight differences. For example, the 1σ error on qb at k '
0.02 Mpc−1 decreases by about 7%, from 0.0090 to 0.0084,
while at k ' 0.1 Mpc−1 the decrease is about 5%. The restric-
tion to r = 0.001 does not change the error bars over the floating
r case. At intermediate k for modes 5–8 the errors on qb are so
close to zero that the reconstruction is quite compatible with a
simple power law, corresponding to a straight line in Fig. 24.
This was also a main result of the 2015 Planck reconstructions.

The errors on the qb grow above ±0.1 for b = 4 as a con-
sequence of increased cosmic variance, giving more freedom
in the allowed trajectories. Unfortunately this is also the region
of relevance to the TT power spectrum deficit in the ` ' 20–
30 range. The most significant deviation from zero occurs for
q4 at k ' 0.0014 Mpc−1: −0.254 ± 0.127, −0.255 ± 0.125, and
−0.235 ± 0.128 for the three cases. Thus the anomaly in terms
of deviation from the power law of the standard model hovers at
around the 2σ level. More precisely, the 95% upper confidence
limits on q4 are −0.011, −0.018, and +0.017, for the respec-
tive cases. This 2σ level of the anomaly was also the conclusion

of the 2015 Planck reconstructions. Therefore, even though the
low-k deficit is robust against the various choices for the recon-
struction, we conclude that it is not statistically significant. The
associated TT, TE, EE, and BB power spectra responses to the
allowed primordial power variations are derived from the mode
expansion, and match theDXY

` data well, in particular following
the dip in TT at ` ' 20–30 in the mean, though the fluctuations
about the mean encompass the uniform-ns case ofDTT

` .
In Fig. 25 we show the reconstructed power spectra using

only the TT, TE, and EE data in conjunction with BK15. The
fixed r = 0.001 cases look very similar. Except at high k, the
polarization data using either EE or TE also enforce a nearly uni-
form ns(k) over a broad range in k, with values in excellent agree-
ment with those obtained from TT alone, from TE and EE used
in combination, and from the combined TT,TE,EE results. For
example, the ±0.0087 and ±0.0060 1σ errors at k ' 0.02 Mpc−1

and k ' 0.1 Mpc−1, respectively, increase only slightly for TT
only, to ±0.012 and ±0.0068, but, more significantly, to ±0.017
and ±0.069 with EE alone. The deficit region remains about the
same, with the TT,TE,EE result for q4 of −0.255 ± 0.125 quoted
above changing slightly for TT alone, to −0.252 ± 0.130, but
with no hint of an anomaly for EE alone, at −0.126 ± 0.460. If
just the TE cross data are used, the values are closer to the TT
case, namely, −0.232±0.163, now with a less than 2σ excursion
from the tilted fiducial model.

As in PCI15, we can use the PR(k) ∝ H2/ε and
Pt(k)/PR(k) ' 16ε reconstructions to get an idea of the history
of the acceleration of the Universe as a function of time over the
significant number of e-folds of the cosmic expansion that the
CMB data probe, codified by the dynamical slow-roll parameter
ε(k) = −Ḣ/H2|k=aH , considered as a function of aH, the value
of the wavenumber at Hubble crossing. Results with floating r
and r fixed to 0.001 are shown in Fig. 26. For the dynamical
time variable we use k = aH for the horizontal axis for ease in
comparing with the PR(k) curves of Fig. 24. The wide spread
in the ε trajectories for the floating r case is a consequence of
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Fig. 24. Reconstructed primordial scalar power spectrum derived using
Planck TT,TE,EE+lowE+lensing+BK15 data and 12 knots for the
cubic spline interpolation (with positions marked as ∆ at the bottom
of each panel). Mean (ensemble-averaged) spectra are heavy lines,
allowed ±1σ and ±2σ regions for trajectories are the shaded regions,
and the dashed lines denote selected trajectories with parameters sam-
pled within the ±1σ posterior. Below the scalar power is the tensor
power reconstruction. The addition of the BAO likelihood shown in the
middle panel makes almost no visual difference to the reconstructions.
In the bottom panel, fixing the tensor-to-scalar ratio to r = 0.001 also
produces only small differences in reconstruction. Knot positions in k
roughly translate to multipoles through kDrec, where Drec is the comov-
ing distance to recombination.
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Fig. 25. Reconstructed 12-knot power spectra. The robustness of the
reconstruction is apparent when sub-selections of the Planck data
are used: Planck TT+lowE+lensing+BK15 (top); Planck TE+lowE+
lensing+BK15 (middle); and Planck EE+lowE+lensing+BK15 (bot-
tom).

being able to fit the ns(k) shape by a combination of ε(k) and
d ln ε(k)/d ln k. When r is small, ns(k) is almost entirely deter-
mined by d ln ε/d ln k, and the ε(k) values cluster near r/16.

The Hamilton–Jacobi energy constraint equation relates the
potential to ε and H via V = 3M2

PH2(1 − ε/3). Figure 27 shows
the reconstructed inflationary potential shapes in the region over
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Fig. 26. Acceleration history ε(k) for reconstructed trajectories using 12
knots (marked as ∆ at the bottom of the figure), with cubic-spline inter-
polation and the Planck TT,TE,EE+lowE+lensing+BK15+BAO data
for the two cases of floating r and r fixed at 0.001. Sample 1σ trajec-
tories for the floating r case allow wide variability, which is naturally
greatly diminished if r is fixed to r = 0.001.

which the allowed inflationary potentials are constrained by the
data for the floating r and fixed r cases. Instead of using k for
the horizontal axis, we translate into inflaton-field φ-space using
the relation between φ and

√
ε, referenced to the pivot position

φpivot. For the vertical axis we plot ln V/Vpivot, with the overall
normalization Vpivot removed. Its value is set by r, hence there is
a distribution of constant Vpivot amplitudes to superimpose if we
want the total V . The radically different visual appearance for
the floating r and fixed r cases is due to the observable k range
being compressed through the smallness of ε into a small pre-
cisely determined field range, whereas this range has a distribu-
tion in the floating r case. One can monitor whether the shapes
of the individual realizations of the potential trajectories bend
upwards or downwards or do both, an indication of convexity.
The sample trajectories shown are not exclusively convex or con-
cave, and a measure of the probability that they are convex can be
made from the ensemble. As indicated in Fig. 27 for the 12 knot
case, the ensemble-averaged potentials are roughly exponential,
with individual trajectories bending away from the mean, but
with no strong tendency for convexity or concavity. (The roughly
50% probability changes somewhat depending upon the combi-
nation of data used, whether TT,TE,EE or the individual data
sets).
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Fig. 27. Top: reconstructed shape of the single-field inflaton potential
from the cubic-spline power spectra mode-expansion using 12 knots and
the Planck TT,TE,EE+lowE+lensing+BK15+BAO data. Bottom: result
when r is fixed at 0.001. Instead of plotting as a function of wavenumber
k we plot ln V(φ)/Vpivot about a pivot field value φpivot. Note that the
range on the φ axis is quite different for the small r case than the floating
case. The probability of local convexity evaluated at φpivot is denoted as
p(convex).

The standard cosmological parameter determinations are
highly robust to the addition of these spline shape degrees
of freedom. The mean values change little and the error bars
grow slightly, by around 10% for ln As, τ, and H0. The largest
error increase is for σ8, with σ8 = 0.812 ± 0.0058 becoming
0.814±0.0096. The main conclusions of this section on ε and V ,
and PR(k), remain as in PCI15, but the results have been notice-
ably sharpened by the improvements in the Planck 2018 data
sets.

7. Search for primordial features in the Planck
power spectrum

The “bottom-up” power spectrum reconstruction methods of
the previous section are an excellent way to search for coarse
features in the spectrum, but lack the resolution to detect the
higher-frequency features generically predicted by various phys-
ical mechanisms (see, e.g., Chluba et al. 2015, for a review). It is
therefore useful to complement power spectrum reconstruction
with a “top-down” approach by fitting specific feature models to
the data. In this section we will analyse a representative range of
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power spectrum templates which parameterize features in terms
of a handful of new parameters.

With Planck’s temperature and polarization data, we have
two essentially independent probes of features at our disposal
and will pay particular attention to examining the consistency
between the two (Miranda et al. 2015).

7.1. Power spectrum templates with features

7.1.1. Global oscillation models

Periodic or quasi-periodic modulations of the power spectrum
which extend over the entire observable range of wavenumbers
can occur in a variety of models (cf., e.g., Danielsson 2002;
Martin & Brandenberger 2003; Bozza et al. 2003; Chen 2012;
Jackson & Shiu 2013). A general parameterization of models
with a sinusoidal modulation of the primordial power spectrum
reads

P X
R (k) = P 0

R
(k)

[
1 +AX cos (ωXΞX(k) + ϕX)

]
, (56)

where X ∈ {log, lin, rf}. Defining κ ≡ k/k∗14, we consider the log-
arithmic oscillation model, given by Ξlog ≡ ln κ, and the linear
oscillation model, Ξlin ≡ κ. In addition, we investigate a loga-
rithmic model with running frequency, Ξrf ≡ ln κ (1 + αrf ln κ).
For 0 ≤ αrf . 0.01, this is a good approximation for the scalar
power spectrum in the axion monodromy model (Flauger et al.
2017a), which will be analysed in more detail below, but here we
allow for a wider range of the running parameter αrf , including
negative values (i.e., decreasing frequency with increasing k).

7.1.2. Localized oscillatory features: inflation with a step

A sudden transient event in the evolution of the inflation field,
triggered by a sharp feature in the inflaton potential, or a sharp
turn in field space, generically leads to a localized oscillatory
feature in the power spectrum (Adams et al. 2001; Chen et al.
2007; Achúcarro et al. 2011; Miranda et al. 2012; Bartolo et al.
2013). As an example of this class of feature models, we con-
sider here the case of a tanh-step in an otherwise smooth infla-
ton potential (Adams et al. 2001), whose power spectrum can be
parameterized as (Miranda & Hu 2014)

lnPs
R

(k) = lnP0
R

(k) + I0(k) + ln
(
1 + I2

1(k)
)
, (57)

where the first- and second-order terms are given by

I0 = AsW0(k/ks)D
(

k/ks

xs

)
, (58)

I1 =
1
√

2

[
π

2
(1 − ns) +AsW1(k/ks)D

(
k/ks

xs

)]
, (59)

with window functions

W0(x) =
1

2x4

[(
18x − 6x3

)
cos 2x +

(
15x2 − 9

)
sin 2x

]
, (60)

W1(x) = −
3
x4 (x cos x − sin x)

[
3x cos x +

(
2x2 − 3

)
sin x

]
, (61)

and damping function

D(x) =
x

sinh x
· (62)

In this model, the parameterAs determines the amplitude of the
oscillatory feature, the step scale ks sets the position of the step

14 Throughout this section, we take k∗ = 0.05 Mpc−1.

in k-space, and the damping parameter xs determines the width
of the envelope function.

7.1.3. Models with suppressed power at large scales

The apparent lack of power at the largest scales in the temper-
ature power spectrum with respect to the expectation of base
ΛCDM serves as a motivation for models with a suppression
of primordial perturbations below a cutoff scale kc. Physically,
this effect may be due to fluctuations at the largest observable
scales being generated at the onset of the inflationary phase after
a prior era of, e.g., kinetic or radiation domination (Vilenkin &
Ford 1982; Contaldi et al. 2003), or due to an isolated event such
as a kink in the inflaton potential (Starobinsky 1992).

In these scenarios, the primordial spectrum can generally be
analytically approximated by an expression of the form

lnPY
R (k) = lnP 0

R
(k) + ln ΥY (k/kc

Y ), (63)

with Y ∈ {kin, rad, kink}, where ΥY is a function with ln ΥY → 0
in the limit k � kc

Y that describes the shape of the cutoff and the
transition to a power-law spectrum at smaller scales.

Initial kinetic domination

If inflation is preceded by an era dominated by the kinetic energy
of the inflaton field (i.e., fast roll), we have

Υkin(y) =
π

16
y |Cc(y) − Dc(y)|2 , (64)

with

Cc(y) = e−i y
[
H(2)

0

( y
2

)
−

(
1
y

+ i
)

H(2)
1

( y
2

)]
, (65)

Dc(y) = ei y
[
H(2)

0

( y
2

)
−

(
1
y
− i

)
H(2)

1

( y
2

)]
, (66)

where H(2)
n denotes the Hankel function of the second kind

(Contaldi et al. 2003).

Initial radiation domination

If inflation begins immediately after a radiation-dominated
phase, the cutoff function reads (Vilenkin & Ford 1982)

Υrad(y) =
1

4y4

∣∣∣e−2iy (1 + 2iy) − 1 − 2y2
∣∣∣2 . (67)

Kink in the inflaton potential (Starobinsky model)

A kink in the inflaton potential, first discussed by Starobinsky
(1992), leads to a spectrum approximately given by

Υkink(y) = 1 − 3(Rc − 1)
1
y

[(
1 −

1
y2

)
sin 2y +

2
y

cos 2y
]

(68)

+
9
2

(Rc − 1)2 1
y2

(
1 +

1
y2

)
×

[
1 +

1
y2 +

(
1 −

1
y2

)
cos 2y −

2
y

sin 2y
]
,

with the parameter Rc expressing the ratio of the slopes of the
inflaton potential before and after the kink (Sinha & Souradeep
2006).
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Table 11. Prior ranges for the parameters of the feature model templates of Sect. 7.1.

Log osc Running log osc Lin osc Step Kin cutoff Rad cutoff Kink cutoff

AX [0,0.5] [0,0.5] [0,0.5] . . . . . . . . . . . .
log10 ωX [0,2.1] [0,2.1] [0,2] . . . . . . . . . . . .
ϕX/(2π) [0,1] [0,1] [0,1] . . . . . . . . . . . .
αrf . . . [−0.1,0.1] . . . . . . . . . . . . . . .
As . . . . . . . . . [0,1] . . . . . . . . .
log10

(
ks/Mpc−1

)
. . . . . . . . . [−5,−1] . . . . . . . . .

ln xs . . . . . . . . . [−1,5] . . . . . . . . .
log10

(
kc

Y/Mpc−1
)

. . . . . . . . . . . . [−5,−3] [−5,−3] [−5,−3]
Rc . . . . . . . . . . . . . . . . . . [−1,0.7]

Table 12. Best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a featureless power spectrum, as well as best-fit feature
parameters, for the step and cutoff models.

Step Kin cutoff Rad cutoff Kink cutoff

TT EE TT,TE,EE TT EE TT,TE,EE TT EE TT,TE,EE TT EE TT,TE,EE

∆χ2
eff

−7.0 −5.2 −5.4 −1.2 0.0 −0.9 −0.2 −4.7 −0.0 −2.1 −7.4 −1.1
ln B 0.0 −0.2 0.1 0.0 −0.2 0.0 −0.8 0.0 −0.7 −0.4 0.1 −0.4
As 0.29 0.19 0.38 . . . . . . . . . . . . . . . . . . . . . . . . . . .
log10 (ks) −3.11 −3.47 −3.09 . . . . . . . . . . . . . . . . . . . . . . . . . . .
ln xs 0.57 2.17 0.15 . . . . . . . . . . . . . . . . . . . . . . . . . . .
log10

(
kc

Y

)
. . . . . . . . . −3.70 −4.98 −3.72 −4.87 −3.48 −4.86 −3.05 −3.48 −3.91

Rc . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.02 0.33 −0.22

Notes. Negative values of ln B indicate a preference for a power-law spectrum, while positive ones prefer the feature model. Wavenumbers are in
units of Mpc−1.

7.2. Data analysis

We employ a modified version of CAMB with suitably increased
numerical precision settings to calculate the CMB angular power
spectra for the feature models. Since variations of the primordial
spectrum may be degenerate with late-time cosmology parame-
ters (Obied et al. 2017), we explore a parameter space consist-
ing of the base-ΛCDM parameters and the respective additional
free parameters of the feature models (see Table 11 for the prior
ranges). Note that we take primordial tensor perturbations to be
absent in our analysis. In the results presented in Sect. 7.3, nui-
sance parameters are assumed to be uncorrelated with the feature
parameters and kept fixed to their base-ΛCDM best-fit values.

In order to maximize sensitivity to narrow features, we
use only the unbinned versions of the Planck high-` like-
lihoods in the following combinations: (i) temperature data,
Planck TT(unbinned)+lowE; (ii) E-polarization data only,
Planck EE(unbinned)+lowE; and (iii) temperature plus polariza-
tion data, Planck TT,TE,EE(unbinned)+lowE.

For all combinations of feature models and data, the param-
eter space is sampled with the nested sampling algorithm as
implemented in MultiNest. The improvement in the fit due
to the introduction of a feature is quantified by the effective
∆χ2 ≡ −2(lnLbest fit

ΛCDM − lnLbest fit
feature). Being more complex than a

power-law spectrum, feature models will in general have a neg-
ative ∆χ2. However, determining whether the improvement in fit
is due to overfitting scatter in the data or due to an actual fea-
ture is not straightforward and requires model-dependent sim-
ulations (PCI15) or analytic estimates (Fergusson et al. 2015a)
to determine the expected ∆χ2 under the null-hypothesis of an
underlying power-law spectrum. In the Bayesian approach, a

feature model’s general performance relative to base ΛCDM can
be expressed in terms of the Bayesian evidence E (Trotta 2007a),
which is also evaluated by MultiNest.

7.3. Feature candidates and their evidence

We list the best-fit effective ∆χ2 and Bayes factors with respect to
a power-law spectrum in Tables 12 and 13. Examining the effec-
tive ∆χ2 for the feature models previously considered in PCI15
reveals only minor differences, with a general trend towards
smaller improvements due to features. In the case of the cut-
off models, this is related to a slight increase in the low-`
Commander 2018 CMB solution for the temperature power spec-
trum PPL18. The ∆χ2 of the oscillation and step models fall well
within the expected range of ∆χ2 ∼ 10 found in PCI15. Of note
are the relatively high values of the radiation and kink cutoff
models for polarization-only data, partially driven by the high
quadrupole of the EE data. However, the best-fit parameters and
spectra (see Fig. 30) do not match their counterparts in the tem-
perature data at all, which strongly suggests that this is not a
physical effect. The same observation can also be made for the
step model: the best fit to the EE data is clearly out of phase with
the temperature best fit.

We find a similar conclusion for the three oscillation mod-
els. As can be seen from the profile likelihood of the frequency
parameters in Fig. 31, the likelihood peaks in the modulation fre-
quencies do not match up between the TT and EE data sets. Fur-
thermore, the preferred modulation amplitude for the EE data is
in all cases much larger than that for the TT or TT,TE,EE data –
given that the polarization data are noisier, this behaviour would
be expected for a procedure that is overfitting the data.
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Table 13. Same as Table 12, but for the oscillatory feature models.

Log osc Running log osc Lin osc

TT EE TT,TE,EE TT EE TT,TE,EE TT EE TT,TE,EE

∆χ2
eff

−8.5 −13.5 −11.0 −9.3 −16.5 −11.4 −4.2 −9.0 −10.8
ln B −1.5 −0.2 −0.9 −1.3 0.2 −0.5 −1.8 −1.3 −0.8
AX 0.024 0.073 0.014 0.028 0.082 0.016 0.024 0.046 0.015
log10 ωX 1.51 1.72 1.26 1.50 1.71 1.26 1.74 1.84 1.05
ϕX/(2π) 0.60 0.07 0.07 0.68 0.62 0.11 0.34 0.81 0.56
αrf . . . . . . . . . −0.028 0.022 −0.021 . . . . . . . . .
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Fig. 28. Marginalized joint 68%, 95%, and 99% CL regions of the mod-
ulation amplitude versus frequency parameter using the TT,TE,EE data
set for the logarithmic (left) and linear (right) oscillation models.
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Fig. 29. Marginalized joint 68% and 95% CL regions for the lensing
parameter AL and the modulation amplitude parameter Alin using the
TT data set. Left: linear oscillation model with log10 ωlin = 1.158 and
ϕlin = π. Right: modified linear oscillation model with a Gaussian enve-
lope function (see text) and log10 ωlin = 1.158, ϕlin = π, µenv = 0.2 Mpc−1,
and σenv = 0.057 Mpc−1.

Consequently, the Bayesian evidence for all combinations of
models and data lies between barely worth mentioning and sub-
stantial evidence against the feature model on the Jeffreys scale.
This implies that, currently, the Planck data do not show a pref-
erence for the feature models considered here.

Conversely, within the frequency ranges given by our priors,
the relative modulation of the power spectrum is constrained to
not exceed roughly 3%, as shown in Fig. 28 for the logarithmic
and linear oscillation models.

It may also be worth pointing out that in models with oscil-
lations linear in k, the wavelength of the corresponding modula-
tion of the angular power spectra matches that of the CMB’s
acoustic oscillations, ∆` ' 300, if log10 ωlin ' 1.158. One
might therefore suspect that features with frequencies around
this value and carefully tuned amplitudes and phases could in
principle mimic the (unphysical) effect of a lensing param-
eter, AL , 1. However, for a model with a modulation at
the BAO frequency and a k-independent modulation ampli-
tude Alin, it can be seen in the left panel of Fig. 29 that we
find no correlation between AL and Alin. This is due to a
different `-dependence of the respective ∆D`’s. Explaining the
lensing discrepancy would thus require a model with a care-

fully arranged scale-dependent linear modulation of the pri-
mordial spectrum. We demonstrate this possibility for a shaped
modulation with a Gaussian envelope of the form PR(k) =

P 0
R

(k)
[
1 +Alin exp(−(k − µenv)2/2σ2

env) cos (ωlinκ + ϕlin)
]

in the
right panel of Fig. 29, but it should be noted that this particular
example is of course highly tuned to produce the desired effect.

Additionally, while the phenomenology of AL and linear
modulation models is similar for temperature and polarization
spectra individually, the two scenarios are in principle distin-
guishable by a combination of temperature and polarization data.
This is due to the phase difference of the acoustic peaks in TT,
TE, and EE, which leads to similar phase differences for the
residuals when varying AL – unlike modifications of the pri-
mordial spectrum which do not shift phase in the same way.
However, for features with an amplitude chosen to resemble the
apparent lensing excess in the Planck TT data, the Planck TE
and EE data are not sensitive enough to make this distinction.

7.4. Axion monodromy

As in Sect. 10.3 of PCI15, we next derive constraints
on the underlying parameters in axion monodromy inflation
(Silverstein & Westphal 2008; McAllister et al. 2010; Kaloper
et al. 2011; Flauger et al. 2017a), which within string the-
ory motivates a broad class of inflationary potentials of the
form

V(φ) = µ4−pφp + Λ4
0e−C0(φ/φ0)pΛ cos

γ0 +
φ0

f

(
φ

φ0

)p f +1, (69)

where µ, Λ0, f , and φ0 are constants which have dimensions
of mass, while C0, p, pΛ, p f , and γ0 are dimensionless. In
the literature, one can find theoretically motivated models with
p = 3, 2, 4/3, 1, and 2/3 (Silverstein & Westphal 2008;
McAllister et al. 2010, 2014). In the following, we neglect a
possible amplitude drift in the modulation amplitude by fixing
C0 = pΛ = 0, focussing instead on a possible frequency drift
p f , as was done in previous analyses (Peiris et al. 2013; Easther
& Flauger 2014; Jackson et al. 2014; Meerburg & Pajer 2013;
Meerburg et al. 2014a,b,c).

Due to its oscillating nature, a numerical study of this model
is restrictive (Peiris et al. 2013). As such, we employ the semi-
analytic template (Flauger et al. 2017a) used in previous analy-
ses, namely

PR(k) = PR(k∗)
(

k
k∗

)ns−1
1 + δns cos

φ0

f

(
φk

φ0

)p f +1

+ ∆φ


 .

(70)
We neglect the effect of small oscillations in the tensor pri-
mordial spectrum, and approximate it as a power law with a
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Fig. 30. Best-fit and central 95% CL regions for the primordial power
spectrum in the three cutoff and the step models for TT data (red
curves), EE data (green), and TT,TE,EE data (blue). Note that for the
combination of kink cutoff model and TT data, the best-fit value for
the cutoff scale kc

kink lies close to the prior boundary, and therefore the
best-fit spectrum does not fall within the central 95%-credible band.

very small spectral index nt (fixed by the single-field slow-
roll self-consistency condition). The most well studied case to
date is for p = 4/3, but given the high tensor-to-scalar ratio
predicted by this model and the current upper bounds on r given
in Sect. 3.5, we extend our study to the cases of p = 1 and
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Fig. 31. Profile likelihood of the frequency parameter in the three
oscillatory feature models for TT (red curves), EE (green), and
TT,TE,EE data (blue). The dotted grey line in the bottom panels marks
the frequency for which the linear oscillation model leads to a modula-
tion of the angular power spectra whose wavelength roughly matches
that of the CMB’s acoustic oscillations. Note the lack of alignment
between the temperature and polarization likelihood peaks in the vicin-
ity of this frequency.

p = 2/3. Furthermore, to completely specify this template,
we assume instantaneous reheating, which, for a pivot scale of
k∗ = 0.05 Mpc−1, corresponds to N∗ ≈ 57.5, and φ0 = 12.38MPl
with φend = 0.59MPl. This leads to definite predictions for (r, ns);
namely, (0.0922, 0.971) for p = 4/3, (0.0692, 0.974) for p = 1,
and (0.0462, 0.977) for p = 2/3.
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Fig. 32. Joint 68% and 95% CL constraints on the axion monodromy
parameters using Planck (unbinned) TT,TE,EE+lowE+BK14, for the
case of p = 4/3. All smoothing has been turned down in the p f −

log10 ( f /MPl) posterior to avoid smoothing the features highlighted in
red.

To constrain this model, we carry out a Bayesian analysis
using a modified version of CLASS (Lesgourgues 2011; Blas
et al. 2011), which has been adapted to allow for a full param-
eter exploration, using the aforementioned template. As part of
these modifications, special care needs to be taken to ensure that
a correct sampling ∆k in wavenumber space is chosen, at two
different levels in the Boltzmann code: when computing an inter-
polation table for the primordial spectrum of scalars and tensors;
and when performing the integral over the squared photon trans-
fer functions multiplied by the primordial spectra to get the mul-
tipoles C`. This sampling needs to be fine enough to guarantee
that no features are smoothed out or lost in this convolution, and
we checked carefully that this is the case in our runs. The grid
of ` values at which the C`’s are actually computed and not just
interpolated also needs to be refined.

We fit to the data the five cosmological parameters {ωb,
ωc, θ, As, τ} plus the frequency f of the underlying axion decay
constant, the frequency drift p f , and the oscillation amplitude
δns. We adopt the same priors used in previous analyses: −4 ≤
log10 ( f /MPl) ≤ −1 for the frequency; −0.75 < p f < 1 for
the frequency drift; and an upper bound on the amplitude of
δns < 0.5. Furthermore, for the phase parameter ∆φ we take a
uniform prior of −π < ∆φ < π.

In Figs. 32, 33, and 34 we show the joint posterior constraints
on pairs of primordial parameters for the semi-analytic template,
for p = 4/3, p = 1, and p = 2/3, respectively.

In all three cases, we find two expected asymptotic beha-
viours. First, when the frequency is very high (which means that
f is small in our parameterization), the oscillations in the primor-
dial spectrum are smoothed out in the angular power spectrum,
and the oscillation amplitude parameter δns becomes irrelevant
and unconstrained. Second, in the limit of a very small ampli-
tude parameter δns, the oscillations become undetectable and the
parameter f is also unconstrained. In all cases, no preferred fre-
quency drift is found, which is compatible with previous analy-
ses.

We recover the complex structures (highlighted in red in
Figs. 32–34) found in previous analyses in the frequency
-frequency drift parameter space, which, as was discussed in
PCI15, arise due to underlying modulations in the data and
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Fig. 33. Same as Fig. 32, but for the case of p = 1.
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Fig. 34. Same as Fig. 32, but for the case of p = 2/3.

the model (Easther et al. 2005). These structures become more
apparent as we reduce the index p.

We perform a χ2 comparison with the minimal 6-parameter
ΛCDM model, and find ∆χ2

(p=4/3)/ΛCDM = 0.4, ∆χ2
(p=1)/ΛCDM =

0.6 and ∆χ2
(p=2/3)/ΛCDM = 1.2. The reason for higher χ2 in the

axion monodromy models, despite the addition of extra param-
eters, is that the predicted r values are in tension with the CMB
data. This shows that, overall, axion monodromy models are dis-
favoured due to their high tensor-mode amplitude.

In order to check specifically whether the data give any hint
of oscillatory patterns in the primordial spectrum matching the
axion monodromy template, as well as to compare with the
results discussed in the previous subsection, we fitted the data
with ΛCDM+r models in which r and ns were fixed to the same
values as in the axion monodromy model with p = 2/3, 1, and
4/3. In each case, the comparison between axion monodromy
and ΛCDM+r with the same (r, ns) gives ∆χ2

(p=4/3)/ΛCDM+r =

−7.8, ∆χ2
(p=1)/ΛCDM+r = −7.6 and ∆χ2

(p=2/3)/ΛCDM+r = −8. That
is, in all cases we find ∆χ2 ∼ 10, which is compatible with
the general results shown in Table 13. With three more free
parameters, these improvements are statistically insignificant,
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and we conclude that the data show no preference for axion mon-
odromy models.

8. Combined power spectrum and bispectrum
analysis for oscillatory features

8.1. Approach

This section establishes constraints on oscillatory models using
the power spectrum and the bispectrum simultaneously. Oscilla-
tory features can appear in multiple correlation functions (Chen
et al. 2008; Meerburg et al. 2009; Flauger et al. 2010, 2017a,b;
Flauger & Pajer 2011; Achúcarro et al. 2011, 2014b; Adshead
et al. 2012) (see, e.g., Chluba et al. 2015, for a recent review).
More powerful constraints result when spectra of various
orders are combined (Palma 2015; Mooij et al. 2016; Gong &
Yamaguchi 2017). Past work has suggested that the statistical
weight of the oscillations in the bispectrum (or higher-order
correlation functions) is less than that in the power spectrum
(Behbahani et al. 2012); however, counterexamples exist as well
(see, e.g., Behbahani & Green 2012). The analysis in Sect. 7 used
the Planck data to establish stringent constraints on the pres-
ence of features in the power spectrum. The 2015 Planck data
were analysed to constrain non-Gaussianties containing features
(Planck Collaboration XVII 2016), where, as in the power spec-
trum analysis, several candidate features were identified at low
statistical significance. The analysis here focuses on the loca-
tion, or frequency, of the feature. Joint analyses of the power
spectrum and bispectrum were discussed in several studies
(Fergusson et al. 2015a,b; Meerburg et al. 2016). We apply some
of the tools developed there to the Planck temperature and polar-
ization data.

The analysis here is incomplete and limited in several
respects. First, we analyse the bispectrum keeping all cosmo-
logical parameters fixed. Second, the parameters varied in the
bispectrum are not varied in the Bayesian sense. The bispec-
trum is analysed using a best-fit analysis based on how well
a template shape fits the data. Third, the data suggest the pri-
mary bispectrum is close to zero and its covariance dominated
by the scalar contributions in the power spectrum. We find that
an ideal Bayesian analysis is not computationally feasible (see,
e.g., Verde et al. 2013).

The output from the bispectrum analysis for features pro-
vides us with a map that specifies the significance of a feature in
units of σ, given the location (frequency) and the phase of the
feature. We can turn this map into a likelihood, which we can
simply add to that of the power spectrum; in other words, we
take

lnLtot = lnLPS(c, f , ωP, AP, φP|dat)
+ lnLBS(AB, ωB, φB|dat), (71)

where c represents the standard cosmological parameters, f the
foregrounds, ωP,B the frequency, AP,B the amplitude, and φP,B
the phase of the modulation in, respectively, the power spectrum
and the bispectrum. We assume vanishing covariance between
the power spectrum and the bispectrum, which has been shown
to be a good approximation (Fergusson et al. 2015a,b; Meerburg
et al. 2016). Furthermore, the likelihood lnLBS is not normalized
(more precisely lnLtot is not normalized in a universe with a
non-zero bispectrum).

Strictly speaking, we do not have a likelihood that mea-
sures AB with a certain probability. Furthermore, several studies
have shown that the frequency parameter, in combination with

the amplitude and the phase, does not obey a χ2 fitting to the
data (Hamann et al. 2010; Meerburg et al. 2014a,b,c; Meerburg
2014; Easther & Flauger 2014). Removing the frequency from
the search results in a χ2 distribution with two degrees of free-
dom. Since lnLtot is rather large (of order 104 when combining
all data), we can change the equation above by limiting ourselves
only to improvements that are driven by ωB ∼ ωP ≡ ω, that is,

lnLtot = lnLPS(c, f , ω, AP, φP|dat)
+ ∆ lnLBS(AB, ω, φB|dat). (72)

Assuming that φB and AB are well described by a two-
parameter χ2 distribution, we can now convert our σ map into
a χ2 improvement via

χ2 = −2 log
[
Erf

(
σ/
√

2
)

+ 1
]
, (73)

or, in terms of the likelihoods,

−2 lnLtot = −2 lnLPS (c, f , ω, AP, φP|dat)

+ 2 log
{
Erf

[
σ(ω, AB, φB)/

√
2
]

+ 1
}
. (74)

We will use the above expression to derive the posterior of the
joint fit.

8.2. Models

We will focus on two models: the local or linear feature
model and the log feature model. For the log model we set
{AP, ω, φP, AB, φB} = {Alog, ωlog, φlog, Blog, φ̃log} and use for the
power spectrum

Plog(k) = P0(k)
[
1 + Alog cos

(
ωlog log

k
k̃0

+ φlog

)]
, (75)

with P0(k) = As(k/k∗)ns−1. For the bispectrum we use (Chen
2010)

Blog(k1, k2, k3) =
BlogAs

k2
1k2

2k2
3

cos
(
ωlog log

∑ ki

k̃0
+ φ̃log

)
. (76)

The above parameterized spectra are examples that could be
generated in axion monodromy inflation (Flauger et al. 2010;
Flauger & Pajer 2011), but generally are expected to appear in
models where there exists an oscillatory potential.

For the linear model we follow (Fergusson et al. 2015b) with
{AP, ωP, φP, AB, φB} = {Alin, ωlin, φlin, Blin, φ̃lin} and write

Plin(k) = P0(k)
[
1 + Alin sin

(
2ωlin

k
k̃0

+ φlin

)]
(77)

and (Chen et al. 2007)

Blin(k1, k2, k3) =
BlinAs

k2
1k2

2k2
3

cos
[
ωlin

(∑ ki

k̃0

)
+ φ̃lin

]
. (78)

In both models we choose k̃0 = 1 Mpc−1, which is different from
the choice in Sect. 7 for the linear model. As a result the linear
frequencies can be related usingωlin,Sect8 = 10ωlin,Sect7. The pivot
scale is set to the usual value k∗ = 0.05 Mpc−1. The above param-
eterization is a proxy for models that contain sharp oscillatory
features (Chen 2010; Hu 2011; Adshead & Hu 2014), although
typically such effects would generate decaying features, which
will not be considered here.
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8.3. Data analysis

8.3.1. Power spectrum

Our analysis uses a modified version of CAMB (Lewis et al. 2000),
which is capable of adaptively changing the sampling in both k
and ` depending on the frequency of the feature, allowing us
to scan a wide range of frequencies. As in the previous section,
we use the unbinned versions of the Planck high-` likelihoods
for temperature plus polarization, in combination with lensing
and large-scale temperature and polarization (i.e., lowE). We
compared the power spectrum results for the limited frequency
range considered in Sect. 7 for the log and linear model, and
find excellent agreement (sampled with Multinest). We devel-
oped a bispectrum likelihood module based on Eq. (74) using
the 2015 data analysis (Planck Collaboration XVII 2016) for
both the log and linear feature models, obtained using opti-
mal estimators following Münchmeyer et al. (2014, 2015) and
Meerburg & Münchmeyer (2015). For the log model, the fre-
quency range is set to 10 ≤ ωlog ≤ 1000, while for the lin-
ear model we consider the frequency range 10 ≤ ωlin ≤ 3000.
This joint analysis excludes the very low frequencies known to
(weakly) correlate with cosmological parameters. The cosmo-
logical parameters are held fixed in the bispectrum analysis. We
consider amplitudes 0 ≤ Alog,lin ≤ 0.9; the highest amplitudes
will only be allowed for high frequencies where projection sup-
presses the power of the oscillating part in the power spectrum
significantly. The phase is varied and marginalized over in the
joint analysis. We use the PolyChord sampler (Handley et al.
2015a,b), which is powerful enough to include foregrounds (with
nlive = 512).

8.3.2. Bispectrum

The bispectrum likelihood is derived from the posterior distri-
butions generated in Planck Collaboration IX (2020). Although
the linear bispectrum of Eq. (78) can easily be factorized, the
log bispectrum of Eq. (76) is not of the factorized form. Using
modal techniques developed by Fergusson & Shellard (2009)
and Fergusson et al. (2010, 2012), any shape can be factor-
ized, with a close-to-optimal estimator. The modal method con-
verts the angular-average bispectrum into a set of factorizable
orthogonal mode functions. These functions can be directly con-
strained using foreground-cleaned CMB maps. From these mea-
surements, a large number of bispectra can be reconstructed
and constrained by appropriately weighting the mode func-
tions. The convergence of this method, in terms of how many
mode functions are required to accurately reconstruct the shape
of interest, depends on the choice of the mode functions. In
the 2015 analysis, two different mode functions were used:
a polynomial-based reconstruction; and a trigonometric-based
reconstruction. The latter was developed by Münchmeyer et al.
(2014, 2015) and relies on expanding around linear oscillations.
The polynomial-based reconstruction is extremely powerful for
most bispectra, but is non-optimal for oscillatory bispectra,
which require a large number of modes (e.g., more than 2000 for
ωlog = 50). Trigonometric modes allow for faster convergence
and provide good reconstruction for much higher frequencies,
both for linear- and log-type modulations. For low frequen-
cies, both methods can be compared and results show excellent
agreement (Planck Collaboration XVII 2016). In addition, both
methods were developed independently, which provides further
confidence in the results. In the analysis presented here, we use
the results obtained using the trigonometric mode functions. Fur-
ther details can be found in Planck Collaboration IX (2020).
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Fig. 35. Typical best-fit improvement in units of ∆χ2 in 100 simulations
compared to the real data (red dashed lines) for the log feature (left) and
the linear feature (right) models.

8.4. Estimating significance

Next we will estimate the significance of the improvements
driven by the joint analysis. For this purpose we generate
100 mock spectra as in Meerburg et al. (2016) without features
and perform an analysis jointly with true CMB power spectrum
data, i.e., we use the same power spectrum likelihood (real data)
in combination with the simulated bispectrum likelihoods (mock
data). We will do this for both the linear and the log models, with
100 simulations in total. Each analysis requires a similar amount
of time as does the real data analysis, using about 12 000 CPU
hours for the linear feature and about 40 000 CPU hours for the
log feature per simulation. More details on the simulated spectra
can be found in Planck Collaboration IX (2020).

These simulations help us assess the statistical significance
of our results. Improvement in fit is given in units of χ2 com-
pared to a no-feature model as defined in the previous section
[i.e., ∆χ2 ' −2(lnLbest fit

ΛCDM − lnLbest fit
feature)]. The left panel of Fig. 35

shows the typical best-fit improvement from a set of simula-
tions for the log feature model. This first analysis shows that
the best fit in the data is perfectly consistent with a standard
ΛCDM universe, without features, with P(∆χ2 ≥ ∆χ2

data) = 28%.
This outcome is not unexpected, given earlier analyses for the
power spectrum (see, e.g., Meerburg et al. 2014c; Easther &
Flauger 2014; Benetti 2013; Miranda & Hu 2014; Fergusson
et al. 2015a; Planck Collaboration XX 2016; Hazra et al. 2016)
and the significance of features in the bispectrum alone (Planck
Collaboration XIII 2016). The look-elsewhere effect lowers the
significance of features and by jointly constraining features in
the power spectrum and the bispectrum it is possible to allevi-
ate some of this suppression. To quantify this, we consider the
following two questions: (1) considering the various frequencies
with ∆χ2 improvement over no features in the joint analysis, how
many of those were present in the power spectrum analysis only;
and (2) what is the mean improvement, in units of ∆χ2, of these
fits? We compare the results of the simulations, which do not
contain any real features, to the data.

Before we answer these questions we need a criterion to
decide if two frequencies will be considered the same or not,
i.e., we need a frequency correlation measure. We will consider
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a simple ansatz, which will have an analytical solution and will
serve to estimate the correlation between frequencies, by defin-
ing

flog[ω1, ω2, φ] '
∫

dx cos[ω1 log x + φ] cos[ω2 log x + φ]. (79)

Next we marginalize over phase, defining

glog[ω1, ω2] =

∫
dφ flog[ω1, ω2, φ]

=
π

1 + ∆ω2
12

{
xmax cos

[
∆ω12 log (xmax)

]
− cos

[
∆ω12 log (xmin)

]
xmin

+ ∆ω12
[
sin

[
∆ω12 log (xmax)

]
xmax

− sin
[
∆ω12 log (xmin)

]
xmin

]}
, (80)

where ∆ω12 = ω1 − ω2. For linear oscillations we can derive a
similar measure, with

glin[ω1, ω2] =
π

2∆ω12
[sin (2∆ω12xmax)

− sin (2∆ω12xmin)] . (81)

The correlation is given by

Cor(ω1, ω2) =
g[ω1, ω2]√

g[ω1, ω1]g[ω2, ω2]
· (82)

The parameters xmin and xmax play a role in determining the cor-
relation length. Although strictly speaking they correspond to
the minimum and maximum scales observable in the CMB, they
can be used to model the correlator to allow for shifts in the fre-
quency coming from a non-optimal analysis. We argue that this
is reasonable given the low number of peaks in the analysis. We
tested the above on various nearby peaks in the data and found
that demanding Cor(ω1, ω2) ≤ 0.1 is generally sufficient to effec-
tively identify independent peaks. We explored the sensitivity of
the results to the correlation criterion of 0.1. First we increased it
to 0.3 and found that in this case many peaks were missed when
counting the number of aligned peaks (with little effect on deter-
mining the peaks). When we lowered the criterion to 0.01, we
obtained many aligned peaks that should not be aligned. Small
changes in the correlation criterion have minimal effect on the
results presented here. Ideally, more simulations should be gen-
erated, which would help to establish the best choice for the cor-
relation criterion. We found that the choice of xmin does not affect
the correlator as long as xmin � 1. We set xmax = 0.05 for linear
oscillations, which roughly correlates peaks with ∆ωlin ∼ 10,
which is within the tails of the observed widths of the peaks
in the power and bispectrum analysis. For log oscillations we
choose xmax = 1, which has the advantage that the correlator
has no zero-crossings near the peak (but hardly effects the cor-
relation length). We find ∆ωlog ∼ 1 at ωlog = 100, which seems
reasonable in light of the power and bispectrum peak widths (see
Fig. 31).

In Fig. 36 we show the number of peaks in the joint analy-
sis that have improved (left panel) as well as their mean improve-
ment (right) over a no-feature analysis. We find P(#peaks ≥
#peaksdata) = 16% and those peaks do not lead to significant
improvements in the joint χ2, with P(∆χ2

peaks ≥ ∆χ2
peaks,data) =

83%. Assuming that these 100 simulations provide a fair sample
of the noisy data, we conclude that there are no significant features
present inboth thepowerspectrumandthebispectrumfor themod-
els considered within the chosen range of feature parameters.
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Fig. 36. Left: number of aligned peaks in the power spectrum and the
bispectrum for the log feature model. Right: mean improvement of those
same peaks in 100 simulated bispectra combined with the unbinned
high-` likelihood.

We carry out the same analysis for linear features and show
the results in Fig. 35 (right panel), deriving a typical best fit
from 100 simulated noisy spectra. The true best fit, as derived
from the joint analysis of the 2018 bispectrum and the 2018
power spectrum, shows a relatively small improvement with
P

(
∆χ2 ≥ ∆χ2

data

)
= 85%. Further correlated-features searches

find 2 features within the frequency window which may be
considered aligned, with a mean ∆χ2 of 12.3, as illustrated in
Fig. 37. Compared to 100 simulated noisy spectra, we obtain
P

(
#peaks ≥ #peaksdata

)
= 42% and P

(
∆χ2

peaks ≥ ∆χ2
peaks,data

)
=

26%. Since the overall improvement from fitting these aligned
peaks does not exceed the 3σ threshold, we conclude that there
is no statistically significant evidence for any of these features.

We conclude that the simple parameterization considered in
this analysis does not provide any evidence for features. The
two models analysed are representive of a broad class and have
well-studied phenomenological spectra; however, other classes
of models exist. Features, for example, can have scale depen-
dence (i.e., an “envelope” Chen 2010; Achúcarro et al. 2014a;
Torrado et al. 2017). Likewise, more realistic modelling of axion
models shows that the frequency could depend on scale (i.e.,
“running” Flauger et al. 2017a,b). Both these possibilities could
substantially change the spectra and likely the joint analysis and
significance.

Here we have not imposed an explicit relation between the
amplitude of the bispectrum and the frequency of the power
spectrum. In the simplest form of axion monodromy, one has
fNL = Alogω

2
log/8. On account of the quadratic scaling with fre-

quency and the fact that the constraint on the amplitude tends to
become poorer as the frequency increases due to projection (see,
e.g., Fig. 32), it was already pointed out in Planck Collaboration
XX (2016) that there is no evidence for this relation in the data,
and with the current data set this situation remains unchanged.

9. Constraints on isocurvature fluctuations

9.1. Background and modeling

Single-field inflation with a canonical kinetic term gives rise to
primordial super-Hubble comoving curvature perturbations, R.
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Fig. 37. Left: number of aligned peaks in the power spectrum and
the bispectrum for the linear feature model. Right: mean improvement
of those same peaks in 100 simulated bispectra combined with the
unbinned high-` likelihood.

In this case the relative number densities of the various parti-
cle species are spatially constant, i.e., the perturbations are adia-
batic. Typically photons are chosen as a reference species. Then
adiabaticity implies that for every particle species with num-
ber density ni the quantity δ(ni/nγ) vanishes. However, in addi-
tion to R, multi-field inflation can stimulate isocurvature modes,
Ii, where at primordial times ni/nγ varies spatially (Linde
1985; Polarski & Starobinsky 1994; Linde & Mukhanov 1997;
García-Bellido & Wands 1996). In this section we consider all
possible non-decaying modes of this type (Bucher et al. 2000):
cold dark matter density isocurvature (CDI); baryon density
isocurvature (BDI); and neutrino density isocurvature (NDI)
modes. For completeness, we also constrain the fourth non-
decaying mode, neutrino velocity isocurvature (NVI), although
there are no known mechanisms to excite it. Finally, we consider
compensated isocurvature perturbations (CIP) between baryons
and CDM (Grin et al. 2011a,b). In this case, opposite BDI and
CDI perturbations cancel in such a way that the total matter
isocurvature perturbation vanishes and there is no first-order
isocurvature signal in the CMB. However, we utilize a higher-
order lensing-like effect from this mode to obtain constraints
on CIP from Planck temperature and polarization power spec-
tra. We find the most powerful power-spectra-based constraints
on this mode by exploiting the cosmological information in the
low-L lensing potential reconstruction in Sect. 9.5, but leave the
use of Planck trispectra in constraining CIP for future work.

As the positions of the peaks and dips of the CMB angular
power spectra in the density isocurvature models are roughly in
opposite phase compared to the pure adiabatic (ADI) spectrum,
the primordial CDI, BDI, and NDI modes leave a very distinc-
tive observational imprint on the CMB, whereas the imprint of
the NVI mode more closely resembles the pure ADI mode; see,
e.g., Fig. 43 in PCI15. Prior to the detection of CMB anisotropies,
studies such as Peebles & Yu (1970) and Efstathiou & Bond (1986,
1987) discussed the possibility that isocurvature perturbations
were the sole source of cosmological fluctuations. However, at
least after the detection of the first acoustic peak in TT, it became
clear that the density isocurvature mode(s) had to be subdomi-
nant (Enqvist et al. 2000, 2002), while the adiabatic mode led to

a good agreement with observations. Several pre-Planck isocur-
vature constraints were obtained (Stompor et al. 1996; Pierpaoli
et al. 1999; Langlois & Riazuelo 2000; Amendola et al. 2002;
Peiris et al. 2003; Valiviita & Muhonen 2003; Bucher et al. 2004;
Moodley et al. 2004; Beltrán et al. 2004; Kurki-Suonio et al. 2005;
Dunkley et al. 2005; Bean et al. 2006; Trotta 2007b; Keskitalo
et al. 2007; Komatsu et al. 2009; Valiviita & Giannantonio 2009).

The mixture of curvature and isocurvature perturbations can
be uncorrelated, but typically an arbitrary amount of correlation
arises between them if the trajectory in field space is curved
between Hubble radius exit and the end of multi-field inflation
(Gordon et al. 2001). In extreme cases, such as the simplest
curvaton models, there is full correlation or full anticorrelation
between R and I. In the following subsections, we start with the
generic case of generally correlated adiabatic and CDI, NDI, or
NVI perturbations. Then we deal with various special CDI (or
BDI) cases with no correlation or full (anti)correlation.

We parameterize the primordial perturbations as in PCI15,
following the notation described there. The primary perturba-
tion parameters scanned by MultiNest (in addition to the four
standard ΛCDM background cosmological parameters and the
Planck nuisance parameters) are the primordial abiabatic pertur-
bation power and isocurvature perturbation power at two scales,
corresponding to k1 = klow = 0.002 Mpc−1 and k2 = khigh =

0.1 Mpc−1, namely, P(1)
RR

, P(2)
RR

, P(1)
II

, P(2)
II

, and the correlation
power between R and I at k1, i.e., P(1)

RI
. We assume a power-

law form for the adiabatic and isocurvature power spectra and
denote the spectral indices that can be calculated from the pri-
mary parameters by nRR and nII. The correlation spectrum is
also assumed to obey a power law, with spectral index nRI =

(nRR + nII)/2. Thus P(2)
RI

is not an independent parameter. This
ensures that the correlation fraction cos ∆ = PRI/(PRRPII)1/2

stays inside the interval (−1, 1) at every k, as long as we reject
any P(1)

RI
which does not obey this requirement. While the cor-

relation fraction is k-independent in our modelling, the primor-
dial isocurvature fraction βiso(k) = PII(k)/ [PRR(k) + PII(k)]
depends on k, unless nII = nRR. We also report βiso at an inter-
mediate scale, kmid = 0.05 Mpc−1. We do not separately quote
constraints on BDI or total matter density isocurvature (MDI),
since these modes are observationally indistinguishable from the
CDI case15.

Numerical results for various isocurvature models and selec-
ted derived parameters are reported in Table 14, utilizing various
data combinations. The table is divided into three main sec-
tions: generally correlated models (discussed in Sect. 9.2); one-
isocurvature-parameter CDI models (discussed in Sects. 9.4.1

15 If we assume no NVI or NDI perturbations, then the MDI pertur-
bation (i.e., the spatial perturbation in the relative number densities of
matter particles and photons) is

IMDI =
Ωc

Ωm
ICDI +

Ωb

Ωm
IBDI. (83)

As we will see, the posteriors for Ωch2 and Ωbh2 are insensitive to
the assumed initial conditions. Thus it is a good approximation to use
the mean values obtained in the generally correlated mixed adiabatic
and CDI model with TT,TE,EE+lowE+lensing data, namely Ωc/Ωm '

0.842, Ωb/Ωm ' 0.158, Ωc/Ωb ' 5.33, and (Ωc/Ωb)2 ' 28.4. For exam-
ple, to convert our CDI upper bound on PII to a BDI bound, we should
multiply the constraint by (Ωc/Ωb)2 = 28.4, and to convert the CDI PRI
to BDI, we should multiply the constraint by Ωc/Ωb ' 5.33. If βiso � 1,
then this also can be converted to a BDI constraint by multiplying the
CDI constraint by 28.4. The constraint on cos ∆ will be the same for the
CDI and BDI cases, since the conversion factor cancels out.

A10, page 41 of 61

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833887&pdf_id=37


A&A 641, A10 (2020)

Table 14. Constraints on mixed adiabatic and isocurvature models.

100βiso at
Model and data ∆n klow kmid khigh 100 cos ∆ 100αnon-adi ∆χ2 ln B

General models (three isocurvature parameters):
CDI Planck 2015 TT+lowP 3 4.1 37 57 [−30 : 20] [−1.48 : 1.91] −2.1
CDI Planck TT+lowE 3 3.6 38 61 [−23 : 27] [−0.76 : 2.05] −0.7 −12.6
CDI CamSpec TT+lowE 3 3.8 35 56 [−22 : 23] [−0.62 : 2.12] −0.7 −13.4
CDI Planck TT+lowP 3 4.2 35 56 [−25 : 23] [−1.03 : 1.98] −0.5 −12.6
CDI Planck TT + τ prior 3 8.4 27 40 [−21 : 29] [−0.83 : 5.35]

CDI Planck 2015 TT+lowP+lensing 3 4.5 [1 : 40] [1 : 62] [−28 : 17] [−1.05 : 1.86] −1.2
CDI Planck TT+lowE+lensing 3 4.0 35 57 [−28 : 23] [−1.20 : 2.04] −0.6 −12.3
CDI CamSpec TT+lowE+lensing 3 3.7 34 55 [−24 : 24] [−0.96 : 2.10] −0.5 −12.8

CDI Planck 2015 TT,TE,EE+lowP 3 2.0 [3 : 28] [5 : 52] [−6 : 20] [0.09 : 1.51] −5.3
CDI Planck TT,TE,EE+lowE 3 2.1 [1 : 31] 58 [−11 : 15] [−0.18 : 1.24] −3.0 −12.8
CDI CamSpec TT,TE,EE+lowE 3 2.8 21 38 [−12 : 20] [−0.20 : 1.67] −1.2 −14.0
CDI Planck TT,TE,EE+lowP 3 2.4 27 50 [−11 : 17] [−0.16 : 1.45] −2.3 −13.4
CDI Planck TT,TE,EE + τ prior 3 6.2 17 30 [−13 : 14] [−0.48 : 3.94]

CDI Planck TT,TE,EE+lowE+lensing 3 2.5 [1 : 26] 47 [−12 : 15] [−0.25 : 1.31] −2.8 −12.8
CDI CamSpec TT,TE,EE+lowE+lensing 3 3.0 19 33 [−16 : 18] [−0.38 : 1.54] −0.9 −14.1
CDI Planck TT,TE,EE+lowP+lensing 3 2.2 [1 : 27] 50 [−11 : 16] [−0.16 : 1.36]

CDI WMAP-9 3 20.1 [2 : 50] 66 [−38 : 34] [−1.79 : 6.46] −0.2 −9.6
NDI Planck 2015 TT+lowP+lensing 3 15.8 [2 : 24] [2 : 29] [−32 : 0] [−4.04 : 1.37] −2.8
NDI Planck TT+lowE+lensing 3 15.3 17 21 [−36 : 4] [−4.20 : 1.53] −1.9 −10.8
NDI Planck TT,TE,EE+lowE+lensing 3 7.4 [3 : 17] [2 : 23] [−13 : 8] [−0.76 : 1.74] −5.3 −10.9
NVI Planck 2015 TT+lowP+lensing 3 9.8 [1 : 12] 14 [−23 : 7] [−2.03 : 2.95] −2.5
NVI Planck TT+lowE+lensing 3 7.1 10 12 [−36 : 3] [−3.34 : 1.71] −2.5 −12.6
NVI Planck TT,TE,EE+lowE+lensing 3 6.8 [1 : 8] 10 [−20 : 0] [−1.66 : 1.29] −5.2 −12.0
CDI+AL Planck TT+lowE 4 9.4 28 41 [−41 : 10] [−2.32 : 2.29] −9.2 −10.1
CDI+AL Planck TT+lowE+lensing 4 6.0 36 57 [−27 : 18] [−1.16 : 2.19] −4.1 −13.1
CDI+AL Planck TT,TE,EE+lowE 4 3.3 20 36 [−12 : 19] [−0.24 : 1.89] −10.6 −11.2
CDI+AL Planck TT,TE,EE+lowE+lensing 4 2.7 [1 : 27] 49 [−10 : 16] [−0.12 : 1.53] −8.1 −13.5

Special CDI cases (one isocurvature parameter):
Uncorrelated, nII = 1

“axion I” Planck 2015 TT+lowP+lensing 1 3.9 4.3 4.4 0 [0 : 1.70] 0
“axion I” Planck TT+lowE+lensing 1 3.5 3.9 3.9 0 [0 : 1.58] 0 −5.7
“axion I” Planck TT,TE,EE+lowE+lensing 1 3.5 3.8 3.9 0 [0 : 1.55] 0 −5.5

Fully correlated, nII = nRR
“curvaton I” Planck 2015 TT+lowP+lensing 1 0.2 0.2 0.2 +100 [0.30 : 2.70] 0
“curvaton I” Planck TT+lowE+lensing 1 0.2 0.2 0.2 +100 [0.09 : 2.91] 0 −8.9
“curvaton I” Planck TT,TE,EE+lowE+lensing 1 0.1 0.1 0.1 +100 [0.07 : 1.81] 0 −9.7

Fully anti-correlated, nII = nRR
“curvaton II” Planck 2015 TT+lowP+lensing 1 0.5 0.5 0.5 −100 [−4.40 : −0.40] −0.6
“curvaton II” Planck TT+lowE+lensing 1 0.5 0.5 0.5 −100 [−4.40 : −0.35] −0.4 −7.2
“curvaton II” Planck TT,TE,EE+lowE+lensing 1 0.1 0.1 0.1 −100 [−2.04 : −0.13] 0 −9.2

Special CDI cases (two isocurvature parameters):
Uncorrelated, nII free

“axion II” Planck TT+lowE+lensing 2 2.3 [3 : 43] [6 : 75] 0 [0.03 : 1.24] −0.5 −6.7
“axion II” Planck TT,TE,EE+lowE+lensing 2 1.1 [5 : 38] [10 : 77] 0 [0.07 : 0.66] −2.8 −6.3

Arbitrarily correlated, nII = nRR
“curvaton III” Planck TT+lowE+lensing 2 4.7 4.7 4.7 [−75:28] [−3.38 : 1.99] −0.4 −10.0
“curvaton III” Planck TT,TE,EE+lowE+lensing 2 3.9 3.9 3.9 [−41 : 31] [−1.30 : 2.10] 0 −10.5

Fully correlated, nII free
Planck TT+lowE+lensing 2 0.1 4.6 16.0 +100 [0.28 : 2.15] −0.5 −13.2
Planck TT,TE,EE+lowE+lensing 2 0.02 1.5 6.2 +100 [0.14 : 0.99] −0.3 −16.0

Fully anti-correlated, nII free
Planck TT+lowE+lensing 2 0.6 0.9 1.3 −100 [−5.56 : −0.53] −1.3 −13.8
Planck TT,TE,EE+lowE+lensing 2 0.3 0.2 0.2 −100 [−4.56 : −0.16] −0.6 −16.7

Notes. We report 95% CL intervals or upper bounds on the isocurvature fraction βiso at three scales (klow = 0.002 Mpc−1, kmid = 0.050 Mpc−1,
and khigh = 0.100 Mpc−1), the scale-independent correlation fraction, cos ∆, and the non-adiabatic contribution to the CMB temperature variance,
αnon−adi. Here ∆χ2 is the difference between the χ2 of the best-fit mixed and pure adiabatic models. In the last column we give the difference
between the log of Bayesian evidences. (A negative ln B means that Bayesian model comparison disfavours the mixed model.) The number of
extra parameters compared with ΛCDM is denoted by ∆n in the first column. Note that the uniform priors on the primordial powers at two scales
lead to non-uniform priors on the parameters reported in this table. This is particularly significant for βiso(kmid), where the prior peaks at a non-zero
value. The baseline Planck 2018 TT,TE,EE+lowE+lensing results are highlighted in bold.
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and 9.4.2); and, finally, two-isocurvature-parameter CDI models
(discussed in Sects. 9.4.3–9.4.5). For generally correlated CDI
we study the stability of constraints (see Sect. 9.3) by using sev-
eral different subsets of the Planck data: (1) only high-` TT; (2)
high-` TT+lensing; (3) TT,TE,EE; and (4) TT,TE,EE+lensing.
For comparison, some Planck 2015 and WMAP results are also
cited. Table 14 also includes comparisons to the pure adia-
batic model in terms of the difference in the best-fit χ2 and the
natural logarithm of the Bayesian evidence (“model probabil-
ity”) ratios ln B, negative ln B being evidence against the mixed
models16.

9.2. Results for generally correlated adiabatic and
isocurvature modes

This subsection explores mixed adiabatic and isocurvature mod-
els where only one isocurvature mode at a time is considered. We
consider the CDI, NDI, and NVI modes using the Planck 2018
TT(,TE,EE)+lowE(+lensing) data. All five primordial perturba-
tion power amplitudes (of which three describe the isocurvature
perturbations) are free parameters. It follows that nII and nRR
are independent and cos ∆ varies between −1 and +1. The con-
straints for the primary perturbation parameters and the derived
parameter P(2)

RI
are shown in Fig. 38.

In all three cases the Planck TT+lowE+lensing results are
very similar to the previous results from the Planck 2015
TT+lowP+lensing likelihood. As expected, the lower value of
τ preferred by the 2018 (lowE) data is reflected in the adiabatic
amplitudes P(1)

RR
and P(2)

RR
. For CDI and NDI there is no signif-

icant shift in the constraints on isocurvature parameters, but we
find slightly tighter constraints than in 2015. For NVI, a minor
shift towards more negative correlations is observed (see the last
two panels of Fig. 38c). As in 2015, adding the high-` TE,EE
data significantly tightens the constraints in all three cases.

When fitting the generally correlated three-isocurvature-
parameter models, the Planck data are consistent with null detec-
tion, i.e., with the pure adiabatic model,

(
P

(1)
II
,P(2)
II

)
= (0, 0) and

P
(1)
RI

= 0 (and P(2)
RI

= 0). The natural logarithm of the ratio of
model probabilities [i.e., the Bayes factor ln B = ln(PISO/PADI)]
is below −10.9, corresponding to odds of less than 1:54 000
for all three (CDI, NDI, NVI) models. If there were an unde-
tected subdominant isocurvature contribution to the primordial
perturbations, a negative correlation between R and I would be
favoured, in particular for NDI and NVI (see the last two panels
of Figs. 38a,b,c). With our sign convention, this leads to a neg-
ative contribution to the Sachs–Wolfe effect and hence reduces
the amplitude of the temperature angular power spectrum at low
multipoles.

Figure 39 updates the 2015 Planck constraints on the derived
primordial fractions and spectral indices. At large scales we find
with Planck TT,TE,EE+lowE+lensing that βiso(klow) < 2.5% for
the CDI, 7.4% for the NDI, and 6.8% for the NVI model, all
at 95% CL. Figure 40 shows the non-adiabatic fraction in the
observed CMB temperature variance, defined as

αnon-adi = 1 −
(∆T )2

RR
(` = 2, 2500)

(∆T )2
tot(` = 2, 2500)

, (84)

16 The values of ln B depend on the priors. We adopt uniform priors
in the range (15, 40) × 10−10 for the adiabatic, (0, 100) × 10−10 for
the isocurvature, and (−100, 100)× 10−10 for the primordial correlation
power parameter.

where

(∆T )2
X(` = 2, 2500) =

2500∑
`=2

(2` + 1)CTT
X,`. (85)

The non-adiabatic fraction |αnon-adi| is below 1.7% with Planck
TT,TE,EE+lowE+lensing data for all three cases at 95% CL.

Since the Planck data do not allow a significant isocurva-
ture contribution, the determination of standard cosmological
parameters depends only very weakly on the assumed initial
conditions, as seen in Fig. 41. We place this result in historical
perspective in Fig. 42 (and Table 14) where the parameter deter-
minations of the mixed CDI model and the pure adiabatic model
are compared to the pre-Planck constraints set by the WMAP 9-
year data17. Planck has dramatically tightened the constraint on
the adiabatic spectral index. Its value is now 8.4σ below unity
(scale-invariance) in the pure ADI case. Allowing for generally
correlated CDI reduces the significance of this detection only
slightly, to 7σ, whereas the WMAP 9-year data were consis-
tent with a blue tilt as large as nRR = 1.06 at 95% CL. The
non-adiabatic contribution to the CMB temperature variance is
constrained (about zero) 5 times more tightly than by WMAP.
Finally, the allowed range for the sound horizon angle has shrunk
by a factor of 10 in the CDI case, thanks to the Planck data cov-
ering more acoustic peaks beyond the first three peaks detected
by WMAP.

9.3. Role of lensing parameter AL and likelihood choices

The small-scale primordial CDI amplitude is extremely sensi-
tive to the details of the high-` temperature and polarization
power spectra and to choices made in constructing the likeli-
hoods. Therefore the general CDI model serves as a robustness
test of the Planck data and likelihoods. We now discuss a few
curious aspects related to CMB lensing and likelihoods.

Lensing smooths the peaks of the CMB power spectra. This
effect is taken into account in our theoretical predictions for the
mixed adiabatic and isocurvature models by first calculating the
total unlensed CMB spectra as a sum of adiabatic, isocurva-
ture, and correlation C`’s, and performing a similar summation
for the lensing potential power spectrum (Seljak 1996; Lewis &
Challinor 2006). The total lensing potential is then used to lens
the total CMB spectra. Starting with the WMAP data, accounting
for CMB lensing became necessary for calculating constraints
on isocurvature models, as Valiviita et al. (2012) showed that
there is a strong degeneracy between the lensing effect and the
CDI contribution in the generally correlated mixed models. Fix-
ing nII = 1 or nII = nRR (as is done in the next subsection)
makes this degeneracy disappear. This is because in these models
the CDI contribution modifies only the low-` part of the angu-
lar power spectra. The transfer function mapping the primordial
CDI mode to the TT (and EE) angular power is suppressed by
a factor (k/keq)−2 ∼ (`/`eq)−2 relative to the adiabatic mode.
Therefore, to be observable at high `, the CDI mode must be
blue tilted (nII > 1). A blue-tilted CDI mode affects the total
angular power spectra in a manner somewhat similar to lens-
ing. Since the acoustic peaks of the CDI mode have the oppo-
site phase compared to the adiabatic mode, a CDI admixture can

17 The pivot scales klow and khigh used here to parameterize the pri-
mary perturbation amplitudes are not optimal for WMAP, since the
WMAP data extend only to k ' kmid. Nevertheless, an analysis tailored
to WMAP (see Savelainen et al. (2013), who used kmid as an upper pivot
k) gives a similar posterior range for αnon-adi.
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Fig. 38. Constraints on the primordial perturbation power in generally correlated ADI+CDI (a), ADI+NDI (b), and ADI+NVI (c) models at two
scales, k1 = 0.002 Mpc−1 (1) and k2 = 0.100 Mpc−1 (2). Note that in our modelling P(2)

RI
is not an independent parameter.
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Fig. 39. Constraints on the primordial isocurvature fraction, βiso, at klow = 0.002 Mpc−1 and khigh = 0.100 Mpc−1; the primordial correlation fraction,
cos ∆; the isocurvature spectral index, nII; and the correlation spectral index, nRI = (nRR + nII)/2, for the generally correlated mixed ADI+CDI
model (a), for the ADI+NDI model (b), and for the ADI+NVI model (c). All these parameters are derived, and the distributions shown here result
from a uniform prior on the primary parameters shown in Fig. 38. However, the effect of the non-flat derived-parameter priors is negligible for all
parameters except for nII (and nRI) where the prior biases the distribution toward unity. Note that these spectral indices are not well constrained,
since we do not have a detection of non-zero isocurvature or correlation amplitude. With a sufficiently small isocurvature or correlation amplitude,
an arbitrarily small or large spectral index leads to a very good fit to the data, since the model is then practically adiabatic over the range covered
by the Planck data.
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Fig. 40. Posterior probability density of the observable non-adiabatic
fraction of the CMB temperature variance, assuming a generally corre-
lated mixed adiabatic and isocurvature model. These results used Planck
TT+lowE+lensing data (dashed lines) and TT,TE,EE+lowE+lensing
data (solid lines).

“smooth” the peaks and dips of adiabatic acoustic oscillations.
The NDI mode does not have precisely the opposite phase and is
not damped relative to the adiabatic mode (see Fig. 43 in PCI15).
Thus we expect a weaker impact of lensing on the primordial
NDI amplitude than in the CDI case. Therefore in this subsec-
tion we explore the general CDI model as an example.

Starting with the Planck 2013 release, the consistency of the
smoothing effect with the adiabatic ΛCDM model has been rou-
tinely tested by multiplying the lensing power spectrum by a

phenomenological lensing consistency parameter, AL, prior to
lensing the unlensed CMB spectra (Calabrese et al. 2008). The
expectation is that AL = 1. However, the Planck temperature and
polarization data prefer a higher level of lensing-like smoothing
(AL > 1) than expected in the adiabatic ΛCDM model. In the
2018 release (PCP18) we have

AL = 1.243 ± 0.096 (68% CL, Planck TT+lowE), (86)
AL = 1.180 ± 0.065 (68% CL, Planck TT,TE,EE+lowE). (87)

Adding the Planck CMB lensing likelihood pulls these con-
straints towards AL = 1 (see also Table 15). The measurement of
AL when TT,TE,EE data are included depends on the calibration
of the polarization channels. This procedure and the details of the
sky masks differ between the Planck baseline Plik TT,TE,EE
and the alternative Planck CamSpec TT,TE,EE likelihood, as dis-
cussed in PPL18 and PCP18. The Planck CamSpec TT,TE,EE
likelihood prefers a smaller value of AL than Plik, but still lying
about 2σ above unity.

Given the above motivation, we check the response of the
generally correlated CDI model to the various possible choices
of likelihoods available in the Planck 2018 release, and, on the
other hand, we gauge how the baseline Plik likelihood reacts
when allowing AL to vary. For clarity, in Fig. 43 we restrict the
analysis to high-` TT,TE,EE and low-` TT,EE(,BB) data without
the lensing reconstruction data, but in Table 14 we also report
TT+lowE and TT+lowP results, and include Planck lensing in
some cases.
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Fig. 41. Comparison of the posterior probability density for the standard cosmological parameters in mixed adiabatic and isocurvature models
(solid lines) to those in the pure adiabatic ΛCDM model (ADI, dashed green lines), using Planck TT,TE,EE+lowE+lensing data.
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Fig. 42. Comparison of the posterior probability density for selected cosmological parameters with Planck data and pre-Planck (i.e., WMAP
9-year) data. Black lines indicate the results obtained for the generally correlated mixed CDI+ADI model, and green lines for the pure adiabatic
model.

We notice a considerable variation in the constraints on the
isocurvature power at high k, P(2)

II
, which corresponds to the

high-` region in the observed power spectra. In Fig. 43 we
can compare the red dashed reference contours (obtained with
the Planck baseline Plik TT,TE,EE+lowE likelihood) for the
CDI model (where AL = 1) with the solid black contours
(obtained with the same data) for the CDI+AL model, where
AL is allowed to vary. In many cases, adding an extra free
parameter is expected to weaken the constraints on the other
parameters, but in this case adding AL tightens the 95% CL
constraint on P(2)

II
by a factor of 2.5 from 28.6 × 10−10 to

11.4×10−10. This is reflected in the derived primordial isocurva-
ture fraction βiso(khigh), whose upper bound changes from 0.58 to
0.36, according to Table 14. Therefore, we conclude that, when
AL = 1, the CDI mode partially accounts for the extra lensing-
like smoothing effect required by the Planck TT(,TE,EE) data.
Once we allow the lensing amplitude to vary, there is not much
need for the CDI contribution at high `, which should be kept
in mind when interpreting the results. In Table 14 we report
four cases where AL is allowed to vary. In all the other cases
we have fixed AL = 1. In these cases the constraints at high
k are “conservative”, i.e., weaker than the Planck data were
expected to be capable of Finelli et al. (2018), due to CDI (or
NDI) partially fitting the lensing anomaly. Furthermore, again

comparing the red dashed and black solid contours, we observe
a slight weakening of the constraint for P(1)

II
in the CDI+AL

model. This is due to the rigidity of the assumed power-law
spectrum. When the high-` data allow much less CDI, the low-
` (low-k) CDI amplitude can be larger without much affecting
the middle-` range of the CMB power spectra between the first
and third acoustic peaks, which is the most sensitive region to
departures from adiabaticity. (This is the same see-saw effect dis-
cussed in the end of Sect. 3.6 in the case of tensor perturbations.)
Finally, in the

(
P

(1)
RR
, P(2)
RR

)
panel we see a minor shift toward

smaller amplitudes, which is an indication of the well-known
degeneracy between AL and the overall primordial perturbation
amplitude.

From Table 14 it is obvious that adding the lensing data
reduces the differences discussed above. This is again as
expected, since the lensing data favour values of AL only
mildly above unity. For example, with Planck TT,TE,EE+lowE+
lensing we obtain βiso(khigh) < 0.49 for CDI+AL and 0.47 for the
CDI model.

We now proceed to a comparison of the likelihoods. The
grey shaded contours in Fig. 43 indicate the results for the
same CDI model as the red dashed contours, but changing the
low-` likelihood from the combination Commander TT+SimAll
EE to the LFI 70-GHz pixel-based low T,E,B, which is by its
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methodology and construction very similar to the 2015 baseline
low-` likelihood (dotted contours). Indeed, this can be seen in the
results: most of the isocurvature parameters follow more closely
the 2015 results with this likelihood combination than with the
2018 baseline. This implies that when it comes to isocurvature,
not much has changed in high-` TT. 2018 lowP favours slightly
smaller values of the optical depth τ than the 2015 version, hence
the small shift towards smaller values of the adiabatic amplitude
in the

(
P

(1)
RR
, P(2)
RR

)
panel. With respect to the red dashed con-

tours, the grey contours prefer higher adiabatic amplitudes and
have a long degeneracy line in the

(
P

(1)
RR
, P(2)
RR

)
plane. This is

due to lowP having a higher central value and larger uncertainty
on τ.

Finally, the blue shaded contours in Fig. 43 represent the
results when using the CamSpec likelihood, to be compared to
the red dashed contours obtained by the baseline Plik likeli-
hood. All the other parameters shown are relatively stable against
the high-` likelihood, but P(2)

II
stands out. CamSpec leads to an

upper bound of 12.6 × 10−10, whereas the baseline Plik result
was 28.6 × 10−10, or for βiso(khigh) 0.38 versus 0.58 at 95% CL,
according to Table 14. This difference is not surprising, given
the different responses of these likelihoods to AL in the adiabatic
ΛCDM+AL model, and keeping in mind the AL–CDI degeneracy
in the CDI model. However, this difference is not as concerning
as it might appear at first sight: all the cases shown in Fig. 43
are fully consistent with zero isocurvature. It is only the upper
bound that varies, with the baseline Plik likelihood and CDI
model with AL = 1 leading to the most conservative (i.e., weak-
est or safest) upper bounds.

For CDI the 2015 release Planck high-` TT data favoured
a negative correlation fraction but the preliminary high-`
TT,TE,EE data favoured a slightly positive correlation. This was
confirmed using only the high-` Plik likelihood (and a prior on
τ), as shown by the red curves in the top panel of Fig. 44. Includ-
ing the low-` data (black curves) did not significantly alter this
tension between TT and TT,TE,EE results. In the present 2018
Planck release this tension has disappeared. Both high-` TT and
TT,TE,EE data lead to a correlation fraction posterior peaking at
zero, as demonstrated in the bottom panel of Fig. 44. Including
the low-` TT data (black dashed curve) still shifts the posterior
slightly towards negative values, due to the low TT power at low
multipoles in the data.

9.4. Specific CDI models

In this subsection we constrain CDI models with only one or
two isocurvature parameters. The two-parameter cases were not
studied in the 2013 and 2015 Planck releases.

First we fix nII to unity and assume no correlation between
the CDI and adiabatic modes (“axion”), or we fix nII = nRR
and assume full (anti)correlation between the CDI and adia-
batic modes (“curvaton I/II”). These models are less sensitive
to any residual systematic effects in the high-` data (such as the
determination of polarization efficiencies or foreground model-
ing) than the generally correlated models, since CDI now mod-
ifies the angular power spectra insignificantly at ` & 200 (see
Fig. 43 in PCI15). As seen in the middle section of Table 14,
the Bayesian evidence values for the one-parameter extensions
of the adiabatic ΛCDM model are higher than for the three-
parameter extensions, but all Bayes factors fall below −5. None
of the one-parameter extensions improve χ2 over the adiabatic
ΛCDM model. The two-parameter extensions in the bottom
section of Table 14 are even more strongly disfavoured, except

for the uncorrelated case with free nII (“axion II”), which is
actually the only model that improves the best-fit χ2 by slightly
more than the number of extra parameters.

9.4.1. Uncorrelated ADI+CDI (“axion I”)

Particularly insensitive to any ` & 30 data is the “axion I” case,
since the CDI transfer function has a (k/keq)−2 suppression and
there is no correlation component whose amplitude would be
higher than that of the isocurvature alone and hence would mod-
ify the adiabatic spectrum. The axion I case is achieved in our
parameterization by setting PRI = 0 and P(2)

II
= P

(1)
II

. Thus
the only varied isocurvature parameter is P(1)

II
. This uncorre-

lated case with nII = 1 is a good approximation for many
multi-field inflationary models where the slow-roll parameter
(in the isocurvature field perturbation direction) ηss is negligible
and the background trajectory in field space is straight between
Hubble radius exit and the end of inflation. The predictions for
the spectral indices (to first order in the slow-roll parameters)
are nRR = 1 − 6ε + 2ησσ and nII = 1 − 2ε + 2ηss, where
ε ≥ 0 and ησσ is the second slow-roll parameter in the “adi-
abatic” direction (i.e., along the trajectory) in the field space.
(An exact match with our model would require ηss = ε.) The
axion model (see, e.g., a recent review by Marsh 2016 and refer-
ences therein), which was originally proposed to solve the strong
CP problem and provides a dark matter candidate, can produce
this type of isocurvature modes with nII ' 1 under the follow-
ing assumptions (PCI13; PCI15): the Peccei–Quinn symmetry
should be broken before inflation; it should not be restored by
quantum fluctuations of the inflaton nor by thermal fluctuations
when the Universe reheats; and axions produced through the
misalignment angle should form a significant fraction of the dark
matter.

Table 14 indicates a slight tightening of the axion I
constraints using TT+lowE+lensing with respect to 2015
TT+lowP+lensing. This is due to the change of the baseline low-
` data from the 2015 LFI 70-GHz pixel-based T,E,B to the 2018
combination of Commander TT and SimAll EE, which in the
generally correlated cases also gave tighter constraints at low k.
As expected, the addition of high-` TE,EE data only marginally
improves the constraints, since the standard (non-isocurvature)
parameters are better constrained now. For nII = 1 uncorrelated
CDI, we obtain

βiso(kmid) < 0.038
0 ≤ αnon−adi < 1.55%

}
(95% CL, PlanckTT,TE,EE
+lowE+lensing). (88)

Using Eq. (73) of PCI13, we convert the constraint on the
primordial isocurvature fraction to a bound on the inflation-
ary energy scale. If all the dark matter is in axions, the above
βiso(kmid) constraint corresponds to the same limit we quoted in
2015, that is,

Hinf < 0.86 × 107 GeV
(

fa
1011 GeV

)0.408

(95% CL), (89)

where Hinf is the expansion rate at Hubble radius exit of the scale
corresponding to kmid and fa is the Peccei–Quinn symmetry-
breaking energy scale.

9.4.2. Fully (anti)correlated ADI+CDI (“curvatonI/II”)

If nII = nRR, the low-` data are maximally sensitive to the fully
correlated isocurvature perturbations. In this case the correlation
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Fig. 43. Comparison of the effect of Planck 2018 likelihood choices and phenomenological lensing amplitude, AL, on the constraints on the
generally correlated mixed adiabatic and CDI model. The reference case, indicated by the red dashed curves, is for the 2018 baseline Plik high-`
likelihood supplemented by the low-` Commander TT likelihood and the low-` SimAll EE likelihood. This combination is the same as in Fig. 39a
(red curves), except now without the lensing likelihood, which to some extent hides the differences between other likelihoods and the effect of AL.
Black solid contours show the results using the same likelihood as in the reference case, but now for the mixed adiabatic and CDI model when
simultaneously allowing AL to vary. The remaining two curves are for the mixed adiabatic and CDI model (with AL = 1), but now changing the
low-` likelihood from Commander TT+SimAll EE to LFI 70-GHz T,E,B (grey), or high-` likelihood from Plik to CamSpec (blue).

component is a geometric average of the adiabatic and isocur-
vature components, and hence much larger than the isocurvature
component alone. We achieve this case in our parameterization
by setting P(2)

II
=

(
P

(2)
RR
/P(1)
RR

)
P

(1)
II

and P(1)
RI

= ±
(
P

(1)
RR
P

(1)
II

)1/2
,

i.e., cos ∆ = ±1. The only isocurvature parameter to be varied
is again P(1)

II
. Since nII = nRR, the derived isocurvature frac-

tion βiso is independent of k. A physically motivated example
of this type of model is the simplest curvaton model, where a
light scalar field χ that is subdominant (and hence irrelevant
for the inflationary dynamics) starts to oscillate at the bottom
of its potential after the end of inflation, causing its average
energy density to evolve like non-relativistic matter. Once fully
(or almost fully) dominating the energy density of the Universe,
this curvaton field decays either to CDM or to other species
(Mollerach 1990; Linde & Mukhanov 1997; Enqvist & Sloth
2002; Moroi & Takahashi 2001; Lyth & Wands 2002; Bartolo
& Liddle 2002; Lyth et al. 2003). The amount of isocurvature
and non-Gaussianity present after curvaton decay depends on the
“curvaton decay fraction,” rD = 3ρ̄χ/(3ρ̄χ + 4ρ̄radiation), evaluated
at curvaton decay time. Under a number of (very) restrictive
assumptions discussed in PCI15, the curvaton model can lead to
fully (anti)correlated CDI (or BDI) and adiabatic perturbations.

Not surprisingly, both in the fully correlated and anticor-
related cases, the constraint on βiso is much (about 40 times)
stronger than in the uncorrelated case. At 95% CL, Planck

TT,TE,EE+lowE+lensing leads to

βiso < 0.00095 (Fully correlated, curvaton I), (90)
βiso < 0.00107 (Fully anticorrelated, curvaton II), (91)

both rounded to 0.001 in Table 14. As in 2015, the TT data favour
anticorrelation, due to the low power in the low-` temperature
compared to the expectation of the adiabatic ΛCDM model. But
when the TE,EE data (which do not particularly favour negative
correlation) are added, a very tight (one part per thousand) con-
straint on the primordial isocurvature fraction results.

Fully correlated perturbations are obtained, e.g., in case 4
described in Gordon & Lewis (2003). Many models giving anti-
correlation produce too large an isocurvature fraction to be con-
sistent with the above limit, but case 9 of Gordon & Lewis (2003)
survives. After the curvaton decay, the primordial isocurvature
fraction in these models will be βiso ' 9(1− r̃)2/[r2

D + 9(1− r̃)2],
where r̃ = rD for the fully correlated CDI case and r̃ = rD/Rc ≥ 1
for the fully anticorrelated CDI case, and Rc = ρ̄c/(ρ̄c + ρ̄b) is the
CDM fraction of the total non-relativistic matter.

On the other hand, the nonlinearity parameter describing
non-Gaussianity is (Sasaki et al. 2006)

f local
NL =

(
1 + ∆2

s

) 5
4rD
−

5
3
−

5rD

6
, (92)

where ∆2
s = 〈δχ2〉s/χ̄

2 is the small-scale variance of the cur-
vaton perturbations, or the ratio of the energy density carried
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Fig. 44. Scale-independent primordial correlation fraction in the mixed
adiabatic and CDI model. The black curves are with Planck high-` and
low-` data, while the red ones result from using only the high-` Plik
likelihood supplemented with a Gaussian prior on the optical depth. For
the 2015 data (top panel) this prior was τ = 0.078 ± 0.019, whereas for
the 2018 case (bottom panel) we have adopted τ = 0.055 ± 0.007 from
the Planck 2018 TT,TE,EE+lowE+lensing CDI chain.

by the curvaton particles to the energy density of the curvaton
field (if there is significant production of curvaton particles). The
parameter f local

NL cannot be smaller than −5/4, which is obtained
when rD = 1 and ∆2

s = 0, as implicitly assumed, for example, in
Bartolo et al. (2004a,b). The above βiso limits correspond to the
following rD and f local

NL constraints (assuming ∆2
s = 0):18

0.98982 < rD ≤ 1 (curvaton I)

⇒ −1.2500 ≤ f local
NL < −1.2287, (93)

0.84347 ≤ rD < 0.85129 (curvaton II)

⇒ −0.9077 < f local
NL ≤ −0.8876. (94)

Even with the maximal allowed isocurvature fraction, the local
non-Gaussianity in the curvaton model is well within the obser-
vational Planck limits presented in Planck Collaboration IX
(2020). The residual isocurvature peturbations in the two stud-
ied curvaton models set much tighter constraints on the curvaton
decay fraction than do constraints on the observed (consistent
with zero) non-Gaussianity.

9.4.3. Uncorrelated ADI+CDI with free nII (“axion II”)

Axion models do not necessarily produce nearly scale-invariant
isocurvature perturbations. In particular, even highly blue-tilted
spectra (in the observable CMB range) are possible. For exam-
ple, Kasuya & Kawasaki (2009) construct a model with nII = 2–
4. This motivates studying a two-isocurvature-parameter model,
where adiabatic and isocurvature modes are uncorrelated, but the
isocurvature fraction and spectral index are free to vary. In our

18 The quoted precision of these constraints does not reflect the pre-
cision of the sampling of the likelihood surface, but we report several
digits here since the constraints are so tight that rounding to, e.g., two
significant digits would give empty or almost empty ranges.

parameterization this is achieved by setting P(1)
RI

= 0, and vary-
ing P(1)

II
and P(2)

II
independently. The results for this model are

presented in the first two rows of the third section of Table 14.
The low-` temperature data do not favour any extra contri-
bution beyond the (already too high) abiabatic contribution,
whereas the fit to the high-` temperature and polarization data
can be improved slightly by the “smoothing” caused by the CDI
mode. This leads to a very blue isocurvature spectrum. Planck
TT,TE,EE+lowE+lensing gives at 95% CL 1.55 < nII < 3.67,
consistent with the recent findings of Chung & Upadhye (2018).
Even the very large upper bound βiso(khigh) < 77% corresponds
to a contribution of less than order 1% to the observable CMB
TT (or EE) power spectra at ` ' 1400. The uncertainty in the
Planck TT spectrum at these high multipoles is ∆DTT

` ∼ 10 µK2

and the actual spectrum is DTT
` ∼ 1000 µK2. Thus the allowed

CDI contribution is only of the same 1% order as the observable
uncertainty. Consequently the non-adiabatic contribution to the
observed CMB temperature variance, αnon-adi, is also vanishingly
small, between 7 × 10−4 and 7 × 10−3.

9.4.4. Arbitrarily correlated ADI+CDI with nII=nRR
(“curvaton III”)

Apart from the extremes of ±100% correlation, some curvaton
models predict an arbitrary degree of correlation. The generic
feature of most curvaton models is that the isocurvature and
adiabatic spectral indices are equal. This is because both per-
turbations typically arise from the same source. In the next-
to-simplest models, the correlation fraction can be written as
cos ∆ =

√
λ/(1 + λ), where λ = (8/9)r2

Dε∗(MPl/χ̄∗)2. Therefore,
the model is fully correlated only if λ � 1, in which case the
results of curvaton I apply. If the slow-roll parameter ε∗ is very
close to zero or the curvaton field value χ̄∗ is large compared
to the Planck mass, this model leads to almost uncorrelated per-
turbations and the constraints are well approximated by axion I.
Any other case leads to an arbitrary degree of positive correlation
between the CDI and adiabatic modes.

Modulated reheating with thermal or non-thermal produc-
tion of gravitinos can lead to positive or negative correlation,
respectively (Takahashi et al. 2009). While the correlation could
in principle be arbitrarily large, the observational constrains on
βiso favour only small correlations.

Arbitrarily correlated ADI+CDI with nII = nRR is also
a good approximation for those two-field (or multi-field)
slow-roll models (e.g., double quadratic inflation; Langlois
1999; Beltrán et al. 2005) where the trajectory in field space is
curved between the Hubble radius exit of perturbations during
inflation and the end of inflation. The fraction of isocurvature
perturbations converted to adiabatic depends on how the trajec-
tory is curved and this part of the adiabatic perturbations will be
fully (anti)correlated with the isocurvature modes, whereas the
adiabatic perturbations already present at Hubble radius exit are
uncorrelated with isocurvature modes to first order in the slow-
roll parameters, and only slightly correlated to second order
(see, e.g., Gordon et al. 2001; Amendola et al. 2002; van Tent
2004; Byrnes & Wands 2006). The result is a non-zero correla-
tion between isocurvature and total adiabatic perturbations. The
spectral indices of both components are typically 1−O(slow-roll
parameters), which is well approximated by nII = nRR since the
data indicate nRR ' 0.965.

As expected, the Planck data favour negative correlations,
since these nII = nRR models modify only the low-` part of
the CMB spectra, where TT power is lower than predicted by
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the adiabatic ΛCDM model. With TT,TE,EE+lowE+lensing we
find, at 95% CL, βiso < 0.039 and −0.41 < cos ∆ < 0.31.

9.4.5. Fully (anti)correlated ADI+CDI with free nII

The remaining two-parameter CDI extensions of the adiabatic
ΛCDM model are those where the perturbations are fully
(anti)correlated, as in the simplest curvaton models, but the
isocurvature spectral index is not fixed to the adiabatic one.
In this case the free isocurvature parameters are P(1)

II
and P(2)

II
,

while P(1)
RI

= ±
(
P

(1)
RR
P

(1)
II

)1/2
. These models are somewhat diffi-

cult to motivate, since full (anti)correlation typically implies that
the curvature and isocurvature perturbations have their origin in
(the decay products of) the same field. Then one would expect
equal spectral indices, as in the curvaton model. The conversion
of isocurvature perturbations to adiabatic ones (e.g., between
Hubble radius exit and the end of inflation, or by curvaton-type
decay, or by reheating or thermalization) should be scale depen-
dent in order to obtain nII , nRR. Slow-roll two-field infla-
tion leads to an exact match, nII = nRR, in the case where
cos2 ∆ = 1 (see, e.g., Byrnes & Wands 2006). Nevertheless,
for completeness we report constraints on these phenomenolog-
ical models in the last four rows of Table 14. Since the low-`
TT data favour negative correlation, a larger isocurvature frac-
tion is allowed in the fully anticorrelated case at low k. This
leads to scale-invariant isocurvature perturbations being in the
favoured region of parameter space, namely −0.28 < nII < 1.86
with TT,TE,EE+lowE+lensing at 95% CL. In contrast, in the
fully correlated case the low-` TT data disfavour any isocur-
vature contribution, and hence prefer a blue spectrum, with
1.37 < nII < 3.65.

9.5. Compensated BDI–CDI mode

This subsection presents constraints on uncorrelated adiabatic
and scale-invariant CIP modes and discusses the strong degen-
eracy between the phenomenological lensing parameter AL and
the CIP amplitude (Valiviita 2017). Assuming that there are no
NVI or NDI perturbations, the total matter density isocurvature
perturbation IMDI, given by Eq. (83), vanishes if

ICDI = −
Ωb

Ωc
IBDI. (95)

This mode, where the anticorrelated CDI and BDI perturbations
cancel even though their individual amplitudes can be large, is
called a compensated baryon and cold dark matter isocurvature
mode. The CIP mode does not leave a linear-order isocurvature
signal in the CMB or matter power spectra (Gordon & Lewis
2003), although it modifies the trispectrum (Grin et al. 2011a,
2014). However, at the next order there is a smoothing effect on
the high-` TT, TE, and EE spectra. A formal derivation can be
found in, for example, Smith et al. (2017). Here we summarize
the heuristic arguments of Muñoz et al. (2016).

On scales larger than the sound horizon, condition (95) is
preserved until last scattering and can be written as

δρc(x) ' −δρb(x). (96)

Consequently, CIP can be described as a large scale modulation
of the baryon and CDM density (Muñoz et al. 2016; Heinrich
et al. 2016; Valiviita 2017), with

Ωb(n̂) = [1 + ∆(n̂)]Ω̄b, Ωc(n̂) = Ω̄c − ∆(n̂)Ω̄b. (97)

Table 15. Comparison of ΛCDM+CIP, ΛCDM+AL, and
ΛCDM+AL+CIP models with various Planck datasets, when
using the baseline Plik likelihood at high `.

Constraints Best fit

Data and model 1000∆2
rms AL 1000∆2

rms AL ∆χ2 ln B

TT+lowE
ΛCDM+CIP 15.5+5.3

−5.4 15.5 1.00 −6.9 1.7
ΛCDM+AL 1.24+0.10

−0.10 0.0 1.26 −8.7 2.1
ΛCDM+AL+CIP <24.4 1.12+0.14

−0.12 3.4 1.23 −8.8 0.6
TT,TE,EE+lowE

ΛCDM+CIP 10.1+3.9
−3.9 10.0 1.00 −5.7 0.9

ΛCDM+AL 1.18+0.07
−0.07 0.0 1.19 −9.7 2.5

ΛCDM+AL+CIP <12.7 1.13+0.09
−0.08 0.3 1.19 −9.7 0.2

TT,TE,EE+lowE+lensing (conserv.)
ΛCDM+CIP 3.7+1.6

−2.1 3.6 1.00 −3.3 −1.4
ΛCDM+AL 1.07+0.04

−0.04 0.0 1.07 −3.4 −1.2
ΛCDM+AL+CIP 3.1+1.4

−2.0 1.07+0.04
−0.04 2.9 1.07 −6.4 −2.8

TT,TE,EE+lowE+lensing (aggr.)
ΛCDM+CIP 2.8+1.2

−1.5 2.7 1.00 −4.0 −1.2
ΛCDM+AL 1.06+0.04

−0.04 0.0 1.05 −2.2 −1.8
ΛCDM+AL+CIP 2.6+1.2

−1.6 1.06+0.04
−0.04 2.4 1.06 −6.2 −3.0

Notes. The first two columns (“Constraints”) are the 68% CL ranges
or the 95% CL upper bounds on 1000∆2

rms (highlighted in bold for
ΛCDM+CIP) and AL. The remaining columns give the best-fit pame-
ter values, and the difference of the best-fit χ2 and the difference of the
log of the Bayesian evidence with respect to the pure adiabatic ΛCDM
model. A negative ∆χ2 means that the quoted model fits the data better
than ΛCDM, while a positive ln B means that the Bayesian model com-
parison favours the quoted model, when adopting the uniform priors
0 ≤ 1000∆2

rms < 75 and 0.3 ≤ AL ≤ 1.7.
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Fig. 45. Illustration of how the large-scale modulation of the baryon
density by CIP gets converted into a small-scale “smoothing” effect of
the temperature and polarization anisotropies.

Here the overbar denotes an average over the whole sky and
∆(n̂) a small perturbation about this average in the direction n̂, as
illustrated in Fig. 45. In patches of sky where the CMB photons
originate from baryon-overdense regions, the odd acoustic peaks
at high-` are more pronounced relative to the even peaks com-
pared to the patches where the photons originate from baryon-
underdense regions. Averaging over the sky leads to a lensing-
like smoothing of the high-` peaks.

A convenient measure of CIP is the variance ∆2
rms ≡

〈|∆(n̂)|2〉 ' PIBDIIBDI . If ∆ is a Gaussian random variable, the
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observed angular power of TT, TE, or EE will be

Cobs
` (Ω̄b, Ω̄c, τ,H0, ns, As) (98)

=
1√

2π∆2
rms

∫
C`

(
Ωb(∆),Ωc(∆), τ,H0, ns, As

)
e−∆2/(2∆2

rms)d∆,

where Ωb(∆) = (1 + ∆)Ω̄b and Ωc(∆) = Ω̄c − Ω̄b∆. For brevity,
we will denote the power spectrum in the integrand by C` |∆=δ.
For each δ it can be calculated by assuming adiabatic initial con-
ditions. Approximating the integrand by the first three terms of
its Taylor series about ∆ = 0, we end up with

Cobs
` ' C` |∆=0 +

1
2

d2C`

d∆2

∣∣∣∣∣∣
∆=0

∆2
rms. (99)

In the following we describe parameter scans where we vary
the six standard (adiabatic) ΛCDM parameters, the Planck nui-
sance parameters, and the CIP variance ∆2

rms, calling this one-
parameter extension of the ΛCDM model the “ΛCDM+CIP”
model. We evaluate the right-hand side of Eq. (99) at each point
in parameter space using a finite-difference approximation for
the second derivative:

1
2

d2C`

d∆2

∣∣∣∣∣∣
∆=0

∆2
rms '

1
2C` |∆=δ −C` |∆=0 + 1

2C` |∆=−δ

δ2 , (100)

where δ should be “sufficiently small”. In practice, good numer-
ical accuracy is achieved if δ is of order

√
∆2

rms. So at each point
in our MultiNest scan we set δ =

√
∆2

rms for the point currently
under evaluation, and thus the result of Eq. (99) simplifies to

Cobs
` '

C`

∣∣∣
∆=
√

∆2
rms

+ C`

∣∣∣
∆=−
√

∆2
rms

2
· (101)

With this method each angular power spectra evaluation takes
twice as long as for the pure adiabatic case since the spectra are
now an average of two spectra, resulting from different values of
Ωb and Ωc

19.
Unlike the high-` TT, TE, and EE spectra, the high-L lensing

potential power spectrum is virtually unaffected by CIP. Instead,
CIP modifies the low multipoles of [L(L + 1)]2Cφφ

L /(2π) by,
approximately, adding a term ∆2

rms × (L/0.053)−2. For details,
see table II in Smith et al. (2017). As illustrated in Fig. 46, when
using the Planck 2015 conservative lensing data (40 ≤ L ≤ 400)
this term does not affect the results. In contrast, the Planck 2018
conservative lensing data also contain the range 8 ≤ L < 40
and thus CIP variances ∆2

rms & 0.004 fit the first data point
of the 2018 lensing power spectrum (8 ≤ L ≤ 400) worse
than in ΛCDM. However, even in this case the joint fit of the
ΛCDM+CIP model to the TT, TE, EE, and lensing data is bet-
ter than that of the ΛCDM model, the improvement being of the
same order as for the ΛCDM+AL model.

The top panel of Fig. 47 shows the AL–∆2
rms degeneracy

in the ΛCDM+AL+CIP model and how it can be broken by
the lensing data. The value AL = 1 provides a good fit to the
TT+lowE data, if ∆2

rms ' 0.016, and to the TT,TE,EE+lowE data,
if ∆2

rms ' 0.010. The ΛCDM+CIP model (where AL = 1) with
∆2

rms ' 0.008 provides a better simultaneous fit to the Planck
2015 TT,TE,EE and conservative lensing data (40 ≤ L ≤ 400)
than does the ΛCDM+AL model. When using the Planck 2018

19 Actually, we call CAMB three times (i.e., also with Ω̄b and Ω̄c, or ∆ =
0), in order to obtain some auxiliary parameters such as σ8 correctly,
although we do not report them here.
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Fig. 46. Conservative Planck 2015 lensing data (red points), aggressive
Planck 2015 lensing data (blue points with error bars), and conservative
Planck 2018 lensing data (black squares in grey boxes), along with the
best-fit models to the Planck data: the best-fit adiabatic ΛCDM model
to 2018 TT+lowE (green dashed line); the best-fit ΛCDM+AL model
to 2018 TT+lowE (magenta solid line, AL = 1.26); and the best-fit
ΛCDM+CIP model to 2018 TT,TE,EE+lowE and conservative lensing
data (black solid line, ∆2

rms = 0.0036) and to 2015 TT,TE,EE+lowP and
conservative lensing data (black dotted line, ∆2

rms = 0.0071). As CIP
modifies only the very low-L part of the lensing power spectrum, the
conservative 2015 lensing data (40 ≤ L ≤ 400) are insensitive to CIP
even when ∆2

rms = 0.0071. On the other hand, the first two data points
of the 2015 aggressive lensing data disfavour the large CIP amplitude
(Smith et al. 2017), which gives a very good fit to all the other data.
Planck 2018 conservative lensing data cover the range 8 ≤ L ≤ 400 and
consequently disfavour CIP variances ∆2

rms & 0.004.

conservative lensing data (8 ≤ L ≤ 400), the best-fit value of
∆2

rms decreases to 0.0036. This is due to the extra term ∝L−2

brought by CIP to the lensing power estimator, as discussed
above and shown in Fig. 46.

Since Planck TT,TE,EE+lowE and lensing data can be fitted
well by AL = 1 in the CIP model, we show in the bottom panel of
Fig. 47 the one-dimensional posterior of ∆2

rms in the ΛCDM+CIP
model. A non-zero value of ∆2

rms is preferred at the 2.9σ (2.5σ)
level by Planck 2018 (2015) TT+lowE(lowP) data and at the
2.6σ (1.8σ) level by the TT,TE,EE+lowE(lowP) data. Without
lensing the 2018 data thus more strongly favour the non-zero
CIP amplitude than the 2015 data, which is as we would expect,
since the favoured AL value in the ΛCDM+AL model has also
increased. When using 2018 TT,TE,EE+lowE and the 2018 con-
servative lensing data the significance decreases to 2.0σ, while
switching to the aggressive lensing data (8 ≤ L ≤ 2048) leads
to 2.1σ. The 68% CL ranges of ∆2

rms in the ΛCDM+CIP model,
obtained with the baseline high-` Plik likelihood in combina-
tion of other Planck data, are highlighted in Table 15. Replacing
Plik with CamSpec (in particular CamSpec TT,TE,EE) leads to
somewhat lower values,

1000∆2
rms =


14.1+5.2

−5.2 TT+lowE,

6.5+3.0
−4.2 TT,TE,EE+lowE,

2.8+1.2
−2.2 TT,TE,EE+lowE+lensing (conserv.),

2.2+1.0
−1.5 TT,TE,EE+lowE+lensing (aggr.),

(102)

and reduced significance above zero: 2.7σ, 1.9σ, 1.7σ, and
1.9σ, respectively.
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Fig. 47. Degeneracy between AL and ∆2
rms in the ΛCDM+AL+CIP

model (top panel) and constraints on ∆2
rms in the ΛCDM+CIP model,

where AL = 1 (bottom panel).

In order to check that the preference for ∆2
rms > 0 or AL > 1

is not just a parameter-space volume effect upon marginaliza-
tion over other parameters, we also report in Table 15 the differ-
ence of χ2 between the best fit in extended models and the base
adiabatic ΛCDM model. With all data sets, all three extended
models lead to an improvement of χ2 which clearly exceeds the
number of extra parameters of the model (1 for ΛCDM+CIP
and ΛCDM+AL, and 2 for ΛCDM+AL+CIP). Although the
inclusion of lensing data reduces this improvement of fit, the
ΛCDM+CIP model gives a rather impressive ∆χ2 = −4 with
Planck TT,TE,EE+lowE and aggressive lensing data.

Since we observe a moderate preference for a non-zero CIP
amplitude, it might be tempting to “solve” the Planck lensing
anomaly by using CIP. However, this explanation seems quite
unlikely, since in our treatment the CIP and adiabatic pertur-
bations should be uncorrelated with each other, whereas CDI
and BDI should be fully anticorrelated (and have a few orders
of magnitude larger amplitude than the adiabatic modes while
keeping the perturbations nearly Gaussian). It is difficult to imag-
ine a physical model that could lead to this situation. For exam-
ple, some variants of curvaton model would naturally lead to
anticorrelated CDI and BDI, but in these models there would be a
correlation with the adiabatic mode too (Gordon & Lewis 2003;
He et al. 2015). The above-studied compensated BDI-CDI mode
falls into a similar category to NVI: it is an interesting theoreti-

cal setup, but a compelling early-Universe model for stimulating
this mode has still to be discovered.

Nevertheless, the baseline Planck Plik TT,TE,EE+lowE
plus conservative lensing result, ∆2

rms = 0.0037+0.0016
−0.0021, is fully

compatible with current complementary observations, in partic-
ular, the WMAP 95% CL trispectrum constraint, ∆2

rms . 0.012
(Grin et al. 2014), and the upper bound, ∆2

rms . 0.006, following
from the direct measurements of the variation of the baryon frac-
tion in galaxy clusters (Holder et al. 2010; Grin et al. 2014). It
will be interesting to learn what other future CMB anisotropy
(Abazajian et al. 2016; Valiviita 2017; Finelli et al. 2018)
and complementary measurements, such as observations of the
distribution of neutral hydrogen using 21 cm absorption lines
(Gordon & Pritchard 2009), BAO (Soumagnac et al. 2016,
2019), or CMB spectral distortion anisotropies (Haga et al.
2018), will tell us about the possible contribution of CIP to the
primordial perturbations.

10. Constraints on anisotropic models of inflation

In this section we will test specific physical models for statistical
anisotropy in the primordial fluctuations. More phenomenologi-
cal multipole- or map-space tests are performed in the compan-
ion paper, Planck Collaboration VII (2020). Here we update the
results of the 2015 release (PCI15) with polarization and new
temperature analyses. Incorporating polarization into these tests
is particularly important, due to the mild statistical significance
of temperature anomalies such as the dipolar asymmetry. Polar-
ization offers the potential to confirm or refute a physical origin
for such anomalies via the measurement of independent fluctu-
ation modes. We perform such a new test with k-space dipolar
modulation models. In cases such as quadrupolar asymmetry,
where no detection has been claimed with temperature, polar-
ization offers the prospect of tightening existing constraints.

Some asymmetry models predict a modification to the
isotropic power spectra, in addition to a dipolar or quadrupo-
lar asymmetry. In other words, for these models, as well as
non-zero off-diagonal multipole covariance elements, we expect
departures in the diagonal elements relative to the standard
ΛCDM prediction. Therefore the isotropic spectra can provide
independent tests of such models even using temperature data
alone (Contreras et al. 2018). The curvaton dipole modulation
model we examine in Sect. 10.1.1 exhibits this property, and
can be constrained via its predictions for isotropic isocurvature
power. Similarly, some versions of the quadrupolar modulation
model we study in Sect. 10.2 modify the isotropic spectra via a
monopole term. In both cases these isotropic constraints will be
important in narrowing the viable parameter space.

10.1. Dipolar asymmetry

A dipolar temperature power asymmetry has long been observed
at the largest scales in the CMB (Eriksen et al. 2004), although
its statistical significance is not high and is subject to a poste-
riori (look-elsewhere) corrections (Bennett et al. 2011; Planck
Collaboration XXIII 2014; Planck Collaboration XVI 2016).
Nevertheless, its large-scale character suggests potential links
with inflationary physics and various models have been proposed
to explain it. In this subsection we examine several physical
models for a dipolar modulation. Some models where a generic
CDM density isocurvature (CDI) or tensor component is dipole
modulated have already been ruled out due to their isotropic pre-
dictions (Contreras et al. 2018), so we do not consider these fur-
ther here.
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10.1.1. Curvaton model

First we update our 2015 study (PCI15) of a specific inflationary
model for the dipolar asymmetry: namely, the modulated curva-
ton model of Erickcek et al. (2009). In that study we showed that
that model could not explain the observed asymmetry. Here, we
generalize the curvaton model to allow for a non-scale-invariant
uncorrelated CDI component. In addition, we treat the power
spectrum (isotropic) constraints in a fully unified way with the
asymmetry likelihood. Finally, we incorporate polarization.

The modulated curvaton model employs a gradient in a back-
ground curvaton field to explain the observed large-scale power
asymmetry. The curvaton, via coupling κ, produces nearly scale-
invariant CDI fluctuations, as well as a fraction, ξ, of the adia-
batic fluctuations. Both of these components will be modulated.
Up to a sign, ξ is equal to the correlation parameter, and is also
a measure of the amplitude of dipolar modulation. The isocur-
vature fraction can be written in terms of these two parameters
as

βiso =
9κ2ξ

1 + 9κ2ξ
· (103)

Full details of this model and our treatment of it can be found in
Erickcek et al. (2009) and PCI15.

Using the dipolar asymmetry estimator from PCI15 we find
the posteriors for the dipolar modulation parameters κ and ξ; the
results are presented in Fig. 48 (red contours). We see that a sub-
stantial amount of asymmetry (as measured by amplitude ξ) can
be captured by the model. This preference for asymmetry sim-
ply means that the curvaton model can explain the well-known
dipolar asymmetry in temperature. However, isocurvature con-
straints from the power spectra via Eq. (103), which we refer to
as the isotropic constraints, can provide independent information
(Contreras et al. 2018). This is also shown in Fig. 48, with the
blue contours. Here we see that the asymmetry and isotropic pos-
teriors only weakly overlap, and the independent isotropic data
do not support the presence of asymmetry for this model. No
evidence for asymmetry (i.e., no preference for ξ > 0) is present
in the joint constraints, which treat the isotropic and asymmetry
data as independent. In other words, we have no reason to prefer
this model over base ΛCDM.

10.1.2. Adiabatic models

In the presence of a sufficiently large bispectrum it is possi-
ble that a long-wavelength mode can induce a dipolar asym-
metry in the two-point function across our observable volume,
although such scenarios appear to require fine tuning (Byrnes
et al. 2016a). Nevertheless, examples have been constructed
which satisfy the Planck fNL constraints (Byrnes et al. 2016b).
In this subsection we consider adiabatic models of this type, in
which the isotropic power spectra agree with standard ΛCDM,
while a scale-dependent dipolar asymmetry is present in the off-
diagonal multipole covariance (Contreras et al. 2017, 2018). As
proposed in Contreras et al. (2017), we fit the asymmetry model
parameters to the temperature data and then use those parame-
ters to predict the asymmetry in polarization. We then compare
those predictions with the Planck polarization data as a test for a
physical modulation. Importantly, a position- (or k-) space model
for the modulation is needed for reliable polarization predictions
– it is not enough to restrict considerations to multipole space
(Contreras et al. 2017)20.

20 For example, if we observe a dipolar modulation in T at, say, 5% to
` = 65, there is no reason to expect a modulation of the same ampli-

Isotropic
Asymmetry
Joint

0 5
0.0

0.1

0.2

0.3

0.4

0.5

10
3

×
0.0 0.2 0.4

103 ×

Fig. 48. Posteriors for the curvaton dipolar modulation model param-
eters κ and ξ. Contours enclose 68% and 95% of the posteriors. The
model can explain the well-known dipolar asymmetry: note the pref-
erence for ξ > 0 in the asymmetry constraint (red contours and
curves). However, the modulation preferred by the asymmetry con-
straint is reduced substantially when the isotropic constraint (blue) is
added (black). The asymmetry constraint here uses SMICA, while the
isotropic constraint uses Planck TT,TE,EE+lowE+lensing. Resolution
is reduced at very small κ due to the sampling in βiso.

As discussed in detail in Contreras et al. (2017), we take a
portion R̃lo(x) of the adiabatic primordial fluctuations to be spa-
tially linearly modulated according to

R̃lo(x) = Rlo(x)
1 + A

x · d̂
rLS

 , (104)

where Rlo(x) is statistically isotropic with power spectrum
Plo
R

(k), A ≤ 1 and d̂ are the amplitude and direction of modula-
tion, respectively, and rLS is the comoving radius to last scatter-
ing. This leads, to a good approximation, to the total temperature
or polarization multipole covariance

C`m`′m′ ≡ 〈a`ma∗`′m′〉 (105)

= C`δ``′δmm′ +
δC``′

2

∑
M

∆XMξ
M
`m`′m′ , (106)

to first order in A. Here C` is the usual ΛCDM anisotropy power
spectrum; δC``′ ≡ 2(Clo

` + Clo
`′ ), where Clo

` is the power spectrum
calculated in the usual way from Plo

R
(k); ∆XM is the multipole

decomposition of An̂ · d̂; and the ξM
`m`′m′ coefficients couple ` to

` ± 1 via

ξM
`m`′m′ ≡

√
4π
3

∫
Y`′m′ (n̂)Y1M(n̂)Y∗`m(n̂)dΩ. (107)

In principle the scale dependence of the asymmetry spec-
trum Plo

R
(k) is completely free, but here we take three

tude and to the same scale in E, due to the different T and E transfer
functions (Contreras et al. 2017).
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Fig. 49. Histograms of the quantity Ô j0 for the tanh, power-law, and ns gradient modulation models using Planck temperature data combined with
300 statistically isotropic polarization simulations (red outlines) or 300 polarization simulations modulated according to the best-fit parameters
from the temperature data (black). The blue lines indicate the values for the actual SMICA polarization data. A large value relative to the isotropic
(red) simulations would indicate that the modulation model is preferred over ΛCDM.

phenomenological forms which are capable of producing a large-
scale asymmetry with a small number of parameters. First, we
consider a simple power-law modulation,

Plo
R

(k) = P0
R

(
klo

0

)  k
klo

0

nlo
s −1

, (108)

where P0
R

(k) is the usual ΛCDM spectrum, and nlo
s and klo

0 are
the tilt and pivot scale of the modulation. We consider only red
asymmetry tilts with nlo

s ≤ ns, and choose klo
0 = 1.5×10−4 Mpc−1.

We also consider a tanh model, defined according to

Plo
R

(k) =
1
2
P0
R

(k)
[
1 − tanh

(
ln k − ln kc

∆ ln k

)]
. (109)

This spectrum approaches that of ΛCDM on scales larger than
kc, with a width determined by ∆ ln k. That is, scales well above
the cutoff kc will be modulated with amplitude A, and scales
below will be unmodulated. Finally, we consider a model with
a linear gradient in the scalar tilt, ns, across our volume. In this
case the asymmetry spectrum can be written as

Clo
` = −

∆ns

2
dC`

dns
, (110)

with modulation amplitude ∆ns. There will be an implicit depen-
dence on the pivot scale k∗ for this model.

Given the multipole covariance, Eq. (106), we can construct
a maximum likelihood estimator for the modulation, ∆XM . In the
noise-free, full-sky case this takes the form (Moss et al. 2011;
Planck Collaboration XVI 2016)

∆X̂M =
1
4
σ2

X

∑
`m`′m′

δC``′

C`C`′
ξM
`m`′m′a

∗
`ma`′m′ , (111)

where the cosmic variance of the estimator is given by

σ2
X = 12

∑
`

(` + 1)
δC2

``+1

C`C`+1

−1

. (112)

The modifications we use to deal with realistic skies are
described in detail in Planck Collaboration XVI (2016) and
Contreras et al. (2017).

To decide whether the polarization data support the modu-
lation model or not, we consider the quantity Ô j0, which is the
ratio of the maximum likelihood for modulation model j to that
of ΛCDM (Contreras et al. 2017). In Fig. 49 we plot for the three
adiabatic models histograms of Ô j0 calculated for 300 statisti-
cally isotropic polarization simulations (sharing the required TE
correlation with the real T data) added to the Planck tempera-
ture data (red outlines). This indicates our expectation for Ô j0 for
the scenario that the temperature asymmetry is due to a statisti-
cal fluctuation and not to a physical modulation. We also plot in
Fig. 49 histograms for 300 polarization simulations modulated
with the best-fit parameters from the Planck temperature data
(black outlines), to represent the scenario that the asymmetry is
due to a physical modulation. In both cases the polarization simu-
lations contain realistic levels of noise for Planck. By comparing
the isotropic and modulated histograms, we can see that the quan-
tity Ô j0 can serve to distinguish the two scenarios, but only rela-
tively weakly for Planck noise (Contreras et al. 2017). The blue
lines indicate the values using the actual SMICA polarization data
(the results for the other component-separation methods are sim-
ilar). We see that for these models the data do not help to decide
whether we have a physical modulation or not, with p-values of
43%, 30%, and 57% for the power-law, tanh, and ns gradient mod-
els, respectively, relative to the isotropic simulations.

10.2. Quadrupolar asymmetry

We will next explore models that predict a quadrupolar direc-
tion dependence in the primordial power spectrum. In PCI15
we found no evidence for such a modulation, but several infla-
tionary models have been constructed which predict this effect
(Ackerman et al. 2007; Soda 2012; Tsujikawa 2014). There-
fore it is important to extend those results with the improved
polarization data. We now attempt to reduce the effect of unre-
solved point sources using the bias-hardened estimator approach
of Planck Collaboration XV (2016). In PCI15 we pointed out
that some models of quadrupolar asymmetry predict a modifica-
tion to the angular power spectra as well. Here we will account
for such modifications in our analysis, increasing the constrain-
ing power of temperature data, in particular for tilted models
with non-scale-invariant modulation spectral index. Note that
independent searches relaxing our approximation of power-law
spectra have also been carried out (Durakovic et al. 2018).
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We assume a modulation of the primordial comoving curva-
ture power spectrum of the form

PR(k) = P0
R

(k)
[
1 + g(k)

(
k̂ · d̂

)2
]
, (113)

which can be rewritten as

PR(k) = P0
R

(k)

1 +
1
3
g(k) +

∑
m

g2m(k) Y2m( k̂)

 . (114)

Here

g2m(k) ≡
8π
15

g(k) Y∗2m(d̂), (115)

with g2m(k) satisfying g2,−m(k) = (−1)m g∗2m(k). We parameter-
ize the scale dependence of the modulation as g(k) = g∗(k/k∗)q,
with pivot scale k∗ = 0.05 Mpc−1. For q , 0, in addition to pro-
ducing a quadrupolar modulation of the anisotropies, this model
affects the CMB isotropic power spectra via the term g(k)/3
in Eq. (114). We therefore consider a joint constraint with the
isotropic power spectra likelihood to improve constraints over
the modulation alone.

As in PCI15, we obtain constraints on the modulation param-
eters by forming quadratic maximum-likelihood estimates, ĝ2m,
for the data and simulations. For this we use the component-
separated data and 300 simulations provided by NILC, SEVEM,
SMICA, and COMMANDER. For brevity we only show the SMICA
results. We can then compute a covariance G and likelihood as

L ∝ |G|−1/2 exp
[
−

1
2

MTG−1M
]
,

where

M ≡ ĝ2m − g2m(g∗, d̂). (116)

We then evaluate the marginalized (over the angles) posterior for
g∗. For the isotropic constraints we simply include the modula-
tion parameters in a CosmoMC run using Planck TT,TE,EE+lowE
data, and then evaluate the marginalized (over all other ΛCDM
parameters) posterior for g∗.

For q > 0 the effect of g∗ on the isotropic spectra occurs
mainly at high `, and is highly degenerate with ns. This degen-
eracy leads to slightly less stringent constraints than what one
would achieve with a fixed ns. We show the marginalized poste-
riors for this case in the top panels of Fig. 50, where we see that
the isotropic constraints are roughly comparable in strength to
(and fully consistent with) the constraints from the asymmetry
data.

For q < 0 the isotropic constraints are much more constrain-
ing than the modulation constraints, as seen in the bottom panels
of Fig. 50. This is because for large scales the factor k∗/k can
become large and a negative g∗ will decrease isotropic power on
those scales, which is compensated for by increasing As and τ.
Strongly negative g∗ values are disallowed by predicting unphys-
ical negative power spectra at low `. Note that even the parameter
ranges in which the power spectra are reduced to close to zero
are likely beyond the perturbative regime for the models in ques-
tion, and so should be approached with caution. The isotropic
constraints still prefer a slightly negative g∗, likely due to being
able to fit the power deficit at large scales. The joint constraint
in this case is then greatly improved by the isotropic data.

Minimum-χ2 and p values (relative to isotropic simulations)
for g∗ are presented in Table 16. The addition of polarization
does not affect the temperature results greatly.

Finally, when allowing the completely general form of
quadrupolar modulation, i.e.,

PR(k) = P0
R

(k)

1 +
∑

m

g2m (k/k∗)q Y2m(k̂)

 , (117)

with no restriction on the g2m, we present results for the quantity
g2 ≡

√∑
m |g2m|

2/5 in Table 17. In all cases there is no signifi-
cant detection of quadrupolar modulation, as quantified by the p
values.

11. Conclusions

This paper summarizes the status of cosmic inflation in light
of the Planck 2018 release. The main improvements are in the
Planck polarization likelihoods. The 2018 release now includes
a low-` HFI polarization likelihood based on the 100- and 143-
GHz channels. This likelihood is now the baseline, whereas the
Planck 2015 likelihood was based only on the LFI 70-GHz chan-
nel data, which also have been updated in this release. Correc-
tions for beam-leakage effects, which had been flagged in the
2015 release as the main limitation of the TE and EE data at
that time, have improved the accuracy of the high-` polarization
likelihoods. Our analyses focus on the results obtained using the
Planck baseline likelihoods alone, but results supplemented by
the BK15 likelihood (when tensors are included) and a compi-
lation of BAO likelihoods are also given in order to help break
cosmological parameter degeneracies. We summarize the main
results of this paper in the form of responses to a number of key
questions.

1. What is the value of the scalar tilt? Using a char-
acterization of polarization anisotropy better at all multipoles
in this release, we find that ns = 0.9649± 0.0042 at 68% CL,
including the full information provided by Planck (TT,TE,
EE+lowE+lensing). The 2018 uncertainty is approximately 2/3
of that obtained with the Planck 2015 baseline likelihood. Impor-
tantly, this determination rules out perfect scale invariance (i.e.,
ns = 1) at 8.4σ. From an inflationary perspective, this result
is consistent with slow-roll inflation evolving towards a natural
exit.

2. Does ns depend on the wavelength? We investigated the
possibility of a running spectral index, as well as a running of the
running [i.e., the next two (subleading) terms in a power series
expansion of ln(PR) in ln(k)], corresponding to non-negligible
third- and fourth-order derivatives of the inflationary poten-
tial. Starting with its first 2013 cosmological release, Planck
has removed any hint of a running spectral index, which had
been suggested by pre-Planck data and would have pointed to
inflationary models beyond the slow-roll approximation. Planck
2018 sets dns/d ln k = −0.005 ± 0.013 as the tightest 95% CL
constraint, when d2ns/d ln k2 = 0. No hints of further extensions,
such as running of the running, are found with Planck 2018 data.
These results are consistent with the simplest slow-roll dynamics
for the inflaton. A detection of running at the level predicted by
slow-roll models will require a combination of future ambitious
CMB anisotropy experiments and galaxy surveys.

3. Is the Universe spatially flat? Most simple models of
inflation predict a spatially flat universe, although inflationary
models with a minimum degree of fine tuning producing a hyper-
bolic universe have been constructed. Planck has been the first
experiment to constrain the spatial curvature at the percent level
without any external information, thanks to the CMB lensing

A10, page 55 of 61



A&A 641, A10 (2020)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
100 × g *

0.0

0.2

0.4

0.6

0.8

1.0
q = 2 isotropic

TTEE asymmetry
joint

6 4 2 0 2 4 6
100 × g *

0.0

0.2

0.4

0.6

0.8

1.0
q = 1 isotropic

TTEE asymmetry
joint

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
100 × g *

0.0

0.2

0.4

0.6

0.8

1.0
q = 1 isotropic

TTEE asymmetry
joint

0.02 0.01 0.00 0.01 0.02
100 × g *

0.0

0.2

0.4

0.6

0.8

1.0
q = 2 isotropic

TTEE asymmetry
joint

Fig. 50. Marginalized posteriors for quadrupolar modulation parameter g∗, using SMICA data for the TT+EE asymmetry constraints (orange curves)
and Planck TT,TE,EE+lowE for the isotropic constraints (blue curves), which probe the modification to the power spectrum via Eq. (114). Top:
constraints for q = 2 and 1 (left and right, respectively). Bottom: constraints for q = −1 and −2 (left and right, respectively). Strongly negative g∗
is suppressed for q < 0, due to the unphysical prediction of negative power.

Table 16. Minimum-χ2 g∗ values for quadrupolar modulation, determined from the SMICA foreground-cleaned maps.

TT EE TT+EE

q g∗ p value [%] g∗ p value [%] g∗ p value [%]

−2 −6.83 × 10−5 75.7 1.23 × 10−4 54.7 −6.90 × 10−5 75.0
−1 −8.56 × 10−3 64.7 1.44 × 10−2 30.0 −6.15 × 10−3 86.0

0 1.08 × 10−2 82.7 3.17 × 10−2 55.3 1.07 × 10−2 83.0
1 7.77 × 10−3 82.7 5.09 × 10−2 24.0 7.75 × 10−3 82.3
2 4.92 × 10−3 78.3 5.62 × 10−2 17.0 4.92 × 10−3 78.7

Notes. Also given are p values, defined as the fraction of isotropic simulations with larger |g∗| than the data. The TT results use `min = 2 and
`max = 1200, while EE uses `min = 2 and `max = 850. These results indicate that the data are consistent with cosmic variance in statistically
isotropic skies.

likelihood. Although negative values of the spatial curvature
parameter, with |ΩK | ∼ 10−2, provide a notable improvement
to the fit of Planck temperature and polarization data (compared
to the minimal ΛCDM model), Planck 2018 data including lens-
ing constrain ΩK = −0.011+0.013

−0.012 at 95% CL. Combining with
BAO data further tightens the uncertainty, constraining ΩK to lie
within 0.4% of a flat spatial geometry (at 95% CL).

4. Are tensor modes required? Inflationary models pre-
dict that tensor modes were also excited during the nearly
exponential expansion, with a power spectrum amplitude pro-

portional to the energy scale of inflation. Using the measure-
ment of CMB temperature and E-mode polarization anisotropies
from the quadrupole into the acoustic peak region, Planck has
reduced the degeneracy between the tensor-to-scalar ratio r and
ns, establishing the bound r0.002 < 0.10 at 95% CL, assum-
ing nt = −r/8 as predicted by the simplest inflationary mod-
els. When the Planck likelihood is combined with the B-mode
polarization likelihood of the BICEP2-Keck Array experiment,
a tight 95% CL upper limit of r0.002 < 0.056 is obtained,
corresponding to a 95% CL bound on the energy scale of
inflation of V1/4

∗ < 1.6 × 1016 GeV. Planck 2018 and BK15
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Table 17. As for Table 16, but for the quantity g2 ≡
√∑

m |g2m|
2/5 for a completely general quadrupolar modulation.

TT EE TT +EE

q g2 p value [%] g2 p value [%] g2 p value [%]

−2 3.30 × 10−5 82.3 9.00 × 10−5 27.0 3.32 × 10−5 81.0
−1 4.34 × 10−3 66.0 6.81 × 10−3 40.0 3.24 × 10−3 87.0

0 7.65 × 10−3 51.7 1.79 × 10−2 45.7 7.62 × 10−3 51.7
1 5.39 × 10−3 58.0 2.95 × 10−2 12.7 5.38 × 10−3 58.3
2 3.15 × 10−3 58.7 3.39 × 10−2 6.0 3.15 × 10−3 58.7

data also set tight bounds on gravitational waves generated
in the early Universe when r and nt are varied independently,
complementary to the results obtained by the direct-detection
interferometers LIGO and VIRGO at much higher frequencies.

5. Which inflationary models are best able to account for
the data? Starting with the 2013 release using only a part of the
data, Planck has substantially tightened the constraints on slow-
roll inflationary models, ruling out hybrid models with ns > 1
and power-law inflation (PCI13). In combination with the BK15
data, Planck 2018 now strongly disfavours monomial models
with V(φ) ∝ φp and p > 1, natural inflation, and low-scale SUSY
models. Within the representative cases studied in this paper,
inflationary models such as R2, T and E α-attractor models, D-
brane inflation, and those having a potential with exponential
tails provide good fits to Planck and BK15 data. We used two
methods to reconstruct the inflaton potential beyond the slow-
roll approximation: by Taylor expanding the inflaton potential or
Hubble parameter in the observable region; and through a free-
form reconstruction of the potential with cubic splines. No statis-
tically significant detection beyond the second derivative of the
potential was found, suggesting that the slow-roll approximation
is adequate for the Planck 2018 likelihood in combination with
the BK15 data.

6. What model-independent constraints can be placed on
the primordial power spectrum? We reported on three different
methods for the non-parametric reconstruction of the primordial
power spectrum (penalized likelihood, a Bayesian spline recon-
struction, and a method based on cubic splines). All three meth-
ods give broadly consistent results. In no case is any statistically
significant evidence for a deviation from a pure power law found.
The constraints on the deviations are at the few-percent level for
wavenumbers in the range 0.005 Mpc−1 . k . 0.2 Mpc−1 probed
by the CMB, the precise constraint depending on the level of
smoothing allowed.

7. Is there evidence for features in the primordial power
spectrum? We explored several classes of theoretically moti-
vated parametric models with strong departures from a power
law for the primordial power spectra and tested their predic-
tions using combinations of Planck temperature and polarization
power spectra. We also carried out an analysis using bispectrum
data as well. No statistically significant evidence for features was
found.

8. Were the primordial cosmological perturbations solely
adiabatic? A key question is whether the primordial cosmo-
logical fluctuations consisted exclusively of adiabatic growing-
mode perturbations or whether isocurvature perturbations, pos-
sibly correlated with the adiabatic mode and with each other,
were also excited. The new polarization data have helped to
sharpen constraints on the allowed isocurvature fraction com-

pared to the Planck 2015 results. In correlated mixed adiabatic
and isocurvature models, the 95% CL upper bound for the non-
adiabatic contribution to the observed CMB temperature vari-
ance is |αnon-adi| < 1.3%, 1.7%, and 1.7% for CDM, neutrino
density, and neutrino velocity isocurvature, respectively. For this
release we also report constraints on a scale-invariant compen-
sated baryon-CDM isocurvature mode, which is uncorrelated
with the adiabatic mode. This mode would cause an additional
lensing-like smoothing at high ` and modify the lensing potential
at ` . 40. By using the temperature, polarization, and lensing
data, we obtain the constraint ∆2

rms = 0.0037+0.0016
−0.0021 at 68% CL

for the variance of the baryon isocurvature density perturbation.
A detection of isocurvature modes would suggest the need for a
theory beyond single-field inflation, which is able to excite only
one mode.

9. Were the primordial fluctuations statistically isotropic?
The Planck analysis has confirmed evidence at low statistical
significance of anomalies in the CMB temperature anisotropies
on large angular scales that are not alleviated in models
with nontrivial topology or an anisotropic expansion (Planck
Collaboration XVIII 2016). This motivates an exploration of
inflation-based models giving such violation of statistical
isotropy. We have found no statistically significant evidence in
favour of a curvaton model for dipolar asymmetry (compared
to the base-ΛCDM model), nor any evidence for a quadrupo-
lar asymmetry in the temperature or polarization anistropies.
Theoretical models producing the observed temperature dipo-
lar asymmetry make a prediction for the polarization dipolar
asymmetry. We tested whether the fit to the temperature dipo-
lar asymmetry gives a prediction for the polarization asymmetry
consistent with the data. We found no statistically significant evi-
dence that the pattern seen in temperature is repeated in polar-
ization. However, the discriminating power of this test is weak,
due to the low polarization signal-to-noise ratio on large angular
scales.

The Planck 2013, 2015, and 2018 releases have substantially
improved the constraints on the space of inflationary models, as
described above. Future CMB polarization data will be crucial
for further constraining those inflationary models that currently
provide an adequate fit to Planck and other data. Forthcoming
E-mode polarization data will be decisive for determining
whether the intriguing features in the temperature power spec-
trum, such as the deficit at ` ' 20–30, the smaller average ampli-
tude at ` . 40, and other anomalies at higher multipoles require
new physics or whether these features are simply the result of
statistical fluctuations plus instrumental noise. Improved mea-
surements of the B modes promise to constrain inflation even
more tightly and it will be interesting to see how the search for
B modes evolves. One possibility would be a convincing detec-
tion of inflationary gravitational waves, but a tighter upper limit
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of r . 10−3 is also an achievable outcome. Either case would
substantially advance our understanding of inflation and the con-
straints on the physics of the very early Universe.
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