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Abstract—: Several decades of development in the fields of 

robotics and automation has resulted in human-robot-interaction 
being commonplace, and the subject of intense study. These 
interactions are particularly prevalent in manufacturing, where 
human operators have been employed in a number of robotics and 
automation tasks. The presence of human operators continues to 
be a source of uncertainty in such systems, despite the study of 
human factors, in an attempt to better understand these variations 
in performance.  

Concurrent developments in intelligent manufacturing present 
opportunities for adaptability within robotic control. This work 
examines relevant human factors and develops a framework for 
integrating the necessary elements of intelligent control and data 
processing to provide appropriate adaptability to robotic 
elements, consequently improving collaborative interaction with 
human colleagues. A neural network-based learning approach is 
used to predict the influence on human task performance and use 
these predictions to make informed changes to programmed 
behaviour, and a methodology developed to further explore the 
application of learning techniques to this area. The work is 
supported by an example case-study, in which a simulation model 
is used to explore the application of the developed system, and its 
performance in a real-world production scenario. The simulation 
results reveal that adaptability can be realised with some relatively 
simple techniques and models if applied in the right manner and 
that such adaptability is helpful to tackle the issue of performance 
disparity in manufacturing operations. 
 
NTP: This paper presents research into the application of 
intelligent methodologies to this problem and builds a 
framework to describe how this information can be captured, 
generated and used, within manufacturing production 
processes. This framework helps identify which areas require 
further research and serves as a basis for the development of a 
methodology, by which a control system may enable adaptable 
behaviour to reduce the impact of human performance variation 
and improve human-machine-interaction. The paper also 
presents a simulation-based case study, to support the 
development and evaluate the presented control system on a 
representative real-world problem. The methodology makes use 
of a machine learning approach to identify the complex 
influence of a number of identified human factors on human 
performance. This knowledge can be used to adjust the robotic 
behaviour to match the predicted performance of a number of 
different operators over a number of scenarios. The adaptability 
reduces performance disparity, reducing idle times and 
enabling leaner production through WIP reduction. Future work 
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will focus on expanding the intelligent capabilities of the 
proposed system to deal with uncertainty and improve decision-
making ability.  
 
Index Terms— Intelligent Manufacturing, Human-Machine 
Interaction, Machine Learning, Human Factors, Neural 
Networks, Collaborative Robotics. 

I. INTRODUCTION 
Automation has been the focus of advancement within the 

manufacturing industry for a number of decades, and the use and 
utilization of robotic operators to perform repetitive assembly tasks is 
ubiquitous [1]. The role of the human operator persists within these 
manufacturing processes, however, despite many successful 
applications some manufacturing tasks still require a level of dexterity 
or adaptability which robotic operators remain unable to perform. This 
has resulted in a period of transition whereby these robotic operators 
frequently perform tasks with human operators as colleagues. The 
continued presence of human beings in these highly automated 
systems introduces variation and uncertainty into an otherwise 
repeatable process; as human beings are subject to the influence of a 
number of factors which affect their performance in a number of 
complex and interconnected ways. These Human factors and their 
influence on performance have been studied for decades and this 
knowledge is frequently applied from a management perspective. 
However, limited work exists on how to best leverage intelligence 
when considering these human factors, and how to apply this 
knowledge to the study of Human-Machine-Interaction and the domain 
of autonomous systems. 

By studying established concepts within the field of intelligent 
manufacturing, this work examines the potential of developing robotic 
systems capable of intelligent data processing to enable adaptable 
behaviour which can be used to mitigate the effects of the variation in 
performance of human beings. This increased adaptability is necessary 
to enable changes in behaviour in response to the actions of others, 
facilitating collaboration with human colleagues. Consideration of the 
impact caused by human factors can be used to model the consequent 
variations in performance, and machine learning can be leveraged to 
enable the robotic agents to intelligently analyse the observed data, 
model the relationships between observed human performances, and 
respond properly to this contextual information.  

These human factors are complex, and the natural variation 
between human beings means that their effects are not consistent 
across a demographic, and their interactions and combined influence 
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quickly become an impossible task to model. However, by providing 
contextual knowledge based on these identified factors, and combining 
this with intelligent data analysis may potentially be used to predict 
and adapt in response to changes and variation; with the elimination of 
variation in performance between operations, enabling processes to 
achieve a more optimal and agile one-piece-flow, in line with modern 
application of lean-manufacturing methods [2]. 

The application of intelligence to robotic systems in such a 
manner is an area of work that is still in its relative infancy. This work 
seeks to answer how to capture task performance and the influence of 
human factors in a suitable manner, and how intelligence can be used 
to process this information so to improve and enable adaptability in 
robotic behaviour. In addition, it seeks to develop suitable methods for 
the contextual understanding of human performance and the factors 
which may influence it. Section 2 presents a comprehensive review of 
the current literature, covering a number of relevant areas from which 
knowledge will be amalgamated. Section 3 outlines the proposed 
framework which can be used to intelligently process observed data, 
and use the information obtained to effect an appropriate change in 
behaviour. Within this framework, we further develop the elements of 
intelligent processing to assess how such functionality can be 
achieved. Section 4 illustrates the developed methodology for 
developing a control system that functions in such a manner, and the 
simulation model to enable the implementation and on task assessment 
through the use of a case study. Section 5 presents the key results of 
both the learning model development, and the simulation evaluation, 
and these results, the key insights and implications are discussed fully 
in Section 6.  

II.  LITERATURE REVIEW 

A. Intelligent Manufacturing 
Intelligent Manufacturing is a wide-ranging field that is the result 

of the combination of a multitude of intelligent technologies and 
methodologies over the past decade, and which exists as a field of 
study in its own right. Large volumes of work are being done to 
develop the capabilities of manufacturing systems by utilizing these 
intelligent concepts to improve existing manufacturing processes and 
develop novel methodologies, making use of data and informatics [3].  
The most notable areas being: Control systems, making use of 
decentralization, virtualization, reconfiguration, and adaptability [4-
6]; Virtual and augmented reality systems, to enable knowledge and 
skill to be transferred easily between individuals and over distance [7]; 
and machine learning techniques for intelligent systems [8]. 

One of the most notable field to have arisen as a result is that of 
cyber-physical-systems(CPS) [9]; which combine digital processing 
and planning with physical manipulation. such systems on the 
utilization of data to generate knowledge about the process and 
environment, which can be used to influence the system control. These 
systems are capable of demonstrating a level of computational 
intelligence and are capable of autonomous: self-awareness & 
prediction; [10]; self-configuration [11]; and self-optimization [12]. 
Combined, these self-x capabilities enable improved adaptability; 
efficiency; functionality; reliability; safety; and usability [13]; Cyber-
Physical Systems are typically defined by their self-x capability and 
the degree to which they are able to generate knowledge from data, 
which in turn is used to provide different capabilities, with more 
advanced systems capable of autonomous planning, adaptation, and 

self-configuration [14, 15]. Current applications demonstrate success 
in system monitoring and control, but there is little work on applying 
these principles to improve human-machine-interaction, due in part to 
the sheer variety of potential applications. 
 
1) Decentralization of Control 

More recent advances in computer science have begun to enable 
advanced systems with a number of intelligent capabilities to be 
realized. The common factor which enables the emergence of these 
self-x capabilities is the decentralization of control. Existing control 
structures are bound by their centralized nature, as centralized control 
architectures employ a hierarchal structure. As production processes 
become increasingly complex, hierarchal structures present a number 
of problems and challenges when faced with enabling intelligent 
systems to behave in an autonomous and adaptable manner [16, 17].  
The distribution of control divides the computational demands, and 
reduces the overall system complexity, by dividing the control problem 
down into multiple tasks distributed to a number of agents, which 
coordinate their actions to achieve the given goal. Recent applications 
of intelligence to these autonomous agents have made use of machine 
learning (typically a neural network-based approach) to automate each 
agent's individual control and analytical processes and to control 
decision-making processes [18].  

What is key, is that the agents are autonomous, and able to receive 
individual sensory input, and are governed by individual beliefs and 
goals. Individual perceptive ability enables awareness of distinct 
internal and external environments, which in turn provides 
embodiment. The goals and beliefs of each agent govern the control of 
each agent, and internal functions can provide intelligent processing of 
observed information, to coordinate behaviour with other agents. 
Embodiment is a term used to describe each agent being aware of only 
the information that is individually observed or received. This enables 
different agents with an identical internal control structure, to respond 
to observed in different ways based on their individual cumulative 
experiences [19, 20]. Decentralizing control in this way necessitates 
the consideration of collaborative behaviour, which has itself been a 
key aim of robotics research for several years. Many examples of 
robots capable of displaying adaptive collaborative behaviour exist, 
however, the applications are typically physically oriented, and direct 
interactions, such as handling of unwieldy components, and for 
advanced manufacturing tasks. The intelligent agents which form these 
intelligent systems can be purely virtual, or a logical unit consisting of 
a combination of hardware and software capable of virtualization akin 
to elements of a CPS [21]. The structure of these agents further 
facilitates virtualization and simulation, as the necessary structure 
closely resembles that of Object-Oriented programming languages. 
Individual agents can be generated and represented by instances of an 
object within the model or simulation, each with protected and distinct 
internal and external structures and functions to facilitate their 
behaviour. The variation in behaviour that distributed control enables 
place simulation as a critical tool in developing distributed control 
systems, as the simulation is a powerful tool enabling the design, 
evaluation and subsequent optimization of intelligent agent 
performance on the representative and varied tasks in a repeatable 
environment [22]. A detailed overview of intelligent agents can be 
found in [23, 24].  

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

2) Agent structure & Design  
To enable intelligent processing of sensory data, consideration 

must be given to how the control system governing the agent should 
be structured to enable an adaptable and appropriate response. Studies 
aiming to understand cognitive processes as they occur in humans, and 
to replicate these cognitive processes, have led to the development of 
a number of cognitive architectures, which define the structure of 
control systems which enable intelligent behaviour. A number of these 
architectures exist, notable examples including ACT [25], SOAR [26], 
and C4 [27], but a common feature among many is a modularized 
structure, with multiple interacting separate elements responsible for 
different aspects of cognition. These architectures are dated and were 
conceptualized before the current capabilities of computational 
systems were fully understood, despite this, the insights with regards 
to structure and interaction are still valid today. The constituent 
modules are often structured around a centralized control unit, either a 
shared space or a module responsible for inter-module communication, 
which manages the internal thought processes. This thought process is 
then extended by the other modules to facilitate necessary behaviours; 
such as Perception, Learning, Decision-Making, and Memory. The 
modular structure additionally facilitates the integration of low-level 
perceptual and motor control systems with higher-level knowledge 
extraction and decision-making processes [28]. Isolating these areas of 
processing enables established control techniques for image capture 
and robotic motion planning to be used for control alongside higher-
level processing without interference. This separation is analogous to 
the distinction between two types of cognitive processing; Type 1 and 
Type 2. The former fast and intuitive; the latter slower, analytical and 
contemplative [29]. The relative reliance on each of these two types of 
cognitive processing is situationally dependent. Type 1 processing is 
typical in familiar situations where rapid response time is required, and 
where a large number of points of observation exist simultaneously. 
Conversely, situations where Type 2 processing is dominant, are those 
where response time is non-critical and focus on the specific 
relationships between a relatively small number of observations. These 
situations are typically unfamiliar, and analytical reasoning is used to 
identify relationships, to form appropriate behaviours [30, 31]. 
Multiple frameworks exist to implement intelligent computational 
features to achieve a level of cognition, although there are little 
consensus and a wide variance in their application and capability.  

 
3) Machine Learning 

Machine learning continues to gain traction and interest as a 
useful tool in the generation of knowledge from data [32, 33], 
particularly within the field of manufacturing [34]; as the use of 
machine learning techniques enables complex, non-linear and 
temporal relationships to be modelled easily through the use of 
historical data reserves. Neural networks have been successfully 
implemented in a number of applications and provide a non-
deterministic method of matching a number of input variables to an 
output, and for approximating relationships between multidimensional 
data. Their recent successes owing to capacity for analytics and pattern 
recognition; the ability to be abstracted and manage a large number of 
data inputs; and their adaptability to suit a wide variety of applications.  

Recent developments have resulted in a wide range of network 
structures. Recurrent networks include consideration of temporal 
patterns, and are used to process time-series data for pattern 
recognition; convolutional networks introduce multiple layers of 

abstractions and have been applied successfully to a number of vision-
based learning and recognition tasks; and deep reinforcement learning 
is used to produce optimal policy generation based on simulation and 
experience [35-38]. A thorough study of the topic can be found in [39-
41]. The utilization of neural networks as a learning model overlaps 
significantly with the field of cognitive computing a branch of 
computer science focused on replicating thought processes as they 
occur in the human brain. Typically, this is through the utilization of 
combinations of neural networks, to replicate cognitive processes [42, 
43]. This has potential implications for the facilitation of collaborative 
behaviour and the improvement of human-machine-interaction. 
Recent work on social cognition and social intelligence suggests that 
providing intelligent robots with social understanding, and human-like 
cognitive processes and structures, will better enable natural and 
intuitive behaviour when interacting with humans [44, 45].  

 
4) Collaborative Robotics 

Collaboration presents several problems for conventional 
computer architectures which traditionally have centralized and 
hierarchal structures. Systems based on the principles of distributed 
control have been proposed to overcome these challenges, as they 
enable adaptability through a reduction in the system complexity, by 
dividing complex problems such as task planning, into several smaller 
problems, which are distributed to a network of multiple intelligent 
agents, which collaborate with one another. The use of decentralized 
control to provide robotic entities with agency and a level of 
intelligence can facilitate collaborative interactions as the agents can 
autonomously adapt their behaviour in response the behaviour of 
others and coordinate their actions to achieve a common goal [15, 21, 
46, 47]. These agents require the capability to autonomously 
communicate and negotiate with one another in real-time, to align the 
behaviours of all constituent operators and processes to successfully 
complete the task [24, 48, 49]. Providing robotic operators with agency 
presents additional benefits for Human-Machine-Interaction by 
providing a sense of embodiment, which influences the way agents 
interact due to the unique nature of each agent’s cumulative 
experience. It enables agents with the same control structure to be more 
adaptable, and better select appropriate behaviours for multiple 
situations, as their responses are based on their own experiences. [19, 
50]. As the capability of autonomous systems increases, there is the 
suggestion that autonomous systems should begin to be treated as 
collaborators, as opposed to tools [51, 52] with appropriate attention 
given to implementing intelligence in a human-focused manner, with 
human ideals and constraints.  

As discussed, the extension of collaborative robotics and 
intelligent control to human collaboration is well studied in terms of 
physical tasks. Robotic operators are frequently employed in handling 
tasks to increase human strength, enabling the handling of large and 
unwieldy components [53]. These tasks have been improved through 
coordination of robotic and human operator motion, to facilitate safety 
in a shared work area through advanced collision detection. Learning 
methods have also been used for Direct-Teaching of robotic operators, 
combining the flexibility of human with the accuracy and repeatability 
of their robotic counterparts. This has enabled advanced 
manufacturing processes such as composite layup and welding 
fabrication to be automated and to achieve a similar finish and quality 
to human professionals [54-57]. There are other modes of 
collaboration which are more passive, whereby knowledge of others, 
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combined with context, can be used to inform behaviour [58, 59]. The 
knowledge and contextual information can be sampled from the 
environment, or observed directly, as used in techniques such as 
gesture control which is increasingly used for robotic control in 
human-machine-interactions [60]. Comprehensive analysis of the state 
of the art in computational HMI can be found in [61].  

Human operators are a source of disturbance to manufacturing 
systems and render most optimization techniques ineffective due to 
variation. No two operators will perform a task the same way, and there 
are multiple factors which influence human task performance. 
Knowledge of these factors and their influence on task performance is 
crucial to informing collaborative decision-making, as it captures the 
contextual information required to predict their influence. Once this is 
known, behaviour can be adjusted, facilitating collaborative control of 
the robotic system elements.  

B. Human Factors/Ergonomics 
Unlike their robotic counterparts, a multitude of factors exists 

which may affect human performance. The influence of these factors 
is typically expressed through the lack of repeatability, accuracy, and 
a variation in performance ability under different environmental and 
contextual conditions.  

Consequently, Human Operators are often a source of significant 
disruption to a system. This influence also extends the variation 
between different human operators, as the aforementioned factors 
influence behaviour and prevent consistent human performance to 
varying degrees depending on the individual. A large body of research 
has been conducted on human-factors from a business management 
perspective to investigate and model the influence of these factors on 
human operators in the manufacturing context. Current models use a 
finite reserve of cognitive resources, which are consumed in order to 
complete cognitive tasks [62]; and the mechanisms by which these 
resources are consumed are influenced by a number of different 
factors. This section discusses several of these identified human factors 
and their influence on task performance.  

The Type of Task, and how it can be characterized by its demands 
and nature is perhaps the largest source of human performance 
variability. The NASA developed ‘TLX’ framework [63] identifies a 
number of task types characterized by differing combinations of 
physical and mental demands. These task demand characteristics will 
influence the way in which a number of factors, such as the task 
duration, influence the perceived workload; with increased workload 
perception associated with decreased task performance. [63, 64]. 

Assembly tasks requiring manual and dexterous manipulation of 
components are influenced heavily by fatigue, as they require a 
combination of mental and physical demand. This fatigue will, in turn, 
influence task performance. Fatigue is a well-studied and complex 
phenomenon, which is commonly understood to exist in two distinct 
types: Physical, or motor fatigue, involving fatigue of the muscle; and 
cognitive, or mental fatigue resulting in the deterioration of cognitive 
functions [65]. The two types also do not occur independently, and are 
not entirely distinct, however, and there are known relationships 
between motor fatigue and increased nervous loading, which is in turn 
responsible for poorer response times in decision-making tests, and a 
decrease in motor control and physical function [66]. This relationship 
implies that dexterity can be detrimentally affected by increased 
cognitive loading.  In addition to the load requirements of the task, the 
time-on-task is another factor which influences the effects of fatigue. 

Fatigue is a cumulative phenomenon, and repeat demands will have a 
cumulatively greater effect on task performance [67]; additional 
factors, including the interstitial period of rest and their duration, 
further affect the fatiguing mechanism [68].  

Using the more traditional definition, fatigue also describes 
tiredness and the effects of sleep deprivation. Both the immediate and 
cumulative effects of sleep deprivation on performance have been 
studied, and both have a significant influence on performance [69, 70]. 
Human sleep patterns are governed by circadian rhythms which dictate 
periods of physiological activity and are closely linked to the time of 
day [71]. A number of patterns in these variations have been identified, 
termed chronotypes, with active periods in these rhythms are linked 
with increased motivation and task performance. There is a typically a 
preference for either morning (larks) or night (owls) activity; with 
corresponding decreases when task performance is measured at a non-
preferential time of day [72].  These circadian activity periods can 
often be influenced by light levels, with higher levels of illumination 
linked to improved task performance [73] and by satiety, which 
dictates many of the bodies physiological processes [74, 75] and is, in 
turn, influenced itself by a number of other factors. Other work has 
demonstrated the existence of an observable day-of-the-week effect, 
with decreased performance on Mondays, rising through the week to 
optimal performance on Thursdays [76]. A number of environmental 
factors, particularly temperature and noise, can all influence task 
performance if the level is excessive or susceptible to variation, and 
the impact of which is often to limit the ability to perform tasks 
concurrently [77, 78]. 

The last key contributing influence on human task performance, 
the impact of an individual's emotional state, is perhaps the most 
abstract. Whilst the influence of emotion on behaviour is generally 
well understood it is often overlooked from a human management 
perspective. The most influential emotional state is one of stress, the 
cause, and effects of which are some of the best-studied of these 
emotional factors [79]. Stress, like fatigue, is cumulative and is 
consistently found to have a significant and detrimental impact on task 
performance [80]. There is a close link between stress and frustration, 
a contributing factor to the perceived task workload [63], as a stressed 
mental state or a stressful task generate frustration which in turn 
propagates additional stress. Recent work in the field of social 
intelligence and cognition aims to use learning techniques to predict 
emotional states from the observation of actions and behaviours [31, 
81], which can be used to identify and account for these emotional 
states.  

C. Summary 
The preceding section has examined much of the recent literature 

within the scope of intelligent manufacturing. What is clear, is that 
there is substantial opportunity for the increased capability of modern 
computer systems and computer science techniques to improve 
manufacturing. Less obvious is how such opportunities can be 
capitalized upon, and there remains, crucially, no agreed upon methods 
or systems for achieving the theoretical benefits of intelligent systems. 
This is due in part to the relative infancy of the field, and the effectively 
limitless number of applications and their associated problems. 
Theoretical studies of thought and how autonomy and adaptability can 
be replicated through the use of computation are abundant in 
overlapping fields, and many of the insights and methods from both 
the fields of cognitive computing and multi-agent-systems are valid. 
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Much of this work is outdated, however, and the capability of modern 
systems far exceeds those for which these frameworks were designed. 
A key aim of such systems is to enable adaptability within the robotic 
elements of manufacturing systems, a goal which great steps have 
already been taken to achieve. However, despite the ubiquity of human 
workers and the obvious disruption that is associated with human 
performance is an area that remains to be addressed. The benefits that 
adaptation can provide within the manufacturing setting are clear, and 
consequently, there is justification to apply these methods to the 
problem of human performance variation and the associated problems 
this can introduce to these systems. 

III. DEVELOPMENT OF RESEARCH FRAMEWORK  
The literature review provides numerous insights into how the 

incorporation of intelligence into manufacturing systems can facilitate 
adaptable behaviour of robotic operators. Decentralization of 
manufacturing control systems to individual robotic operators can 
enable intelligent analysis of their observations. Such analysis can 
improve collaborative behaviour, through the appropriate selection of 
action based on the observed state of the process. 

By considering a typical manufacturing control process, two 
independent disciplines can be seen: Data collection, concerned with 
data generation, collection, transfer and storage; and Robotics, that 
accounts for the elements of robotic control, connecting the virtual to 
the physical, through traditional methods. These disciplines exist 
separately, but are ever more closely linked, as data-driven robotics 
systems become more commonplace. In such systems, control systems 
receive binary signals from sensors (data collection), which are passed 
to a PLC, triggering the appropriate response logic (robotics). The use 
of the information generated by this data can be seen in the framework 
illustrated in Figure 1. 

To enable the intelligent processing of this data, the authors 
propose the following framework, which aims to outline the necessary 
interactions between these different systems, in a fashion suitable to 
enable adaptability and collaborative behaviours. The presented 
framework illustrates the flow of data and information necessary to 
effectively collect, store, interpret, and act on data generated by a 
control process. This is primarily achieved by the addition of an 
intermediary Cognitive Layer which contains its own modular 
elements (illustrated in Figure 2), to implement the necessary data 
processing steps in an efficient manner. Such processing will enable 
intelligent response to changes in the perceived environment and 
facilitate agency in the robotic systems.  

Within the presented framework, three distinct stages now exist. 
The first of these encompasses the methods and processes associated 
with data collection, a vast topic in its own right, with many inherent 
problems. The available methodology for data collection is application 
specific, and the framework identifies the critical processes and 
capabilities that the data collection method must possess. The robotic 
operators’ data controller must minimally have the capacity to gather, 
store and transfer multiple data instances in a manner that enables 
compatibility with the computational components. 

Data generated within a typical manufacturing process can 
additionally be defined as being from one of two sources: Process 
data; The data elements directly related to the parameters of the 
process; and Environmental data; any supplementary data which can 
be used to extract information deemed relevant to the application. 

Notable consideration must be given to capturing and appropriately 
recording the relevant data at this stage, which can be generated from 
a combination of these sources. 

Figure 1. Existing information processing systems illustrated in terms 
of information flow through the system. 

Figure 2.  The proposed framework illustrated in terms of 
information flow through the system. Divided into three functional 

layers. 

Critical to enabling the use of machine learning methods is the 
capability to store and collate historical data. The historical data 
reserves must also be available to the controller, and able to be passed 
through to the cognitive layer for processing.  

The intermediary stage is the proposed cognitive layer which 
enables intelligent processing of the data. The layer is based on the 
modular structure seen in existing cognitive architectures. Each of the 
modules combines a number of functions and processing steps and is 
responsible for a different area of cognition. Three of these modules 
are proposed initially, covering key areas of processing. The first 
receives data from the data collection system through an appropriate 
interface before additional functions perform the necessary pre-
processing transformations for the data to be useful to the application. 
This is analogous to Perception, whereby the observed data and the 
information it contains is affected by the beliefs and aims of the 
observer. Such processing enables deduction of more useful data 
instances, for example, establishing a cycle time by looking at the 
timestamp separation of execution of two different sensor activations.  

The analytics module isolates the learning and analytical 
processing of the cognitive layer. This isolation of these more focused 
cognitive processes more easily enables the integration with low-level 
control; the responsibility of the cognitive controller. The learning 
mechanism here can be used to build a predictive model to associate 
patterns seen in the observed data with the relevant value. This 
observed data is supplemented here by additional knowledge, which is 
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not directly observable by the agent. This may include additional 
contextual information, such as shift patterns or production targets.  

The Perception and Analytics modules are supported by an 
underlying Cognitive Controller, which manages the information flow 
through the cognitive layer. It manages exchanges of relevant data 
between the different modules and uses the predictions of the analytics 
module to dictate the operations and parameters of the robot to exhibit 
the necessary functionality. The cognitive layer is additionally 
responsible for passing the relevant command instructions via an 
appropriate I/O interface to the robotics controller where they can be 
enacted.  

The final stage of the framework isolates those stages concerned 
with traditional robotics. The control signal generated by the cognitive 
controller is passed through the I/O interface (to convert the 
information to the application-specific format) where it is received by 
the traditional Robotic Controller. In many robotics applications, the 
interface will send instructions to a Programmable Logic Controller 
(PLC) for execution. The PLC is then responsible for generating the 
necessary command signal for the motors and actuators to affect the 
relevant motion of the robot. The operation of the robot results in an 
action, which influences the system, which will affect the recorded 
environmental and process data, forming a feedback loop. Separating 
these steps provides a clear distinction between the digital and physical 
domains of the system, and isolates the elements of control planning 
(an additional element of cognition identified in existing cognitive 
architectures) which are necessary to effect the correct motion of the 
robotic operator. This separation facilitates the division of cognition 
into higher-level reasoning and preserves necessary elements of 
reactive action. This action can still be enacted by sensors directly 
connected to the robot controller (i.e. in the case of kill-switches and 
collision/fault-detection), in addition to reducing the computational 
load of the processing. Using established techniques and technology 
from more traditional automation will facilitate implementation and 
compatibility.  

The architecture proposed in this section demonstrates how an 
intermediary cognitive layer, can be utilized within the control systems 
of robotic elements of the manufacturing process, to provide adaptive 
functionality, based on knowledge of human factors, and real-time 
contextual information observed from the environment. The presented 
case study is intended to demonstrate the potential feasibility of 
inclusion of knowledge of human factors and to further understanding 
of how the analysis of generated data may be used to predict and 
account for the uncertainty caused by human beings and improve 
production processes through adaptability. Within the framework, 
knowledge of how the decision-making module can process and 
interpret generated data, to extract this knowledge remains to be 
established.  Preliminary work suggests that machine learning 
techniques can be used to provide a learned policy to associate 
observed contextual data which captures the influence of human 
factors with the appropriate impact on performance.  

IV. METHODOLOGY 
To investigate the intelligent analysis of the generated data 

several tasks must first be accomplished. As discussed, the focus of 
this investigation is how to appropriately generate knowledge from 
data typically captured from manufacturing processes. The following 
section outlines the methodology for approaching this work.  

To enable exploration, a simulated environment was developed 
using the AnyLogic simulation platform [82], a Java-Based simulation 
platform designed for Agent-based, Discrete Event and System 
Dynamics simulation approaches. This combined functionality, and 
the ease of integration with external Java Libraries, best suited the 
applications of this work. The simulation environment was designed 
to replicate the collaborative interactions between a single Robotic 
Operator (RO) and a Human Operator (HO), working to achieve the 
common goal of product assembly as part of a production line. The 
simulation by design enables exploration of these interactions in a 
generalized manner. This is achieved by discretizing specific sub-
operations into logical ‘cells’, which enables the methodology to be 
applied to a non-specific manufacturing operation defined only by its 
duration or Cycle Time (CT) at each position. The interaction 
dynamics are then reduced to an upstream and downstream position, 
which are in turn defined as their own logical combination of sub-
operations discretized into a cell. The cells of each operator are 
separated by some form of transport method for the partially completed 
products (typically a conveyor), which often doubles as a buffer zone. 
Design is typically seen in production processes between operations. 
This formation of the problem in this way is illustrated in Figure 3. 
Such interaction also bears similarity to fetch-and-deliver type 
interactions more traditionally studied in the field of human-machine 
interaction, where one agent must provide the other with an object for 
them to perform their task. 

Figure 3.  The model developed and the corresponding Anylogic 
simulation, each cell contains a delay and data capture function. 

A. Human Factors Modelling 
Whilst the simulation environment primarily functions as a 

platform to evaluate on-task robotic performance, it is also used to 
generate data for training the learning algorithms. To achieve this, the 
components of the simulation representing human operators are 
parameterized to replicate both the variation between different 
operators and the effects of human factors on their performance. As 
the number of potential human factors is significant, in this study, a 
number of human factors relating to fatigue are considered, as this has 
the most significant influence on human performance across almost all 
types of task. To achieve this, a number of variables were used to 
modify the human task performance during simulations runs to 
represent different aspects of fatigue. The Cycle Time, calculated as 
the total time duration between products leaving each cell, was 
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selected to represent the task performance within the simulation. This 
value could be manipulated through the use of the defined variables to 
represent the effect on task performance.  

The Shift Duration (SD), was monitored and used to influence the 
task performance, by increasing the Cycle Time gradually over the 
duration of the simulation. This decrease in task performance enables 
the effects of fatigue resulting from time-on-task to be represented. To 
replicate the effect of the time-of-day and the improved performance 
seen in afternoon shifts, A Shift Modifier was also included and used 
to influence the set Cycle Time Value. This was incorporated using a 
variable value set to 1.0 representing no effect or (100%), which can 
be reduced and multiplied by the set CT value to reduce by the desired 
percentage. Additionally, a Weekday Modifier was included to 
reproduce the effects that weekday variation has on performance. This 
was achieved in the same manner as the shift-modifier, with a value 
which agreed-upon between simulation runs. These values reflect the 
effect of the identified human factors, but these will influence 
individuals to a varying degree. To account for this, the relevant 
parameters used for each operator can be set as required to replicate a 
variety of influence and susceptibility.  These values are arbitrary in 
the presented case study but will hypothetically enable our learning 
model to track and account for these influences. The influence of 
environmental effects was not considered as their impact on 
performance is comparably negligible if maintained at suitable levels. 

 

B. Dataset Construction 
The generated data is collated and used to form a dataset to train 

the neural network. For all machine learning tasks, initial consideration 
must be given to the dataset. The dataset generated consists of four 
input features, the Operator Number (ON), Shift Number (SN), Shift 
Duration (SD), and Weekday (WD) values forming each data instance 
with the corresponding cycle time as the label. Consideration of these 
data points will allow for the prediction of the performance of the HO 
by the RO based on historical performance. Additionally, patterns in 
performance that are independent of an individual HO are more easily 
established by aggregating the performance data for each operator into 
one singular dataset. To achieve this, a total of fifteen simulation runs 
were performed using a static behaviour for the robotic operators, as 
seen in existing automation applications.  The data from each of these 
simulation runs are collated to form a dataset containing a total of 
approximately 7500 data instances. Each of these simulation runs 
represents one day of operation, and consists of three shifts, am, 
midday, and pm, each performed by a different human operator. The 
operator assigned to each shift was varied to represent the performance 
of each operator across the full range of working conditions; this was 
done every 5 simulation runs representing a working week. Generating 
the dataset in this way enables performance to be analysed and patterns 
to be resolved over multiple timescales. 
 

C. Simulation Integration 
Developing a machine learning model to model the relationships 

between the observed information and the resulting performance 
impact is a key aim of this research. A neural network approach was 
selected to achieve this, due to their wide applicability and use as 
function approximators, given the complex nature of these 
relationships. The neural network development was done using the 

Java-based DeepLearning4j (DL4J)[83] library due to its proven 
capability and to provide integration with the Java-based simulation 
platform. This integration enables evaluation in a dynamic task 
environment. To initially assess the feasibility of the approach, a 
simplistic single-layer-perceptron type network was defined, to 
perform a multidimensional regression and provide a predicted 
numerical value for the CT of the human operator when provided with 
an observed data instance. This value can then be used to inform the 
speed of movement, or the potential order of operations to reduce the 
disparity in performances, minimizing the idle times, and consequently 
improving the fluency of the interaction.  

For all machine learning tasks, initial consideration must be given 
to the dataset. The dataset generated as detailed in the previous section 
consisted of data instances containing the observed cycle times as 
labels, and four input features associated with human task 
performance. The data instance is input to the network, passed through 
the hidden layers which encode the input/output mappings, and a result 
is received at the output node in the value for the human cycle time. 
Standard techniques for data pre-processing to improve accuracy were 
considered, and the dataset was collected and divided into a training 
set and an isolated test set and shuffled. 

Sigmoid activation functions were chosen to enable the combined 
input of discrete and continuous data. To do this, each attribute was 
normalized according to its type. The SD attribute, a continuous value, 
was normalized over a range of -1 to 1, to prevent saturation of the 
sigmoid activation functions. Categorical values were encoded with a 
‘one-hot’ normalization, which treats each category as a set of binary 
input nodes, resulting in 11 total input nodes: 3 values for the ON, and 
SN attributes, and 5 values for the WD attribute. For the output layer, 
a RELU activation was chosen, to output a corresponding real value 
that could be interpreted using the same normalization weights as the 
training data and used as a prediction based on an input observation. 
Additionally, dropout with a rate of 1 was added to the hidden layer to 
help prevent overfitting.  

The Java classes which define the Neural Network behaviour can 
be packaged using Maven to produce a Java Archive file (.jar), which 
can be included in the AnyLogic model as a Dependency to allow 
access to both the defined classes, and the larger DL4j library. The 
simulation was further developed by including these packaged libraries 
as dependencies and enabling the functionality to obtain a predicted 
value for the CT based on the observed environment using the trained 
neural network. Function calls can then be made at runtime to the java 
class containing the neural network passing information about the 
current simulation state to the Network through the function 
parameters to receive in return a predicted value. 
 

D. Performance Metrics 
In addition to evaluating the accuracy of the neural network 

during training, integration of the learning element into the simulation 
environment was necessary to evaluate the performance when faced 
with a representative task. This enables a more accurate assessment of 
the developed model in terms of how well such an approach can be 
used for real-time adaptive control. Whilst the analytical module is 
only a small part of the larger framework, developing the functionality 
to enable intelligent processing and adaptable behaviour is key to 
realizing the potential of intelligent manufacturing systems. 
Developing a model which is able to provide accurate predictions 
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based on observation will contribute to further understanding of the 
suitability of the approach.   

Training of the neural network was done using a backpropagation 
approach to iteratively determine appropriate weights for each node. 
The use of backpropagation requires multiple passes through the 
dataset referred to as epochs, and the specification of a learning rate, 
to effectively train the network. Additionally, the number of nodes to 
include in the hidden layer remained to be determined. A learning rate 
of 0.01 was selected to mitigate vanishing gradients at the expense of 
training time; as the output range was relatively small. The Epoch and 
Number of Hidden Node parameters were evaluated using an 
exhaustive search approach. The DL4J library provides functionality 
for evaluation, for the hyperparameter optimization, each evaluation 
used the isolated test set, and the Root-Mean-Squared-Error (RMSE) 
was selected as the loss function, calculated using Equation.1: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �(�(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2)/𝑛𝑛) 
𝑛𝑛

𝑖𝑖=1

                            (1) 

This network configuration was then evaluated using a cross-fold 
validation, percentage split, and the previously isolated test dataset. 
Expectedly, evaluation of the isolated test set was the poorest, despite 
the test data being of similar form to the training data.  

The predictions made by the module will be used to dictate and 
inform the larger decision-making processes performed by the 
respective agent, and consequently must be available in real-time. 
Within the simulation, these predictions will be used to modulate the 
RO’s speed parameter with respect to the predicted human 
performance, to match its own cycle time to that of the current HO in 
the downstream position. As a result, the interstitial buffer zone will 
remain clear, the number of Workpiece-In-Progress (WIP) will be 
reduced, and the observed idle time will decrease, indicating improved 
interaction fluency. 

V. CASE STUDY 
To evaluate the methodology the simulation model was 

parameterized to match an example real-world scenario, which 
involves the assembly of disposable surgical devices. The process 
takes place in a clean room, and a number of robotic operators 
constitute the production line. Within the operation, there are several 
cells where tasks are completed by human operators. Individual 
manufacturing cells are separated by transport conveyors with a 
limited number of fixed positions, and consequently a low and 
definable capacity. The production line has been generally well 
designed and optimized, but the presence of human operators remains 
a source of disturbance, due to their variation in their respective cycle 
time. Baseline measurements were taken of typical cycle and process 
timings from the production process, which was used to 
representatively parameterize the simulation model based on an 
average HO CT of 45 seconds for the observed operation. 

In the first instance, the simulation run using static RO behaviour, 
to act as a control case, and to generate useable performance data in 
sufficient quantity, based on the identified human factors. Based on a 
nominal observed cycle time for the specific manufacturing operation 
of 45 seconds, three HO’s were then defined to represent a range of 
susceptibility to the impact of the identified human factors. This was 
achieved by adjusting this value using the model parameters. Operator 
1 is intended to be an experienced operator, with a faster than nominal 

CT of 40 seconds. Performance is decreased by 20% however over the 
shift duration to account for fatigue and the likelihood that the effect 
is increased due to faster repeat action. Operator 2 is intended to 
represent an average case, with a nominal base CT of 45 seconds based 
on process timings taken from the physical production line. No fatigue 
influence was included. Operator 3 represents a new operator, who is 
slower in operation, with a CT of 50 seconds, and a reduced fatigue 
influence of 10%.  The influence of the time of day was also 
considered, and the simulation parameterized accordingly. Operators 
1 and 3 were considered Owls and are susceptible to decreased 
morning performance represented by a 10% increase in cycle time 
during morning shifts, reducing to 0% in the afternoon. In a similar 
manner, the weekday modifier was set to decrease performance by 10% 
on Monday, and the influence gradually shifts to a 10% performance 
increase on Thursday, to replicate observed working patterns. 
Assuming a linear evolution over the shift duration from no fatigue 
effect to maximum effect, the fatigue modifier is calculated by 
considering the elapsed shift duration vs the total shift duration (7200 
seconds) and the percentage increase in cycle time, as per Equation 2. 
This enables the calculated cycle time for each human operator to be 
obtained via equation (3): 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆

� ×  (1 + %𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
100

)         (2) 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶 ∙  𝑊𝑊𝑊𝑊 ∙  𝑆𝑆𝑆𝑆 ∙  𝐹𝐹𝐹𝐹            (3) 
 

Where, WM, SM, and FM, are the corresponding weekday, shift 
and calculated fatigue modifiers respectively. The relevant modifiers 
used for each of the identified human factors can be seen for each 
operator in Table.1.  

Table 1.  Breakdown of the values used to modify the CT for each 
operator for given states. 

Operator Number 1 2 3 

Base Cycle Time 40 45 50 

Fatigue Modifier (End of shift) 1.2 1.0 1.1 

Shift Modifier AM 1.0 1.0 1.0 

Shift Modifier Midday 0.95 1.0 0.95 

Shift Modifier PM 0.9 1.0 0.9 

Weekday Modifier Monday 1.0 1.1 

Weekday Modifier Tuesday 1.0 1.05 

Weekday Modifier Wednesday 1.0 1.0 

Weekday Modifier Thursday 1.0 0.95 

Weekday Modifier Friday 1.0 1.0 

  
The data is sampled by the robotic operator from the simulation 
environment to form a data instance each time a product is completed 
by the HO. This instance contains the identity of the operator currently 
working, the previous Cycle Time, the elapsed shift duration, the shift 
number, and the day of the week. These data instances are initially 
collated into a dataset (as is commonly done by data acquisition 
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systems), as described in section 4.2. This dataset is then subsequently 
used to train the neural network, allowing the value of a number of 
hyperparameters to be established. Once the neural network is trained, 
models of HO performance can be generated by the network, as 
presented in the methodology.   

To evaluate the performance of the control system, the trained 
network was integrated into the simulation model, and the additional 
analytical capacity robotic operator's control system used to predict the 
optimal RO operation speed based on the observed values of the HO. 
Upon completion of each task, the robotic operator makes an 
observation of the simulation environment as described above. This 
instance is then passed to the neural network and a prediction received 
in real-time. The RO speed is then adjusted to match the returned 
prediction. These combined processes can be related to the functional 
elements of the framework presented in Figure.2. The task completion 
event triggers an observation which is passed by simulation to the 
agent. This instance is pre-processed as relevant before the internal 
logic of the agent provides the instance to the neural network, which 
functions here as the Data-Analytics module identified in the 
framework. The network returns its prediction, and the agent’s logic 
determines the resultant action. In this implementation, to adjust the 
speed of the action to adjust its own cycle time to match that predicted 
for the collaborating HO. 

The capacity of the interstitial buffer was limited to 10 products, 
to replicate the real-world system, although this value is essentially 
arbitrary. Each human operators’ shift lasts for two hours, and the Shift 
changes occur for the HO’s at 7200 seconds and 14400 seconds. Upon 
each shift change, the parameters controlling the human operator 
within the simulation are updated, without resetting the simulation 
environment.  

Given the great success of neural networks at such function 
approximation tasks, it is hypothesized that using the generated dataset 
to train the machine learning model should enable the robotic operator 
to effectively predict the effect of the human factors on the 
performance, based on the observed values. As with most machine 
learning applications, this is likely to require refinement for optimal 
performance.  

If the learning model is able to successfully make these 
predictions and effect changes in the robotic behaviour in such a 
manner, it is hypothesized that using these predictions to adjust the 
operation speed to match that of the human operator will reduce or 
possibly completely eliminate the time which the robotic operator 
spends idle awaiting the completion of the human operators’ task. This 
will facilitate collaborative behaviour, in these kinds of human-
machine interactions by reducing the observed idle time of the robotic 
operator, improving the interaction fluency.  

As the developed learning model is still relatively simplistic, it is 
unlikely the predictions made will be accurate to a degree which will 
enable perfect one-piece flow, and as such, the continued use of 
interstitial buffers between operations may eliminate most of the 
observed idle times from the manufacturing process.  

It is also hypothesized that the capacity of these buffers may be 
greatly reduced from existing levels, as any disparity is likely to be 
minimised and these buffer zones to remain unfilled. This will 
additionally reduce the number of workpieces in progress at any given 
time, without reducing the total throughput of the system.  
 

VI. RESULTS 

A. Neural Network Training 
The neural network was trained using a backpropagation 

approach to determine suitable node weights, as discussed in the 
methodology section. The use of backpropagation requires multiple 
passes through the dataset referred to as epochs, and the specification 
of a learning rate, to effectively train the network. Additionally, the 
network configuration, including the number of hidden layers, and the 
number of nodes in these layers needed to be established. A learning 
rate of 0.05 was selected to mitigate vanishing gradients at the expense 
of training time; as the range of the output variable was relatively 
small. This minimal output range proved to be a problem during early 
development, as the gradients would often converge and become stuck 
at local minima. The inclusion of dropout to the hidden layers, (with a 
100% certainty rate, to randomly remove one connection at each 
parameter update) proved to reduce this occurrence and improve the 
predictive ability greatly. The Epoch and Number of Hidden Node 
parameters were evaluated using an exhaustive search approach which 
was repeated for each of the layer configurations, runs were performed 
for one and two hidden layers to determine whether there is an 
advantage in increasing the depth of the network. The DL4J library 
includes a number of evaluation functions. To evaluate the 
hyperparameters, the Root-Mean-Squared-Error (RMSE) was selected 
as the loss function, and each evaluation used an isolated test set. The 
results are presented in Figure 4. 

Figure 4.  heatmap of RMSE scores, from red (highest) to blue 
(lowest) for the number of hidden nodes against the number of 

epochs trained.  For a) 1 hidden layer and b) two hidden layers. 
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From the heatmap, the variations in performance can be 
visualized, and a number of conclusions drawn.  The networks can all 
be seen to converge within a small number of epochs, as a continuous 
range of output variables is quickly reduced to the observed range. As 
the out range is relatively small, a large number of iterations is needed 
to reduce the error to a level where differentiation between instances 
is possible. Increasing the number of training epochs may eventually 
lead to overfitting, although this is unlikely the case in this application 
as the feature set is relatively small compare to the number of data 
instances. The heatmaps also show that training past ~500 epochs leads 
to minimal improvements in accuracy at the expense of considerable 
training time. The additional hidden layer can be seen to add 
significant complexity, as the errors are initially higher and converge 
slower, with a minimal gain in predictive accuracy. The single hidden 
layer networks can be seen to introduce less error and train more 
consistently, whilst benefiting from lower training times. As such, a 
number of potential network configurations can be identified from the 
heatmap: the 15-hidden-node, 18 hidden-node, and the 22 hidden-node 
configurations all look viable and result in comparatively low RMSE 
scores after 500 training epochs. The learning rate of the 15-node 
configuration is the most stable; with a low initial error that shows 
progressive improvement as the training progresses in contrast to both 
the 18 and 22 node configurations, in addition to reducing the network 
complexity and computation demands. Consequently, the design of a 
single-layer and 15 hidden-node was selected for use in the simulation, 
despite the 18 and 22 node configurations lower RMSE scores. 

B. Simulation Results 
Once the optimal parameters were established, the simulation was 

again run using the trained network. In the static simulation case, the 
RO cycle time was fixed at 40 seconds, the result of which is a 
cumulative idle time of more than 4000 seconds over the total duration 
of the simulation due to the interstitial buffer being filled, and the RO 
having to wait for space to become available.  

Figure 5a) plots the idle time and workpieces in progress, against 
time; for the total duration of the simulation run, for the static 
simulation case. When the RO follows a static behavioural routine, the 
cumulative idle time can be seen to be influenced by the number of 
workpieces in progress, as once the buffer zone is fully occupied (10 
products in the presented simulation) the RO must wait for space to 
become available within the buffer, clear before it is able to resume 
operation. The interstitial period prior to the available buffer space is 
represented as the plateau before the idle time begins to increase. 
Figure 5b. plots the buffer contents for the dynamic behaviour case, 
using the neural network predictions to inform the operator's speed. 
The buffer contents never exceed 5 units, and there is no resultant idle 
time observed. 

Figure 6 plots the simulated human operator cycle times against 
the neural network's predictions used to govern the cycle time of the 
robotic operator. The results are shown for simulation runs over a 
working week and contains several features. Comparing the predicted 
values to those observed enables several insights about the 
performance of the neural network on identifying the influence of each 
of the human to be observed. The sharp distinctions in the Robotic 
Operator cycle times in Figure 6 suggest that the neural network is able 
to successfully identify the performance of the multiple operators, and 
the proportional increases of both the predictions and observed cycle 
times suggest that the influence of the task duration is also able to be 

approximated. Combined, Figures a) through e) illustrate the network 
predictions for each day of the first working week simulated. Operator 
2, in this case, the central set of cycle time measurements, is 
susceptible to this influence only. By considering the plotted values, 
the range and predictions can be seen to decrease over the week 
duration proportionally to the influence of this modifier, suggesting the 
network is able to distinguish successfully this influence. 

Figure 5. Cumulative idle time and buffer contents against shift 
duration for static behaviour case; b) Buffer contents against time for 

dynamic behaviour contents for each weekday. 

Figure 6. RO CT and HO CT over time for a) Monday, b) Tuesday, c) 
Wednesday, d) Thursday, e) Friday. Random element seeds are 

changed between runs, ensuring appropriate variability when the 
same conditions are imposed. 

Figure 7 plots the same values as Figure 6 but highlights how the 
shift order influences the predictive capability. What can be seen is that 
the neural network error varies proportionally to the variation 
introduced by the weekday modifier, for operators 1 and 3 whom it 
effects, suggesting that the network is able to follow the changes in 
performance based on time of day preference, as the predictions and 
errors can be seen to move consistently when comparing am and pm 

a a) 

b) 

a) b) 

c) d) 

e) 
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shift performance. Additionally, there appears to be no influence on 
the networks ability to predict the performance of operator 2 who is 
not susceptible to the influence of the shift modifier.  

 

Figure 7. RO CT and HO CT over time for Monday shift of three 
weeks and corresponding shift orders a) 123, b) 231, and c) 312. 

These results suggest that the neural network is able to account 
for the influence of the human factors which were modelled and that 
there is likely an unaccounted for factor preventing the network from 
resolving values more accurate to the performance level of operators 2 
and 3. Operator 1 consistently occupies an output range of 
performance that has limited overlap with the performance of 
operators 2 and 3. As such, the offset could be a result of the output 
range having significant overlap, and the contradictory influences of 
the multiple factors. To determine if the network breadth would lead 
to increased predictive ability, a 22-node network was configured and 
trained and used to inform the simulation for a number of similar 
scenarios. Figure 8 illustrates some of these, and comparison to the 15-
node network case suggests that the network structure is not 
responsible for the loss of accuracy, and in fact, the 22-node 
performance is subjectively worse for the extreme cases.  

Figure 8. RO CT and HO CT over time for a) Monday 123, b) 
Monday 312, c) Thursday 123, d) Thursday 312, illustrating the 
predictions of the 22-hidden-node network. Results are mostly 

consistent with 15 node network for all scenarios. 
 
Crucially, the neural network is able to reduce the observed 

disparity and reduce the overall idle time of the system, however, 
significantly more work is needed to move towards a system capable 
of perfect one-piece-flow. These trends in predictive capability can be 

seen to remain consistent across the order of operators and different 
timescales. 

VII. DISCUSSION 
What can be seen for the results most clearly is that adaptation of 

the robotic operator behaviour leads to an overall reduction in the idle 
time of the robotic operator accumulated over the duration of the three 
shifts. The reduced idle time can be said to improve the fluency of the 
interaction, consequently improving the collaborative abilities of the 
robotic element. The findings demonstrate that systems capable of 
understanding the variations in the performance of human operators 
enable behaviours to be adapted, based on the observed actions of the 
human counterpart. This adaptability has the potential to be usefully 
leveraged by reducing the disparity in performance. This supports the 
authors’ hypothesis that the integration of intelligent manufacturing 
concepts can be used to alleviate the uncertainty caused by the human 
element of these systems; that such an approach is well suited to aiding 
collaborative task performance; and is achievable with simple, proven 
methods and available hardware.  

The presented methodology may also further understanding of 
how simulation can be used to explore the efficacy of machine learning 
algorithms, by enabling functional, application-based testing in a 
controlled environment. Simulation environments can be designed 
using powerful tools and established methodologies of discrete event 
simulation to replicate any number of manufacturing processes. By 
using the integration methodology detailed, bespoke machine learning 
solutions can be tested in an isolated and yet detailed and 
representative environment. Discrete event simulation models are 
frequently used to inform engineering and business decisions and 
expanding the capability of these models may allow for novel 
solutions. 

The work highlights the value of pursuing adaptability in robotic 
control systems and improves knowledge as to how machine learning 
and principles of intelligent manufacturing should be used to overcome 
uncertainty within production processes. Reducing disparity in these 
applications can be seen to reduce the demand for buffer space to 
manage one-piece-flow like production, and adaptability applied in 
this fashion may enable improvement to processes where one-piece-
flow is currently not able to be implemented, due to buffer or time in 
system restrictions.  

Furthermore, the work also highlights the importance of making 
use of information from a number of disciplines, specifically, and in 
contrast to existing Human-Machine-Interaction approaches, how 
knowledge of the influence human factors on performance can be used 
to inform adaptable behaviour in robotic operators and enable 
collaborative behaviours to be enacted in response to observed human 
behaviours. The authors hope that the presented findings will further 
exploration of the application of intelligence to human-machine 
interaction in this way and contributes to knowledge that is required as 
machines and computers in all aspects become more capable, 
intelligent, and responsive; and their interactions with humans become 
more common. Methodologies to ensure that these machines are able 
to interact and process information in an appropriate manner are 
essential to developing alongside the technological capability to do so. 

From neural network development, additional insights can be 
revealed. It can be seen that the network structure has a significant 
impact on the training process and achievable accuracy. This suggests 

a) b) 

c) d) 

a) b) 

c) 
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that the network structure is a crucial factor in enabling efficient and 
effective intelligent data processing and that bespoke structures ad 
investigation are likely to be required depending on the available 
dataset, its contents and its structure. Increasing the depth of the neural 
network could be seen to minimally improve the network accuracy, at 
the cost of decreasing the stability and performance during training. 
The networks take longer to converge, and are more susceptible to 
local phenomena, due to the increased number of constituent nodes. 

Whilst the presented neural network can be seen to enable a 
reduction in performance disparity, there remain sources of 
inaccuracy. Additional consideration must be given to factors 
associated with processing real-world data, noise, missing values, and 
additional randomness associated with Human-Beings as yet 
unaccounted for improvement to performance and predictive ability 
could result from re-structuring or division of the dataset. Training of 
networks on multiple datasets containing information describing 
individual days, shifts, or the performance associated with each 
individual operator may influence how the network is able to 
approximate the influence of human factors.  

The application of machine learning techniques is not an exact 
science, and a certain level of iterative development is necessary to 
develop networks capable of accurate and reliable prediction. Further 
work on more advanced network architectures should enable 
increasingly accurate and capable models to be developed, in line with 
more demanding learning tasks, and to overcome the challenges 
associated with real-world data. In addition, multiple networks can be 
combined to include multiple other factors in the decision-making 
process. Other intelligent functions, including memory and perception, 
share the modular nature of analytical thinking. Further work is 
planned to further investigate how reconcile the strengths of multiple 
types of network, such as convolutional neural networks, which enable 
information to be extracted from visual systems, or recurrent networks, 
which provide the capacity for memory, enabling the network to more 
accurately determine temporal patterns in the dataset without the need 
to extrapolate global patterns.  

It is important to discuss the fact that whilst the presented case-
study is thoroughly explored, a full validation of the proposed 
framework requires substantially more work and consideration of a 
number of different applications, a task that is ongoing. This remains 
one of the crucial challenges in intelligent manufacturing and human-
machine-interaction, as no established standards for validation exist. 
Developing such standards is no small task, as almost all solutions 
require a bespoke set of components and processes to achieve their 
own required functionality; additionally, the sheer possibility of 
variation between human beings and different manufacturing scenarios 
compounds the difficulty of such a validation task. The next stage of 
this work will begin training these models and conducting an 
evaluation using real-world data and developing simulations to further 
validate this method across a wider range of tasks and scenarios that 
may potentially be encountered.  

VIII. CONCLUSIONS  
The aim of the presented research was to further understanding of 

how to better enable collaborative, intelligent behaviour in human-
robot-interaction within the manufacturing context. A crucial element 
of this is the ability to understand how associated human factors may 
lead to an unstable and varied performance in human colleagues. The 

presented solution demonstrates that a simplistic model is able to make 
appropriate predictions to inform decision-making, which in turn 
enables adaptable, and autonomous behaviour for working with 
different human individuals; and to do so in a real-time setting. The 
work highlights the benefits in terms of collaborative behaviour that 
the application of intelligence within manufacturing facilitates. 

This work represents a portion of a larger and ongoing project on 
the application of learning to facilitate intelligent behaviour in human-
machine-interactions, and further research is planned to investigate 
these topics. 
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