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Abbreviation Meaning 

[dHb] concentration of deoxy-hemoglobin 

ASL arterial spin labeling 

BOLD blood oxygen level dependent 

CBF cerebral blood flow 

CBV cerebral blood volume 

CMRO2 cerebral metabolic rate of oxygen consumption 

CO2 carbon dioxide 

HC hypercapnia 

HO hyperoxia 

MNI montréal neurological institute 

MRI magnetic resonance imaging 

O2 oxygen  

OEF oxygen extraction fraction 

pCASL pseudo-continuous arterial spin labeling  

PETCO2 end-tidal pressure of carbon dioxide 

PETO2 end-tidal pressure of oxygen 
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Abstract (200 words) 

 Structural and calibrated magnetic resonance imaging (MRI) data was acquired on 44 

collegiate football players prior to the season (PRE), following the first four weeks in-

season (PTC), and one month after the last game (POST). Exposure data collected from g-

Force accelerometers mounted to the helmet of each player was use to split participants into 

HIGH (N=22) and LOW (N=22) exposure groups, based on frequency of impacts sustained 

by each athlete. Significant decreases in grey-matter volume specific to the HIGH group 

were documented at POST (P=0.009), compared to baseline. Changes in resting cerebral 

blood flow (CBF0), corrected for partial volume effects, were observed within the HIGH 

group, throughout the season (P<0.0001), suggesting that alterations in perfusion may 

follow exposure to sub-concussive collisions. Co-localized significant increases in cerebral 

metabolic rate of oxygen consumption (CMRO2|0) mid-season were also documented in the 

HIGH group, with respect to both PRE- and POST values. No physiological changes were 

observed in the LOW group. Therefore, cerebral metabolic demand may be elevated in 

players with greater exposure to head impacts. These results provide novel insight into the 

effects of sub-concussive collisions on brain structure and cerebrovascular physiology, and 

emphasize the importance of multi-modal imaging for a complete characterization of 

cerebral health. 
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Introduction 

 

 Athletes who participate in collision sports are exposed to a large number of sub-

concussive head impacts within a season, and throughout their career.1,2 A sub-concussive 

impact occurs from a direct or indirect impact to the head, where mechanical forces are 

transferred to the brain and may alter axonal integrity3,4 or neural functioning,5,6 without the 

presence of clinical or neurobehavioral symptoms. This, along with increasing awareness 

that head trauma may induce long-term changes in neuroimaging biomarkers,7,8 has led to 

growing interest in integrating multi-modal imaging with helmet biometrics to understand 

the effects of repeated head impacts on brain health. More insight on the vulnerability of 

cerebral tissues to repetitive head trauma may provide better understanding of the 

relationship between microvascular injury and the origins of early pathologies observed in a 

sample of retired professional athletes.9,10 

 Recently, season-long exposure to repeated sub-concussive impacts in collegiate 

football players has been associated with an increase in cerebral blood flow (CBF).11 More 

importantly, these changes were more prominent in athletes who sustained greater counts of 

higher threshold impacts (>80g), on a per practice basis, suggesting that both the frequency 

and magnitude of sub-concussive collisions may contribute to transient changes in baseline 

cerebral physiology. In line with research on repetitive head impacts,7,12,13 
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pathophysiological changes in resting cerebral perfusion may indicate alterations in 

metabolic demand, in response to the cumulative microtrauma and shear stresses that are 

transferred to cerebral tissues, upon exposure to sub-concussive trauma.7 These force 

loading mechanisms may induce structural brain damage and neuropathological sequalae 

that are triggered independently of concussive symptoms,7 which in turn, may increase 

cerebral regulatory processes that maintain basal neuronal activity, and possibly, respond to 

cellular injury.14 Structural changes in grey-matter integrity following sub-concussive 

collisions may also bias perfusion-based findings, given that CBF is quantified per 100 g of 

tissue,15 emphasizing the need to correct for possible changes in partial tissue volumes 

when assessing the effects of head impacts on cerebral physiology to avoid 

misinterpretation of results. 

 Despite evidence of changes in CBF,11 little is known about the effects of repeated 

sub-concussive impacts on resting oxygen extraction fraction (OEF0), defined as the 

percentage of oxygen removed at the capillary level from the blood to the tissues. OEF0 

fluctuations counteract changes in CBF0, by way of the inverse relationship between 

capillary transit time (based on CBF0) and oxygen extraction.16,17 Together, CBF0 and 

OEF0 provide direct insight into the homeostatic processes needed to maintain cerebral 

metabolism,16,17 which can be measured using the cerebral metabolic rate of oxygen 
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consumption (CMRO2).
18–20 From these measurements, changes in energy utilization may 

provide information about the link between exposure to sub-concussive impacts, and local 

alterations in oxidative metabolic processes. Historically, the preferred method to map 

resting CMRO2 (CMRO2|0) has been with triple oxygen positron emission tomography 

(O15-PET).21 However, this method is not suitable for longitudinal studies due to the 

associated exposure to ionizing radiation. A recently proposed, and non-invasive, 

alternative is the so called dual-calibrated fMRI method, or QUO2 MRI,22 which utilizes the 

simultaneous acquisition of arterial spin labeling (ASL) and blood oxygen level dependent 

(BOLD) data. This method allows for quantitative hemodynamic mapping of important 

physiological parameters including OEF0, and CMRO2|0, to gain insight into the 

physiological mechanisms underscoring changes in blood flow. 

 In this study, collegiate football players were followed longitudinally using 

volumetric and calibrated MRI to evaluate the effects of repeated sub-concussive head 

trauma on brain structure and resting cerebrovascular physiology. Measurements were 

recorded pre-season, within season and after a post-season recovery period, along with 

helmet accelerometry data, in order to relate documented findings to cumulative exposure. 

We hypothesized that increases in CBF0 relative to baseline would be observed in players 

with greater exposure to sub-concussive head impacts, and that these would be concurrent 
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with elevated measurements of CMRO2|0. We also hypothesized that these parameters 

would return towards baseline at the post-season time point, after one month of rest with no 

exposure to repetitive head trauma. Finally, we predicted that players with higher exposure 

would also show significant changes in grey-matter volume over time, as an index for 

changes in the structural integrity of the brain. 
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1. Material and methods 

 

1.1. Participants  

 This study was approved by the Queen’s University Health Sciences Research 

Ethics Board (Kingston, ON, Canada) and informed consent was obtained from each 

participant. The study number was SURG-399-17 (file number: 6021022). A total of 44 

Canadian male collegiate football student-athletes, varying in positions, were recruited to 

participate in this study.  All subjects were scanned before the season (‘PRE’ group), within 

two months prior to participation in full contact practices (Figure 1). None of the athletes 

enrolled in this study were recovering or suffering from post-concussion symptoms at the 

time of the scan, or in the year prior. 

 Neuroimaging was repeated in-season following the 14-day training camp period 

and the first two regular season games (post-training camp; ‘PTC’ group), and post-season, 

one month following the last competitive game (‘POST’ group; Figure 1). Of the 44 

players recruited from baseline testing, nine were removed from the PTC cohort prior to 

scanning (three concussions and six season-ending injuries), for a total of 35 follow-up 

subjects. Of these 35 athletes, two sustained a concussion during the second half of the 

season, and two suffered a season-ending injury. Thus, a total of 31 players (Figure 1) from 
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the original cohort returned for the final time point (POST), approximately 30 days after 

their last participation in contact activities.  

 At each time point, subjects were also asked to complete the symptom evaluation 

section of the Sport Concussion Assessment Tool (3rd edition; SCAT-3),23 in order to 

monitor changes in self-rated symptoms throughout the season. 

 

1.2. Monitoring of head impact exposure per session 

Cumulative exposure to sub-concussive head impacts was monitored for all 

participants using helmet-based accelerometers (gForce Tracker, GFT; Hardware version 

GFT3S ver4.0, Artaflex Inc., Markham, ON, Canada), which provided measures of linear 

acceleration (g) and rotational velocity (/s), by impact location. The head impacts were 

categorized as ‘top’, ‘front’, ‘right’, ‘left’, and ‘back’. Sensors were mounted inside the 

helmet shell, to the left of the crown air bladder.24 Sensor data was collected during all 

games and practices (including training camp), using a trigger threshold of 15 g, in order to 

comply with existing literature validating the GFT system.24 

 

1.3. Respiratory manipulations 

 Each session consisted of two functional MRI acquisitions collected separately with 

different breathing challenges: one hypercapnia (HC), and one hyperoxia (HO). The 
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breathing manipulations consisted of a 2-minute baseline period, followed by a block of gas 

inhalation (2-minute for HC and 3-minute for HO), and a 2-minute recovery period (Figure 

2A). A break of approximately 2 minutes was given to each subject between the protocols, 

during which additional imaging was acquired (M0; see below). HC and HO blocks were 

induced using a feed-forward computer-controlled gas blending system (RA-MRTM, 

Thornhill Research Inc., Toronto, ON), connected to a sequential gas delivery circuit. End-

tidal pressures of CO2 (PETCO2) and O2 (PETO2) were sampled continuously via lines 

connecting the subject to the automated system (Figure 2A). Prior to entering the magnet 

bore, subjects were fitted with a facemask sealed using adhesive tape (Tegaderm, 3M 

Health Care, St. Paul, MN, US). Subjects were then familiarized with the hypercapnic 

breathing paradigm using a condensed version of the protocol (1 minute).  

 During HC, PETCO2 was targeted at 10 mmHg above the subject’s baseline using a 

hypercapnic gas mixture blended with medical (21:79% O2:N2) and CO2 enriched air 

(10:21:69% CO2:O2:N2). PETO2 was clamped at a baseline value of 110 mmHg. During HO, 

PETO2 was targeted at 300 mmHg, while PETCO2 was maintained at baseline values (Figure 

2A).  

 

1.4. Magnetic resonance imaging data acquisition  
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 Imaging data was acquired using a Siemens 3.0T Magnetom Tim Trio system with 

a 32-channel receiver head coil. A whole-brain T1-weighted MP-RAGE (magnetization 

prepared rapid acquisition gradient echo) image was acquired for segmentation and 

registration using the following parameters: TR=1760 ms, TE=2.2 ms, time of inversion 

(TI)=900 ms, voxel size=1 mm isotropic, field of view (FOV)=256 x 256 mm, flip 

angle=9, receiver bandwidth=200 Hz/pixel, scan duration=7 minutes and 32 seconds.  

 BOLD and CBF data were acquired simultaneously throughout the breathing 

manipulations using a dual-echo pseudo-continuous arterial spin labeling sequence 

(pCASL)25 with echo planar imaging (EPI) readout: TR=4000ms, TE1/TE2=10/30ms, 

FOV=250x250 mm, flip angle=90°, voxel size=3.9 mm isotropic, slice gap=0.773 mm, 

label offset=100 mm, receiver bandwidth=2604 Hz/pixel, and EPI factor=64. The label 

duration was set to 1665ms, while the post-labeling delay (PLD) ranged from 1000 to 

2291ms, based on the multislice single-shot EPI imaging readout, which caused a different 

PLD in each slice acquired (average PLD=1647ms). This correction was accounted for in 

the computation of CBF maps (see below). 25 axial slices were acquired on a 64x64 matrix 

(7/8 partial Fourier) in ascending order for whole brain coverage using parallel imaging 

(GRAPPA acceleration factor=2). For quantification of CBF, a tissue equilibrium 

magnetization map (M0) was acquired using the same pCASL parameters, with a longer TR 
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(15000ms) and no spin labelling. EPI images were calibrated using a pre-scan normalized 

image acquired using the body transmit/receiver coil. This step served to correct for 

inhomogeneities in the receive sensitivity of the 32-channel head coil.  

 

1.5. Data preprocessing 

 Data from this study was preprocessed using a combination of FSL,26 AFNI,27 and in-

house designed Matlab (MATLAB 2018b, The MathWorks, Inc., Natick, Massachusetts, 

United States) scripts. Prior to reconstruction of each signal, non-brain tissues were 

removed using the brain extraction tool (BET), followed by automated motion correction 

(FSL MCFLIRT).28,29 FSL’s epi_reg tool26 was then used to co-register and align each 

subject’s HO and HC in native space, while combining topup30,31 and boundary-based 

registration32 to improve alignment between functional scans. Following automatic 3D 

segmentation of the structural T1 image (FAST),33 the individual’s extracted GM mask was 

re-sampled linearly into low-resolution native space using a reversed rigid-body 

transformation matrix (6 dof; FLIRT)28 that aligned the EPI image to the structural 

anatomical scan.  

BOLD images were isolated from the corrected pCASL series using a surround 

averaging of the second echo series (TE=30ms).34 The BOLD data were then spatially 
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smoothed using a Gaussian kernel of 8mm with SUSAN,26 and high-pass filtered26 to 

address signal drift during the EPI acquisition. CBF data was reconstructed using a linear 

surround subtraction of the first-echo ASL image (TE=10ms), between the adjacent tag and 

control frames and spatially smoothed (8mm full width at half maximum Gaussian kernel). 

To account for confounding effects of motion artefacts on ASL signal, and possible over-

estimation of CBF, the BOLD and perfusion timeseries from each breathing paradigm were 

despiked (3dDespike, AFNI) using an upper range of 2.5 standard deviations. The perfusion 

data were then converted into absolute physiological units (mL/100 g tissue/min) using 

FSL’s oxford_asl toolbox,35 with partial volume correction,36 in order to reduce the partial 

volume effects from neighboring voxels containing a mixture of GM, white-matter and 

cerebrospinal fluid, as well as the possible confounding effects of changes in tissue 

integrity over time. The “t2star” option was also selected to correct for T2* effects in the 

computation of CBF maps. The differences in PLD between each slice (i) due to the two-

dimensional EPI readout were accounted using PLDi = 1000ms + (sT)*(i-1), where sT 

represents the slice time in seconds (sT = 53.8ms). For images acquired during baseline and 

HO breathing, the inversion efficiency (αinv) was set to 0.84. During HC, αinv was set to 

0.80 to account for the higher blood flow velocity in the feeding arteries, as a response to 

the higher arterial CO2 content.37 The vasoconstrictive effects of hyperoxia on CBF38 were 



Corresponding author: Douglas J. Cook 16 

obtained from the dual-echo imaging data, and incorporated into the calibration model. To 

account for the reduction in arterial blood T1 (T1b) during HO, due to higher plasma 

concentration of paramagnetic O2,
39,40 the T1b of blood was adjusted on a per-volume basis 

during CBF quantification based on the method proposed in Germuska et al. (2016; 

Appendix A.1.2),41 and the linear relationship between R1 and PaO2.
42 

Grey matter volume maps were computed using steps extracted from the voxel-based 

morphometry pipeline in FSL.31 Briefly, segmented grey-matter tissues from the T1 

anatomical scans were spatially transformed to the GM ICBM-152 template using affine 

(12 dof),28 and non-linear warp-fields (FNIRT).43 The spatially normalized maps were then 

used to create a symmetric study-specific grey-matter template, in order to avoid biases in 

the analysis based on morphological differences in tissues across subjects. Individual grey-

matter maps were finally re-registered non-linearly to the grey-matter template and 

multiplied by the Jacobian warp field (“modulation step”), followed by smoothing. These 

maps were then used for the volumetric statistical analysis of the grey-matter, over time 

(see below), based on exposure. 

 

1.6. Computation of hemodynamic parameter maps 
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The first 5 volumes of each pCASL timeseries were removed to allow the respiratory 

pattern to reach steady-state. Volumes acquired during baseline and stimulus periods were 

averaged (Figure 2) to create mean baseline, hypercapnic and hyperoxic images. Next, the 

BOLD and CBF signal changes associated with the step HC and HO (Figure 2B-C) were 

used to calculate the M parameter (the theoretical maximal percent change from complete 

removal of deoxyhemoglobin), on a voxel by voxel basis, described in the original BOLD 

calibration model:44 

𝑀 =  

∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷0

1−(
𝐶𝐵𝐹

𝐶𝐵𝐹0
)

𝛼
∙(

[𝑑𝐻𝑏]

[𝑑𝐻𝑏]0
)𝛽

.                                                                                                          𝑬𝒒. (𝟏)  

In Eq. (1), and hereafter, BOLD0, and CBF0 represent baseline values whereas variables 

without subscripts represent fractional changes estimated from the HC and HO respiratory 

manipulation. These were calculated using the final 80 s period of the stimulus block (120 

s), given that delays in the vascular response may affect the rapid transition period from 

baseline.45–47 The Grubb coefficient (), representing the non-linear coupling between flow 

and venous volume,48 was set to 0.18.49 The parameter , which represents the non-linear 

relationship between changes in deoxy-hemoglobin concentration ([dHb]) and R2
*, was set 

to 1.3 (appropriate for field strength of 3.0T).50 
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Baseline normalized [dHb] is a function of the changes in arterial oxygen content 

(CaO2), OEF0, and fluctuations in flow throughout the breathing protocols via Eq. (2):51 

[𝑑𝐻𝑏]

[𝑑𝐻𝑏]0
= (

𝐶𝑎02|0∙𝑂𝐸𝐹0

𝑥

1−
𝐶𝑎02|0

𝑥
∙(1−𝑂𝐸𝐹0)

) ∙ (
𝐶𝐵𝐹0

𝐶𝐵𝐹
) + (

1−
𝐶𝑎02

𝑥

1−
𝐶𝑎02|0

𝑥
∙(1−𝑂𝐸𝐹0)

), where 𝑥 = 𝜑 ∙ [𝐻𝑏].         𝑬𝒒. (𝟐) 

In Eq. (2), the O2 carrying capacity of hemoglobin (𝜑) was set to 1.34 mL O2/g (Hb), while 

the total concentration of hemoglobin ([Hb]; oxygenated and deoxygenated) was assumed 

to be 15 g (Hb)/dL blood. Resting (CaO2|0) and stimulus (CaO2) oxygen content were 

derived using the Severinghaus equation52 to get arterial hemoglobin saturation (SaO2) and 

Eq. (3), which represents the sum of the oxygen bound to hemoglobin (first term) and 

dissolved in plasma (second term): 

𝐶𝑎𝑂2 = (𝜑 ∙ [𝐻𝑏] ∙ 𝑆𝑎𝑂2) + (𝑃𝑎𝑂2 + 𝜀).                                                                      Eq. 

(3) 

In Eq. (3), PaO2 was replaced by the mean PETO2 for each block, and 𝜀 (0.0031 mL O2/dL 

blood/mm Hg), which represents the solubility of O2 in plasma.51  

M (Eq. (1)) and OEF0 (Eq. (2)) were solved simultaneously on a voxel per voxel 

basis using the Gauthier method51 to find a unique solution at the intersection of both 

functions, while integrating data from each breathing manipulation (see Figure 1 in 

Gauthier et al. (2012) and Supplementary Figure 1A-D). Due to the low SNR in ASL, the 

low-resolution GM mask was used to limit the application of this method to GM voxels 
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only, which are likely to provide better signal. Because flow changes in HO should be 

minimal,46,53,54 the GM-averaged T1-corrected CBF for baseline and HO were used as 

inputs in Eq. (2) for the hyperoxic challenge. CMRO2 was assumed to be constant 

(𝐶𝑀𝑅𝑂2 𝐶𝑀𝑅𝑂2|0⁄ = 1) in this model (iso-metabolism).49 

 From here, individual voxelwise CMRO2|0 maps corrected for partial volume effects 

were computed using: 

𝐶𝑀𝑅𝑂2|0 = 𝐶𝑎𝑂2|0 ∙ 𝐶𝐵𝐹0 ∙ 𝑂𝐸𝐹0 ∙ [39.34
𝑢𝑚𝑜𝑙

𝑚𝑙
] ,                                                        𝑬𝒒. (𝟒) 

where CBF0 was estimated from the baseline perfusion volumes preceding HC, with 

adjustments for partial volume estimates (Supplementary Figure 1E-F). 

 

1.7. Data analysis 

Functional maps (e.g. CBF0, OEF0 and CMRO2|0) were warped into 2mm MNI space 

using concatenated linear and non-linear transformations that registered native images to 

standard space, via the high-resolution anatomical scan. Prior to alignment onto the 

standard template, the individuals’ GM masks were filtered in low-resolution space using a 

T2
* map, which was derived from fitting the native multi-echo log-transformed signal with 

a linear regression (𝑇2
∗ = −∆𝑇𝐸

log (𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝐸2 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝐸1⁄ )⁄ ; Supplementary Figure 

2A).55 This was done in order to eliminate voxels with baseline T2* values below 30ms, 
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which are likely caused by susceptibility artefacts (Supplementary Figure 2B), and thus, 

may bias the analysis of hemodynamic parameters over time. The subject’s filtered GM 

mask (thresholded at 40%) were finally resampled into 2mm MNI space, for further 

analysis of the physiological parameters. 

Prior to the statistical analysis, two exposure groups were determined based on the 

daily exposure data recorded from the helmet accelerometers, between the PRE and PTC 

time points. Following computation of the average count of threshold impacts per session, 

the median of the sample was used to split the 44 participants into two equally sized 

groups: “LOW” (below the median) and “HIGH” (above the median) exposure. The LOW 

group served as the control for this analysis, in order to account for possible variations in 

CBF0, OEF0 and CMRO2|0 over time that may be independent of exposure to sub-

concussive impacts.  

Volumetric and corrected CBF0 maps were assessed for significant changes over time 

using a two by three factors mixed ANOVA, in order to account for each time point 

(within-subject; PRE, PTC, POST), both exposure groups (between-subject; LOW, HIGH), 

and missing data throughout the season due to injuries. This analysis was restricted to 

filtered GM voxels only. Significance from the voxelwise analysis was corrected for 

family-wise error at P<0.05 and a parameter-specific cluster size determined using Monte 



Corresponding author: Douglas J. Cook 21 

Carlo simulations (10 000 iterations) in AFNI’s 3dFWHMx (with spatial AutoCorrelation) 

and 3dClustSim.56 Significant clusters from the interaction between time and exposure were 

then used to extract regional volumetric and CBF0 measurements and run post-hoc tests to 

understand the direction of the group differences based on time. Significant clusters from 

the CBF0 analysis were also used to extract regional OEF0 and corrected CMRO2|0 values 

from each subject, in order to test for co-localized changes in metabolism, based on the 

effects of both exposure and time. Prior to the analysis of the regional values extracted from 

the clusters, the normality of each parameters’ distribution was tested using the Shapiro-

Wilk W-test. If not normally distributed, parameter values for each subject were log 

transformed before statistical comparison in IBM SPSS statistics (version 24.0, SPSS Inc., 

Chicago, IL, USA). Baseline PETCO2 values for each time point were used as a time-

varying covariate variable when comparing CBF0 and OEF0.  
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2. Results 

2.1.  Data-driven grouping for exposure based on helmet biometrics 

The helmet accelerometer data was used to split subjects into a LOW and HIGH 

exposure group based on a median average frequency of impacts per session equal to 9.21 

(Figure 3A). The LOW group (meanage=20.21.2 months, meanweight=91.313.2 kg, 

meanheight=184.85.4 cm) consisted of eight defensive backs (DB), four defensive linemen 

(DL), one fullback (FB), one kicker (K), three linebackers (LB), one quarterback (QB), two 

safeties (S) and two wide-receivers (WR).The HIGH group (meanage=19.71.6 months, 

meanweigth=96.311.8 kg, meanheight=185.85.7 cm) included two DBs, five DLs, seven 

LBs, one offensive lineman (OL), one FB, one running back (RB), one S, two tight-ends 

(TE) and two WRs. The maximum number of impacts per session was also compared 

between the groups to show that HIGH exposure players sustained greater high impact 

sessions, relative to the LOW group (average maximum impacts in single session for LOW 

= 23.3  10.4 impacts and HIGH = 42.6  21.9 impacts; P<0.0001). There were no 

significant differences (P>0.05) in age, height or weight between the two exposure groups 

(i.e., LOW vs. HIGH).  

Further statistical analysis of the helmet kinematic data based on the LOW vs. HIGH 

exposure groups showed that the HIGH exposure players also sustained greater average 
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peak rotational velocity per session (LOW=413.754 /sec and HIGH=456.572 /sec; 

P=0.018), although no differences in mean linear acceleration per session were documented 

between the exposure groups (LOW=31.13.8 g and HIGH=32.43.5 g; P=0.079). Finally, 

statistical analyses of the count of impacts per location also revealed that the HIGH 

exposure group sustained more impacts on all sides of the helmet per session recorded, 

compared to the LOW exposure players (Figure 3B). 

 

2.2. Respiratory data 

No significant differences in baseline PETCO2 and PETO2 was documented across the 

three time points, for each group, except small fluctuations ( 3 mmHg) in PETO2 for the 

LOW exposure players (Table 1). Additionally, subjects from each group were exposed to 

similar hypercapnic and hyperoxic gas challenges during the breathing manipulations, 

indicated by the constant magnitude of change in PETCO2 and PETO2 across all time points 

(Table 1). 

 

2.3. Volumetric differences based on exposure and time 

Overall, there were no significant interaction between exposure and time on the 

SCAT-3 symptom scale (P = 0.473) and severity scores (P = 0.128).  
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Voxel-wise volumetric analysis of the grey-matter volume maps revealed a 

significant interaction between exposure and time over widespread regions of the brain 

(Figure 4). Five significant clusters (corrected for a minimum size of 148.6 voxels) were 

localized across both the left and right hemispheres, with specific focal points spread 

around the frontal, parietal, temporal and occipital lobes (Table 2). 

 Post-hoc mixed ANOVA testing for the effect of time within each group indicated a 

difference in grey-matter volume for the HIGH exposure players over time (P = 0.026). 

Further pairwise comparisons within this group showed that grey-matter volume was 

reduced (P = 0.009) at POST (0.53  0.04 mm3), in comparison to the PRE-season time 

point (0.55  0.03 mm3). No significant differences were documented in the LOW group (P 

= 0.226). 

 

2.4. Exposure-specific changes in hemodynamic parameters over time 

T20
* filtering of the grey-matter maps removed approximately 41 % of voxels, on 

average, across subjects. These were more often located within the temporal and inferior 

frontal lobes.  

Voxelwise analysis of CBF0 maps corrected for partial volume effects showed a 

significant interaction for time and exposure (Figure 5A) in three large clusters (Table 2) 
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spread over the frontal lobe, and the superior region of the right and left parietal lobes. 

Post-hoc analysis of the regional perfusion measurements for the main effect of time 

showed that significant differences were driven by alterations in CBF0 within the HIGH 

group (Figure 5B; P=0.001). More specifically, CBF0 was decreased at the POST time 

point, compared to both the PRE (P=0.002) and PTC (P<0.0001) measurements. CBF0 at 

PTC was not statistically different compared to the PRE-season values (P=0.203) when 

corrected for the confounding effects of time-varying PETCO2 (P<0.0001).  

In order to assess the physiological mechanisms underlying changes in perfusion, 

regional OEF0 and CMRO2|0 measurements were also extracted from the voxels highlighted 

in Figure 5A. No significant interaction between exposure and time was observed for 

changes in OEF0, and thus no further post-hoc tests were conducted. This was true for 

statistical testing of OEF0 with (P=0.521) and without (P=0.596) corrections for the 

confounding effect of PETCO2 over time (P<0.0001). Despite no change in OEF0, 

significant fluctuations in regional CMRO2|0 were identified across time points, based on 

exposure (Figure 5B; P=0.029). More specifically, CMRO2|0 measurements were found to 

change significantly over time for the HIGH group (P=0.020), with higher CMRO2|0 values 

observed at the PTC time point, compared to both the PRE (P=0.035) and POST (P=0.008) 

values. No significant differences were recorded between the PRE and POST time point 
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(P=0.345). Lastly, no significant effect of time was documented within the LOW exposure 

group (Figure 5B; P=0.243). 
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3. Discussion 

3.1. Main findings 

 The present study is the first to combine volumetric and quantitative calibrated 

MRI, along with helmet accelerometers, to explore the effects of repeated sub-concussive 

impacts on brain structure and cerebral physiology. The main findings of this study are 

three-fold: (1) In the HIGH group, significant changes in grey-matter volume were 

observed following the season, after one month of no contact activity, suggesting that brain 

structure may be altered longitudinally following exposure to head impacts. (2) Decreased 

CBF0 after the season, corrected for partial volume differences, was specific to players with 

greater daily exposure to sub-concussive impacts. (3) Significant increases in CMRO2|0 

mid-season were observed in the HIGH group, which, following one month post-season, 

returned to baseline values. Altogether, these findings support the hypothesis that exposure 

to repeated sub-concussive impacts to the head may be associated with sub-acute changes 

in brain structure and resting physiology, emphasizing the need to monitor the frequency of 

such impacts in football athletes throughout the season. 

 

3.2. Time-specific fluctuations in structural integrity and resting cerebrovascular 

physiology 
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Currently, the literature on the structural and neurophysiological effects of exposure 

to sub-concussive impacts is limited.57 However, some studies have demonstrated that 

subtle alterations in hippocampal volume,58 cognitive function,5 and biochemical and 

functional markers59–62 can all be found in collision sport athletes, despite the lack of a 

diagnosed concussion. In this study, decreases in grey-matter volume were identified post-

season in the HIGH group. This is in line with previous findings in soccer players,63,64 

suggesting that exposure to head impacts may be associated with structural differences 

longitudinally. Though some changes in hippocampal volume pre- and post-season were 

reported in Slobounov et al. 2017,11 these were not statistically significant, making findings 

from this study the first to be put forward in a cohort of collegiate football athletes, and 

contribute to the literature on the effects of sub-concussive impacts on brain structure. 

Differences in grey-matter volume may indicate changes in the cellular integrity of the 

tissues,65 although additional animal work is required to better understand the relationship 

between repeated microtrauma and changes in tissue morphology.7  

In addition to structural changes in the grey-matter, changes in perfusion were also 

specific to players within the HIGH group, suggesting that sub-concussive head impacts 

may be associated with transient changes in resting physiology. Here, lower resting 

perfusion was observed at the recovery time point (POST), relative to both PRE and PTC 
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time points, suggesting that changes in regional brain perfusion persisted at one month 

following the end of the season, and no exposure to contact. No significant changes in 

CBF0 with respect to baseline were documented at the PTC timepoint, which differs from 

findings in Slobounov et al. 2017,11 who reported global and regional increases in resting 

perfusion following exposure to sub-concussive impacts. Differences in CBF0 reported in 

Slobounov et al. 2017,11 compared to this study, may be confounded by the differences in 

the length of exposure between the baseline and follow-up MRIs, which was much shorter 

in this study (~1 month), as opposed to an entire season in Slobounov et al. 2017.11 Their 

design also did not account for time-varying changes in end-tidal CO2, which was found to 

covary significantly with changes in CBF0, in this study. 

 CMRO2|0 was increased in the HIGH group after onset of participation in contact 

activities, which was in line with our original hypothesis. These results suggest that football 

players in the HIGH group had greater resting metabolic demand in-season, compared to 

both baseline and post-season time points. Group-specific differences in CMRO2|0 over 

time contribute evidence for the hypothesis that the frequency of sub-concussive impacts is 

related to changes in resting cerebral physiology, proposed by Slobounov et al. 2017.11 

Higher regional CMRO2|0 at the PTC time point may result from regional increases in 

cellular O2 uptake due to inefficiencies in oxygen utilization,66 or, greater consumption of 
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energy (in the form of ATP) in order to meet elevated metabolic demands in response to 

shear stresses,14 or trauma from mechanical stretch of the neurons.67 In both scenarios, the 

observed increase in CMRO2|0 would ensure that the brain is supplied with adequate energy 

pre-cursors, which may be directed towards re-establishing ionic homeostasis and 

membrane potential disturbed following cellular damage.68–70 While elevated CMRO2|0 

measurements in the HIGH group returned towards baseline values one month following 

the end of the season, CBF0 was significantly reduced post-season within the region of 

interest (Figure 5B). In healthy tissues, decreases in CBF0 are typically counteracted with 

higher OEF0, in order to maintain homeostatic balances between delivery, and consumption 

of oxygen. Here, in the HIGH group, persistent OEF0 values POST-season, in line with 

measurements from PRE and PTC, suggest that decreases in flow (or maintained OEF0 

values) may be a physiological response from homeostatic mechanisms attempting to 

balance cerebral metabolic demands.  

 

3.3. Using helmet biometrics as an index for subject-specific differences in 

exposure to head impacts 

Knowledge about the differences in exposure to head impacts across football 

positions71,72 has been used to classify players and explore the relationship between 
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microtrauma and acute or long-term changes in brain biomarkers.6,73 Though this is 

common practice, the distribution of positions between the LOW and HIGH group in this 

study suggests that careful consideration should be made when assigning athletes to 

different groups based on their predicted exposure to head impacts. It is likely that certain 

positions such as OLs, DLs and LBs may often be assigned to the HIGH exposure group.72 

However, there also seems to be a certain degree of unpredictability and overlap in 

positions like WRs, DBs, and even DLs, who vary widely in terms of their exposure to 

head impacts per session, likely due to individual differences in playing style and 

technique. Additional factors like differences in aggressivity,74 and/or starting status,1 can 

also play a critical role in determining how often players sustain impacts to the head, during 

a certain time period. Thus, moving forward, neuroimaging studies of head impacts should 

strongly consider using helmet telemetry in order to properly identify hitting profiles within 

each athlete, and adequately separate participants based on their own individualized 

behavior, and not the expectation for a position, or body size.  

 

3.4. Limitations 

During the calibration, [Hb] was assumed to remain constant across all time points 

throughout the season. However possible variations in [Hb] over time, or between the 

groups, based on changes in hematocrit levels due to fitness75 or mental stress76,77 for 
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instance, may also have contributed to the observed changes in resting cerebral metabolism. 

This effect was likely minimized in this design given that group-differences documented 

over time were extracted based on exposure to head impacts in players from varying 

positions, included in each experimental group (LOW vs. HIGH; see section 2.1). Little to 

no differences in CMRO2|0 (or CBF0) were observed in players who sustained lower 

exposure to sub-concussive impacts during the timeline studied. Furthermore, because in-

season training is heavily focused on strength and fitness maintenance built during the off-

season, possible fluctuations in [Hb] over time may have been limited. Future designs 

should however aim to collect a sub-sample of blood in athletes studied, over time, in order 

to provide more insight about possible variations in [Hb] during the season and improve the 

calibration approach. 

Other modeling parameters such as  and  were chosen based on existing 

literature,51 although more recent methods have presented novel ways to estimate such 

parameters.78 These methods may improve the estimation of OEF0, although they also 

present with methodological limitations, and still require additional validation across 

different clinical populations. In this design, the  constant was used to estimate changes in 

CBV indirectly via changes in CBF during the gas manipulations, based on the power-law 

relationship.48 The lack of direct CBV measurements limits our ability to estimate regional 
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CMRO2 using the biophysical model, as  may vary depending on the experimental 

conditions.79 Future designs may consider the use of vascular space occupancy (VASO)80 

in order to determine CBV experimentally,81 and possibly improve calibrated CMRO2 

measurements.82 

In this study, a nominal PLD of 1000ms was used to acquire the ASL signal, which 

was adjusted on a slice-by-slice basis due to the 2D EPI readout. ASL measurements of 

CBF are dependent on the selection of the PDL, which inherently relates to the longitudinal 

relaxation time of blood,83 and the arterial transit time (ATT) from the labelling slice to the 

brain tissues.83,84 ATT may vary across different regions of the brain, or between 

participants, which should be acknowledged when using ASL perfusion-based imaging in 

clinical population. No background suppression was employed in this imaging acquisition, 

although future design should aslo consider implementing such approach in order to 

improve SNR of the ASL signal.85 

The effects of HC and HO on CMRO2 were assumed to be negligible in this study, 

though this remains a topic of debate.86–89 Changes in CMRO2 during hypercapnia would 

violate an important assumption of the calibration model, which is that hypercapnia is 

assumed to be a purely vascular stimulus. Changes in CMRO2 would propagate into 

erroneous estimation of the M parameter, and thus, OEF0. However, findings from the 
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original calibration method  suggests that potential changes in CMRO2 during HC are likely 

to be minimal.51 This is further supported by the agreement between calibrated fMRI results 

from the studies reported above, and the normative values published in the PET 

literature.90–92 

In comparison to work using PET,93 estimates of OEF0 and CMRO2|0 using calibrated 

fMRI have higher intra- and inter-subject variability,55,94 likely due to the error propagation 

of the calibration. Reasons for this variability include the magnitude of the respiratory 

change in end-tidal measures,95 along with variations across subjects, and between time 

points, in the vasoactive and vasoconstrictive effects of HC and HO on CBF, respectively. 

In earlier methods,44,51,53,96 a T1-corrected percent change in CBF was assumed based on the 

entire group’s average decrease in flow, during HO. In this study, we estimated changes in 

arterial blood T1 during HO, and corrected CBF on an individual basis, which likely helped 

minimize potential intra-subject variation across time points. Fluctuations in PETCO2 

between subjects and time points were also accounted for in our statistical model. Lastly, 

the effects of possible differences in OEF0 and CMRO2|0 within individuals, independent of 

exposure to head impacts, were also accounted for using the LOW group, which showed no 

significant variations over time, within the region of interest. 
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4. Conclusion 

 

In this study, volumetric and calibrated MRI were combined with helmet 

accelerometry to follow collegiate football athletes longitudinally and quantitively record 

alterations in brain structure, and cerebral physiology, over time, and relate them to 

cumulative exposure to head impacts. Group-specific changes in grey-matter volume, 

resting perfusion and metabolic demands were identified throughout the season for the 

HIGH exposure group only, suggesting that alterations in structure and physiology may be 

specific to players who sustain a greater frequency of impacts, on a daily basis. These 

findings provide novel insight about the effects of sub-concussive collisions, supporting the 

hypothesis that brain structural and hemodynamic parameters may vary in response to the 

mechanical loading sustained from head trauma. In the future, in-depth characterization of 

blood biomarkers and neurocognitive function should also be included, in order to provide 

a comprehensive look at the relationship between neuroimaging findings, cognitive 

performance, biochemical changes and repeated exposure to head impacts. Altogether, 

findings from this study contribute to advancing the literature on sub-concussive head 

impacts, while acting as a vehicle to make sport safer, and catalyzing the process by which 

we improve management of sub-concussive collisions in contact sports. 
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Table 1. End-tidal pressures of CO2 and O2 during baseline, hypercapnia and 

hyperoxia in each exposure group 

 LOW P-

value 

HIGH P-

value  PRE PTC POST PRE PTC POST 

Hypercapnia 

Baseline 

PETCO2 

(mmHg) 

40 (4) 40 (4) 39 (4) 0.051 41 (4) 40 (3) 40 (3) 0.936 

Baseline PETO2 

(mmHg) 

110 (5) 111 (7) 

108 

(3) 

0.101 108 (6) 

106 

(5) 

107 (3) 0.556 

  PETCO2 

(mmHg) 

9 (1) 9 (1) 9 (1) 0.871 8 (1) 8 (2) 9 (2) 0.169 

  PETO2 

(mmHg) 

3 (3) 2 (6) 2 (2) 0.450 5 (3) 4 (4) 3 (3) 0.257 

Hyperoxia 

Baseline 40 (5) 40 (4) 39 (5) 0.248 40 (4) 40 (3) 41 (4) 0.395 
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PETCO2 

(mmHg) 

Baseline PETO2 

(mmHg) 

111 (6) 110 (3) 

108 

(3) 

0.041

^ 

108 (7) 

105 

(7) 

108 (4) 0.065 

  PETCO2 

(mmHg) 

-1 (1) 0 (1) 0 (1) 0.682 0 (1) -1 (1) 0 (1) 0.717 

  PETO2 

(mmHg) 

240 (40) 

248 

(39) 

231 

(43) 

0.097 

239 

(46) 

238 

(39) 

230 

(42) 

0.846 

 

Values are mean (standard deviation). Values for each group were statistically compared 

using a linear mixed model for repeated-measures, ^ = P<0.05 for POST versus PRE time 

point. PETCO2 = end-tidal carbon dioxide, PETO2 = end-tidal oxygen, PRE = pre-season time 

point, PTC = post-training camp time point, POST = post-season time point 
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Table 2. Significant clusters from the voxelwise 2x3 mixed ANOVAs on the volumetric 

and cerebral blood flow data showing a significant interaction between time and 

exposure 

Cluster 

Size 

(Voxels) 

Center of mass (mm)* 

 Location 

X Y Z 

Volumetric data (grey matter volume) 

1 546 -43 -82 12  Left middle occipital gyrus 

2 372 6 -79 24  

Right cuneus and right Brodmann 

area 18 

3 276 2 -25 40  Right cingulate gyrus 

4 187 -66 -42 2  

Left middle temporal gyrus and 

left Brodmann area 22 

5 178 36 60 -2  

Right superior frontal gyrus and 

right Brodmann area 10 

Cerebral blood flow (with partial volume correction) 

1 1417 -32 5 49  

Left middle frontal gyrus and left 

Brodmann area 6 

2 1069 26 -19 62  Right precentral gyrus and right 



Corresponding author: Douglas J. Cook 54 

Brodmann area 6 

3 816 -34 -71 42  

Left superior parietal lobule and 

left Brodmann areas 7 and 19 

 

*Coordinates were converted from Talairach space to the Montreal Neurological Institute template 

and identified using the 3dclust and whereami functions in AFNI. Clusters were thresholded at P < 

0.05 and a minimum size of 149 and 797.5 voxels for grey-matter volume and cerebral blood flow, 

respectively. 

 

 

 

 

Figure 1. Schematic timeline of the study visits throughout the two seasons during 

which longitudinal data was collected 
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The timeline of the study design shows when subjects completed magnetic resonance 

imaging (MRI) with respect to the timing of the season; prior to training camp (PRE), 

following training camp and two season games (PTC), and one month following the last 

playoff game of the season (POST). 
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Figure 2. Example of the effects of the respiratory manipulations on perfusion and 

blood oxygen level dependent signals in a representative participant 

(A) The continuous trace (light blue) for PCO2 (top) and PO2 (bottom) sampled from the RA-

MRTM (Thornhill Research Inc., Toronto, ON) are shown for both breathing manipulations. 

The end-tidal values for CO2 (PETCO2; navy filled circles) and O2 (PETO2; red filled circles) 

are also highlighted. The PETCO2 was targeted at 10 mmHg above the subject’s baseline 

during hypercapnia. The PETO2 was targeted at 300 mmHg during hyperoxia. (B) Mean 
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cerebral blood flow (CBF) maps for each period of the respiratory challenges (baseline, 

stimulus, recovery) shown in the subject’s native space. (C) Mean grey-matter relative 

change in blood level oxygen dependent (BOLD) signal during each breathing 

manipulation over time. 

 

 

Figure 3. Data-informed grouping of the participants based on helmet accelerometer 

biometrics 

(A) The LOW (N = 22) and HIGH (N = 22) groups were defined based on the average daily 

exposure to sub-concussive impacts (per session) having a linear acceleration of 15g and 

above. Both practices and games were recorded for each participant and were used to 

characterize their exposure per session. The median (red dotted line; median = 9.21 head 

impacts per session) was used as the thresholding parameter. (B) The number of impacts 

per session for each location was compared between the groups showing that the HIGH 
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exposure recorded higher counts of impacts on all sides of the helmet.  * = P < 0.05 for a 

univariate ANOVA. 
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Figure 4. Significant clusters for the interaction between exposure and time on the 

volumetric data 

Voxelwise two-by-three ANOVA corrected at P < 0.05 for multiple comparisons 

(minimum cluster size 148.6 voxels) revealed widespread significant differences in grey-

matter volume based on the interaction between exposure and time. Coronal (A), sagittal 

(B) and axial (C) slices of the statistical results are overlaid on the symmetric grey-matter 

template derived from the group data. The template was normalized to the 2mm Montréal 

Neurological Institute (MNI) 2mm atlas.  
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Figure 5. Significant results for the interaction between time and exposure in the 

voxelwise and region-of-interest analyses of the hemodynamic parameters 

(A) Significant cluster from the voxelwise analysis of the baseline cerebral blood flow 

(CBF0) with partial volume correction adjusted for multiple comparisons at P < 0.05 

(minimum cluster size = 1324 voxels) showing the interaction between time and exposure. 

The statistical map is overlaid onto the freesurfer surface to show lateral, medial, superior 

and inferior views from the left (LH) and right (RH) hemispheres. (B) Post-hoc results 

showing mean ( standard deviation) regional CBF0 (top), resting oxygen extraction 

fraction (OEF0), and cerebral metabolic rate of oxygen consumption (CMRO2|0) extracted 

for each exposure group (LOW = dark grey, HIGH = light grey) and time point (PRE, PTC, 
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POST) within the significant cluster identified in (A). Time-varying end-tidal CO2 was 

controlled for in the analysis of CBF0 and OEF0. The red asterisk represents parameters 

(e.g. CBF0 and CMRO2|0) that showed a significant interaction between time and exposure. 

* = P < 0.05, ** = P < 0.001, N.S. = not significant 
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Supplementary figure 1. Voxelwise computation of hemodynamic maps  

(A) The average grey-matter (GM) fractional change in cerebral blood flow (CBF) and 

blood oxygen level dependent (BOLD) signal from hypercapnia (black dashed) and 

hyperoxia (grey) were used to solve the intersection of the curves (M = 5.12 ∆%BOLD, 

OEF0=0.36) in a random subject. (B) The subject’s low-resolution GM probability map 

(%). (C-D) The subject’s GM voxelwise M (C), resting oxygen extraction fraction (OEF0) 

(D), resting CBF (CBF0) (E), and resting cerebral metabolic rate of oxygen consumption 
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(CMRO2|0) maps. (E) and (F) were computed using the perfusion map corrected for partial 

volume correction. 
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Supplementary figure 2. Voxelwise filtering of the grey-matter tissues using the T2* 

map fitted from the dual-echo sequence 

(A) Fitting of the dual-echo signal from the ASL (TE1=10ms) and BOLD (TE2=30ms) 

contrast to extract the voxelwise T2* map in native space for each subject (B) Sagittal 

slices of the group-averaged filtered gray-matter mask (purple) overlaid onto the mean 

gray-matter image to show voxels that were commonly excluded (not purple) from the 

voxelwise and region-of-interest analyses. These maps were registered and normalized into 

standard 2mm MNI space for this averaging. The MNI reference image (top right) is shown 

to provide an anatomical reference of the slices displayed (green lines). 

 

 

 


