Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Effects of temperature on human L-type cardiac Ca 2+ channels expressed in Xenopus oocytes

Allen, T. J. A. and Mikala, Gabor 1998. Effects of temperature on human L-type cardiac Ca 2+ channels expressed in Xenopus oocytes. Pflügers Archiv European Journal of Physiology 436 (2) , pp. 238-247. 10.1007/s004240050628

Full text not available from this repository.

Abstract

Temperature normally affects peak L-type Ca2+ channel (CaCh) current with a temperature coefficient (Q10) of between 1.8 and 3.5; in cardiomyocytes attenuating protein kinase A activity increases Q10 whilst activating it lowers Q10. We examine temperature effects using cloned human cardiac CaChs expressed in Xenopus oocytes. Peak inward currents (IBa) through expressed CaChs (i.e. α1Cα2/δaβ1b) exhibited a Q10 of 5.8±0.4 when examined between 15 and 25°C. The nifedipine-sensitive IBa exhibited a higher Q10 of 8.7±0.5, whilst the nifedipine-insensitive IBa exhibited Q10 of 3.7±0.3. Current/voltage (I/V) relationships shifted to negative potentials on warming. Using instead a different CaCh β subunit isoform, β2c, gave rise to an IBa similar to those expressed using β1b. We utilized a carboxyl deletion mutant, α1C-Δ1633, to determine the temperature sensitivity of the pore moiety in the absence of auxiliary subunits; IBa through this channel exhibited a Q10 of 9.3±0.3. However, the Q10 for macroscopic conductance was reduced compared to that of heteromeric channels; decreasing from 5.0 (i.e. α1Cα2/δaβ1b) and 3.9 (i.e. α1Cα2/δaβ2c) to 2.4 (α1C-Δ1633). These observations differ markedly from those made in studies of cardiomyocytes, and suggest that enhanced sensitivity may depend on the membrane environment, channel assembly or other regulatory factors.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Publisher: Springer Verlag (Germany)
ISSN: 0031-6768
Last Modified: 15 Jan 2020 11:45
URI: https://orca.cardiff.ac.uk/id/eprint/127181

Citation Data

Cited 22 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item