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Abstract

Unmanned Surface Vehicles (USVs) are increasingly used for ocean missions,

which typically require long duration of operations under strict energy con-

straints. Consequently, there is an increased interest in energy efficient path

planning for USVs. This work proposes a novel energy efficient path planning

algorithm to address the challenges with the presence of spatially-temporally

variant sea current and complex geographic map data, by integrating the fol-

lowing algorithms, namely Voronoi roadmap, Dijkstras searching, coastline ex-

panding and genetic algorithm. The selection, crossover and mutation oper-

ators are employed as part of the GA algorithm. The dividing, smoothing

and exchanging operators are proposed to improve the quality of the path and

adapt to the Voronoi-Visibility roadmap. The Global Self-Consistent Hierar-

chical High-Resolution Shorelines dataset and historical sea current dataset are

applied to demonstrate the flexibility and practicability of the proposed algo-

rithm. To evaluate the performance, the Voronoi-GA energy efficient algorithm

and Voronoi-Visibility energy efficient path re-planning algorithm are also im-

plemented to provide the baseline for comparison. The proposed algorithm

generates the most energy efficient paths in ten USV missions, while keeping

a configurable clearance from the coastlines. The practicability and scalability
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of this algorithm is also demonstrated by analysing the computational time in

these ten missions.

Keywords: Unmanned Surface Vehicle; Voronoi Diagram; Visibility Graph;

Dijkstra’s Search Algorithm; Genetic Algorithm; Energy Efficient; Path

Planning; Spatially-Temporally Variant; Sea Current.

1. Introduction

Energy efficiency is an important characteristic of path planning algorithms

for autonomous systems. In particular, deployment of Unmanned Surface Vehi-

cle (USV) (Lv et al., 2019) and Unmanned Underwater Vehicle (UUV) (Palom-

eras et al., 2018; Xia et al., 2019) for missions with various environmental dis-5

turbances and uncertainties in presence make path planning more challenging,

because of the existence of uncertain, inaccurate and dynamic environmental

information. The path planning algorithms of USVs and UUVs aim to optimise

the following aspects: travel time, energy consumption and safety. Typically,

USVs and UUVs are deployed for long term missions with limited energy. As a10

result, there is an increasing interest in developing energy efficient path planning

algorithm in recent years (Lee et al., 2015; Zeng et al., 2015). In this research,

we focus on optimising the energy consumption and safety of the USV.

A level-set based approach for UUV path planning, where the external flow

was explicitly accounted for was described in (Lolla et al., 2012, 2014, 2015). In15

the level-set approach, time-optimal trajectories for single or multiple vessels are

determined by employing a level-set expansion of the flow field given the desired

start and goal positions for the vehicles. The underlying motion model behind

the level-set method includes a velocity model, which is very often restrictive.

Since the strategy requires the entire information of the flow field and requires20

massive amounts of computational power, when performing the various level set

expansions, the strategy will not be amenable for the real time planning purpose

(Kularatne et al., 2016; Singh et al., 2018).

Heuristic grid searching approaches are commonly applied in solving NP-
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hard and multi-objective optimisation problems. The operation space is trans-25

formed into a graph representation using quad trees in (Carroll et al., 1992),

so that optimal paths can be produced using the A* algorithm. An A* based

energy efficient path planning algorithm (Garau et al., 2014) was proposed to

consider sea current data, in which situation the thrust was assumed to be

constant. Another A* based path planning algorithm of AUVs was applied in30

(Garau et al., 2005) to generate energy optimal paths in conditions of different

eddy currents, and this work was tested in a simulated ocean environment. The

effect of different heuristic functions on the results was analysed. However, de-

terministic and heuristic methods like the A* algorithm (Le et al., 2018) (Song

et al., 2019) requires massive computational power and are criticised for their35

weakness in dealing with high-dimensional problems (Zadeh et al., 2016).

Dynamic programming (Bryson and Ho, 1975) has been used as a graph-

based searching method, where a cost is related to the edge of a graph. Although

dynamic programming is able to generate optimal paths, the computational cost

will increase geometrically with the dimension of the solution space. A mixed40

integer linear programming (MILP) path planning algorithm was introduced to

navigate multiple AUVs (Yilmaz et al., 2008). However, the computational time

of this approach will increase exponentially with the problem size, and thus this

approach will be limited for real-world applications (Eichhorn, 2015). In the case

of USV path planning in a spatially variant and temporally variant sea current45

environment, dynamic programming and MILP may not be computationally

feasible.

Path planning algorithm based on a searching strategy from Darwin’s theo-

ries of evolution was introduced in (Goldberg and Holland, 1988). The Genetic

Algorithm (GA) (Kim et al., 2017; Chen et al., 2018; Fu et al., 2018) and its50

inheritance are the most popular examples in this area, where a specific number

of candidate paths are maintained and these paths are iteratively evolved and

selected by applying genetic operators. GAs have also been applied in the AUV

path planning problem (Alvarez et al., 2004; Zadeh et al., 2016). The computa-

tional complexity of GAs increases linearly with the dimension of the solution55
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space, which is more computationally efficient than dynamic programming algo-

rithm (Alvarez et al., 2004), hence more advantageous for searching in high di-

mensional dataset. Previously proposed GAs (Alvarez et al., 2004; Zadeh et al.,

2016) applied grid maps or cell maps to represent collision free space and applied

the random walk algorithm to generate the initial population. However, in USV60

path planning scenarios, the mission operations could take place in quite com-

plex spatial environments. For instance, there are about 98 islands in Singapore.

In such complex spatial environments, the random walk method is inefficient in

finding feasible paths for given start locations and destinations (Zhang et al.,

2008). In the work of Song et al. (2017), a multi-layered fast marching (MFM)65

algorithm was proposed for path re-planning to optimise the energy efficiency

at different time steps using updated sea current data, where the spatial envi-

ronment is represented by a grid map. A global USV path planning algorithm

based on an improved ant colony algorithm was proposed by Song (2014) to

compute a collision-free and smooth path. Although this algorithm is computa-70

tionally efficient, it does not take into account the sea current and it also uses

grid map for representing a simple spatial environment. Same as the GA algo-

rithm, particle swarm optimisation (PSO) algorithm is also subordinate to the

heuristic approach. A dynamic augmented multi-objective PSO (MOPSO) (Ma

et al., 2018) was proposed to generate energy efficient path taking into account75

multiple objectives and constraints. However, the computational efficiency of

the algorithm was not analysed. Tang et al. (2016) integrated PSO with the

differential evolution (DE) algorithm to solve the global path planning problem

efficiently. The algorithm was compared with four state-of-art evolutionary algo-

rithms, including JADE (Yang et al., 2015), TVPSO(Khalili-Damghani et al.,80

2013), GS (Li and Duan, 2012) and mGA (Shiltagh and Jalal, 2013), and it

was validated that the new algorithm outperforms the other four algorithms in

terms of path optimality. However, the energy consumption was not taken into

account. Moreover, the work of Ma et al. (2018) and Tang et al. (2016) just

uses grid map and a few simple polygons to represent a simple environment85

and obstacles respectively, and the flexibility and computational efficiency of
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the algorithm dealing with complex environment were not analysed.

Prior work related to energy efficient path planning algorithms mainly em-

ploys grid maps to represent spatial environment due to its simplicity in imple-

mentation that discretises the space into independent cells. However, in complex90

spatial environments, such as Singapore Strait that has 98 islands, it is difficult

to apply grid maps with a fixed predefined grid size to correctly represent the

environmental occupancy state. The approximate cell decomposition approach,

which is also known as the quadtree decomposition, can be applied to solve this

problem by subdividing the mixed obstacle and free regions into four quarters95

iteratively until a certain level of resolution is achieved. However, this approach

is not computationally efficient in the case of large-scale spatial environments

where islands’ sizes and their inter-distances are highly in-homogeneous. Com-

pared to the grid occupancy map, the Voronoi roadmap is known to be more

computationally efficient for map representation in the two-dimensional space100

(Pehlivanoglu, 2012) and better in complex spatial environments (Benavides

et al., 2011). The Voronoi-Visibility roadmap and Dijkstra’s algorithm were

integrated for generating the energy efficient path in (Niu et al., 2018). The

efficiency of the algorithm in terms of its computational demand and energy

consumption was evaluated by comparing with the Voronoi-Visibility shortest105

path method. However, this algorithm has only taken spatially variant sea

currents into consideration and has not addressed the temporally variant sea

current problem. Benavides et al. (2011) introduced a path planning algorithm

by combining the Voronoi roadmap and GA method, but without taking into

account energy consumption.110

In this work, we combine the ideas of Benavides et al. (2011) and Niu et al.

(2018), and propose the Voronoi-Visibility-GA energy efficient (VVGAEE) path

planning algorithm. The motivation for the combination in this research is to

keep the flexibility and computational efficiency of the Voronoi diagram al-

gorithm in generating the collision free roadmap and also the computational115

efficiency of the GA algorithm in searching in high dimensional dataset, so as

to generate energy efficient paths in spatially-temporally variant environments.
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Inspired by the work of Benavides et al. (2011) and Song et al. (2017), two

other methods, named Voronoi-GA energy efficient (VGAEE) path planning

algorithm and Voronoi-Visibility energy efficient path re-planning (VVEEPRE)120

algorithm, are also proposed and developed for performance comparison. Fi-

nally, the Voronoi-Visibility energy efficient (VVEE) algorithm (Niu et al.,

2018), VGAEE, VVEEPRE and VVGAEE algorithms are compared using ten

USV missions in a complex geographic environment (98 islands) and spatially-

temporally variant sea current scenarios.125

The remainder of this paper has the following structure: Section 2 describes

the problem statement. The methodology is presented in Section 3, which in-

cludes the Voronoi roadmap generation and GA algorithm implementation. The

proposed algorithm is compared with three algorithms in ten USV missions in

Section 4. The conclusion and the future work are presented in Section 5.130

2. Problem statement

2.1. Large spatial dataset

A high-resolution navigation map is obviously beneficial to the performance

in path planning accuracy, but would also introduce high computational bur-

den. For instance, as shown in Fig. 1, there are 98 islands in Singapore, which135

are represented by 4128 vertices. Using the Visibility graph algorithm as an

example, the computational cost will be O(n2) time and the edge number gen-

erated will be O(n2) at its worst, where n represents the number of vertices.

Processing such a large number of edges would require a massive amount of

computational time. Choosing a computationally efficient roadmap generation140

algorithm is needed in practice.

2.2. Spatially-Temporally variant sea current

In long term USV missions, the sea current will vary with both location and

time. As an example, the sea current state changes of Singapore strait from

0:00 am to 05:00 am on the 11th June of 2014 are shown in Fig. 2.145
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Fig. 1. Singapore islands

From Fig. 2a to Fig. 2f, it can be seen that the tide begins to rise at 0:00

am and the water came into Singapore strait from the East. At 2:00 am, more

and more water came into the west part of Singapore strait. The tide on the

west side began to rise. Comparing Fig. 2a and Fig. 2f, we can see the large

difference between 0:00 am and 5:00 am. If the USV encounters dramatically150

temporally variant sea current state, it will be necessary for an USV path plan-

ning algorithm to consider not only the spatial variance of the sea current but

also the temporal variance, which will save the total energy consumption during

the whole USV mission.

2.3. Clearance distance c155

It is necessary to keep the USV a clearance distance c away from the coast-

lines to maximise its safety in autonomous navigation, because areas close to the

coastlines are more likely to have crowded traffics, and also more hazadous due

to the higher probability of shallow water. Also, the spatial accuracy of a map

is dependent on the techniques used in the mapping processes that will intro-160

duce various levels of uncertainty. Such inaccuracy with the map data will need

to be taken into account. For instance, Singapore islands plotted in Fig. 3 are
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(a) Sea current state at 00:00am (b) Sea current state at 01:00am

(c) Sea current state at 02:00am (d) Sea current state at 03:00am

(e) Sea current state at 04:00am (f) Sea current state at 05:00am

Fig. 2. Illustration of the Singapore sea current state on the 11th June 2014: The sea current
state is depicted with the blue arrows and the island coastlines are outlined in red.
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using the GSHHS data. However, mapping the island profile directly into the

GoogleR© map, as shown in Fig. 4, we can clearly see the spatial offset between

two profiles of the same island.165

Fig. 3. Singapore island

Fig. 4. Illustration of inaccuracy with the spatial data: The green line outlines the island
profile using the GSHHS dataset and the underlayer map represents the corresponding part
on the GoogleR© map.
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3. Methodology

In this work, a novel Voronoi roadmap and GA based energy efficient path

planning algorithm is proposed for situations with spatially-temporally variant

sea current. The algorithm includes two main steps: 1) collision free roadmap

generation, and 2) GA based searching for collision free and energy efficient path.170

This section is organised as follow. The algorithm architecture is presented in

section 3.1. Section 3.2 introduces the environmental dataset used in this work.

The Voronoi-based collision free roadmap generation is presented in section 3.3,

followed by the GA implementation in section 3.4.

3.1. Algorithm Architecture175

Voronoi roadmaps are generated in O(n) time, which is more computa-

tionally efficient than the Visibility graph (O(n2) time). The Voronoi-based

roadmap is firstly generated, then the island coastlines are expanded by ap-

plying a coastline expanding algorithm, which will keep the USV away from

nearby islands with a user-configurable distance. The Voronoi diagram is ap-180

plied to generate roadmap around the islands. However, not all paths of the

roadmap are reachable. Such unreachable paths are then deleted accordingly.

After the generation of the collision-free roadmap, the Dijkstra’s and Visibil-

ity graph algorithms are used to generate the first generation of chromosomes

for the GA. The GA is implemented with the objective of finding a collision185

free and energy efficient path with the given start point and the destination.

A fitness function is introduced for above optimisation criterion and the fitness

function will be applied for evaluating all the individuals of each generation. In

the GA implementation, the selection, crossover, and mutation operators are

applied. By using the selection operator, the individuals those have the best190

fitness value will be selected and stored. The crossover operator shuffles the

existing population solutions and generate more possible candidates. And the

mutation operator is used for increasing the diversity of the population. The

evaluation, selection, crossover and mutation are applied in a loop. Until the
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termination condition is satisfied, the iteration will stop and the best individual195

will be selected.

3.2. Environmental dataset

The environmental dataset applied in this work includes the island coastlines

dataset and the sea current dataset.

3.2.1. Coastline data200

The Global-Consistent Hierachical High-Resolution Shorelines (GSHHS) is

a publicly available data set, providing up-to-date shoreline data in 5 resolu-

tions: full-resolution (f), high-resolution (h), intermediate-resolution (i), low-

resolution (l) and crude-resolution (c). In this work, we use full-resolution (f),

the highest available resolution at 100 metres, to maximise the details to be used205

in the work. High resolution data can provide a more realistic geographic envi-

ronment for evaluating the flexibility and practicability of the proposed method

in addressing different challenges in complex geographic scenarios.

3.2.2. Sea currents

Fig. 5. Sea current state of Singapore Strait: The current state was recorded at 5:00am,
June 11, 2014. The island coastlines are outlined by the red lines and the blue arrows depict
the sea current state

11



Table 1: Specifications of the sea current data

Region Parameters Resolution Updating Time Step Forecast Length
North Atlantic Current 11 km 24 hrs 144 hrs
Gulf Stream Current 11 km 24 hrs 144 hrs

English Channel Current 2 km 15 min 48 hrs
North West Europe Current 20 km 60 min 120 hrs

Singapore Strait Tide Current 1.1 km 60 min 48 hrs

The sea current data were obtained from the company TideTech Ltd Tide-210

Tech (2017). Table 1 shows specifications of the sea current data in terms of

resolutions, time steps and forecast lengths. In this work, Singapore Strait was

used as the USV mission area, for the reason that there are 98 islands that

is complex enough for testing the flexibility and practicability of the proposed

algorithm. Fig. 5 shows sea current and coastline data of Singapore Strait.215

3.3. Voronoi collision free roadmap generation

The Voronoi roadmap for generating collision free roadmaps includes the

following steps: coastline expanding algorithm, Voronoi diagram algorithm and

unreachable paths removal. The collision free roadmap generation with a prede-

fined clearance c is explained in details in (Niu et al., 2018), that the coastlines220

of the islands should be translated and expanded with a certain distance. Such

generated candidate paths should not intersect with the expanded coastlines.

An example result of expanded coastlines is shown in Fig. 6.

After the coastlines are expanded, the Voronoi diagram is created, as shown

in Fig. 7. We can see that the density of the Voronoi edges is very high in225

many areas, because of the high resolution data we used. However, not all

the edges are available and some of them intersect with the islands, which will

be unreachable for the USV. In this work, the edges will be removed if the

following two conditions are met: 1) if the path segment intersects with any of

the expanded coastlines; and 2) if the path is connected to a Voronoi node that230

is inside the coastline profile. A clearer roadmap will be constructed after the

unreachable edges are removed, as shown in Fig. 8.
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Fig. 6. Illustration of coastline expanding algorithm implementation in Singapore Strait:
The red lines represent the original coastlines and the blue dash lines represent the expanded
coastlines.

Fig. 7. Voronoi roadmap of the Singapore islands: The red lines represent the expanded
coastlines and the blue line are the Voronoi edges

3.4. GA implementation

3.4.1. Initialization

The first generation feasible paths are produced using the VVEE algo-235

rithm (Niu et al., 2018), as summarised below. After the Voronoi collision
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Fig. 8. Voronoi collision free roadmap of the Singapore islands: The red lines represent the
expanded coastlines and the blue lines are the collision free Voronoi edges

free roadmap is generated, an energy cost function will be applied to estimate

the energy consumption weights of all Voronoi edges. Then the energy efficient

Voronoi path will be provided by direct application of the Dijkstra’s algorithm.

However, as the Voronoi graph contains many redundant waypoints, the Visi-240

bility graph is applied to optimise the path. Finally, an energy efficient path

is produced by applying the Dijkstra’s algorithm again. The VVEE algorithm

was designed for environment with temporally-invariant sea current. Therefore,

we estimate the mission duration and apply the sea current data of each time

updating interval to produce paths of the first generation. Note that the mission245

duration can be estimated by calculating the length of the first path and calcu-

lating the travelling duration of the whole course. The mission duration is not

essential to be perfectly accurate. For instance, with Singapore strait, the sea

current data will be updated each hour, if the USV needs T hours for travelling,

the sea current data of every hour can be used for generating T feasible paths.250

These T feasible paths will be used for generating N feasible paths as the first

generation by applying the mutation operator and the crossover operator.
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3.4.2. Evaluation

The quality of a path is evaluated by the fitness function, which measures the

energy cost of each path in the population. There are two steps of calculating the255

energy cost in the spatially-temporally variant sea current. Firstly, we need to

divide the path into equidistant segments based on the USV travelling distance

of one hour. Assume the USV is commanded to travel from (103.68, 1.3) to

(103.9, 1.08) at 0:00am on 11/06/2014 in Singapore strait. We have a candidate

path, as shown in Fig. 9a. The update interval of the sea current data is one260

hour TideTech (2017). Since the USV is commanded to travel at 1 m/s, we first

decompose the whole path into several equidistant segments, where the length of

each segment is determined by the travelling distance within one hour. As shown

in Fig. 9b, the end points of the path segments are denoted by the red points,

called one hour break points. The second step is to calculate the energy cost of265

each equidistant path. When the USV is travelling on each equidistant path, we

assume the sea current keeps constant in the corresponding time interval. For

example, when the USV is travelling within the one hour break points 3 and 4,

we will use the sea current data of 3:00am to calculate the corresponding energy

cost. The illustrations are given in Fig. 9c and Fig. 9d. In Fig. 9c, the path from270

point 3 to point 4 is illustrated in the red rectangle area and the corresponding

sea current data at 3:00am is required. Fig. 9d illustrates the sea current state.

The method to calculate the energy cost of the equidistant path is given

below. Assume an USV is operating on one equidistance path segment, denoted

by NiNi+1. The USV ground speed −→vg , the sea current speed −→vc , and the relative275

USV speed −→vu satisfy Eq. (1).

−→vg = −→vu +−→vc (1)

In this research, the USV is assumed to travel at a constant ground velocity

|vg|. Provided the direction of −→vg and sea current −→vc are known, −→vu can be

calculated using Eq. (1). The hydrodynamic drag Fd can be calculated by Eq.
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(a) Candidate path (b) Candidate path with one hour break
point

(c) Candidate path with highlight area (d) Sea current state from point 3 to point
4

Fig. 9. Illustration of evaluation
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(2).

Fd =
1

2
ρ|vu|2CDA (2)

where ρ denotes the water density, CD and A represent drag coefficient and

reference area, respectively. Eq. (3) is used to estimate the USV energy con-

sumption weight E:

E = Fd × |vu| × t (3)

The travel duration t specifies the time needed for the USV to travel between280

two adjacent waypoints, Ni and Ni+1 (see Eq. (4)):

t =

∣∣NiNi+1

∣∣
vg

(4)

Then we can derive Eq. (5):

E = α|vu|3
∣∣NiNi+1

∣∣
vg

(5)

where α is the combination of three values: ρ, CD, and A. Considering α is

constant, we can simplify the calculation by assuming α to be 1 here. Therefore,

in the case that −→vg is a constant value, there remained only two values that

need to be calculated: −→vu and
∣∣NiNi+1

∣∣. The path of NiNi+1 is divided into285

equidistant segment based on the USV travelling distance in each hour. The

total energy consumption can be estimated by using the updated sea current

data in each hour. In case that the path intersects with any of the expanded

coastlines, the fitness value of this path will be set to a very large number.

3.4.3. Crossover290

The next step is to evaluate the performance of N feasible paths by calcu-

lating and ranking their fitness values. The top 40% of the ranked paths will

be selected as parents for generating new individuals by applying the crossover

operator. The crossover operator exchanges the genetic information of the par-

ents. Each path consists of a sequence of waypoints, which will be indexed.295
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The indices of the waypoints are used to represent the gene of the correspond-

ing path. Assuming we have two parents pw1 and pw2 randomly selected, the

waypoint indices of these two parents can be denoted by Eq. (6) and Eq. (7).

pw1 =
{
pw1,1, ..., pw1,i, ..., pw1,m

}
(6)

pw2 =
{
pw2,1, ..., pw2,j , ..., pw2,n

}
(7)

where pw1,i denotes the ith waypoint of parent pw1. We randomly choose two

waypoints from the two parents, indexed as i and j, respectively, where 1 ≤ i ≤300

m and 1 ≤ j ≤ n. Each parent will be split into two subsets of waypoints at the

selected index correspondingly. Then a new pair of offspring can be generated

by swapping the second subsets of pw1 and pw2, as shown in Eq. (8) and Eq.

(9). The crossover operator shuffles the existing populations and searches for a

better solution space.305

pwo1 =
{[
pw1,1, ..., pw1,i

]
,
[
pw2,j+1, ..., pw2,n

]}
(8)

pwo2 =
{[
pw2,1, ..., pw2,j

]
,
[
pw1,i+1, ..., pw1,m

]}
(9)

3.4.4. Mutation

Mutation is usually used to increase the population diversity and avoid the

solutions to converge prematurely to a stable local minimum (Alvarez et al.,

2004). Three mutation operators are used in this work: dividing, smoothing

and exchanging.310

(a) The dividing operator

Firstly, if a candidate path is generated, each line segment of this path will

be enquired. If the line segment is longer than a specified value L, this path

will be divided to several equidistant line segments, with the equidistance

equal to L, by inserting dividing waypoints, as shown in Fig. 10a and315
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(a) The path before applying dividing op-
erator

(b) The path after applying dividing op-
erator

Fig. 10. Illustration of dividing operator: The blue dots represent the original waypoints
and the green dots represent the new inserted waypoints.

Fig. 10b. Fig. 10a shows two connected line segments, which are named

as AB and BC. We define L as the distance of 10 minutes travelling,

which is set to be 1 here for demonstration. We then divide both AB

and BC using the equidistant points (depicted by the green dots). The

inserted waypoints are also indexed and they will be used as the new genes320

of the candidate path. The combination of the dividing operator and the

crossover operator makes it possible for the USV to change direction in

short time intervals. This operator will be applied on all the existing and

newly generated candidate paths.

(b) The smoothing operator325

The smoothing operator randomly removes a waypoint from a candidate

path, as shown in Fig. 11a and Fig. 11b. In Fig. 11a, point B is randomly

chosen from the candidate path. Since there are two points connected to

it, namely A and C, after we remove B, we will directly connect A and C,

creating a new merged path AC, as shown in Fig. 11b. The smoothing330

operator can remove redundant waypoints from the candidate paths, and

can be used for generating smooth and energy efficient paths.

(c) The exchanging operator
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(a) The path before applying smoothing
operator

(b) The path after applying smoothing
operator

Fig. 11. Illustration of smoothing operator

(a) The path before using exchanging op-
erator

(b) The path after applying exchanging
operator

Fig. 12. Illustration of exchanging operator

The exchanging operator will randomly exchange one waypoint to its

neighbour waypoint it is connected to. Assume we have two connected335

line segments AB and BC, and a waypoint D is connected to B, as shown

in Fig. 12a. After we applied the exchanging operator to swap B and D,

our new path will be ADC, as shown in Fig. 12b. The smoothing opera-

tor or the exchanging operator will be used on half of the selected paths

randomly.340
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3.4.5. Selection and iteration

The initial T paths are first used to generate N new paths through the

processes of crossover and mutation. These paths are then evaluated by using

the fitness function. A feasible energy efficient path will have a low fitness

value and an inefficient path will have a high fitness value. The paths will be345

ranked with respect to the fitness values in ascending order. The first 40% of the

ranked paths, which have the lowest fitness values, will be selected to generate

40%N new individuals by applying crossover, where N is the total number of

paths. Half of the selected paths, that are 20% of the total paths, will be

processed through the smoothing operator or exchanging operator randomly.350

In each iteration, the first 40% of the paths are selected and these paths are

stored, so that the most optimal paths with the best genes are kept. Together

with 40%N new individuals, and 20%N mutation paths, we have in total N

number of paths in the end of the iteration. The iteration will stop until the

termination condition is met. The termination condition is simply the number355

of iterations, which is set as 20 in our work. Note that the parameters used

in GA for crossover and mutation are configured empirically after testing the

missions with different travel time. Increasing the proportion of crossover and

mutated population would not necessarily further improve the performance of

the algorithm and will consume more computational time. On the other hand,360

using a small proportion will not generate enough new paths for the selecting

system.

4. Numerical Simulation and Comparison

4.1. Simulation environment

Because the sea current data of Singapore Strait can be forecast up to 48365

hours in advance according to TideTech (2017), the sea current data is assumed

to be known before the USV starts the mission in this research. To demonstrate

the capability of the proposed algorithm in dealing with a fast changing sea cur-

rent environment, simulated data is composed of some discontinuous historical
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Table 2: The corresponding historical data used for simulation in the work

Simulated time interval The time of the corresponding historical data
t1 9:00am on 11/06/2014
t2 12:00 (noon) on 11/06/2014
t3 5:00pm on 11/06/2014
t4 6:00pm on 11/06/2014
t5 7:00pm on 11/06/2014

sea current data of Singapore Strait. The corresponding historical data sets370

used in our simulation are listed in Table 2.

As shown in Table 2, there are 5 time intervals simulated, and each interval

is for 1 hour. The first hour of the simulation (labelled as t1) uses the historical

data of 9:00am on 11/06/2014. The second hour (t2) uses the historical data

of 12:00 pm on 11/06/2014. The rest of the simulation data can be seen in the375

table correspondingly. We assume the sea current remains relatively constant in

each hour interval in this work. Note that this assumption is for ease of analysis

and is not a restriction of the approach. The proposed algorithm is supposed

to be generic and universal, regardless of the update frequency of the data.

4.2. Voronoi-Visibility energy efficient path re-planning algorithm (VVEEPRE)380

In the work of Song et al. (2017), a multi-layered fast marching (MFM)

path planning algorithm was proposed for avoiding collision risks and improving

energy efficiency. To solve the problem of temporally variant sea current, a path

re-planning strategy was applied to generate energy efficient path at each time

step using the updated sea current data. In this work, the path re-planning385

strategy is also applied. The path planning algorithm implemented at each time

step is Voronoi-Visibility energy efficient (VVEE) algorithm, which was only

used for spatially variant sea state in (Niu et al., 2018). The VVEE algorithm

is firstly used to generate an initial path using the sea current data of the first

hour and the USV will travel until the one hour break point and re-plan the390

second path using the sea current data of the second time step. Following the

second path, the USV will arrive at the second one hour break point. The path

will be re-planned iteratively until the travelling distance between the USV and
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(a) (b)

(c) (d)

Fig. 13. Illustration of VVEEPRE algorithm: (a)-(d) show the generated paths at each time
step. The blue dashed line represents the generated path using the data of last time step.
The tracked trajectory is represented by the green solid line. The green dot represents the one
hour break point. The green dashed line is the generated path from the one hour break point
to the destination using the data of next time step. (d) shows the final tracked trajectory and
all the paths of each time step

the destination is less than one hour. The new algorithm is named as Voronoi-

Visibility energy efficient path re-planning algorithm (VVEEPRE).395

Assume the USV is executing a mission travelling from location coordinate

of (103.95, 1.2) to (103.68, 1.3) and the travelling speed is kept as 2.5m/s. The

results are shown in Fig. 13.

4.3. Voronoi-GA energy efficient path planning algorithm (VGAEE)

Inspired by the Voronoi-GA shortest path planning algorithm in (Benavides400

et al., 2011), the Vornoi-GA energy efficient (VGAEE) path planning algorithm

is also developed for comparison. The VGAEE can also be treated as the mutant
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algorithm of VVGAEE. The difference between VGAEE and VVGAEE is the

initial energy efficient paths of VGAEE algorithm are generated by using the

Voronoi roadmap instead of the Voronoi-Visibility roadmap. The parameters405

of the GA algorithm in VGAEE are the same as those configured in VVGAEE

in Section 3. The comparison between VGAEE and VVGAEE will be used to

analyse the effect of the initial paths on the final results.

Fig. 14 shows the result of the VGAEE algorithm executing the same mission

as the one in section 4.2. Compared to the path generated by VVEE algorithm in410

Fig. 13, the initial paths (black and blue lines) generated in Voronoi roadmap

have redundant waypoints. However, the final green path becomes smooth

with the implementation of the proposed dividing, smoothing and exchanging

operators.

Fig. 14. VGAEE path and initial paths: The VGAEE path is represented by the green solid
line. The four initial paths are represented by blue solid line, blue dashed line, black solid line
and black dashed line, respectively. The first path and the second path overlap. The third
path and the fourth path overlap.

4.4. Energy efficiency and computational efficiency comparison of VVEE, VVEEPRE,415

VGAEE and VVGAEE

Performance of the VVEE, VVEEPRE, VGAEE and VVGAEE algorithms is

studied in this section in terms of energy efficiency and computational efficiency.
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(a) VVGAEE path and the fourth initial
energy efficient path in the sea current of
the first hour

(b) VVGAEE path and the fourth initial
energy efficient path in the sea current of
the second hour

Fig. 15. Illustration of the VVGAEE path and the fourth initial energy efficient path: The
green line represents the VVGAEE path, the black line represents the fourth initial energy
efficient path and the green dot represents the one hour break point

To visualise the performance of each method, we demonstrate the performance

using one USV mission first. A comprehensive performance analysis is carried420

out later with ten USV missions.

We use the same mission as section 4.2. By using the sea current data of the

first hour, we can get the corresponding energy efficient path through applying

the VVEE algorithm. The length of the path and the travel duration can be

calculated. Assume the estimated travel duration is T hours (3.79 hours in this425

case). The T number of initial paths (4 in this case) will be used for generating

300 paths using crossover and mutation operators. Then 300 paths are evaluated

and 120 best paths are selected as the parents of the next generation. These 120

best paths generate 120 new individuals by using the crossover operators and

generate 60 mutational individuals by using the mutation operators. These 300430

paths will be evaluated and selected again in the next iteration. The termination

condition is the completion of 20 iterations of selection and evaluation, and the

best individuals will be selected afterwards.

For comparison purpose, we visualise the VVGAEE path and the fourth

initial energy efficient path with the sea states of the first and second hours435

in Fig. 15a and Fig. 15b. We can see that in the first two hours, when the
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(a) VVGAEE path and the first initial en-
ergy efficient path in the sea current of the
third hour

(b) VVGAEE path and the first initial en-
ergy efficient path in the sea current of the
fourth hour

Fig. 16. Illustration of the VVGAEE path and the first initial energy efficient path: The
green line is the VVGAEE path, the black line shows the first initial energy efficient path and
the green dot highlights the one hour break point

direction of the sea current is westward, the VVGAEE path enables the USV

to take advantage of the downstream instead of crossing the flow like the fourth

initial path. It is obvious that the VVGAEE planned path will be more optimal

in terms of energy efficiency than the fourth initial path in the case of sea440

states of the first two hours. As the first initial path and second initial path are

similar, here we compare the VVGAEE path with the first initial path using the

sea current data of the latter two hours, as shown in Fig. 16a and Fig. 16b. In

this case, the direction of the sea current is eastward from west. The VVGAEE

path directs the USV to travel towards north so that the sea current disturbance445

has less effect on the USV, instead of navigating upstream like the first initial

path.

The energy consumption of the VVGAEE path and four initial path during

each hour of this mission is given in Table 3. We can see that, in the first two

hours, the VVGAEE path consumes considerably less energy than the third and450

the fourth paths, but consumes slightly more energy than the first and the sec-

ond paths. In the latter two hours, the VVGAEE path consumes slightly more

energy than the third and the fourth paths, but consumes less energy than the

first and the second paths. Overall, the VVGAEE path requires the minimum
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Table 3: The energy consumption of the VVGAEE path and four initial paths during each
hour

First hour Second hour Third hour Fourth hour Total
First path 0.3023 0.2347 0.7221 0.4690 1.7281

Second path 0.3129 0.1993 0.7153 0.4957 1.7231
Third path 0.3874 0.4789 0.5193 0.3440 1.7296
Fourth Path 0.3874 0.4789 0.5193 0.3440 1.7296

GA path 0.3312 0.2261 0.5848 0.4041 1.5462

energy in the whole mission duration and saves 10.27% energy than the sec-455

ond path, which is the most energy efficient one in the four paths produced by

VVEE.

The VGAEE and VVEEPRE paths are also computed and illustrated in

Fig. 17. The energy consumption for VVEEPRE and VGAEE are 1.6216 and

1.6741, which are 4.88% and 8.27% higher than the VVGAEE path respectively.460

For a more comprehensive performance evaluation, we conducted 10 USV

missions to compare the four algorithms. The energy consumption levels of the

four algorithms are shown in Table 4. It can be seen that the VVEE, VVEEPRE

and VGAEE algorithms consume more energy than the VVGAEE algorithm.

Comparing VVEE and VVGAEE, VVEE needs 4.08% - 38.47% more energy465

than VVGAEE. Similarly, VVEEPRE requires 3.46% - 35.47% more energy than

VVGAEE. The main cause of the performance difference is that VVEEPRE only

searches for a local optimal path, while VVGAEE searches for a global optimal

path. With VGAEE, it needs 0.84% - 41.65% more energy than VVGAEE,

which demonstrates that using the initial paths generated in Voronoi-Visibility470

roadmap for the oncoming GA implementation has better energy efficiency than

using the paths generated by the Voronoi roadmap (VGAEE). The desired mis-

sion speeds are set different for the missions, where mission 7 to mission 10 are

deliberately set with incrementally increasing travel speeds but with the same

start point to destination, and hence consume increasing energy levels. Over-475

all, the VVGAEE algorithm achieves the best performance in terms of energy

efficiency under different travel speeds.

To validate the practicality of the algorithms, the computational time of each

algorithm is also studied. The Voronoi collision-free roadmap is first calculated
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Fig. 17. Comparison of VVGAEE, VGAEE and VVEEPRE: green solid line represents the
VVGAEE path, VGAEE is shown as blue solid line and blue dashed line is the VVEEPRE
path

that takes around 30-40 seconds. The computational time of the oncoming480

algorithms are recorded, as shown in Table 5. Note that these three algorithms

use the same Voronoi roadmap, which just needs to be calculated once and can

be reloaded for future uses. It is found that the VVEEPRE algorithm needs

much less computational time than VGAEE and VVGAEE. The reason is that

VVEEPRE only requires executing the VVEE path planner for a few steps,485

while the other GA-based methods call the VVEE function for thousands of

times. On the other hand, surprisingly, VVGAEE requires less computational

time than VGAEE. Although VVGAEE calls the VVEE function to generate

the initial paths instead of using the Voronoi paths directly, the initial VVEE

paths are shorter than the Voronoi paths. This, in consequence, saves the490

ongoing computational time. And using the VVEE paths as the initial paths also

improves the energy efficiency of the VGAEE algorithm, as shown in Table 4.

The relationship between travel time and computational time of VVGAEE

is illustrated in Fig. 18. It is observed that the computational time of VVGAEE

is linearly proportional to the travel time. In addition, comparing mission 4 (the495

longest travel time of 3.87 hrs) with mission 10 (the shortest travel time of 1.90

28



Fig. 18. Travel time and computational time of the VVGAEE algorithm in ten USV mis-
sions: each green dot represents the computational time against its corresponding travel time
of one mission. The green line shows the linear regression fitting between travel time and
computational time

hrs), we can also find the computational time of VVGAEE increases linearly

and does not increase dramatically for searching high dimensional data like

with A* and dynamic programming algorithms, demonstrating the scalability

of the VVGAEE algorithm.500

In total, the VVGAEE algorithm generates the most energy efficient paths,

compared with the VVEE, VGAEE and VVEEPRE algorithms. Although the

VVGAEE algorithm requires more computational time than the VVEEPRE

algorithm, it is still practical considering that it uses two minutes to plan a

3-4 hours travel. Note that all the experiments were carried out on a 2.2GHz505

Intel Core i7-8750H processor with 16.0 GB. The program was implemented

in Matlab R2019a. Using more powerful computing platform and optimising

the code will reduce the computational time. As mentioned, the VVGAEE

algorithm is considered scalable, due to the fact that the computational time of

VVGAEE is linearly proportional to the travel time.510
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Table 4: Energy efficiency comparison of VVEE, VVEEPRE, VGAEE and VVGAEE in ten USV missions of Singapore Strait

No. Start point Destination
Speed
(m/s)

VVEE
energy cost

VVEEPRE
energy cost

VGAEE
energy cost

VVGAEE
energy cost

1 (103.95, 1.20) (103.75, 1.25) 2.5 1.026 (+14.13%) 1.026 (+14.13%) 0.943 (+4.89%) 0.899
2 (103.95, 1.20) (103.70, 1.23) 2.5 1.609 (+38.47%) 1.262 (+8.61%) 1.646 (+41.65%) 1.162
3 (103.95, 1.15) (103.70, 1.25) 2.5 1.786 (+27.21%) 1.532 (+9.12%) 1.478 (+5.27%) 1.404
4 (103.68, 1.30) (103.95, 1.20) 2.5 1.654 (+12.36%) 1.523 (+3.46%) 1.569 (+6.59%) 1.472
5 (103.75, 1.25) (103.95, 1.20) 2.5 1.430 (+4.08%) 1.461 (+6.33%) 1.388 (+1.02%) 1.374
6 (103.70, 1.25) (103.95, 1.15) 2.5 1.854 (+12.16%) 1.827 (+10.53%) 1.706 (+3.21%) 1.653
7 (103.91, 1.27) (103.70, 1.25) 2 0.946 (+11.82%) 1.067 (+26.12%) 0.863 (+2.01%) 0.846
8 (103.91, 1.27) (103.70, 1.25) 2.5 1.431 (+12.41%) 1.421 (+11.63%) 1.300 (+2.12%) 1.273
9 (103.91, 1.27) (103.70, 1.25) 3 2.000 (+29.70%) 2.089 (+35.47%) 1.555 (+0.84%) 1.542
10 (103.91, 1.27) (103.70, 1.25) 3.5 2.572 (+20.47%) 2.667 (+ 24.92%) 2.530 (+18.50%) 2.135

Table 5: Computational time comparison of VVEEPRE, VGAEE and VVGAEE in ten USV missions of Singapore Strait

No. Start point Destination
Speed
(m/s)

VVEEPRE
computational
time
(seconds)

VGAEE
computational
time
(seconds)

VVGAEE
computational
time
(seconds)

VVGAEE
distance
(km)

VVGAEE
travel
time
(hrs)

1 (103.95, 1.20) (103.75, 1.25) 2.5 3.253 127.445 104.610 24.352 2.7058
2 (103.95, 1.20) (103.70, 1.23) 2.5 4.449 152.288 128.902 28.577 3.1752
3 (103.95, 1.15) (103.70, 1.25) 2.5 4.330 135.827 124.991 30.245 3.3606
4 (103.68, 1.30) (103.95, 1.20) 2.5 6.103 170.562 142.571 34.915 3.8794
5 (103.75, 1.25) (103.95, 1.20) 2.5 2.978 136.484 101.411 24.908 2.7676
6 (103.70, 1.25) (103.95, 1.15) 2.5 5.327 159.493 136.217 34.137 3.7930
7 (103.91, 1.27) (103.70, 1.25) 2 6.192 169.639 127.985 24.574 3.4131
8 (103.91, 1.27) (103.70, 1.25) 2.5 4.559 130.730 103.442 23.907 2.6563
9 (103.91, 1.27) (103.70, 1.25) 3 2.970 119.677 92.302 23.796 2.2033
10 (103.91, 1.27) (103.70, 1.25) 3.5 2.874 113.068 73.841 24.018 1.9062
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5. Conclusion and future work

In this work, we proposed a spatially-temporally energy efficient path plan-

ning algorithm, named VVGAEE, by integrating the Voronoi diagram, Visibility

graph, Dijkstra’s algorithm and GA algorithm. Voronoi diagram and Visibil-

ity graph are used to produce optimal roadmaps that are sparse and efficient515

for large-scale environment path planning. The use of the GA algorithm with

various operators, including dividing, smoothing, and exchanging, is to further

improve the quality of paths and adapt to the Voronoi-Visibility roadmap. For

performance evaluation, the VVGAEE is evaluated against three other algo-

rithms, namely VVEEPRE, VGAEE, and VVEE, where the first two are two520

new implementations inspired by other recent related work and the VVEE is one

previous work, prividing a baseline for performance evaluation. A comprehen-

sive study of performance is carried out with ten different USV missions. The

VVGAEE algorithm has shown clear advantages in generating the most energy

efficient path among all algorithms. Studies of computational time have also525

been performed in order to validate the practicability for large-scale real-world

scenarios. The results have shown that the computational time of VVGAEE

will increase only linearly with the increase of travel time, demonstrating the

scalability of this algorithm. Using the historical sea current dataset and high-

resolution coastline dataset of the real world also demonstrates the flexibility530

and practicability of the proposed algorithm.

In future, the main focus will be on the integration of the path planning

algorithm and the previous works of the collision avoidance and the path fol-

lowing algorithm. Multiple energy resources, including wind energy (Ren et al.,

2019), wave energy (Mutsuda et al., 2019), solar energy (Garćıa-Córdova and535

Guerrero-González, 2013) and diesel engine, may also be taken into account for

long endurance operations. According to the COLREGS (International Regu-

lations for Preventing Collisions at Sea), the USV may need to alter its course

to avoid the encountering intruders in specific traffic situations. Path planning

decision should be made accordingly to avoid collision risks. Multi-task alloca-540
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tion scenarios can be taken into account too. The sea depth data can also be

integrated with the proposed algorithm so as to define the safe area dynamically

in time varying environments.
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