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Artificial Neural Networks for Parametric Daylight Design 

In parametric design environments, the use of Artificial Neural Networks (ANNs) 

promises greater feasibility than simulations in exploring the performance of solution 

spaces due to a reduction in overall computation time. This is because ANNs, once 

trained on selected input and output patterns, enable instantaneous predictions of 

expected outputs for new unseen input in the recall mode. In this study, ANNs were 

trained on simulation data to learn the relationship between design parameter and the 

resulting daylight performance. The ANNs were trained with selected input-output 

patterns generated from a reduced set of simulations in order to predict daylight 

performance for a hypercube of design solutions. This work demonstrates the 

integration of ANNs in a case study exploring designs for the central atrium of a school 

building. The study discusses the obtained design results and highlights the efficacy of 

the proposed method. Conclusions are drawn on the advantages of brute-force based 

daylight design explorations and the potential of an ANN-integrated design approach. 

Keywords word: Daylight analysis in parametric design, Neural Networks in 

parametric design, Daylight in atriums, Neural Networks in early design stages  

1. Introduction 

This study aims to improve the feasibility of daylight assessments in parametric design 

environments. It specifically focuses on proposing the use of Artificial Neural Networks 

(ANNs) to streamline daylight results to better explore design solutions by giving faster 

performance feedback to designers.  

1.1 Climate-based daylight modelling 

As part of the wider discussion on sustainable building design, daylighting has been found 

imperative for occupant well-being and energy savings (Bodart and De Herde 2002; 

Figueiro et al. 2017; Veitch, Christoffersen, and Galasiu 2013).  Daylight is an interesting 

design factor, given its significant impact on retail sales performance (Heschong, Wright, 

and Okura 2002), as well as school and work achievement (Heschong et al. 2012; Maesano 

and Annesi-Maesano 2012). Backed by research determining a daylight threshold to ensure 



occupant comfort and satisfaction, specifically in school-buildings (Heschong et al. 2012), 

dynamic climate-based daylight modelling (CBDM) found its adaptation as a requirement 

for applications to the PSBP (Priority Schools Building Program) in the UK in 2012 (EFA 

2014) as well as in European and British building standards (BS EN 17037:2018). Thus, 

the focus in both research and practice has turned away from the standard Daylight Factor 

(DF) metric towards climate-based daylight metrics. 

Climate-based daylight metrics are calculated over the course of a whole year, 

typically in hourly or minutely intervals for times the building is occupied. In comparison 

to the point-in-time DF metric, which is usually calculated under overcast sky conditions 

and without considering orientation, solar altitude or effects of shading (Reinhart, 

Mardaljevic, and Rogers 2013), CBDM gives an aggregated measure of daylight for the 

prevailing conditions at the site and is intended to evaluate the overall daylighting potential 

of a building (Mardaljevic 2008). However, the calculation of climate-based daylight 

metrics is computationally intensive and can take up several hours. 

1.2 Brute-force approach in parametric environments 

Time-intensive CBDM can prove to be a challenge when assessing the daylight 

performance for numerous scenarios, especially in parametric design environments when 

designers aim to push for daylight optimisation. Parametric design is an environment which 

enables designers to go from solution to design. If, on the one hand, a parametric design 

environment offers the opportunity to improve building performance via automated and 

systematic searches and/or the use of optimisation algorithms, the climate-based 

simulations on these models, on the other hand, becomes increasingly time-consuming with 

every design solution that is being simulated (Eltaweel and Su 2017). Therefore, the 

number of possible solutions, i.e. the size of the design space, constitutes a limitation to 

such processes. In effect, this limits the number of design variables, which are the number 



of choices a designer can make with the objective of improving performance (Tresidder 

2014). 

 A full parametric analysis of all combinations of design variables, also known as the 

brute-force search method, allows the user to engage with results of the entire design 

solution space. Such method is therefore suitable for developing design guidelines, and 

further enables designers to combine optimisation results according to their own judgement 

(Samuelson et al. 2016). This study relies on the brute-force approach to provide 

performance feedback on all possible solutions of the design space. Brute-force was 

deemed essential, firstly because causal relationships can be learned from the trends, and 

secondly because this provides designers with the freedom of choice to make informed 

decisions. Thus, even if an optimal solution is rejected, the decision is informed, i.e. the 

consequences are known.  

The brute-force approach however, as an exhaustive search method, is especially 

computationally intensive. At this point, the introduction of ANNs offers promising 

possibilities to facilitate design exploration as they significantly shortcut the large number 

of simulations necessary, yet still deliver performance feedback on all design solutions. 

This paper proposes an ANN-integrated design approach to produce quasi real-time 

daylight assessment of climate-based metrics. It illustrates this approach through testing it 

in a case study school building for different types of atrium designs.  

1.3 Application of ANNs in daylighting 

The concept of ANN-based predictive modelling as replacement for cycle-by-cycle 

simulations has been implemented in various fields of performance analysis, either in 

optimisation or to efficiently explore design solution spaces  ( Ipek et al. 2006; Forrester 

and Keane 2009; Magnier and Haghighat 2010; Zhao and Magoulès 2012). In the field of 



daylight design, previous work can be found for daylight and energy consumption, 

optimisation of thermal and visual comfort, blind position and control as well as predictions 

of daylight factors and daylight illuminance. 

ANNs were used to predict the energy consumption for lighting (Wong, Wan, and 

Lam 2010). The models had a high predictive power and the errors ranged from -0.2% to 

+3.6% for predictions on electricity use. Fonseca, Didoné and Pereira (2013) also proposed 

ANNs as prediction models to assess the impact of daylighting on electric energy 

consumption. The models delivered high accuracies during cross-validation, but their 

validity had yet to be determined for predictions on unseen cases. On the optimization of an 

integrated daylighting and HVAC system, ANN predictions were integrated into a genetic 

algorithm to minimise energy consumptions while satisfying thermal and visual comfort 

(Kim, Jeon, and Kim 2016). ANN-based methods have also been tested for real-time 

feedback, specifically for automated blind and lighting control. Coley and Crabb (1997) 

proposed the application of ANNs to remotely control electric lighting by predicting indoor 

illuminances at chosen points based on external measurements of vertical illuminance. 

Similarly, Hu and Olbina (2011) used ANNs to predict optimal slat angles for split blinds 

to achieve designed indoor illuminances. Neuro-fuzzy systems have also been suggested for 

blind position control (Bhavani and Khan 2009).  

Conraud-Bianchi (2008) trained an ANN model on 200 simulation cases in order to 

predict the average daylight factor across a series of points for 50 new cases. The achieved 

relative errors were lower than 2.5%. In another optimisation study, Zhou and Liu (2015) 

trained ANN models and support vector machines on simulation data in order to predict 

hourly results for the climate-based UDI (Useful Daylight Illuminance) metric. The model 

was limited to binary output that determined whether daylight levels fell within a specific 

illuminance range.  



To the best of the authors’ knowledge, there are no studies that use ANNs to predict 

annual aggregated climate-based metrics (neither DA nor sDA) in parametric design 

environments. The referenced works predict daylight for different climate conditions and 

sun positions, i.e. ANNs were trained with climate data as part of the training data. In 

comparison, this work collapses the time-series entirely, i.e. it is assumed that ANNs can 

emulate daylight contributions of an entire year. The ability of ANNs to predict climate-

based metrics for design alterations and varying design scenarios, in the context of the 

specific case study explored in this paper, has been tested successfully (Lorenz and Jabi 

2017;  Lorenz et al. 2018). 

2. Methodology 

In order to test the use of an ANN-integrated design approach to produce quasi real-time 

daylight assessment using CBDM, this paper explores different atrium design alternatives 

for the Katharinen School in Hamburg (Germany). The building is located in a dense urban 

area with surrounding buildings obstructing the natural access to daylight (Figure 1). 

Therefore, the atrium provides a means of bringing additional daylight into the building, 

making it a viable design feature for optimisation. 



 

Figure 1. Grasshopper model of the Katharinen School (highlighted in green) with its central atrium and surrounding 

buildings 

Figure 2 illustrates the process used in the exploration of the solution space. A set of 

design alternatives were generated, and a small number was selected and passed to a 

daylight simulation engine. Daylight simulations were conducted from which data 

describing the design changes as well as the corresponding daylight results were extracted. 

Subsequently, ANN models were developed by providing the extracted data to a particular 

network topology to undergo supervised training. Once trained, these ANN models were 

validated and integrated into the parametric model to assess the daylight performance of all 

design solutions in the design space. The following sections detail the processes described 

in Figure 2, from the modelling of the solution space to the training and validation of ANN 

models. 



 

Figure 2.  ANN-integrated approach for daylight assessment of design exploration 

2.1 Design solution space 

Design solutions were explored for the central atrium with the aim of bringing more 

daylight into its adjacent spaces on the lower floors. Design alterations were proposed for 

the atrium geometry, orientation and Window-to-wall ratios (WWR) of the atrium walls 

(Table 1).  

Table 1. Design variables used in the proposed design alterations to improve daylight conditions 

Variable Category Design Variable Number of 

Choices 

Maximum and Minimum 

Bounds 

Atrium geometry Atrium base dimension 6 56.25 to 225 m2 

Atrium orientation Atrium top and atrium base 

location 

9 Units along x-axis:        

- 4 to 4      

 4 to - 4 

Atrium well facade WWR distribution 3 WWR ratios top to bottom 

floors: 



50, 60, 70, 80, 90, 100% WWR 

20, 35, 50, 65, 80, 100% WWR 

20, 30, 40, 50, 60, 100% WWR 

Since splaying the atrium well walls increases the visible sky component and the 

usable floor area and the resulting ‘V’ shaped atrium geometry has the potential to allow 

for deeper daylight penetration into atrium adjacent spaces (Erlendsson 2014), the 

architectural model was parametrised by scaling the atrium base dimension with a factor 

between 0.5 and 1, in increments of 0.1. This produced 6 possible solutions with atrium 

base dimensions of 56.25, 81, 110.25, 144, 182.25 and 225 m2, respectively.  

On top of these previous first set of variations, the orientation and exposure of the 

facades of the atrium well to sunlight were varied by moving the atrium base and atrium top 

in opposite directions along the x-axis positioned at the centre of the atrium. The atrium 

base was moved between -4 to 4 m and the atrium top between 4 to -4 m, in increments of 1 

m, producing 9 solutions. Taken together, this resulted in a 9 by 6 matrix with 54 possible 

combinations (Figure 3). 

 

Figure 3.  Design space of 54 possible combinations after adding two different types of parametric variations (splaying and 

sunlight orientation). The images show the east section of the grasshopper model. 
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The solution space of 54 variants was extended by altering the glazing distribution 

across different floor levels. Aschehoug (1992) suggested that a WWR distribution of 50, 

60, 70, 100% from top to bottom floors works best for a 4-storey building as this increases 

the daylight reflected component. For a 5-storey building with a square atrium, Cole (1990) 

found the distribution of 20, 40, 60, 80 and 100% (from top to bottom) to be most effective 

in increasing daylight levels on the lower floors. In contrast, Samant (2017) who also 

investigated WWR distribution for a 5-storey building with square atrium, showed that a 

WWR distribution starting from 50-60% WWR on the top floors performed better than 

WWR ratios of 20-40%. This is because the drop in daylight levels on upper floors as a 

result of reducing the glazing area to 20% WWR was higher than the achieved increase of 

daylight levels on lower floors, making the change less worthwhile.  

Based on these findings, three WWR distribution options were selected for the 

central atrium, as indicated in the last column of Table 1, with each of them applied to the 

54 solutions increasing the size of the solution space to be investigated to 162 variants. The 

reflectivity of atrium well wall was set to a diffuse reflectance of 80%. 

2.2 Sampling of the design space 

ANNs require training data to learn relationships between design parameters and 

corresponding daylight performance so they can ‘mimic’ daylight simulations. The authors 

randomly extracted 45 design solutions out of the total 162. Although intelligent sampling 

methods exist, random sampling of simulation data has been found to yield good results 

(Ipek et al., 2006) and was therefore used in this study for simplification purposes.  

2.3 Daylight simulation 

The two climate-based metrics Daylight Autonomy (DA) and spatial Daylight Autonomy 

(sDA) were used to assess the daylighting potential of the design variants. DA denotes the 



number of occupied hours in a year in which an illuminance threshold, typically set to 300 

lux for office work, can be maintained by daylight alone (Reinhart and Walkenhorst 2001). 

sDA is derived from the DA metric and describes the percentage of work plane area that 

can meet the DA300 lux threshold for 50% of occupied hours. Specifications for the sDA 

metric have been set to 50% (IES LM-83-12; EFA 2014).  

Daylight simulations were run in Diva1 for Grasshopper, a Radiance-based and 

validated simulation tool (McNeil and Lee 2012). The work plane was set to a height of 

0.8m and sensor points were distributed with 0.6m spacing from each other. The radiance 

simulation parameters are listed in Error! Reference source not found.2.  

Table 2. Radiance simulation parameters 

Ambient bounces (ab) 6 

Ambient divisions (ad) 2046 

Ambient resolution (ar) 500 

Ambient super-samples (as) 500 

Ambient accuracy (aa) 0.1 

2.4 Feature extraction 

The training data set used as input for the network consisted of 45 randomly sampled 

simulated design variants. Training samples comprise the input features of each design 

variable and its corresponding DA output values. Input features were extracted for all 

sensor points for which DA levels were simulated. These extracted features describe 

changes occurring in the architectural model. A list of extracted input features is given in 

Error! Reference source not found.3. They were further optimised using sequential 

 

1 Diva. Solemma LLC. Available at: http://solemma.net/Diva.html (accessed Oktober 21, 2019). 
 



feature selection in order to improve prediction accuracies and reduce overall training time. 

Table 3. Data extracted to train the ANN models 

2.5 ANN training 

ANNs process and pass information over a system of neurons with varying connection 

strengths. Feed-forward neural networks are typically arranged in an input layer that 

receives the training data, one or more hidden layers that develop a pattern of connections 

to replicate functions and an output layer that delivers the predictions (Figure 4). Before 

training, the extracted input features are passed to the neurons of the input layer, and the 

corresponding DA results to the neuron in the output layer. Training takes place in epochs, 

during which the networks adjust the connection strengths between neurons in order to 

minimize the mean squared error (MSE) between the simulated and predicted result. The 

MSE was observed for the training data which was subdivided into a training, test and 

 

Sensor Point Specific 

Training Features 

 

 

Value Range 

 

 

Design Variable Specific 

Training Features 

 

Value Range 

 

x, y coordinates of sensor 
point (2 features) 

 
0.12 to 35.5 
24.9 to 64.7 

 
Splay angles of atrium well 
(4 features) 

 
58.4 to121.9° 
52.2 to113.2° 
58.4 to 121.9° 
52.2 to 113.2° 

Distance to north, south, 
east, west façade (4 features) 

0.1 to 39.9 m 
0.1 to 35.5 m 
0.1 to 39.9 m 
0.1 to35.5 m 

Glazing area at simulated 
floor level (4 features, one 
for each atrium well wall) 

8.2 to 42.3 m2 

8.2 to 46.1 m2 

8.2 to 42.3 m2 

8.2 to 46.1 m2 

Distance to closest atrium 
point (1 feature) 

0 to 24.4 m Glazing area across all floors 
(1 feature) 

350.2 to 1091.1 m2 

Direction of closest atrium 
point (1 feature) 

0 to 360° Dimension of the daylight 
calculation grid (1 feature) 

1199 to 1364.1 m2 

Distance to atrium centre (1 
feature) 

2 to 29.8 m Atrium dimension at the 
height of calculation grid (1 
feature) 
 

60 to 225 m2 

Direction of atrium centre (1 
feature) 

350.2 to 1091.1 m2 Dimension of the atrium base 
area (1 feature) 

56.3 to 225 m2 

Location of sensor point 
inside or outside atrium well 
(1 feature) 

0, 1 WWR at 2nd/ 3rd/ 4th/ 5th/ 6th 
floor (1 feature) 

20, 20, 50% (6th) 
30, 35, 60% (5th) 
40, 50, 70% (4th) 
50, 65, 80% (3rd) 
60, 80, 90% (2nd) 



validation subset at the ratio of 65:15:20. The training subset was used to measure training 

accuracy, the validation subset was used to introduce early-stopping and prevent 

overfitting, and the test subset was used to measure generalisation capability. Gradient 

descent-based backpropagation training was employed in conjunction with the Levenberg-

Marquardt algorithm to adjust the connection strengths (Marquardt 1963). A custom script 

was used to optimize the number of neurons in the hidden layers of the network. Each ANN 

configuration was trained 10 times in parallel, with randomised initial weight settings and 

randomised data in each ratio. Finally, the output of the 10 ANN models with the lowest 

overall MSE was averaged to further improve the robustness of predictions. The specific 

ANN training settings are detailed in Table 4. 

 

Figure 4.  Simplified representation of an ANN architecture with one input layer, two hidden layers and one output layer. 

The features described in Table 3 were passed to the input layer, and the corresponding DA to the output layer. 

Table 4. ANN training settings 

Initial Mu 1 

Mu decrease factor 0.8 

Mu increase factor 1.5 

Number of training epochs 200 

Maximum number of validation failures 6 



2.6 ANN validation 

In order to determine that the ANN models could predict the daylight performance for the 

entire design landscape, their accuracy was validated against simulation results in a 

previous paper (Lorenz et al. 2019). The ANN models were able to predict the daylight 

performance after being trained with data from 36 out of 162 simulations. The trends in 

performance were also correctly identified, as the ANN models successfully predicting the 

ranking of options in accordance with the order of the simulated results. In this study, the 

number of simulations from which training data was extracted was increased to 45 out of 

162 simulations. Additionally, a network architecture with two hidden layers was used. The 

resulting absolute difference between predicted and simulated daylight levels was 0.53 DA 

and 0.28 sDA on average on a validation data set constituent of 21 unseen simulations or 

13% of the solution space. The root mean squared error was 0.86 DA and 0.33 sDA. Thus, 

it was concluded that the ANNs could deliver high prediction accuracies for this scenario. 

3. Results and discussion  

The validated ANN models were used to obtain the DA and sDA results for all atrium 

designs in the solution space. As Lorenz et al. (2019) focused on the validation of results, 

this paper focuses on the value of daylight results that can be obtained by such a facilitated 

sDA acquisition process. Results are presented in terms of spatial Daylight Autonomy 

(sDA) for the ground, third and top floors with a detailed analysis of how different WWR, 

orientations and geometries affect daylight performance. Figure 5a provides a graphic 

structure to read the results. Figure 5b illustrates all 9 orientations and Figure 5c shows 

where atrium splay angles are measured. Both aid understanding the influence of atrium 

well orientation discussed in the upcoming results sections.  Patterns, trends and magnitude 

of results were assessed in terms of how each different design variable contributed to sDA 



changes.  

SDA results in atrium adjacent spaces ranged overall between 21 and 29 % on the 

ground floor, 37 and 46 % and on the third floor and between 75 - 95% on the top floor 

(Figure 6). When the atrium well area is included to the analysis of ground floor, sDA 

range increases overall from 24 to 41%. Differences in daylight performance among these 

three floors vary between 7% (for the ground floor) up to 20% (for the top floor) for all 162 

atrium design solutions. Such a change justifies deeper investigation in cause and effect 

relationships. Results are therefore presented and assessed in the following order: 

 

Figure 5a.  Graphic format to improve legibility of results; 5b. Atrium well orientations; 5c. Atrium well splay angle ranges 

1.) Impact of atrium well geometry on sDA, with magnitudes assessed based on minimum 

and maximum sDA values for each given floor area (Figure 6)   

2.) Impact of WWR distribution on sDA, with magnitude assessed based on minimum and 

maximum sDA ranges across the different WWR in each given floor area (Figure 7)  

3.) Impact of atrium orientation on sDA, with magnitude assessed based on minimum and 

maximum sDA ranges across the different orientations for each WWR option in each 

given floor area (Figure 8) 

4.) Combined impact of all design changes on sDA across all floors 

5a 

5b 
5c 



 

Figure 6.  sDA performance for atrium adjacent spaces:  ground floor, 3rd floor, and 6th floor. 



3.1 Impact of Atrium Well Geometry on sDA 

For the ground floor, the larger the atrium base area, the higher the sDA levels in atrium 

adjacent spaces. This is true for the third floor, but not for the upper floor.  

On the ground floor, sDA within a given atrium base area varied between 26 and 

29% for the largest atrium base area and between 21 and 23% for smallest atrium base area 

(as indicated in Figure 6). This pattern is the same on the third floor, with sDA ranging 

between 42 and 45% and between 37 and 40 % for the largest and smallest atrium base 

areas respectively. From the 5th floor, this pattern starts changing, therefore sDA on the 6th 

floor ranged between 75 and 92 % for the largest atrium base area and increased to sDA 

between 77 and 93% for the smallest atrium base area. These magnitudes illustrate that a 

change in the atrium base floor area has the largest impact on the 3rd floor rather than the 

ground floor, with the smallest impact and a reverse effect on the top floor. 

Pattern and magnitude changes are a product of a combination of an increase in 

room depth on lower floors (due to a reduction in the atrium well area), the depth of 

daylight penetration into the atrium well (due to a change in the atrium splay angles) and an 

increase in the effect of overshadowing from neighboring buildings towards lower floors. 

Starting from the 5th floor, the visible sky area increases with the splay angle, exposing 

larger portions of the atrium walls to the open sky. This improves daylight performance 

despite a slight increase in room depth. 

3.2 Impact of WWR distribution on sDA  

Figure 7 shows the maximum and minimum ranges in sDA for the different WRR options 

on the top floor. The WWR distribution series starting with 50% showed significantly 

higher sDA in comparison to both WWR distribution series starting with 20%, which 

showed very similar results to each other. Changing the WWR distribution shows less of an 



impact on sDA when the atrium well is northward-oriented.   

 

Figure 7. Maximum and minimum sDA ranges for WWR options on the 6th floor 

On the top floor, the maximum range of variations in sDA was 13% whereas the 

minimum range was 7%. Maximum ranges occurred for solutions with a slight southern 

orientation and minimum ranges occurred for atria with the northernmost orientation. On 

the top and fifth floor, the 50% WWR distribution series consistently performed better. 

This pattern changed on the third and ground floors as the WWR distribution series of 20, 

30, 40, 50, 60, 100% tended to perform better than the others. The range of variation in 

sDA based on WWR is much lower on the third and ground floors (as shown in Figure 6), 

with a difference lower than 2.3%. Despite being small, this difference does matter because 

it accounts for around 28m2 (ground floor), meaning additional daylight is provided to the 

otherwise under lit areas in the proximity of the atrium well, thus making them more 

suitable to accommodate work environments. 

A reduction in window area significantly diminished sDA results on the top floor 

improve sDA in the lower floors. This is because the presence of larger opaque surfaces on 

the upper floors increased the reflected light in the atrium well as a whole. This impact is 

particularly noticeable for the third floor in which the majority of design solutions with 



65% WWR underperformed design solutions with 50% WWR, a result that might look 

counter intuitive for a designer. The turning point and exception to this can be found in 

design solutions with an atrium base area of 225m2 from which the increase in reflected 

daylight could not offset anymore the additional access to daylight provided by larger 

window areas.  

It is important to notice that this shift in patterns will be affected by the number of 

simulation ambient bounces. The higher the number of bounces, the deeper and further 

daylight will travel into atrium adjacent spaces. In addition, an increase of daylight levels in 

lower floors can also be achieved by increasing the reflectance of materials in the atrium 

well. Since both settings can heavily affect sDA on lower floors, further studies are needed 

to validate realistic settings for climate-based daylight simulations in atrium buildings.   

3.3 Impact of Orientation on sDA 

On all floors and across all design solutions, the northmost orientation showed the weakest 

sDA performance. The optimum orientations however varied.  

On the top floor, the WWR distribution series starting with 50% showed a different 

optimum orientation than both WWR distribution series starting with 20%, which showed 

very similar results to each other. The optimum for the 50% WWR distribution series was 

found in slightly southern oriented atriums whereas the optimum for the other two WWR 

series were found in a slightly northern orientation. This pattern remained consistent across 

all atrium base areas. On the third and ground floor, the optimum orientation was 

southward for all WWR distribution series. One difference between these two floors was 

that the optimum orientations on the ground floor were more steeply oriented towards south 

than third floor optima. The turning point for optimum orientation changes from south to 



north on the fifth floor, where a steeper northward orientation consistently provided the 

highest sDA for all WWR distribution series. 

Figure 8 shows sDA variation for the different orientations on the top floor per 

WWR distribution series for each given atrium base area. The maximum range of variation, 

11% sDA, was found in the 50% WWR distribution series and the minimum range, 6% 

sDA, in the 20, 30, 40, 50, 60, 100% WWR distribution series. The range of variation in 

sDA based on orientation is much lower on the third and ground floors (as shown in Figure 

6), with a difference lower than 2.5% sDA.  

 

Figure 8. Maximum and minimum sDA ranges for Orientation on the 6th floor 

It is important that orientation is understood in association with the splay angles of 

the atrium well walls. For each of the nine orientations (Figure 5b), the resulting splay 

angles vary with the size of the atrium base area (as displayed in Figure 5c). The 

combination of Figures 5b and 5c are therefore presented as a range of splay angles in 

Table 5. The splay angles were measured at the north-facing and south-facing atrium well 

walls (Figure 5c). 

Table 5 shows the splay angles of the orientations that most commonly resulted in 

the highest sDA on the top, third, and ground floor with the turning point described for the 



fifth floor. The northward orientations are, for the most part, associated with an obtuse 

splay angle of the north-facing atrium well wall and an acute splay angle of the south-

facing atrium well wall. This is vice versa the case for the south ward orientations. One 

exception are the slightly north/ southward orientations (underlined figures in bold, Table 

5): here the atrium design solutions with an atrium base area of 110.25m2 and lower have 

acute splay angles on both the north- and south-facing atrium well walls. 

Table 5. Splay angles of design solutions grouped according to orientation; results of best performing orientations marked 

with in red 

Orientation  

 

North-

most 

North 

 

North 

 

North 

 

Central 

 

South 

 

South 

 

South 

 

South-

most 

Splay 

angle of 

north-

facing wall 

113.2 to 

102.6° 

107.8 to 

96.7° 

102.1 to 

90.8° 

96.1 to 

84.8° 

90 to 

78.9° 

83.9 to 

73.2° 

77.9 to 

67.9° 

72.2 to 

62.9° 

 

66.8 to 

58.4° 

 

Splay 

angle of 

south-

facing wall 

66.8 to 

58.4° 

 

 

72.2 to 

62.9° 

 

77.9 to 

67.9° 

83.9 to 

73.2° 

90 to 

78.9° 

96.1 to 

84.8° 

102.1 to 

90.8° 

107.8 to 

96.7° 

113.2 to 

102.6° 

Atrium 

base area: 

225 m2 

Atrium 

base area: 

56.25 m2  

 

The smaller the window area and the lower the floor level, the lower the impact of 

orientation on sDA. This is noticeable when comparing design solutions with 50 and 20% 

WWR on the top floor and results on top floor to those on the lower floors (Figure 6). Thus, 

spaces with greater availability of daylight were more affected by the choice of orientation.  

Southward oriented atria typically showed higher sDA levels below the fifth floor. 

The optimum orientation changed more steeply towards south in lower floor levels. This is 

because, to perform better, the lower floor levels need deeper daylight penetration into the 

atrium well. This can be achieved by aligning the splay angles with the solar altitude, which 

6th Floor  

(50%WWR) 
Ground 

Floor 

6th Floor  

(20%WWR) 

5th Floor  

 
3rdFloor 

113°  67° 

103°  58° 

67° 113° 

58° 103° 

90°  90° 

79° 79° 



as consequence, increases reflected daylight into atrium adjacent spaces. As floors go up, 

the atrium adjacent spaces need to be more perpendicular with the solar altitude in order to 

increase direct daylight penetration and reflected daylight from atrium well walls. In 

addition to that, perpendicular walls also favour reflected daylight from the atrium base to 

reach upper floors.  

Less intuitive results were found on the top two floors where optimal orientations 

vary. Especially on the top floor where north/ south orientations perform better for different 

WWR options, the relationship between orientation and splay angles becomes difficult to 

entangle. The derivation of conclusions would therefore need a more detailed analysis of 

the spatial distribution of daylight and of the climate data itself as well as further validation 

of the results. Nonetheless, the following lines of argument provide possible explanations 

for the presented results:  

On the fifth floor, there was a shift in pattern as north oriented atria displayed higher 

sDA levels regardless of the WWR. This situation also holds true for 20% WWRs on the 

top floor level. The higher sDA values for north oriented atria can be explained by several 

aspects: Northward orientation and acute splay angles of the south-facing atrium well wall 

expose more floor area in the south of the atrium towards the sky (top light rather than side 

light). At the same time, the south facing atrium well wall provides an orthogonal surface to 

prevailing solar angle thus enabling deeper daylight penetration into atrium adjacent spaces 

in the south. Additionally, more daylight is reflected from the south facing atrium well 

walls as the percentage of opaque surfaces is particularly high with the low WWR. 

A few arguments also explain the higher sDA levels for the southward orientation 

on the top floor for 50% WWR: Southward orientation and acute splay angles of the north-

facing atrium well wall expose more floor area in the north of the atrium towards the sky 

(top light rather than side light). At the same time, obtuse splay angles improve daylight 



distribution (more diffuse light) and daylight levels in the south of the atrium (Laouadi 

2004; Parent and Murdock 1989). The results would suggest that the improvements in 

daylight from obtuse angles of the north-facing atrium well wall are greater than from a 

perpendicular orientation towards south, given that the window area is large enough (in this 

case 50%).  

Explanations could however also extend to reasons unknown to the authors. These 

arguments will therefore need to be investigated more closely in future work. Besides that, 

the current study used a simplified model with zero wall-thickness. Results may change, 

further shifting the optimum orientations when including wall-thickness in the simulation 

models. 

3.4 Prediction of sDA across all floors 

Figure 9 shows the total sDA performance across all floor levels (average weighted 

according to floor area). SDA within the design solution space ranged between 45 and 55% 

and therefore contained design variants that both meet and fail the 50% standard sDA 

threshold. The smaller the atrium base area, the lower the sDA. The WWR distribution 

series starting with 50% consistently outperformed the other two, which showed 

overlapping results. The optimum orientation across all floor levels was the same as the one 

shown previously for the top floor, i.e. with a slightly south and slightly north orientation 

showing the highest sDA for WWR distribution series starting with 50% and 20% 

respectively. 



 

Figure 9.  sDA performance across all floor levels 

The sDA results ranged between 51 and 55%, and 46 and 49% sDA for the largest 

and smallest atrium base area respectively. The variation between WWR distribution 

options as well as orientations was below 3% sDA. The atrium base area therefore showed 

the biggest impact on the overall sDA of the building. 

The highest sDA relating to WWR distribution was seen for the WWR distribution 

series starting with 50%, a result only representative only of the top two floors. The highest 

sDA relating to orientation was seen on slight north/south orientations, again a result only 

representative of the top floor. This means the top floor is skewing the results, making them 

unsuitable to develop guidelines for design decisions. This becomes even clearer when 

considering that, on the top floor, even the weakest design variants achieved sDA higher 

than 75%, a threshold indicating ‘preferred daylight sufficiency’ (Heschong Mahone Group 

2003; IESNA 2012), meaning that the ‘worst case’ design choices, as suggested by the 

combined performance, do not negatively affect daylight levels on the top floor. When 

looking at the individual floor results however, these design choices do negatively affect 

daylight on the lower floors, where the availability of daylight is especially critical. This 



leads one to conclude that it is important to consider the impact of design choices locally 

(i.e. per floor or even per room) rather than simply globally (i.e. for the whole building). 

4. Time performance after integrating ANNs 

The comparison of time performance between ANNs and the conventional daylight 

simulation is done by comparing the actual elapsed time. On a 2.6 GHz Intel Core i9, one 

daylight simulation took around three hours per floor. The ANN models were trained using 

data from 45 out of 162 simulations. The validation of ANN prediction accuracies was 

undertaken for the ground, 3rd and 6th floors using another 21 simulations per floor. The 

ANN predictions therefore substituted 96 out of 162 simulations on the ground, 3rd and 6th 

floor and 117 simulations on all other floors (ANNs replaced 66% of simulations). After 

deducting ANN training and optimization time for a 4-layered neural network with 38-40 

neuron in the first hidden layer and 19-20 neurons in the second hidden layer, the total 

simulation time was reduced by 65%. This is a conservative calculation and time intensity 

can further be alleviated by reducing the number of simulations and the size of the network 

architecture. Using 36 out of 162 simulations for ANN training, overall simulation time can 

further drop by 71% without much impact on prediction accuracy (Lorenz et al. 2019). 

5. Conclusions and future work  

The study explores the effectiveness of using Artificial Neural Networks (ANN) in the 

early stages of daylight design. Two types of results are presented. The first relates to 

understanding the possibilities of using ANNs as a method to explore daylight design as 

surrogates for simulations, whereas the second provides insights on the subtleties involved 

in daylight design of buildings with a central atrium. In this respect it is important to say 

that simulation results were not validated against real world readings due to the complexity 



of replicating annual climate data. The systematic errors of the simulation employed to train 

the ANN are therefore certainly mirrored by the ANN and allows to draw exclusively 

general conclusions.  

A reduced sample of simulations from the solution space enabled the ANNs to 

predict daylight results of the entire design space. At the same time, ANNs were able to 

display heterogeneity of performance across the design solution space and the non-linear 

interactions between different parameters influencing daylight performance. For instance, 

they predicted a change in the daylight performance pattern in the 3rd floor considering 

atrium orientation and WWR. Such ‘unforeseeable’ results, as provided by the ANNs, 

provide valuable information for evaluating the different design configurations and design 

choices. 

The analysis of daylight results enabled insights on the subtleties involved in 

daylight design of buildings with a central atrium. From comparing the variation of 

daylight performance on different floors with different WWRs and orientations, one can see 

there is no single optimal solution for the best daylight exploitation. Careful considerations 

in relation to the combination of these parameters need to be taken on board, especially so 

that lower floors reach compliance. Also, when planning building layout, sDA results can 

be taken used to determine the location of spaces required to comply with regulation 

thresholds.  

The aim of this study was to alleviate the time intensity of a brute-force approach 

while harbouring its benefits for design exploration. The 65% time savings gained using 

ANNs rather than conventional daylight simulations enabled all possible instances in the 

parameterised design solution space to be examined. This brute force approach empowers 

designers to make informed decisions by uncovering trends and patterns in daylight 

performance. It also maintains the flexibility to change design objectives post optimisation 



as all partial results remain available. To illustrate, the designer can search for design variants 

that achieve increased daylight levels on the lower floors rather than a higher overall building 

daylight performance (total across all floors). In comparison, an algorithm that selectively 

evolved the available design solutions towards improving the overall building daylight 

performance will have omitted the design choices that result in increased daylight levels on 

the lower floors but therefore lower overall building daylight levels (i.e. the design solutions 

with lower atrium well glazing area but higher reflected daylight). Brute force has been 

pushed aside by optimisation techniques for being computationally intensive, which has 

reduced the universe of choice for designers. Due to the achievable time-savings, ANNs offer 

a possibility to readapt the brute-force approach into the design process.  

The obtained ANN predictions were fed back to the Grasshopper model, where 

currently available plug-ins such as Design Explorer2 and Design Space Exploration3 

provide the possibility to facilitate design exploration and user interaction with the results. 

Future work can focus on the following areas: (i) development of a plug-in to the 

architectural software (Grasshopper4 or Dynamo5)  in order to automate model 

parametrisation, ANN training feature extraction, ANN training and validation, and ANN 

optimisation; (ii) automation of the transfer of ANN results to existing interfaces for 

visualisation and feedback, (iii) determination of information required by designers to 

ultimately achieve optimised solutions with improved building performance with regards to 

occupant well-being and environmental impact. 

 

2 Design Explorer v2. Tomasetti, T., CORE Studio. Last updated by Peng, M. (2019). Available at: https://tt-
acm.github.io/DesignExplorer/ (accessed Oktober 21, 2019). 
3 Design Space Exploration. Digital Structures. Available at: https://www.food4rhino.com/app/design-space-
exploration#lg=1&slide=0 (accessed Oktober 21, 2019). 
4 Grasshopper. Rutten, D., Robert McNeel & Associates. Available at: https://www.grasshopper3d.com/page/download-1 
(accessed Oktober 21, 2019). 
5
Dynamo Studio. Autodesk. Available at: https://www.grasshopper3d.com/page/download-1 (accessed Oktober 21, 2019). 
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