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Abstract 

Idebenone has recently been investigated as a drug therapy for Leber’s hereditary optic neuropathy 

(LHON), a rare genetic mitochondrial disease that causes rapid and progressive bilateral vision loss. 

Although several studies have shown that idebenone can promote vision recovery in patients with 

LHON, the evidence for the efficacy of idebenone is still limited. Idebenone failed to demonstrate 

superiority over placebo in the primary end-points of the only published randomised, double-blind, 

placebo-controlled trial. There appears to be a patient-specific response to idebenone with high 

variability in therapeutic outcomes. A recent study suggested that the cytosolic enzyme NAD(P)H: 

quinone acceptor oxidoreductase (NQO1) is the major enzyme involved in the activation of idebenone, 

and the beneficial effects of idebenone are dependent on the expression of NQO1. Here, we confirm 

the NQO1-dependent activity of idebenone, but we also show, for the first time, that the cytotoxicity 

of idebenone is linked to cellular expression of NQO1. Upon idebenone administration, cells deficient 

in NQO1 show a marked decrease in viability in comparison to NQO1 expressing cells, with idebenone 

causing ROS production and deleterious effects on ATP levels and cell viability. In addition, our data 

highlights that only cells expressing NQO1 can significantly activate idebenone, indicating that other 

proposed metabolic activation pathways, such as complex II and glycerol-3-phosphate 

dehydrogenase, do not play a significant role in idebenone activation. Furthermore, we provide 

evidence of idebenone-induced toxicity in the retina ex-vivo, which can be explained by the variation 

of NQO1 expression between different cell types in the mouse retina. Idebenone mediated cell rescue 

in the rotenone ex vivo model also indicated that this drug has a narrow therapeutic window. These 

findings will help to guide the development of future therapies and drug delivery strategies including 

intra-ocular administration. The specific dependence of idebenone activity on NQO1 may also explain 

the variation in patient outcomes in clinical trials.   



Introduction 

Idebenone is a synthetic benzoquinone, initially selected from a medicinal chemistry program 

conducted in the 1980s by Takeda Pharmaceuticals, as a possible cure for Alzheimer’s disease but with 

limited success [1]. In 2006, Santhera Pharmaceuticals started to investigate idebenone for the 

treatment of a number of different diseases, such as Duchenne muscular dystrophy [2], Leber’s 

hereditary optic neuropathy (LHON) [3], and Friedreich ataxia for its reported antioxidant and ATP 

rescue capacity [4]. Initially, idebenone was simply considered as an analog of coenzyme Q10 (CoQ10), 

also known as ubiquinone, a physiological and ubiquitous quinone present in all mitochondrial 

membranes [5]. Coenzyme Q10 is a component of the electron transport chain, and it functions as an 

electron carrier in aerobic cellular respiration, transporting electrons from complex I and II to complex 

III, consequently driving ATP production [5]. CoQ10 is a lipophilic molecule (logD 19.12), with a long 

isoprenoid tail and a hydrophilic quinone head [6]. These two features give the compound a unique 

ability to move inside cellular membranes and work as an electron donor and acceptor [7]. However, 

the high lipophilicity of CoQ10 presents a significant limitation for use as a therapeutic,  in terms of low 

absorption and poor bioavailability [8]. Idebenone was first synthesised in order to improve the CoQ10 

bioavailability, while retaining its pharmacological activity [9]. For this reason, idebenone possesses 

the same benzoquinone core of CoQ10, but with a shorter, less lipophilic side chain: instead of ten 

repeats of isoprenoid elements, idebenone has a saturated ten carbon tail with a terminal hydroxyl 

group (Figure 1). 

 

 

Figure 1 -  Comparison of the two quinones: CoQ10 and idebenone 

 

From these structural similarities, it was suggested that idebenone could emulate the same 

physiological mechanism as CoQ10, but recent evidence suggests that there is a major difference 

between these two compounds. Idebenone is not such a suitable substrate for complex I as CoQ10 is; 

on the contrary, recent studies have demonstrated that a concentration of idebenone above 10 μM is 

enough to inhibit this enzyme instead, which can lead to superoxide generation [10][11]. On the other 



hand, idebenone showed high affinity for the cytosolic enzyme NQO1 [12]. From this evidence, it was 

suggested that NQO1, rather than complex I, was responsible for the pharmacological activity of 

idebenone [12]. NQO1 is a cytosolic obligatory two-electron donor flavoenzyme which catalyses the 

direct reduction of quinones to hydroquinones [13]. It is expressed in different tissues, particularly 

present in the liver for its detoxification activity, but it is at lower expression levels in other tissue such 

as the brain [14]. It was assumed that idebenone itself is metabolized/activated by NQO1: once 

idebenone is reduced by this enzyme, it becomes hydrophilic enough to traverse the cytosol, but also 

lipophilic enough to cross the mitochondrial membrane and interact with complex III, bypassing 

complex I or complex II [12](Figure 2). 

 

Figure 2 - Postulated mechanisms of idebenone action. The two possible pathways that idebenone 

(Ideb) may take within cells. In pathway 1 idebenone is reduced by NQO1 in the cytoplasm into 

idebenol (IdeH2, the active form), which can mediate electron transfer to complex III in the 

mitochondrial inner membrane, reactivating the electron flow. Pathway 2 shows the interaction 

between idebenone and complex I: idebenone can act as an inhibitor and can be reduced to a semi-

quinone (IdebH•−), which can generate ROS. 

 

This complex I-bypass activity was recently described in detail by Haefeli et al., who demonstrated 

that idebenone was able to restore the ATP levels under conditions of impaired complex I function, 

thus providing a strong rationale for the use of idebenone in mitochondrial complex I deficiency 

disorders such as LHON [12]. Despite the positive results obtained in vitro using different cell lines, the 

results in vivo have not always been consistent [15][16]. Recent research conducted by Smith et al. 

demonstrated an accumulative deleterious effect of idebenone due to oxidative stress in healthy wild 

type mice, resulting in an increase of NQO1 enzyme in response to this oxidative environment [17]. 



This negative effect could be due to the impairment of complex I, or due to superoxide generation 

caused by the interaction between idebenone and the hydrophilic binding site within complex I (Fig.2). 

The duality of idebenone: antioxidant/pro-oxidant, complex I inhibition/complex III stimulation may 

explain the contradictory results obtained in clinical trials [15]. Critically, the putative pro-oxidant 

activity of idebenone in tissues showing lower expression of NQO1 and the consequent cytotoxic 

effect has not yet been clarified.  

The aim of this paper was to analyse the role of NQO1 in idebenone bioactivity and toxicity in vitro, 

and approximate a therapeutic window for idebenone in complex I compromised mouse retinal 

explant culture. We hypothesized that by using three different cell lines, with different expression 

levels of NQO1, the effect of NQO1 on idebenone-mediated activity/toxicity could be elucidated. 

Furthermore, by using mouse retinal explant culture, we could investigate the activity/toxicity of 

idebenone on a heterogeneous population of cell types, where the expression of NQO1 is variable 

from cell to cell. In this study, we provide evidence of idebenone toxicity correlated to NQO1 activity 

in cells, highlighting a potential detrimental effect of idebenone. 

  

 

Materials and Methods 

Chemicals 

All chemicals were purchased from Sigma-Aldrich (Gillingham, UK) unless specified otherwise. 

Idebenone was kindly supplied by Santhera Pharmaceuticals (Pratteln, Switzerland). All culture media, 

buffers and cell culture supplements were obtained from Gibco Laboratory (Gibco Invitrogen Corp, 

Paisley, UK). CellTiter-Glo® Luminescent Cell Viability, CellTiter-Blue® Cell Viability Assay and ROS-

Glo™ H2O2 Assay were purchased from Promega (Southampton, UK). For all assays described, organic 

compounds were dissolved in 100% dimethylsulfoxide (DMSO) as a stock solution and sequentially 

diluted in the medium for a maximum of 0.1 % DMSO concentration.  

Cell culture 

R28 cells were purchased from KeraFAST (Boston, MA, USA). HepG2 cell line was kindly provided by 

Prof. Karl Hoffmann’s lab, IBERS, (Aberystwyth University), while SH-SY5Y was provided Dr. Emma 

Kidd’s lab (Cardiff University). Cell lines were cultivated under normal culture conditions (37 °C, 5% 

CO2, and 90% relative humidity. HepG2 and R28 were cultivated in Dulbecco's Modified Eagle's 

Medium (DMEM), while SH-SY5Y were cultivated in Dulbecco's Modified Eagle Medium: Nutrient 

Mixture F-12 (DMEM/F12). All media were supplemented with antibiotics (100 units/mL penicillin, 1 



µg/mL streptomycin), 2 mM Glutamax, 1 g/L glucose and either 10% or 2% v/v fetal bovine serum 

(FBS). 

Western blot analysis 

The quantification of NQO1 protein expression was determined using western blots analysis. Briefly, 

cells were lysed in a RIPA lysis buffer (50 mM Tris pH 7.4, 1% NP-40, 150 mM NaCl, 0.25% sodium 

deoxycholate, 1 mM EDTA), supplemented with protease inhibitors and centrifuged for 15 min at 

12,000g. Proteins were separated by sodium dodecyl sulfate – polyacrylamide gel electrophoresis 

(10%) and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA). Membranes were washed 

in TBST (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.1% Tween 20) and after incubation for one hour in 

blocking buffer (5% milk powder in PBS), membranes were subjected to primary antibodies in cold 

blocking buffer overnight at 4 °C. The dilution of primary antibody was 1:1000 and 1:2000 for NQO1 

(Anti-NQO1, Abcam, Cambridge, UK) and actin (Anti-beta actin, Abcam) respectively. The following 

day, the membranes were washed with TBST before secondary antibodies were added in blocking 

buffer for one hour. The relative amount of protein in different bands was analysed by enhanced 

chemiluminescence (ECL), quantified by densitometry (Image Lab Software 6.0.1, (Bio-Rad, Hercules, 

CA) and normalized against actin. 

Determination of quinone reduction in cells 

The intracellular reduction of quinones was determined using the water-soluble tetrazolium salts ((2-

(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1, Santa Cruz 

Biotechnology, Heidelberg, Germany). The conversion of salt into the corresponding formazan dye, 

upon reduction by hydroquinones, was followed by reading the increase of absorbance at 450 nm 

using the CLARIOstar plate reader (BMG Labtech, Ortenberg, Germany). The assay was performed as 

described by Tan and Berridge [18]. Briefly, the day prior to the assay, cells were seeded in 96-well 

plates (1.5 x 104 cells per well) in the corresponding culture media containing 2% FBS. The day after, 

the media was replaced with Hanks' Balanced Salt Solution (HBSS) containing 450 µM WST-1 and 25 

μM of testing compounds, with or without dicoumarol (20 μM). Cells were incubated at 37°C and WST-

1 reduction was followed over a period of 8 hours. The menadione-dependent WST1 reduction in 

presence of recombinant NQO1 was used as positive control [19]. The mean background value from 

cell-free wells incubated with dye was subtracted from signals. 

Cell viability analysis 

Cell viability was determined using two different assays: CellTiter-Glo Luminescent Cell Viability and 

CellTiter-Blue Cell Viability Assay, measuring ATP level and reduction of resazurin, respectively. In both 



assays, the cells were seeded in 96-well plates (1 x 104 cells per well) in the corresponding culture 

media containing 2% FBS, one day before the assay. The day after, the media was replaced with fresh 

media (2% FBS, 1 g/L glucose) which either contained 5-100 µM of idebenone, or a vehicle (matched 

DMSO content (maximum 0.1%v/v)) alone control without idebenone. Cells were incubated at 37 °C 

for 24 hours, after which CellTiter-Blue or CellTiter-Glo reagents were applied according to the 

manufacturer’s instructions. In brief, 20 μL of CellTiter Blue reagent was added to each well (100 μL) 

and incubated for 4 hours at 37 °C. Following this period, the fluorescence was measured using a 

CLARIOstar plate reader using excitation/emission wavelengths of 560/590 nm. In the case of 

CellTiter-Glo, 100 μL of the CellTiter-Glo reagent solution was added to each well (100 μL), and the 

luminesce signal was measured using CLARIOstar plate reader. Data were normalized to vehicle 

control-treated cells. 

NQO1-dependent rescue of ATP levels under complex I inhibition by rotenone 

To assess the ability of idebenone to rescue ATP levels under complex I inhibition, the cells were 

treated with 25 μM of rotenone in the absence of glucose for a determined time, in the presence/ 

absence of idebenone. The cells were seeded in 96-well plates (1 x 104 cells per well) in the 

corresponding media containing 2% FBS, one day before the assay. The day after, the media was 

replaced with fresh media (2% FBS, 0 g/L glucose) containing the rotenone solution (25 μM) with or 

without idebenone. Cells were incubated at 37 °C for 2 hours. Subsequently, the cellular ATP levels 

were quantified using CellTiter-Glo® Luminescent Cell Viability Assay. Data were normalized to vehicle 

control-treated cells in the absence of rotenone (untreated).  

Determination of H2O2 level  

The reagent ROS-Glo™ H2O2 was used to quantify cellular H2O2, and thus as an indicator of ROS 

generation. The ROS-Glo™ H2O2 assay was carried using the manufacturer’s protocol. The day prior to 

the assay, cells were seeded in 96-well plates (1 x 104) in the corresponding media containing 2% FBS. 

On the day of the assay, the media was replaced with 80 μL of a fresh medium containing 25 μM of 

menadione or tested compounds, followed by 20 μL of H2O2 substrate dilution buffer (containing 125 

μM of H2O2 substrate). The plates were incubated for a 6h, then 100 μL of ROS-Glo detection solution 

was added to the plates. The plates were incubated at room temperature for another 20 minutes. 

Subsequently, the luminescence signals were measured immediately using the CLARIOstar plate 

reader. The mean background value from cell-free wells incubated with the reagent was subtracted 

from luminesce signals. 

 



Activity and toxicity analysis in the retinal explant 

Wild-type, 6-8 month old, female C57 BL/6J mice were used as the source of retinal explants. Mice 

were kept in a 12-hour light-dark cycle with food and water available ad libitum. Maintenance and all 

experimental procedures were carried out in compliance with the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and were approved by the Home Office, UK. 

Mice were sacrificed by cervical dislocation. Eyes were immediately enucleated, transferred to a 

culture dish with ice cold HBSS (Gibco, Invitrogen Corp, Paisley, UK)). The retina was dissected and 

divided into four radial sections, and each was flat mounted onto a 0.4 µm pore PTFE membrane 

culture plate insert Sigma-Aldrich (Gillingham, UK) with the ganglion cell layer facing up.  

The inserts were placed in a 6-well plate containing idebenone at various concentrations for toxicity 

tests, or idebenone plus 100 μM rotenone for activity tests, solubilised in 0.1% DMSO and pre-warmed 

Neurobasal A media (Invitrogen) supplemented with 2% B27, 1% N2 and 1% PenStrep Glutamine 100X, 

and transferred to an incubator for 24 hours at 37 °C, 5% CO2. The sections were fixed in 4% PFA, 

permeabilised in 0.1% TritonX for 1 hour, blocked in 10% FBS for 3 hours, and incubated with the anti-

RBPMS primary antibody (1:200) overnight at 4 °C. They were then incubated with the secondary 

antibody - goat anti-rabbit IgG H&L (Alexa Fluor 488) (1:500) at room temperature for 4 hours, and 

stained with Hoechst 33342 nuclear stain (1:1000) for 30 minutes. Images (425 µm2) were acquired as 

described in Figure 3 with 488 nm excitation and band pass (BP) 500-530 nm emission filter for Alexa 

Fluor 488, and 350 nm excitation and BP 411-480 nm for Hoechst 33342. RBPMS positive cells and 

nuclei in the retinal ganglion cell layer were counted using QuPath [20] 

 



Figure 3 - The retinal flat mount imaged using a light microscope with objective magnification of 8x. 

Broken black lines represent the cuts made to create four radial sections. Each quarter was allocated 

to a different experimental group. The black rectangular boxes show the locations on each quarter 

where three images (425 µm2) were acquired with a Zeiss LSM 510 confocal microscope (Carl Zeiss, 

Ltd, UK) using a 20X (0.8 NA) objective lens. 

 NQO1 expression in retina  

Eyes from 2 months old female C57BL/6J mice were enucleated immediately after culling and 

transferred to 4% PFA and left overnight at 4 °C before cryopreservation. Sagittal sections of 10 µM 

were blocked with 10% FBS in 0.1% Triton-Tween for 1 hour, incubated with anti-NQO1 in 0.1% Triton-

Tween overnight at 4 °C, incubated with goat anti-rabbit IgG H&L (Alexa Fluor 488) (1:500) at room 

temperature for 2 hours, and stained with Hoechst 33342 nuclear stain (1:1000) for 10 minutes. 

Images were acquired using an upright fluorescent microscope (Leica WETZLAR DM6000B) with a 

DFC350 FX camera and 20X objective lens with a selective FITC filter set (excitation/emission 495/519 

nm), and a DAPI filter set (excitation/emission 359/461 nm). 

  



Results 

Idebenone NQO1-dependent reduction 

Since the expression of NQO1 enzyme may limit the potential therapeutic effect of idebenone, we 

firstly investigated the NQO1 level in the three different cell lines used throughout this study: HepG2, 

SH-SY5Y and R28. In agreement with previous work [21][22], the western blot analysis revealed that 

the expression levels of NQO1 was high in HepG2 cells but almost absent in SH-SHSY and R28 cells, as 

shown in Figure 4. 

 

Figure 4 - Protein expression of NQO1 in R28, SH-SY5Y and HepG2 cell lines. The NQO1 protein was 

quantified by densitometry (n=3, error bars represent mean ± SEM). 

 

We hypothesized that this diversity of NQO1 level between the cell types may lead to a different 

equilibrium between the different oxidation states of idebenone within the cells: i.e. idebenone would 

mainly be present in the hydroquinone form (idebenol) in HepG2, but instead in the oxidized form 

(idebenone) in SH-SY5Y and R28 cells. In order to study the redox cycling of idebenone in the cell lines, 

it was of interest to monitor indirectly the reduction of idebenone by NQO1 in living cells.  

In the cell, oxidized electron cyclers, such as quinones, can undergo a series of reduction/oxidation 

cycles by cellular electron sources, such as NADH or oxygen. In the last few years, this redox capacity 

of living cells has been used as a rapid and sensitive assay to detect viable cells. One of the most 

common redox cycler compounds used for the quantification of cell viability is WST1, a water-soluble 

cell-permeable tetrazolium dye. This tetrazolium salt requires an electron coupling reagent (i.e. 1-

methoxy-PMS) and is cleaved to a formazan dye by the mitochondrial succinate reductase which exists 
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in the mitochondrial respiratory chain and is active only in viable cells [23]. However, Tan and Berridge 

reported the use of WST-1, in the absence of 1-methoxy-PMS, to monitor quinone reduction by NQO1 

in cells [18]. Under this condition, WST-1 is converted into the corresponding formazan dye upon 

reduction by hydroquinones (i.e. idebenol), which mediates the WST-1 reduction by electron donation 

and re-oxidation into the corresponding quinone (idebenone). This capacity of hydroquinone to 

reduce WST-1 was used to also assess whether idebenone can be reduced by other oxidoreductases 

except for NQO1 in cells by testing it  in the presence or absence of dicoumarol (NQO1 inhibitor [24]). 

The idebenone NQO1-dependent reduction was initially tested in HepG2 cells, where NQO1 is highly 

expressed, which was about 5-fold greater in the presence of idebenone than in its absence (Figure 

5a). These results suggested that idebenone is highly metabolised by NQO1. In contrast, in the 

presence of dicoumarol, WST-1 was not reduced significantly more by the idebenone-treated cell in 

comparison to the control cells. The assay was repeated in the SH-SY5Y cell line, where no substantial 

conversion of WST-1 to formazan was detected, confirming that the reduction of idebenone is 

dependent on NQO1 (Figure 5b).  

 

Figure 5 - (a) NQO1-dependent reduction of idebenone in HepG2, (b) No idebenone reduction 

detected in SH-SY5Y. Idebenone reduction was measured using the WST-1 assay. 5a the absorbance 

detected in HepG2 cells after the incubation with 450 μM of WST-1, the NQO1 inhibitor dicoumarol 

(20 μM) was added to confirm the specificity of idebenone reduction by NQO1. 5b the absorbance 

detected in SH-SY5Y after the incubation with 450 μM of WST-1in the presence or absence of 

idebenone (untreated). Menadione in the presence of recombinant NQO1 in a free-cell environment 

was used as a positive control in all experiments. Data were analysed using 2-way ANOVA, Tukey 

multiple comparison test (***p ≤ 0.001). 

 

Idebenone and NQO1-dependent ATP rescue 

It has previously been suggested that the hydroquinone form of idebenone (idebenol) is responsible 

for ATP rescue activity, through the NQO1-complex III pathway: idebenol is able to bypass 
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mitochondrial complex I and complex II by shuttling electrons from NQO1 to complex III [12]. Having 

established that HepG2 cells contain NQO1 and were capable of reducing WST-1 in the presence of 

idebenone, this cell type was selected to analyse whether ATP rescue could be achieved via the 

presence of idebenone. Firstly, treatment of these cells with rotenone (a complex I inhibitor) 

drastically reduced ATP levels to 8% residual ATP in glucose free medium (Figure 6). However, the 

addition of idebenone to this rotenone model caused ATP rescue in a dose-dependent manner, with 

almost complete rescue at 10 μM (Figure 6a). In order to elucidate the role of NQO1 in the ATP rescue 

activity of idebenone, the experiment was repeated in the presence of dicoumarol (Figure 6b). The 

results indicated that the effect of idebenone was completely lost when the function of NQO1 was 

inhibited by dicoumarol, suggesting that idebenone could affect the mitochondrial metabolism only if 

the active enzyme is available (Figure 6b).  

 

Figure 6 - (a) Idebenone mediated ATP rescue in HepG2 cells is dependent of NQO1 activity, (b) 

Influence of dicoumarol on the idebenone activity. HepG2 cells were incubated with 25 μM rotenone 

in presence or absence of 10 μM dicoumarol and/or 10 μM idebenone for 2h. ATP levels are expressed 

as a percentage of ATP in control cells in the absence of rotenone (untreated). Error bars represent 

mean ± SEM of three independent measurements. Data shown in panel b were analysed using 2-way 

ANOVA, Tukey multiple comparison test **** = p ≤ 0.0001 

 

In accordance with this experimental setup for HepG2, the idebenone was tested on SH-SY5Y and 

R28 cell lines, in order to exclude any possible dicoumarol effect (other than its inhibition of NQO1) 

being responsible for the observed abolition of idebenone activity, hence confirming the importance 

of NQO1. In the SH-SY5Y and R28 cells, the idebenone treatment, under complex I impairment, was 

ineffective even at the highest concentration (Figure 7). The failure of restoring ATP levels was 

attributed to the poor NQO1 expression in these cells, as confirmed via our western-blot analysis 

(Figure 4). 



 

Figure 7 - ATP rescue by idebenone activity in rotenone treated cells is cell specific. Three cell lines 

were treated with rotenone (25 μM) in the presence or absence of idebenone (10 μM). ATP levels 

are expressed as a percentage of ATP in the absence of rotenone (untreated). Bars represent mean ± 

SEM of three independent measurements. Data were analysed using 2-way ANOVA, Tukey multiple 

comparison tests, P values were calculated versus rotenone treated cells (****p ≤ 0.0001). 

 

Idebenone cytotoxicity in NQO1-deficient cell lines 

Previous studies reported that idebenone can inhibit  mitochondrial complex I function and 

concomitantly, promote superoxide production [11]. The majority of these studies were conducted 

on isolated complex I proteins or mitochondria, so it was of interest to evaluate a possible cytotoxic 

effect of idebenone in our cell lines. Since, idebenone failed to rescue the ATP level in the SH-SY5Y 

and R28 cells due to the low level of NQO1, it was expected that idebenone could be accumulated in 

these cells. This is in contrast to HepG2 cells, where idebenone is mostly present in the reduced form 

as idebenol due to the high presence of the NQO1 enzyme. Consequently, the accumulation of 

idebenone might promote a cytotoxic effect in the SH-SY5Y and R28 cells due to the potential 

interaction with complex I. All three cell lines were therefore incubated with a range of idebenone 

concentrations for 24 h, and the cell viability was evaluated using two different methods: the resazurin 

reduction by living cells (CellTiter blue) and the quantification of total ATP level in cells (CellTiter Glo). 

In both assays, a significant reduction of cell viability was evident in a dose-dependent manner. Cells 

exposed to 15 μM of idebenone exhibited some reduction of cell viability in R28 cells, but less so in 

SH-SY5Y; however, in both cell lines, a concentration of idebenone above 25 μM showed a remarkably 

toxic effect (Figure 8). Concentration-response studies showed a half maximal inhibitory 

concentration (IC50) of 16 (± 0.09 ) μM  and 29 (± 0.54) μM for R28 and SH-SY5Y cells, respectively.  



Figure 8 - The toxicity caused by idebenone is cell type specific. Dose dependent curve of idebenone 

(10-100 μM) treatment on R28, SH-SY5Y and HepG2 for 24 h. The graphs show the % cell viability 

detected with CellTiter-Blue (% rezofurin reduction) (a) and CellTiter-Glo respectively (% ATP level) 

(b). Each value is normalised to control (untreated) cells. Error bars represent mean ± SEM of three 

independent measurements. 

Interestingly, the idebenone-induced toxicity was substantially lower in HepG2 (IC50=60 ± 2.68 μM). 

These results suggest that the accumulation of the oxidative form of idebenone is correlated with its 

toxicity and potential complex I inhibition.  

Pro-oxidant effect of idebenone in NQO1 deficient cell lines 

Idebenone complex I inhibition can cause an accumulation of excess superoxide that is, in turn, 

converted to H2O2 by superoxide dismutase in the cytoplasm (CuZnSOD, SOD1) or in mitochondria 

(MnSOD, SOD2)[25]. Non-physiologically high levels of H2O2 induce the loss of mitochondrial 

membrane potential, cytochrome c release, and cause caspase-3 activation resulting in cell death[25]. 

To determine whether the hydrogen peroxide was involved in the cytotoxic effect of idebenone, the 

H2O2 cell level was studied in R28 and SH-SY5Y cells after exposing them to different idebenone 

concentrations. In both cell lines, a significant increase of H2O2 was evident after 6h of treatment with 

idebenone. The level of H2O2 in SH-SY5Y and R28 cells exposed to 25 μM idebenone was significantly 

higher (P ≤ 0.01) when compared with the untreated control cells, while the treatment with 10 μM 

did not show a significant difference (Figure 9). As expected, idebenone did not show a substantial 

pro-oxidant effect on HepG2 at concentrations lower than μM, in line with the low cytotoxicity of 

idebenone detected in these cells (Figure 9). 
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Figure 9 - Idebenone increases the H202 production in NQO1-deficient cell lines compared to in 

HepG2 cells. Relative H2O2 level detected in R28 and SH-SY5Y respectively. Menadione (25 μM) was 

used as positive control. Error bars represent mean ± SEM of three independent measurements. Data 

were analysed using 1-way ANOVA, Tukey multiple comparison test, P values were calculated versus 

untreated cells (**p ≤0.01, ****p ≤ 0.0001).  

 

NQO1 expression in retinal layers 

From our experiments in cell lines, we found that the therapeutic effect of idebenone is dependent 

on its conversion to idebenol by the enzyme NQO1. Since the conflicting evidence surrounding the 

clinical efficacy of idebenone has been found in diseases characterised by a loss of retinal ganglion 

cells [17][26], we looked at the expression of NQO1 in  the retina. We found that NQO1 is expressed 

in the mouse retina, with the highest level expression seen in some areas of the ganglion cell layer 

(Figure 10). 
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Figure 10: NQO1 is expressed in the retinal ganglion cell layer (GCL) of the mouse retina. The 

expression of NQO1 can be seen across all layers of the mouse retina, mostly in the inner segment (IS) 

layer of photoreceptors, outer and inner plexiform layers (OPL and IPL, respectively) where neurons 

form synaptic connections, with the highest expression seen by some but not all cells in the ganglion 

cell layer (A&C). Relatively low expression of NQO1can be seen in the outer segment (OS) layer, and 

in the outer and inner nuclear layers (ONL and INL, respectively). For comparison a secondary only 

control is shown (D-F). Hoechst nuclear stain was used to identify the retinal layers (B&E). 

 

Idebenone rescue and toxicity threshold in the ganglion cell layer of the mouse retina 

Due to the expression of NQO1 in the ganglion cell layer, idebenone can be reduced to idebenol, 

providing a potential treatment for diseases associated with retinal ganglion cells (RGC) loss caused 

by complex I dysfunction. However, RGCs are not the only cells present in this layer, and clearly there 

are cells present with very low, if any, expression of NQO1 (Figure 10). Due to the toxic effects seen 

with higher concentrations of idebenone in cell lines, we first looked at the effect of increasing the 

concentration of idebenone above 10 μM on cells in the ganglion cell layer in the mouse retinal 

explant. Explants were incubated with 10, 20, 50 or 100 μM of idebenone for 24 hours and the effect 

on cell loss after 24 hours was compared to the effect of 100 μM rotenone. There was no cell loss in 

the ganglion cell layer with 10 μM of idebenone, but significant toxicity was seen at 20 μM and all 

higher concentrations tested, and was similar to the toxicity induced by 100 μM rotenone (Figure 11).  

To test the hypothesis that idebenone provides protection against RGC loss caused by complex I 

dysfunction, we incubated retinal explants with 100 μM rotenone for 24 hours and co-incubated with 

various concentrations of idebenone which are below its toxic dose. We found that rotenone induced 

loss of 41 % of cells whereas idebenone provided partial protection against RGC loss caused by 

complex I dysfunction (Figure 12). The efficacy of idebenone in complex I compromised RGCs by 

rotenone, increased with increasing concentration, but a statistically significant rescue from rotenone 

induced cell loss is seen only with 10 μM where it increased cell survival by 33% (Figure 12).  



 

Figure 11: High concentrations of idebenone cause cell loss in the ganglion cell layer of the retinal 

explant. (A) Representative en face images of Hochest nuclear stain in the ganglion cell layer from the 

central retina of explants incubated with 10, 20, 50 or 100 μM idebenone (Ideb), or 100 μM rotenone 

(Rot) for 24 hours. (B) Mean number of cells per area in the ganglion cell layer (GCL) of the central 

retina after 24 hours ex vivo. No cell loss is seen after 24 hours ex vivo with 10 μM idebenone. 

Significant cell loss is seen with 20, 50 and 100 μM idebenone. Error bars represent ± SEM. Data were 

analysed using 1-way ANOVA, Tukey multiple comparison test, P values were calculated versus 

untreated cells (DMSO vehicle) (**p ≤0.01, ***p ≤ 0.001).  
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Figure 12: Idebenone rescues rotenone induced RGC loss at 10 μM in the retinal explant. (A) 

Representative en face images of RNA-binding protein with multiple splicing (RBPMS) positive cells in 

the central retina incubated with 100 μM rotenone and either 0, 3, 6 or 10 μM of idebenone. 

Representative images from control groups are included: 100 μM rotenone after 24 hours ex vivo. (B) 

Mean number of RGCs in the central retina after 24 hours ex vivo. There is a significant reduction in 

the number of RGCs in retinae treated with 100 μM rotenone compared to those treated with the 

0.01% DMSO vehicle (untreated). The number of RGCs is significantly higher in explants treated with 

100 μM rotenone and 10 μM idebenone compare to those treated with 100 μM rotenone only. Error 

bars represent ± SEM. Data were analysed using 1-way ANOVA, Tukey multiple comparison test, P 

values were calculated versus untreated cells (0.01% DMSO) (**p ≤0.01, ***p ≤ 0.001).  
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Discussion 

Idebenone is the only drug approved for the treatment of LHON [3]. However, there are still questions 

regarding the efficacy and specificity of the drug. In fact, although idebenone is generally well-

tolerated in patients, different studies have reported evidence of potential adverse effect such as the 

impairment of complex I [10], superoxide generation [11], opening of the permeability transition pore 

complex [27], inhibition of a calcium-activated chloride channel [28] and induced apoptosis in cells. 

Here, we highlight the importance of the NQO1 enzyme for the activity of idebenone and the potential 

toxic effect in cells with low NQO1 expression. Although, there is evidence from several studies that 

idebenone can be bio-activated from other enzymes such as Complex II and glycerophosphate 

(G3PDH) shuttle[29],[30], here we have instead demonstrated that specifically NQO1 plays the crucial 

role in idebenone activity. Our results indicate that idebenone is not reduced in cells with low NQO1 

expression, so the potential bio-activation from Complex II or glycerophosphate (G3PDH) shuttle can 

be considered only marginal in comparison with NQO1. Moreover, in NQO1-deficient cell lines, 

idebenone is not able to reverse the rotenone-induced ATP depletion even at higher concentrations, 

and, on the contrary, concentrations above 25 μM showed critical cytotoxicity.  

Unlike NQO1, the mitochondrial enzymes are ubiquitously present in all cells. The lack of idebenone 

activity in SH-SY5Y and R28 cells suggests the complex II and glycerophosphate (G3PDH) shuttle are 

not able to metabolise idebenone at the same rate as NQO1, consequently, in these cells, the oxidised 

state of idebenone is the major species. The accumulation of the quinone form could promote the 

idebenone side effects reported in the literature. Here, we focused on the pro-oxidant activity of 

idebenone, investigating the increase of H2O2 level within cells. It is not uncommon for a classic 

antioxidant substance to possess pro-oxidant characteristics, depending on the concentrations and 

the cell environment [31]. In our study, idebenone was able to quickly (within six hours) promote the 

generation of H2O2 in NQO1 deficient cell lines, thereby triggering a deleterious oxidative stress to the 

cells. A potential pro-oxidant pathway is through the inhibition of complex I[11], which is one of the 

main sites of superoxide radical production in the respiratory chain, but other pro-oxidant pathways 

cannot be excluded, and the increase of H2O2 level is most likely due to multiple causes. The pro-

oxidant activity of idebenone was initially suggested by Tai et al., in 2001. They found that exposure 

of the dopaminergic neuroblastoma SH-SY5Y cells to 25 μM or higher concentrations of idebenone for 

72 h, significantly reduce the cell viability and increase the caspase-3 activity in the cells [32]. In our 

study, we confirmed the pro-oxidant characteristic of idebenone by directly detecting the H2O2 level 

in the cells, and we found that idebenone drastically reduced cell viability after only 24h of incubation. 

This difference in idebenone toxicity might be found in the different experimental conditions 



employed  in the studies: higher serum concentration (10%), which reduce the drug toxicity [33], and 

different methods for detecting changes in cell viability [34]. 

The findings in the retinal explant provide further support to the theory that idebenone can switch 

from an antioxidant to a pro-oxidant, depending on idebenone concentration and NQO1 expression. 

While no toxicity was seen with 10 μM of idebenone, 20-100 μM caused a similar level of toxicity in 

the ganglion cell layer to that seen with 100 μM of the complex I inhibitor rotenone. Furthermore, 

when tested at safe concentrations, there was an increase in RGC rescue with increasing idebenone 

concentration, but only the highest safe concentration of 10 μM showed statistically significant effect 

by increasing cell survival from 41 to 73%. These findings suggest that sufficient NQO1 is available in 

the ganglion cell layer to reduce idebenone, but it might be mainly localised in the retinal ganglion 

cells, which represent 43% of the cell population in the mouse ganglion cell layer [35]. The remaining 

cell populations in the ganglion cell layer, which consist of amacrine cells, astrocytes and microglia 

cells, might show lower or no NQO1 presence, making these cells more vulnerable to idebenone 

mediated toxicity, as suggested by our results (Figure 11). This theory is also supported by the findings 

of Smith et al., whereby the beneficial effects of idebenone were limited in mice with complex I 

dysfunction, and RGC dendropathy was reported in wild-type mouse retina [17]. In addition, the 

expression level of NQO1 varies in the different tissues of the human eye, subepithelial conjunctival 

tissue, corneal stroma, and the pial septa of the optic nerve show a low NQO1 expression [36], that 

may further limit topical eye administration of idebenone.  

Although idebenone showed overall positive results in a subgroup of treated LHON patients [37], it 

failed to ameliorate the disease course in Friedreich ataxia patients [38]. In this study we showed that 

the different NQO1 expressions in the tissues, combined with the potential complex I inhibition, might 

explain the contradictory results obtained in these disease models and in patients. In fact, our in vitro 

and ex-vivo data indicate a cell-specific response to idebenone, with a loss of activity in NQO1-

deficient cell lines and a significant increase in toxicity. Altogether, we have demonstrated that 

Idebenone has a very narrow therapeutic dose before becoming either ineffective or toxic. 
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