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SUMMARY 

Antimicrobial resistance (AMR) poses a threat to worldwide health, in particular in 

relation to multi-drug resistant organisms. Hygienic cleaning and disinfection can 

contribute in the prevention of AMR. There is ample evidence to support the use of 

disinfectants (biocides) in the decrease of healthcare acquired infections (HCAIs) 

(Weinstein and Hota, 2004, Maillard, 2018, Webber et al., 2015). However, there is 

also evidence of instances where disinfectant efficacy may be impeded resulting in 

microbial survival and emerging resistance (A Rutala and J Weber, 2007). Biocides 

are said to act as a selective pressure that encourages the acquisition of resistance 

traits in bacterial cells (Qiu et al., 2012). Furthermore, selective pressure may result 

from the overexposure of very low concentrations of biocides over long periods of 

time (Andersson et al., 2012, Gullberg et al., 2014, Gullberg et al., 2011, Thomas 

et al., 2000). Some biocidal products make claims of “residual biocidal activity” 

whereas efficacy is usually imparted to a much higher concentration. Some 

microbial populations may survive exposure to low biocide concentrations, and 

show decreased susceptibility or resistance to a biocide or consequentially other 

antimicrobials. 	

 
This study aims to understand differences between bacterial selection and 

adaptation in Escherichia coli following exposure to realistic residual - during use -  

chlorhexidine (CHX) or benzalkonium chloride (BZC) concentrations.  It was 

hypothesised that exposure to a high sub-biocide minimum inhibitory concentration 

(MIC) would exert a selective pressure enabling the least susceptible bacteria to 

survive resulting in a permanent change of susceptibility phenotype, whereas a low 

sub-MIC would be conducive to reactive metabolic shifts resulting in a transient 

change of susceptibility phenotype.   

	



	iii	 	

Baseline biocide (CHX and BZC) and antibiotic susceptibility of E. coli isolates was 

obtained using a standard micro-dilution broth protocol, and EUCAST protocol. 

“Residual” CHX concentration left on surface over a 168 hours period was 

measured by HPLC. The impact of a range of biocide concentrations (including 

residual CHX ones) on growth kinetics was investigated. Any changes in 

susceptibility profile was assessed for stability. Efflux activity and metabolic 

regulation during exposure to low and high sub-CHX MIC were investigated aiming 

to identify a link with observed changes in susceptibility phenotype. Finally the 

propensity for different levels of CHX exposure to influence genetic transfer via 

conjugation was explored. 

	

It was demonstrated that a 0.006 ± 0.002 mg/mL is a realistic residual - during use 

exposure concentration of CHX. This concentration is 99% lower than the 

concentration initially applied (20 mg/mL). At this residual concentration, it was 

possible for CHX susceptible bacteria to survive the disinfection process. Five 

genotypically distinct strains (UCD-CFS ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS 

ECP-1B2, UCD-CFS ECP-13P5, UCD-CFS ECP-13P4) demonstrated survival 

after a 5 min but not 24 hours CHX exposure. Surviving bacteria demonstrated 

elevated MIC and MBC values; the highest fold change was 32-fold (MIC) and 62-

fold (MBC). The elevated MIC values obtained were higher than the average 

concentration of CHX found on surface. Decreases in MIC or MBC values were 

observed after residual BZC exposure. No stable changes in MIC and MBC were 

observed after exposure to residual CHX or BZC, but stable changes were 

observed for antibiotic resistance for amoxicillin/clavulanic acid, ampicillin, 

cefpodoxime and cephalothin. Efflux activity was observed during exposure to low 

(0.00005 mg/mL) but not for high (0.002mg/mL) sub-CHX and sub-BZC MIC. It was 

demonstrated that changes in susceptibility coincided with changes in the ability to 

metabolise certain substrates including salicin, L-alanine, betain, creatanine and 
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phenylethlalamine. These substances were linked to cell wall and stress signalling 

regulatory processes. It was surmised that E. coli was able to adapt through 

metabolic alterations to produce transient changes in CHX susceptibility and stable 

changes in antibiotic susceptibility. Furthermore, our results show that a transiently 

adapted population may be selected amongst less tolerant sub-populations at the 

established CHX-during use concentration.  

 

Overall, this work suggests that the intended application concentration of a biocide 

may in fact be lower than the MIC of target organisms. It is concluded that residual 

concentrations of biocides do have the potential to drive resistance, particularly 

stable cross-resistance to antibiotics, through prolonged exposure to low level 

during use concentrations, driving metabolic modifications of the cell envelope. The 

potential risk of cross-resistance warrants further investigation. 
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GLOSSARY  

Biocide: a chemical agent that kills living organisms (Maillard, 2005)  

Biocidal product: A biocidal product is any substance or mixture with the intention 

of preventing the action of, or otherwise exerting a controlling effect on, any 

harmful organism (BPR (EU) No. 528/2012; https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:62010CC0420) 

 
 
Biocide resistance: a shift in susceptibility to a biocide that renders it ineffective 

against a micro-organism that was previously susceptible to that biocide (Maillard 

et al., 2013)  

 

Reduced biocide susceptibility: an increase in the minimum inhibitory or 

minimum bactericidal concentration of a biocide where the biocide still remains 

effective for its intended purpose (Maillard et al., 2013)  

Biocide tolerance: Transient withstanding of exposure to toxic concentrations that 

would have otherwise been fatal (e.g. as a result of slowing in metabolic 

processes) (Trastoy et al., 2018) 

 

Biocide persistence: Transient withstanding of exposure to otherwise fatal toxic 

concentrations, persistence is usually characterised by a subpopulation of tolerant 

cells as opposed to an entire tolerant population. 

 

Antimicrobial: an agent that kills or inhibits the growth of microorganisms – can be 

a biocide or antibiotic  

Phenotype: Viable and behavioral characteristic of an organism 
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1. INTRODUCTION 

1.1. Background – antimicrobial resistance today  

	
Antimicrobial resistance (AMR) is a natural phenomenon that occurs as a result of 

spontaneous genetic changes that result in microbes becoming less sensitive to 

antimicrobials (WHO, 2015). The year 2018 marked the end of a 5-year Public Health 

England (PHE) led collaborative initiative to i) improve knowledge and understanding 

of antimicrobial resistance (AMR), ii) preserve the efficacy of pre-existing treatments 

and iii) develop new therapies to replace those that are no longer effective 

(Department of Health and Department for Environment Food and Rural Affairs, UK; 

2013; DH, PHE, Defra, and Veterinary Medicines Directorate, 2014). This initiative is 

preceded by a comprehensive review written by Jim O’Neill (2014), which outlines 

the global AMR crisis. O’Neill estimated that in the US and Europe alone, resistant 

infections cause at least 50,000 deaths per year. Exacerbated by this fact is the ever-

impending decrease in the efficacy of our first line treatments due to the lack of 

regulated antibiotic stewardship. The world health organization (O’Neill, 2016) stated, 

“a high percentage of hospital-acquired infections are caused by highly resistant 

bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) or multidrug-

resistant Gram-negative bacteria”.  The annual health protection report published in 

2015 by Public Health England (PHE) noted that the incidence of Esherichia coli 

bacteraemia increased by 16.7% from 2008 to 2015.  Perhaps more worryingly, the 

report stated that the percentage of non-susceptibility of E. coli isolates to the 

antibiotic amoxicillin/clavulanate increased from 25.2% in 2010 to 40.9% in 2014 

(PHE, 2014). Additionally, the World Health Organisation (WHO, 2015) stated that 

resistance to fluoroquinolone antibiotics is increasingly widespread with countries 

where ineffective treatment accounts for more than half of the patients. The 

European Union summary report on antimicrobial resistance (ECDC, 2019) collated 
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epidemiological cut-off values (ECOFF) data from European countries in 2017 and 

reported that percentage resistance values were high in fattening pigs (food 

producing animals) for tetracycline (52%), sulfamethoxazole (42%), ampicillin 

(38.5%) and trimethoprim (32.2%). As food producing animals act as a source of 

transmission of AMR organisms (Thanner et al., 2016) these data are valuable. The 

presence of antimicrobial drugs in farming and agriculture, food production, and 

healthcare all contribute to the perpetuation of the AMR crisis (O’Neill, 2016). 

Moreover, the use of biocidal products such as disinfectants and antiseptic 

formulations may also act to drive microbial resistance in similar modes to antibiotics 

(SCENIHR, 2010, Furi et al., 2016, Maillard, 2013, Oggioni et al., 2013). This use of 

biocides, their modes of action and their contribution to possible resistance will be 

discussed further in the next sections. 

 

1.2. Biocidal products application 

	
The word biocide means to “kill any living thing”. This is a broad term that can often 

be misleading, as biocidal products are often efficacious or even targeted 

specifically against bacteriophage and virus. This thesis will refer to an active 

compound (non-formulated product) that is toxic to bacteria as either a “biocide” 

(kills bacteria) or a “biocidal product” (formulated product). For this thesis, the term 

biocidal product (a biocide that is intended for commercial use) encompasses 

chemicals and formulations that are disinfectants, preservatives and antiseptics 

with activity against all microorganisms. It excludes chemotherapeutic antibiotics 

(Maillard, 2013). The use of biocides have a dated history, as seen with the early 

use of salts and alcohol as food preservatives and antiseptics (Fraise et al., 2015). 

Biocides are used for the disinfection of medical device and surfaces, preservation 

of industrial and consumer products and are even incorporated into domestic and 
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personal hygiene products such as toothpaste and shampoo (Table 1.1). The use 

of biocides in healthcare settings has been established since the 1800’s. The 

development of cationic biocides such as biguanides, quaternary ammonium 

compounds, phenolics, aldehydes and peroxygens lead to the increased 

applications of these in clinical antisepsis, disinfection and sterilisation (Russell, 

2000, Maillard, 2005). The active chemical compounds within biocides commonly 

have a broad range of target sites (Denyer, 1995) (Table 1.1) and most are 

effective against a wide range of microorganisms, although efficacy depends on 

the chemistry of the biocide and the biology of the organism to be treated (Maillard, 

2002). Gram-negative bacteria are less susceptible to some biocides due to the 

protection that the outer cell wall provides in comparison to Gram-positive bacteria 

(Denyer and Maillard, 2002). The same biocide may also be used effectively 

against different target organisms at differing concentrations (Sheldon, 2005). For 

example, CHX is bactericidal against most Gram-positive microorganisms at low 

concentrations, at high concentrations however it becomes effective against Gram-

negative organisms too. Due to the wide range of organisms targeted and their in-

use efficacy, biocides have become the primary method of controlling healthcare 

associated infections (HCAIs) within clinical settings.  
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Table 1.1 Biocidal compounds and their applications, microbial target site and 

mechanism of action. 

Table adapted from Maillard JY, 2002, “Bacterial target sites for biocide action”. 
Journal of Applied Microbiology, 92: 16S–27S. doi:10.1046/j.1365-2672.92.5s1.3.x 
	

Type of 
biocide Example Application Target site Mechanism of 

action 

Quaternary 
ammonium 
compounds 

Benzalkonim 
chloride 

Healthcare, 
domestic 
products, food 
production, 
pharmaceutical 
industry 

Cell 
membrane, 
cytoplasmic 
membrane, 
cytoplasmic 
constituents 

Increased 
permeability, 
membrane 
potential, electron 
transport chain, 
enzyme inhibition, 

Biguanides Chlorhexidine 
digluconate 

Healthcare, 
domestic 
products 

Cell 
membrane, 
cytoplasmic 
membrane, 
cytoplasmic 
constituents 

Increased 
permeability, 
Adenosine 
triphosphate 
synthesis, enzyme 
inhibition, 
coagulation 

Phenolic 
compounds Triclosan 

Healthcare, 
cosmetic 
products, 
domestic 
products, 
pharmaceutical 
industry 

Cell 
membrane, 
cytoplasmic 
membrane, 
cytoplasmic 
constituents 

Increased 
permeability, 
membrane 
potential, electron 
transport chain, 
enzyme inhibition, 
coagulation 

Chlorine 
compounds 

Sodium 
hypochlorite 

Healthcare, Water 
treatment, 
domestic 
products 

Cell 
membrane, 
cytoplasmic 
constituents, 
interaction with 
specific groups 

Increased 
permeability, 
nucleic acid, thiol 
groups, sulphydryl 
groups 

Peroxide 
compounds 

Hydrogen 
peroxide 

Healthcare, 
domestic 
products, Water 
treatment 

Cytoplasmic 
constituents, 
interaction with 
specific 
groups, 
biocide-
induced 
autocidal 
activity 

Ribosomes, thiol 
groups, sulphydryl 
groups, 
accumulation of 
free radicals 
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1.3. Factors effecting biocidal efficacy and the relevance of 

residual activity claims 

	
In order for a biocide to be effective, potential factors that hinder the delivery and 

activity of the active chemical compound should be minimised. In the case of 

ineffective biocide use, pathogenic microorganisms may persist and subsequently 

spread (Ramm et al., 2015, Tuladhar et al., 2012). There are several factors that 

can affect the efficacy of a biocide (Table 1.2)(Maillard, 2002). There are external 

factors such as active concentration, contact time, interfering substances, 

temperature and pH, which can all reduce or quench the activity of a biocide 

(Sheldon, 2005). Alternatively, biofilm formation and the number of organisms 

present are among some of the difficult biological factors that hinder the activity of 

a biocide. If the number of viable bacterial cells left after disinfection are not 

sufficiently reduced or inactivated, the remaining survivors have potential to adapt 

under selective pressure, in turn, this adaptive process gives rise to the 

development of antimicrobial resistance (Qiu et al., 2012). There is ample 

evidence to support the use of disinfectants in the decrease of HCAIs (Weinstein 

and Hota, 2004, Maillard, 2018, Webber et al., 2015). However, there is also 

evidence of instances where efficacy may be impeded resulting in potential failure 

(A Rutala and J Weber, 2007). 
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Table 1.2 The factors affecting the efficacy of a biocide 

 Maillard JY, 2005, “Antimicrobial biocides in the healthcare environment: efficacy, usage, 

policies, and perceived problems”. Therapeutics and Clinical Risk Management. 

2005;1(4):307-320.   

 
Factors Comments 

Factors inherent to the biocide  

Concentration 
Understand the concentration exponent (i.e., the 

effect of dilution upon activity) 

Contact time 
Longer contact time often associated with increased 

activity 

Organic load 
Quench the activity of a biocide or protect 

microorganisms 

Formulation Possible inactivation of biocide 

Temperature 
Important for some devices (e.g., endoscope 

washer) 

pH 
Affect both the biocide (stability and ionisation) and 

the microorganism (growth and electric charge) 

Factors inherent to the cell  

Presence of biofilm 
Dormant “persister” cells difficult to eradicate. Likely 

to be present on equipment, certain surfaces 

Type of microorganisms 

Will affect the choice of the agent to use. Bacterial 

spores: the most resistant; envelope viruses: the 

least resistant 

Number of microorganisms High number more difficult to eradicate 
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1.3.1. Concentration 

	
One impinging factor that determines the efficacy of a biocide is the in-use 

concentration of the active chemical compound; this can be demonstrated using 

the “concentration exponent” (η) (Maillard, 2005; Ioannou et al., 2007). The 

concentration exponent describes the association of dilution and activity of a 

biocide and is calculated by the time taken to kill a pre-determined amount of a 

population at certain concentrations (Ioannou et al., 2007). Generally, biocides with 

a high concentration exponent are more susceptible to a decrease of activity upon 

dilution; those with low concentration exponent (i.e. biguanides and quaternary 

ammonium compounds) are less affected by dilution (Denyer and Stewart, 1998). 

A biocide can be used for different applications depending on the concentration of 

which it is used. An example of this is the biguanide chlorhexidine, it is used for the 

liquid disinfection of surfaces at 0.5%-4% (v/v), for antiseptics such as hand soaps 

at 0.2%-4% (v/v) and for the preservation of products at a concentration of 

0.0025%-0.01% (v/v) (Larson and Laughon, 1987, Maillard, 2005). Although a high 

concentration can be the most efficacious, a balance between how well it works to 

kill bacteria and human toxicity of the chemical has to be found. For this reason 

there is a plethora of commercial and industrial products that claim efficacy and 

low toxicity with the application of low concentrations of a biocidal product. 

Although some biocides may be effective at low concentrations, further dilution of 

the product may end in a concentration below that which is required to kill most 

bacteria. This may result in sub-lethal concentrations of biocide and a proportion of 

a bacterial population that may survive the treatment (McDonnell and Russell, 

1999a) It has been suggested that the use of even extremely low concentrations of 

biocides may potentially be adding to the proliferation of harmful microorganisms 

that carry resistance to both commonly used biocides and antibiotics(Gullberg et 

al., 2014, Gullberg et al., 2011, Maillard, 2013). 
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1.3.2. Contact time 

	
Contact time is an underpinning factor when considering the efficacy of a biocide. 

Longer contact times are associated with increased activity, however the contact 

time required to kill bacteria varies for each biocide and is often dependent on the 

concentration of the active compound.  

Prolonged exposure of bacteria to low concentrations of a biocide has been 

reported to result in the development of biocidal resistance. Wesgate et al. (2016) 

reported that after a 24 hour exposure of E. coli to triclosan at a sub-lethal 

concentration (0.0004%), there was a 32-fold increase in the minimal inhibitory 

concentration (MIC) that is the lowest concentration that is required to inhibit 

growth of the bacteria. Another study reported reduced susceptibility to triclosan, 

chlorhexidine diacetate and benzalkonium chloride (BZC) in Campylobacter spp. 

after repeated exposure to sub-lethal concentrations; this also resulted in cross-

resistance to the antibiotics erythromycin and ciprofloxacin (European Food Safety 

et al., 2019).   

 

1.3.3. Interfering substances 

	
During the process of disinfection with biocides, the environment can influence 

antimicrobial activity. The activity of a biocidal product may be compromised by 

the presence of interfering substances such as biological materials. When 

considering healthcare environments surfaces may be burdened with wet or dry 

organic materials that have the potential to quench the activity of some biocides 

(Russell and Day, 1993). Organic materials present extra proteins that biocidal 

compounds have to contend with, these extra interactions mean that there is less 

biocide available to interact with bacteria (Otzen, 2017). Cationic biocides are 

essentially neutralized by negatively charged organic particulate, this has been 
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demonstrated particularly in QACs such as benzalkonium chloride (Jono et al., 

1986).  Araujo et al. (2013) showed that in the presence of an organic load 

(bovine serum albumin) the efficacy of two commonly used QACs was decreased 

against Bacillus cereus.  

 

1.3.4. Temperature and pH 

	
 Both temperature and pH can have an effect on biocide efficacy. Some biocides 

are more efficacious within specific environmental parameters. The increase of 

pH has the potential to enhance biocide efficacy (Russell, 2004), for example 

chlorhexidine digluconate works in an ideal acidic range of pH5.5-7.0 (Karpinski 

and Szkaradkiewicz, 2015, Wiegand et al., 2015). In the Bronsted-Lowry 

definition of the acid-base relationship, an acidic solution is considered a “proton 

donor” and an alkaline solution is considered a “proton acceptor” (Brönsted, 

1923, Lowry, 1923). The negative ionic charge of an alkaline solution effectively 

neutralises a positively charged cationic biocide through dissociation. This pH 

specificity is due to the cationic, positive charge of chlorhexidine and this 

relationship can be seen for other cationic biocides such as benzalkonium 

chloride.  

Biocides may also require specific storage temperatures to maintain their quality; 

storage temperatures that are too low may degrade a biocide (Leung et al., 

2004). When assessing the activity of a biocide or a biocidal product, standard 

efficacy testing protocols such as the BS EN1276 (2009) stipulate that testing 

temperatures must be kept constant throughout procedures to minimise variability 

in testing conditions. Gelinas et al. (1984) found that biguanide and QACs were 

most effected by a change in temperature within a range of 4-50 °C (GÉLinas et 

al., 1984). Moreover, Taylor et al., (1999) tested 10 and 20°C but found that 
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lower temperatures compromised activity of QACs against Pseudomonas 

aeruginosa and Escherichia coli. 

	

1.3.5. Residual biocidal activity and its role in microbial adaption and 

selection 

	
Some biocidal product formulations make claims of “residual biocidal activity”. CHX 

is most often incorporated into disinfectant products at 2% (20 mg/mL), and is often 

marketed with claims of residual activity of up to 6 hours, most recently 48 hours 

when applied to the skin surface (George et al., 2017). Efficacious biocide activity 

is dependant upon a relatively high stable concentration. Circumstances such as 

dilution, drying, microbial concentration and heavy bioburden may have a negative 

impact on biocidal products, driving them to sub-inhibitory concentrations, that is, 

concentrations that are below the Minimal inhibitory concentration (MIC). 

Subsequently some microbial populations will survive through the expression of 

mechanisms such as degradation, modification or extrusion of the toxic chemicals. 

These surviving populations may have decreased susceptibility or resistance to a 

biocide or consequentially an antimicrobial as a result of exposure at an 

inappropriate concentration. Microorganisms have been reported to survive on 

surfaces for prolonged periods of time, for instance some Enterococcus species 

have been reported to survive for up to 46 months (Kramer et al., 2006).  If biocide 

products that possess long-lasting effects are not present at the required 

concentration to inactivate all microbial cells present, they will nonetheless impose 

a stress factor to the microbe and the induction and transmission of resistance may 

occur (Andersson et al., 2012, Gullberg et al., 2014, Gullberg et al., 2011, Maillard, 

2013). Some studies have investigated the principle of microbial biocide adaption 

through culturing susceptible bacteria in a stepwise manner to gradually increasing 

concentrations of biocides. (Thomas et al., 2000) demonstrated through gradually 
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increasing the concentration of CHX in a P. aeruginosa culture, it is possible to 

decrease sensitivity to CHX. Furthermore, a number or cross-tolerances were 

observed with some antibiotics. More recently, a study by Gadea et al. (2017) 

showed that stepwise exposure to the QAC cetrimide and CHX resulted in transient 

decreases in susceptibility to the other biocides and antibiotics. This study also 

revealed a number of phenotypic changes in heat-tolerance as a result of exposure 

to both biocides.  

	

Adaption and selection are closely related phenomenon. Adaption is the 

characteristic or phenotype that increases the probability of an organism’s survival 

in adverse circumstances. Selection is the circumstance that the organisms must 

overcome; it is what drives the possibility of the adaptive characteristic being 

inherited in future generations. Figure 1.1 demonstrates the process of natural 

microbial selection in the presence of a toxic substance. 

 

Figure 1.1 Natural selection of bacterial populations in the presence of a toxic 

substance 

 

 

	
	
	

 
 
Mainly susceptible bacteria    Mainly resistant bacteria 
 

 

In the case of microbial selection through biocides exposure, sensitive populations 

are inactivated whereas less susceptible or resistant populations survive and 

Resistant bacteria 
TOXIC 

SUBSTANCE 
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proliferate. This process of the selection of resistant populations succeeding the 

death of susceptible ones has been thought to occur only at higher biocide 

concentrations. However, it has been demonstrated that in the case of antibiotics, 

the selection process might be relevant at very low concentrations (Gullberg et al., 

2014, Gullberg et al., 2011, Liu et al., 2011, Sandegren, 2014). Cottell (2006) 

investigated “time of detection” (td) for a reference and a mutant strain of E. coli 

when grown with or without Triclosan present (Gadea et al., 2017). Triclosan was 

included at 1/10th of the MIC (0.020μg/mL for reference strain and 100.00μg/mL for 

mutant strain). Figure 1.2 illustrates some results from this study. When observing 

the reference strain, histogram c in Figure 1.2, it can be noted that with no 

triclosan exposure the td is very low (i.e. 380mins), this is not the case for the 

triclosan-exposed reference cells. This was explained by the presence of a sub-

population that was characterised by a high adaptive potential towards a new 

environment but a low adaptive potential when exposed to low concentrations of 

triclosan. It was concluded that the disappearance of the very low td values was 

due to the identified sub-population being killed by the presence of sub-inhibitory 

concentrations of triclosan. The presence of a sub-population with low td was not 

identified for the mutant strain.  
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Figure 1.2. Time detection values for cultures grown from single E. coli cells c) 

reference and d) mutant strains. Cottell (2006).  

 

	

Mutant (specific mutation not mentioned; Cottell, 2006) strains were shown previously to 

have reduced susceptibility to Triclosan (Lear et al., 2000; Walsh et al., 2003; Gomez 

Escalada et al., 2005).  

	

Building upon this theory, Witstand-Yuen et al. (2018) investigated the differences 

in acquired mutations after antibiotic selection at high (200 mg/L) and low (1 mg/L) 

level Streptomycin (Wistrand-Yuen et al., 2018). It was demonstrated that 

mutations selected for by streptomycin concentrations above MIC were mainly in 

the gene rpsL, encoding the 30S ribosomal subunit protein S12 (Gill and Amyes, 

2004, Spagnolo et al., 2015b, Spagnolo et al., 2015a, Wistrand-Yuen et al., 2018). 

The study by Whitstand-Yuen et al. (2018) showed that the mutations selected at 

sub-minimal concentrations of strepromycin were not in the rspL gene but were 

related to mutations in 5 genes; gidB, trkH, nuoG, cyoB, and znuA. Through 
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deletion combinations of each of these genes this study showed that the addition of 

each mutation resulted in an increase in resistance to streptomycin, thus indicating 

that selection at lower concentrations of the antibiotic resulted in slower, step-wise 

adaption and selection of resistance mutations. This supports the principle of a 

distinct difference in the selection process of low and high concentrations of 

antibiotics however a similar comparative study has not yet been performed for 

biocides. The potential for CHX to select resistance at low concentrations has been 

investigated with inconclusive results. Thomas et al. (2000) produced “stable 

resistance” of P. aeruginosa to CHX after just one exposure. However, Wesgate et 

al. (2016) found no decrease in susceptibility of E. coli to CHX after 24 hours 

exposure. Further investigations into the differences between high and low level 

exposures of biocides have on selection and adaption processes will provide 

insight into the risk that they pose on future microbial resistance. 

 

1.4. Chlorhexidine digluconate 

	
Chlorhexidine digluconate (Figure 1.3) is the gluconate salt for of chlorhexidine. It 

is a bisbiguanide with a board spectrum of activity whose major application is the 

disinfection of microorganisms. 

 

Figure 1.3 Chemical structure of chlorhexidine digluconate 
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The chemical structure of CHX, specifically its biguanide chains, gives it an overall 

positive ionic charge. The target sites of CHX are the cell membrane, cytoplasmic 

membrane and cytoplasmic constituents (Table 1.1). When exposed to negatively 

charged microorganisms, CHX will destabilise bacterial cell membrane by binding 

to the phospholipid bilayer (El-Moug et al., 1985; Cheung et al., 2012). This binding 

results in generalised membrane damage. At low concentrations, this membrane 

active compound is considered microbistatic and will affect membrane integrity, 

membrane potential and an increase of cell permeability. However, at high levels 

CHX is fatal causing irreversible membrane damage leading to the congealing of 

the cytoplasm (McDonnell & Russell, 1999). After interfering with the outer 

structure of the cell membrane, a CHX molecule will interact with the cytoplasmic 

membrane. The subsequent collapse of the membrane potential and lysis of the 

cell allows for cytoplasmic leakage, interruption of adenosine triphosphate (ATP) 

synthesis, enzyme inhibition and eventual coagulation, occurrences that ultimately 

lead to cell death (Fitzgerald et al., 1992; Kuyyakanond & Quesnel, 1992; 

McDonnell & Russell, 1999; Cheung et al., 2012). It is worth noting that it is not 

ATP inactivation that is associated with the lethality of CHX but membrane 

disruption (Kuyyakanond et al., 1992; Barett-Bee et al., 1994).  

 

1.5. Benzalkonium chloride 

	
Benzalkonium chloride (Figure 1.4) is a positively charged derivative of an 

ammonium compound. BZC is utilised as a broad-spectrum disinfectant agent and 

is incorporated into biocidal product formulations. BZC interacts primarily with the 

cell surface, as its positive charge allows it to attach to a negatively charged cell 

wall.  
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Figure 1.4 Chemical structure of benzalkonium chloride 

 

 

 

 

 

 

 

 

The amphiphilic properties of a BZC molecule allow the hydrophilic cationic region 

and the hydrophobic region to work together to effect cell death. The hydrophobic 

region of a BZC molecule firstly destabilises cell surface by forming an electrostatic 

interaction with the negatively charged cell (Coughlin et al., 1983, Fazlara and 

Ekhtelat, 2012, McDonnell and Russell, 1999b). The hydrophillic region of the BZC 

molecule then penetrates the hydrophobic bi-layer of the cell wall, this in turn 

causes the collapse of the membrane potential and leads to cell leakage and 

ultimately cell lysis. (Fazlara and Ekhtelat, 2012, Mangalappalli-Illathu and Korber, 

2006, McDonnell and Russell, 1999b). 

 

1.6. Biocide Product regulation 

	
The European Biocidal Product Regulation (BPR, Regulation (EU) 528/2012) 

superseded the Biocidal Product Directive (98/8/EC). The legislation aims to 

standardise and monitor the introduction to market and the use of biocidal products 
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(BP). The definition of biocidal active substance, biocidal products and treated 

article is listed in the BPR as follows: 

Þ Active substance:  a substance or a micro-organism that has an action 

on or against harmful organisms. 

Þ Biocidal products:  any substance or mixture, consisting of, containing 

or generating one or more active substances, with the intention of 

destroying, deterring, rendering harmless, preventing the action of, or 

otherwise exerting a controlling effect on, any harmful organism by any 

means other than mere physical or mechanical action. 

Þ Treated article: Articles that have been treated with, or intentionally 

incorporating, one or more biocidal products. 

 

Biocidal products that are incorporated into the BPR are classified into 22 product-

types and are categorized in 4 main groups; 1. Disinfectants; 2. Preservatives; 3. 

Pest control; 4. Other products. The underlying condition of BPR regulation is that 

all biocidal products require an authorisation by European Chemicals Agency 

(ECHA) before they can enter the EU market. Included in the “conditions for 

granting an authorisation” section (BPR, EU, 2012, p21.), it is stipulated that the 

responsible regulatory body must be notified if the product owner is aware, or 

becomes aware that the BP is not sufficiently effective or that there is potential 

development of resistance to the active substance. It is also mandatory that the 

“biocidal product has no unacceptable effects on the target organisms, in particular 

unacceptable resistance or cross-resistance or unnecessary suffering and pain for 

vertebrates” and that the “chemical diversity of the active substances is adequate 

to minimise the occurrence of resistance in the target harmful organism”. 

 

Standard efficacy testing protocols established from bodies such as the EN, 

OECD, ISO, AOAC and ASTM outline specific and stringent testing conditions, 
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including temperature, that ensure the rigorous comparative and standard efficacy 

testing. Wesgate et al. (2018) demonstrated that there were big differences in 

biocidal product efficacy depending on which standard testing protocol was 

applied. 

	

1.7. Risks of biocide resistance, co-selection and cross-

resistance in bacteria 

	
Resistance has been defined as “a change in susceptibility to a microbicide that 

renders it ineffective against a micro-organism that was previously susceptible to 

that microbicide” (Maillard, 2013). It is imperative to distinguish between resistance 

and decreased susceptibility to a microbicide. Decreased susceptibility occurs 

when there is an increase in the lowest concentration that would previously kill or 

inhibit a microbe (minimal inhibitory (MIC) or bactericidal (MBC) concentration). 

Decreased susceptibility is not always clinically relevant as the change in MIC or 

MBC is still significantly lower than the concentration of microbicide or biocidal 

product used in-situ.  

 

Multi-drug resistant organisms (MDROs) pose an issue to be overcome in clinical 

healthcare settings, agricultural industries, food and water production industries 

and even the domestic health care industry. Multidrug resistance in bacteria are 

therefore an increasingly ominous threat. In each of these areas of practice 

antimicrobial biocides are used to prevent and control levels of microbial 

contamination. Biocides are said to act as a selective pressure that encourages the 

acquisition of resistance traits in bacterial cells (Qiu et al., 2012). Furthermore this 

selective pressure may result from the overexposure of very low concentrations of 

biocides over long periods of time (Andersson et al., 2012, Gullberg et al., 2014, 
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Gullberg et al., 2011, Thomas et al., 2000). In the situation where a selective 

pressure in exerted on a bacterial population, subpopulations, which are less 

sensitive to a biocide, will survive to reproduce over those that remain sensitive, 

this gives those with resistance traits a selective advantage.  

Empirically, antimicrobial resistance is considered either “intrinsic” or “acquired”. 

Intrinsic resistance is the innate insensitivity of a bacterial species to a particular 

antimicrobial agent. Intrinsic resistance occurs when bacterial genomes contain 

genes that have the potential to exhibit a resistance phenotype (Blair et al., 2014, 

Davies and Davies, 2010, Lister et al., 2009). Acquired resistance occurs when a 

microorganism obtains tolerance to an antimicrobial to which it was previously 

sensitive. Acquired resistance can result from the mutation of genes or from the 

acquisition of mobile genetic elements that carry foreign resistance genes through 

horizontal gene transfer (HGT) (Blair et al., 2014, Davies and Davies, 2010, 

Fernández and Hancock, 2012, Lister et al., 2009). Intrinsic and acquired 

resistance traits differ in that those associated with acquired resistance are not 

present in all strains or sub-populations of a bacterial species.  

 

Bacteria with antimicrobial resistance traits are not necessarily solely resistant to 

one type of antimicrobial. Cross-resistant bacteria are defined as “those that have 

developed survival methods that are effective against different types of 

antimicrobial molecules with similar mechanism(s) of action” (SCENIHR, 2010).  

Cross-resistance with antibiotics is a growing concern that stems from the use of 

biocidal products both in clinical and domestic settings alike. It has been said that 

some identified mechanisms for resistance are alike between biocides and 

antibiotics (SCENIHR, 2010). It is debated that the use of biocidal products may be 

a driving factor in antimicrobial resistance. Marco et al. (2015) demonstrated a 

correlation between Chlorhexidine (CHX) and Benzalkonium chloride (BZC) for S. 

aureus susceptibility to quinolones, β-lactams and macrolides antibiotics (Marco et 
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al., 2015). The study did not find a correlation between Triclosan and Sodium 

hypochlorite and the antibiotics tested. 

 Co-resistance may also occur as a result of acquired resistance in bacterial cells. 

Co-resistance “involves transfer of several genes into the same bacteria and/or the 

acquisition of mutations in different genetic loci affecting different antimicrobials” 

(Cantón and Ruiz-Garbajosa, 2011). Co-resistance of disinfectant-resistant bacteria 

to antibiotics has been documented to occur with bacteria that carry QAC-

resistance genes (Chapman, 2003, LemaÎTre et al., 1998) that are carried on 

transmissible plasmids, these plasmids carry multiple resistance genes. 

 

1.8. Current surveillance of biocide resistance 

	
Biocides are strongly regulated when it comes to their chemical makeup, their 

efficacy and their toxicity. Regulations such as the EU biocidal products directives 

98/8/EC (1998) and 528/2012 ensure the use of biocides in commercial products is 

stringently controlled. However, information about the fate of these products in our 

environment is limited and data to show the relationship between biocides in our 

environment and bacterial resistance is scarce. The Scientific Committee on 

Emerging and Newly Identified Health Risks (SCENIHR, 2010) stated, “Despite the 

regulatory requirements to study the environmental stability of individual products, 

data on the fate and concentrations of biocides in the environment are sparse”. 

One organisation that aims to solve that problem is the Swedish Research Council. 

INTERACT is a large research program founded by the Swedish Research 

Council, which aims to gain understanding of how biocides and heavy metals, 

especially in combination, contribute to development of antibiotic resistance 

(http://interact.gu.se; accessed: 21.05.2019). It is important to grasp an 

understanding of the role of external factors on the emergence and dissemination 



	22	 	

of antimicrobial resistant bacteria (SCENIHR, 2010). It is clear that better 

surveillance of the use, disposal and environmental fate of biocides is needed in 

order to control better the growing issue of antimicrobial resistance. 

 

1.9. Aims and objectives 

	
There is not yet a standardised way to predict the levels of biocide concentrations 

that are left on surfaces as a result of the use of disinfectants, nor is there a 

standardised way to predict the potential risk that these levels pose to microbial 

resistance. The difference in selection and adaption processes at high and low-

level biocide exposure is something that has not been fully investigated to date. 

This study aims to investigate links between exposure effects of CHX and BZC at 

high and low concentrations, the resulting phenotypes of E. coli and how these 

findings relate to the risk of resistance. The growing need for standardising the way 

microbicides are assessed for their potential risk leading to microbicidal resistance 

is a driving force behind this project with the aim of understanding potential 

markers for the risk of resistance development.  
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2. GENERAL METHODS 
2.1 Sterilisation of media 

	
All media was sterilised in accordance to British Pharmacopoeia methods of 

preparation of sterile products (BP, 2005). All products were sterilised with steam in 

an autoclave (Fisher, UK) at 121°C for 15 minutes and let to cool to room 

temperature (≈ 20°C) before use.  

 

2.2 Bacterial strains and growth conditions 

2.2.1  Justification of bacteria 

	
When investigating bacterial resistance it is important to consider that the 

development of resistance is strictly strain dependant. Standard culture collection 

strains are not necessarily suitable for studying the mechanisms of resistance 

(Maillard, 2018). environmental or clinical isolates depict a more applicable insight 

into the expression of resistance mechanisms. For these reasons this study will 

investigate seven environmental faecal isolates of Escherichia coli compared to 

reference strain Escherichia coli ATCC 25922 (https://www.attc.org/) that was used 

as a control. 

 

Isolates of Escherichia coli used in this study were obtained from the University 

College Dublin (Table 2.1). Their genetic background and content including 

specific genetic elements have been determined. Each of the strains has been fully 

sequenced and has a clean genetic background. The strains are known to carry 
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conjugative-plasmid borne ESBLs. The specific features of interest of the chosen 

isolates are highlighted in Table 2.1.  

 

Table 2.1. Summary of ESBL producing E. coli environmental isolates obtained 

from the University College Dublin and of their resistance features. 

 

ISOLATE MLST ESBLs 
Plasmid(s) (kb) isolated 

from transconjugants 

UCD-CFS ECP-1L3 ST23 CTX-M-14 200-, 120- 

UCD-CFS ECP-1B2 ST1629 CTX-M-14 110- 

UCD-CFS ECP-1L4 ST23 CTX-M-14 130- 

UCD-CFS ECP-13P5 ST10 CTX-M-15 80- 

UCD-CFS ECP-13P4 ST10 CTX-M-15 70- 

UCD-CFS ECP-25OS1 
ST34 

(ST10 Cpix) 
TEM-20 120-, 60- 

UCD-CFS ECP-25P5 ST10 TEM-20 110-, 50- 

 

2.2.2. Bacterial growth conditions 

	
All strains were cultured in Muller Hinton broth (MHB; Fisher Scientific, 

Loughborough, UK) and incubated at 37 (±1)°C for 18-24h. When necessary all 

bacterial strains were cultured on Muller Hinton agar (MHA) plates and stored in 

the fridge at 4-6°C for up to one month. 

 

One loopful of colonies was taken from a MHA plate containing bacterial growth 

incubated at 37± 2°C for 18-24h. Bacterial cultures were incubated overnight in 

centrifuge tubes (Fisher Scientific, Loughborough, UK) containing 10 mL MHB. All 
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overnight cultures were incubated at 37 ± 2°C for 18-24h in an orbital shaker 

(150rpm).  

 

2.3 Storage of isolates 

	
All isolates were stored in glycerol and on protect beads (Fisher Scientific, 

Loughborough, UK). To make a glycerol stock, 800 μL of an overnight bacterial 

culture was mixed with 200 μL of glycerol in a cryovial and stored in the freezer at -

80°C (± 1°C) for long-term storage. For short-term storage of isolates, one loopful 

of colonies was added to a vial of protect beads, vortexed for 1 min and left for 1 

min. The supernatant was removed from the vial and protect beads were stored for 

up to one year at -20°C. Working cultures of each strain were made by streaking 

one loopful of fresh overnight culture onto MHA plates and were stored at 4-6°C for 

up to one month and restricted to a maximum of 2 subcultures from the original 

freezer stock prior to exposure to a given antimicrobial.  Streak culture plates were 

performed regularly on freezer stocks to ensure purity.  

 

2.4 Preparation of test inoculum 

	
Overnight MHB bacterial cultures were centrifuged at 5000xg for 15 min at 20°C (± 

1°C). The supernatant was discarded and the bacterial pellet was re-suspended in 

10 mL phosphate buffer saline (PBS; Fisher Scientific, Loughborough, UK). This 

procedure was performed twice to ensure that all cultures were adequately washed 

of toxic growth products and remaining media. 

 

Washed bacterial suspensions were adjusted to contain the appropriate 

concentration of bacterial cells for testing. Turbidity of suspensions was adjusted 
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using sterile MHB to achieve a turbidity equivalent to that of a 0.5 McFarland 

standard which results in the suspension containing approximately 1 to 2 × 108 

CFU/mL. Optical density values were read using a spectrophotometer (wavelength 

625nm) to ensure accuracy and consistency. 0.5 McFarland standard was 

produced. 

2.5 Bacterial propagation and enumeration 

	
Viable counts of all bacterial suspensions were performed before and after each 

test to determine viable bacterial cell concentration. Enumeration was carried out 

using the drop counting method (Miles, 1938). This method involves the serial 

dilution of the bacterial suspension; 100 μL was taken from the neat suspension 

and added to a sterile microcentrifuge tube containing 900 μL of sterile PBS buffer 

and mixed with a vortex. Dilutions of 1:10 were made in succession until eight 

serial dilutions have been made. To determine the mean colony count, 10 μL of 

each dilution was plated onto a MHA plate in triplicate and left to dry. Plates were 

incubated at 37 ± 2°C for 18-24h in a static incubator and dilutions that produced 

between 3 and 50 colonies were read and recorded. 

 

2.6 Biocide preparation 

	
Two antimicrobial agents, chlorhexidine digluconate and benzalkonium chloride, 

were chosen for their consistent use in healthcare environments and their 

relevance in current issues surrounding antimicrobial resistance (Chapter 1.). All 

compounds were diluted to the required concentrations in sterile deionized water 

(diH20). Each antimicrobial agent was prepared at an initial stock concentration to 

ensure accuracy in dilution; 1 and 2% w/v chlorhexidine digluconate, and 1 and 2% 

w/v benzalkonium chloride. 
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2.7 Neutraliser preparation 

	
A neutraliser was used to quench the activity of both biocides during experimental 

procedures. Dey-Engley neutralising broth (LabM, Haywood, UK) was chosen for 

its universal application. The powdered media was dissolved per manufacturer’s 

instruction in diH20 and sterilised before use.  Neutraliser was kept at 4-6°C for up 

to one month and regular checks were made to ensure sterility. 

 

2.8 Neutraliser efficacy and toxicity test 

	
To determine bacterial toxicity of the Dey-Engley neutralising broth, a suspension 

test was carried out in accordance with the British Standard EN 1276 2009 protocol 

(BSI, 2009). One mL of the test suspension was added to 9 mL of neutralizer, 

mixed for 1 min using a vortex and left to dwell for 5 min. A suspension of 1 mL 

bacteria and 9 mL of just diH2O was included as a negative control. All 

suspensions were enumerated with the drop counting method (Section 2.5). 

Recorded colony counts for test and control suspensions were compared to 

determine whether or not exposure to the neutraliser resulted in a significant 

decrease in viable bacterial cells. The neutraliser would be deemed toxic if there 

was a ≥ 1 log10 decrease in viability was observed (BSI, 2009). This procedure was 

performed in accordance with the BS EN1276 (2009) suspension testing protocol. 

To ascertain the ability of the neutraliser to sufficiently quench activity of the 

antimicrobial compounds, a neutraliser efficacy test was performed.  Briefly, 1 mL 

of antimicrobial compound at the highest concentration to be tested was added to 8 

mL of neutraliser and mixed with a vortex for 1 min.  After mixing, 1 mL of bacterial 

standardised suspension (1 x 108 CFU/mL) was added, mixed and dwelled for 5 
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min. A suspension of 1 mL bacteria (1 x 108 CFU/mL), 1 mL antimicrobial and 8 mL 

of diH2O was also tested for 5 min and included as a negative control. Viable 

counts of test and control suspensions were performed using the drop counting 

method (section 2.5) and colony counts for test and control suspensions were 

compared. The neutraliser was considered sufficiently effective if there was ≤ 1 

log10 decrease in CFU/mL observed between the initial count and those taken after 

exposure to antimicrobial / neutraliser mixed solution. This test was carried out in 

accordance with the BS EN1276 (2009) suspension testing protocol. 
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3. BASELINE SUSCEPTIBILITY PROFILE 
3.1. Introduction 

	
As previously expressed (Chapter 1, Section 1.2), antimicrobial products have 

either microbicidal or microbistatic effects on bacterial populations. Their efficacy 

depends on both environmental and biological conditions. There are a wide variety 

of protocols established in scientific studies to ascertain the efficacy of an 

antimicrobial product. As this study is interested in exploring how biocides may 

alter biological processes related to antimicrobial susceptibility, protocols that 

investigate bacterial growth kinetics and antimicrobial susceptibility were selected 

for consideration.  

 

3.1.1. Minimal Inhibitory, Minimal bactericidal and Minimal selective 

concentrations 

	
Microbroth dilution method (BSI, 2006) involves controlled concentrations of 

bacterial cells being exposed to a range of antimicrobial concentrations under set 

conditions in order to ascertain both the minimal inhibitory concentration (MIC) and 

the minimal bactericidal concentration (MBC). The MIC is defined as the lowest 

concentration of a biocide that inhibits visible bacterial growth. The MBC is defined 

as the lowest concentration of a biocide that kills a bacterial population and is 

determined by culturing the wells surrounding the MIC to count viable bacterial cell 

growth.  

 

In situ, biocides are typically applied in concentrations that are considerably above 

that needed to kill bacterial populations and are most commonly tested for efficacy 
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at the product’s “active” or “in-use” concentration. For this reason, an increase in 

MIC or MBC after exposure to an antimicrobial does not inevitably result in failure 

to kill a microorganism when a biocide is used at “in-use” concentrations (Russell, 

2000, Thomas et al., 2005). When assessing bacterial resistance to antibiotics, the 

MIC is the value, which is typically considered critical to the indication of change in 

susceptibility (Begot et al., 1996, Strotmann and Pagga, 1996). The MIC can be 

used as a marker for change in phenotypic behaviour after exposure to an 

antimicrobial (Maillard, 2013). It has been previously understood that 

concentrations of an antimicrobial above the MIC of a susceptible bacteria and 

below that of resistant bacteria are responsible for the selection of resistant 

populations (Gullberg et al., 2011). Resistant bacteria consequently outcompete 

susceptible bacteria, are selected and survive (Drlica, 2003). However, it is more 

recently understood that there is a lower concentration range in which the selection 

for resistant microorganisms can occur (Figure 3.1). This range is referred to as 

the Minimal Selective Concentration (MSC) (Gullberg et al., 2014, Gullberg et al., 

2011, Liu et al., 2011). Fig. 3.1A demonstrates the antibiotic concentration range in 

which the MSC is now understood to select for resistant bacterial populations. Fig. 

3.1B shows the difference in effect on growth rates the antibiotic MSC can have on 

susceptible and non-susceptible populations. Concentrations substantially below 

the antibiotic MIC of the susceptible strain decreased its growth rate, whereas 

these concentrations had no effect on the resistant strain. Bacterial populations 

selected within the MSC range, can have high-level resistance just as those 

selected above MIC (Gullberg et al., 2014, Wistrand-Yuen et al., 2018). Although 

the MSC in the examples given tackle the effects of selective pressure applied by 

antibiotics, this is an interesting concept to adapt to the use of biocides. 
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Figure 3.1. Growth rates as a function of antibiotic concentration. from 

Gullberg et al. (2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (A) Schematic representation of growth rates as a function of antibiotic 

concentration. Green indicates a concentration interval where the susceptible strain 

(blue line) will outcompete the resistant strain (red line). Orange (sub-MIC selective 

window) and red (traditional mutant selective window) indicate concentration 

intervals where the resistant strain will outcompete the susceptible strain. MICsusc =  

minimal inhibitory concentration of the susceptible strain, MICres =  minimal inhibitory 

concentration of the resistant strain and MSC =  minimal selective concentration. 

(B). Relative exponential growth rates of susceptible (open circles) and resistant 

(closed circles) strains of S. typhimurium as a function of tetracycline 

concentration. Standard errors of the mean are indicated. A relative growth rate of 

1.0 corresponds to approximately 1.8 hr−1. Cells were grown in Mueller Hinton 

medium at 37°C. 

https://doi.org/10.1371/journal.ppat.1002158.g001 
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As discussed previously (Sundheim et al., 1998) it is possible that biocides are 

present in our environments in concentrations lower than intended whether as a 

result of incorrect use or dilution. Furthermore, it is possible that prolonged 

exposure to low residual antimicrobial concentrations could lead to less susceptible 

bacterial populations (Andersson et al., 2012, Gullberg et al., 2014, Gullberg et al., 

2011, Thomas et al., 2000, Thomas et al., 2005, Wistrand-Yuen et al., 2018). It is 

therefore important to consider the significance of the effect that these lower 

concentrations have on bacterial populations (SCENIHR 2009). 

 

3.1.2. Growth kinetics  

	
Bacterial growth kinetics are usually visualised in the form of growth curves and are 

produced by using spectrophotometers measuring optical density values of a 

bacterial suspension over time (Begot et al., 1996, Hall et al., 2013). Growth curves 

are a representation of the natural growth phase of a bacterial strain, which is 

depicted in Figure 3.2. (Hall et al., 2013). Specific phases of growth are 

responsible for different biological processes that work to enable bacterial 

populations to overcome stresses, adapt to their environment and replicate to 

thrive. Growth curves can be useful for determining whether or not a growth phase 

is altered due to the presence of an antimicrobial substance. Alterations in growth 

kinetics after exposure to antimicrobials suggest either an inhibitory or an adaptive 

response of the microorganism. 
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Figure 3.2. A typical bacterial growth curve (Hall et al., 2013) 

 

 

 

 

 

 

 

 

 

The comparison of non-biocide exposed and biocide-exposed bacteria using 

growth kinetics cannot be used alone to predict antimicrobial resistance but serve 

as an indication that a biocide is effecting a change. Inhibitory effects observed in 

the presence of an antimicrobial can be an indication of an environment that might 

favour or select for resistance phenotype. The lag phase is when microorganisms 

react to the environment around them and adapt to stressful influences (Rolfe et 

al., 2012). It is the phase of growth in which primary changes to increase drug 

tolerance occurs (Fridman et al., 2014). The investigation of (Li et al., 2016) into 

the lag phase of E. coli showed that understanding the lag phase was integral to 

predicting drug susceptibility. The study inferred that an elongated lag phase 

provided survival advantages and promoted regrowth upon the removal of an 

antibiotic. Sleight and Lenski (2017) found that shortened lag phases in some E. 

coli strains provided a selective advantage for growth resumption after stationary 

phase (Sleight and Lenski, 2007). However, several studies highlighted 

heterogeneity in growth resumption timings, and suggested that many E. coli cells 
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have extended lag phases even in favourable conditions (Levin-Reisman et al., 

2010, Niven et al., 2008, Rolfe et al., 2012). Joers and Tenson (2016) found that 

heterogeneous growth resumption during lag phase could protect the population 

from adverse effect of stress, because stress-resilient dormant cells are always 

present (Jõers and Tenson, 2016). The presence of these so called “persister” 

cells that lay dormant whilst others cells resume growth during the lag phase can 

lead to decreased efficacy of an antimicrobial even though the cells remain 

susceptible (Allison et al., 2011, Balaban et al., 2004). “Persister” cells re-initiate 

growth when environmental conditions are more favourable. Persister cells 

commonly exhibit low proton motive force (PMF) activity enabling them to inhibit, 

for example, the activity of aminoglycoside antibiotics.  Allison et al. (2011) 

demonstrated that this characteristic can be overridden in E. coli and S. aureus by 

the addition of certain carbon sources as persisters, although dormant are still 

“primed for metabolic uptake, central metabolism and respiration”. To surmise, if 

the lag phase of a bacterial growth curve is extended in the presence of an 

antimicrobial, this can be indicative of adaption to its bactericidal activity, including 

the possible involvement of persister cells (Allison et al., 2011, Li et al., 2016, 

Whitehead et al., 2011). Furthermore, growth-phase dependant expression of 

various genes in E. coli has been denoted (Madar et al., 2013). Kobayashi et al., 

(2006) identified that at the early to late exponential phase (Kobayashi et al., 

2006), the emrE, mdfA, and acrA genes showed relatively high expression levels; 

the deletion of these genes is known to increase antibiotic susceptibility (Sulavik et 

al., 2001). The study showed that expression of the MdtEF and the AcrAB drug 

exporter genes confer drug tolerance in the saturation or stationary phase 

phenotype. This knowledge affirms the value of growth kinetics in evaluating the 

potential for antimicrobial compounds to select resistance in microorganisms.  
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3.1.3. Antibiotic susceptibility determination 

	
There are a number of methods available for measuring antibiotic susceptibility in 

bacteria. These include standardised testing protocols from the Clinical and 

Laboratory Standards Institute (CLSI, 2015), the British Society for Antimicrobial 

chemotherapy (BSAC) (Andrews, 2009) and the European Committee on 

Antimicrobial Susceptibility testing (EUCAST, 2015) methods. These protocols 

stipulate either micro-broth dilution or antibiotic disc susceptibility assays, and 

provide the user with set susceptibility breakpoints, which provide an indication of 

whether a bacterial population is clinically sensitive, intermediate or resistance 

against a certain antibiotic. These protocols are not always applicable as clinical 

breakpoints for certain bacteria are often unavailable. Epidemiological cut off 

(ECOFF) values are collected, collated and established by the European 

Committee on Antimicrobial Susceptibility Testing (2010). MIC distributions are 

collected from worldwide sources through published research articles, the 

pharmaceutical industry, veterinary institutions and surveillance programmes such 

as Brittish Society for Antimicrobial Chemotherapy (BSAC), ECO-SENS, European 

Antimicrobial Resistance Surveillance System (EARSS), Hospitals in Europe Link 

for Infection Control through Surveillance (HELICS), The Meropenem Yearly 

Susceptibility Test Information Collection (MYSTIC), NORM and the SENTRY 

Antimicrobial Surveillance Programme. These data are used to produce a 

distribution range of MICs for microorganisms with and without acquired resistance 

mechanisms. This type of epidemiological data may be more useful than single 

study MICs as it provides a broader depiction of the level of risk and can be applied 

to monitor advances in resistance. A similar set up for the surveillance of biocide 

susceptibility does not exist, Biocide MIC/MBC breakpoints are scarcely available. 

However there has been a recent study that intended to produce a testing protocol 
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that, aimed to measure the capability of biocides to confer cross-resistance to 

antibiotics using a combination of the micro-broth dilution and disc diffusion 

techniques. This method sought to use changes in biocide and antibiotic sensitivity 

as markers for predicting resistance and cross-resistance in micro-organisms 

(Knapp et al., 2015).  
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3.1.3. Antibiotic and biocide test correlation 

	
As antibiotic resistance is such a massive risk to worldwide health (O’Neil, 2016), it 

goes without saying that there is a wide variety of research that has investigated 

and supported the idea that the long-term use of antibiotics has exacerbated the 

issue of antibiotic resistance. However, research into the extent of biocide 

implication in antimicrobial resistance is still in its primary stages, no similar 

systems are currently established to monitor biocide-mediated antimicrobial 

resistance. It has been attempted to apply ECOFF (upper limit of normal MIC for a 

given species) values to commonly used biocides (Morrissey et al., 2014) in order 

to define realistic, applicable breakpoints. Figure 3.3. Illustrates findings from the 

Morrissey study (2014) with relation to E. coli, CHX and BZC. ECOFF MIC and 

MBC for CHX were 64mg/L and >64 mg/L respectively. ECOFF MIC and MBC for 

BZC were 64 mg/mL (0.064 mg/mL) and 128 mg/mL (0.128 mg/mL) respectively.  

 

Figure 3.3. Populational susceptibility of E. coli to CHX and BZC. 

 

MIC - highlighted in blue, ECOFF MIC indicated with blue arrow 

MBC – highlighted in green, ECOFF MBC indicated with green arrow 

a)      b) 

 

These data provide valuable information on the susceptibility trends of clinically 

relevant microorganisms to biocides. 



	40	 	

3.1.4. Aims and objectives 

	
This chapter aims to ascertain a baseline antimicrobial susceptibility profile of the 

isolates selected using the ISO: 20776-1 (BS EN ISO: 20776-1; ISO, 2006), growth 

kinetics and EUCAST (EUCAST, 2015) methods. This investigation used growth 

curves in conjunction with an attempt to apply to biocides, the minimal selective 

concentration determination procedure (Gullberg et al. 2011, 2014) to determine 

growth kinetics during exposure to high and low concentrations of biocides. Studies 

into the MSC have thus far focussed on antibiotic selectivity. The growth curves 

produced through this study will be used to identify potential minimal selective 

inhibitory concentrations of the chosen biocides. The determination of a minimal 

selective concentration will provide the study with a focal point for investigation of 

the effects of residual biocide concentrations on antimicrobial resistance. 

 

3.2. Materials and methods 

3.2.1. Minimal Inhibitory and Minimal bactericidal concentrations 

	
The MIC of each biocide was determined following the BS EN ISO: 20776-1 (ISO, 

2006) protocol. All bacterial strains (Chapter 2: Section 2.2.1; table 2.1) were 

tested including the reference strain E. coli ATCC 25922. To ensure that all 

dilutions were accurate and consistent the Viaflo ASSIST 4500 (Integra, UK) robot 

was used to load all microtiter plates. Fifty µL of MHB was added to wells 2-12 of a 

96 well microtiter plate (Sterilin Ltd, Newport, UK) (Figure 3.4).  Fifty µL of each 

antimicrobial agent was doubly diluted across wells 1-10. Each antimicrobial agent 

was placed in three consecutive rows in order to replicate the experiment in 

triplicate. Column 11 (Figure 3.4) was designated as a positive control test where 

only broth and bacteria were incubated without biocide. Column 12 was (Figure 

3.4) designated as a negative control test where broth only was incubated without 
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antimicrobial agent or bacteria. Fifty µL of standardised washed bacterial culture (1 

x 108 CFU/mL; Chapter 2, section 2.4) was individually added to all wells in the 3 

rows allocated. The plate was covered with a sterile lid, wrapped in parafilm and 

incubated at 37 ± 2°C for 18-24 h in a shaking incubator at 150 rpm. The range of 

concentrations tested was as follows: 0.031 – 0.000061 % w/v chlorhexidine 

digluconate and 0.125 – 0.00024 % w/v benzalkonium chloride. The MIC was 

recorded as the lowest concentration at which no visible growth was observed 

visually. 

 

The minimal bactericidal concentration of each biocide was determined following 

incubation of the plate used to determine the minimal inhibitory concentration. 

Twenty µL of test suspension was removed from each well of the microtitre plate 

where no bacterial growth was observed and the two lowest biocide concentrations 

at which growth was observed, plated onto a MHA plate containing 10 % v/v 

neutraliser (Chapter 2; Section 2.7) and incubated at 37 ±1°C for 24 h. The 

minimum bactericidal concentration was defined as the lowest antimicrobial 

concentration where no bacterial growth was observed on the agar plate.  

 

Figure 3.4. An example of plate layout for MIC testing.  

 

 

 

 

 

Halving dilutions of biocide 

ATCC 25922 
ATCC 25922 
ATCC 25922 

UCD-CFS ECP-1L3 
UCD-CFS ECP-1L3 
UCD-CFS ECP-1L3 

Positive and negative controls 
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3.2.2. Growth kinetics  

	
The Bioscreen C analyzer (Oy Growth Curves AB Ltd, Helsinki, Finland) was used 

to obtain growth curves from all isolates in the presence of a biocide at doubling 

concentrations. Overnight bacterial washed cultures were standardised to 1 x 106 

CFU/mL, this was to ensure that all phases of growth were visually apparent. Three 

hundred and fifty µL of pre-prepared biocidal compound at appropriate 

concentrations was added to the appropriate wells of a honeycomb plate (Oy 

Growth Curves AB Ltd, Helsinki, Finland) as indicated in Figure 3.5. Fifty µL of 

standardized bacterial cell suspension was added to the appropriate wells (Figure 

3.5). A negative control (biocide and broth only) was included succeeding each test 

column in order to account for any change of turbidity in the media due to the 

antimicrobial compound. The plates were incubated in the Bioscreen at 37 ± 1°C 

for 24 h and turbidity was recorded using a wideband filter (420– 580 nm) with 

readings taken every 4 min with continuous shaking. A total of three independent 

experiments were performed using fresh bacterial cultures.  
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Figure 3.5.  Depiction of the layout of a honeycomb plate incubated in the 

Bioscreen C analyser. The first two columns are repeated with each different strain. 

Image adapted (Oy Growth Curves AB Ltd, Helsinki, Finland). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 demonstrates the point at which each stage of the growth curve was 

analysed. Lag phase (λ) was defined as the length of time (min) taken to reach 

OD600 of 0.1. This is the point before the growth curves begin to enter exponential 

growth phase. Lag phase extension (LE) was measured in order to quantitatively 

evaluate the effects of biocides on the lag phase. This has previously been 

performed for antibiotics in order to evaluate the potential risk of resistance 

development to antibiotics (Li et al., 2016). LE is expressed in equation 3.1 where 

λc = lag phase duration in the presence of biocide at concentration C and λ0 = lag phase 

length in the no biocide control. 

 

Equation 3.1 Lag phase extension (LE) 

LE = λc/λ0 
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Maximum Optical Density (MAXOD) was recorded as the optical density value 

(OD600) at the last time point (1440 minutes) for each instance. Specific growth rate 

(μ) was calculated as the linear regression of the slope of the exponential growth 

phase (Figure 3.6). OD600 values are an indirect reflection of the actual total cell 

count and were used instead of absolute cell number (Bergot et al., 1996). The 

coefficient of determination (R2) values ranged from R2=0.91 to R2=0.1; these 

levels of variation were considered acceptable. 

 

Figure 3.6. A depiction of the parameters assigned for the calculation of each 

growth phase related value (Log phase length, Maximum OD600 reached and 

Specific growth rate). 

	

			

3.2.3. Antibiotic susceptibility 

	
The susceptibility of each strain to all stipulated antibiotics was determined in 

accordance with the EUCAST protocol for antimicrobial disc susceptibility testing 

(EUCAST, 2015). Briefly, standardised overnight bacterial cultures (1 x 106 

CFU/mL) of each strain were spread evenly onto MHA plates and left to dry for no 
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more than 15 min. Antibiotic discs were placed using sterile forceps, onto the 

bacterial lawn and plates were incubated at 37 ± 2°C for 18-24 h in a static 

incubator. The antibiotics chosen for their clinical relevance and in accordance with 

EUCAST (2015) were as follows: ampicillin (10 µg), amoxicillin-clavulanic acid (10 

µg), chloramphenicol (30 µg), ciprofloxacin (5 µg), cefodoxime (10 µg ), cefoxitin 

(30 µg), tetracycline (30 µg), streptomycin (10 µg ), imipenem (10 µg ), cephalothin 

(30 µg ), nalidixic acid (30 µg ), trimethoprim-sulfamethoxazole (1.25/23.75 µg ), 

trimethoprim (5 µg ). All antibiotics were purchased from Beckton and Dickinson 

(Oxford UK). Clinical susceptibility of each strain was based on breakpoints 

stipulated in the EUCAST protocol and measured from the size of the zones of 

inhibition produced by the antibiotic. Breakpoint guidelines that were used from the 

EUCAST protocol are included in the in the appendices (File name: Appendices > 

appendix one > Breakpoint-Table-EUCAST).  

 

3.2.4. Statistical analysis 

	
A Two-Way analysis of variance (ANOVA) test was used when comparing 

MIC/MBC, Growth rate, Lag phase or maximum OD values between strains and 

between biocide concentrations. A one-Way ANOVA was used to compare MIC 

and MBC values. A students T-test was used to compare values of exposed and 

non-exposed bacteria regardless of CHX concentration or strain. 

 

3.3. Results and discussion 

3.3.1. Chlorhexidine digluconate MIC and MBC 

	
MIC and MBC values were statistically different between the 8 E. coli strains 

(P<0.0001; Two-way ANOVA; Graphpad PRISM8). Isolate UCD-CFS ECP-13P5 
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demonstrated the highest CHX MIC and MBC values at 0.01 mg/mL (Table 3.1). 

Morrissey et al., (2014) suggested that the ECOFF MIC and MBC values for E. coli 

and CHX were 0.064 mg/mL and >0.064 mg/mL, respectively. The highest MIC 

value obtained here was 6.4-fold less than the obtained ECOFF. The average MIC 

and MBC for CHX in this study were 0.005 mg/mL and 0.006 mg/mL compared to 

the MIC and MBC ECOFF which were 0.004 mg/mL and >0.004 mg/mL, 

respectively. There was a 5-fold difference between the highest and lowest MIC 

(I.e. 0.01 mg/mL and 0.002 mg/mL). However, there was no statistically significant 

difference found between MIC and MBC values (P=0.36; ONE-WAY ANOVA; 

Graphpad PRISM8).  

Knowing that isolates UCD-CFS ECP-1L3 – 25051 carry ESBL resistance genes 

(Table 2.1; Chapter 2, section 2.2.1) might indicate that the slight variation of the 

baseline MIC and MBC phenotypes are related to these genes. UCD-CFS ECP-

13P5 carries plasmid encoded CTX-M-15, an ESLB-type antibiotic resistance gene 

that has been related in resistance to ampicillin (AMP) piperacillin (PR), 

amoxiclavulanic acid/augmentin (AG), ampicillin/sulbactam (A/S), cefuroxime (FU), 

cefazoline (FZ), cefepime (PIM),  cefotaxime (CTX), ceftazidime (CAZ) , gentamicin 

(CN),  amikacin (AK), tobramycin (TB)  aztreonam (AZ), ciprofloxacin (CIP), 

norfloxacin (NOR), levofloxacin (LEV), tetracycline (TE) and chloramphenicol (C) 

(Guiral et al., 2011). This is relevant as CHX and some antibiotics, for example 

aminoglyciosides (i.e gentimicin) share modes of entry into a bacterial cell via self-

promoted uptake. Both enter the cell through the displacement of cations in the 

bacterial cell envelope and re-organisation of lipopolysaccharides (Hancock and 

Baddiley, 1985). The similarities in mode between aminoglycosides and CHX have 

led to a discussion as to whether reduced CHX (and other biguanide biocides) 

uptake is linked to reduced aminoglycoside susceptibility. 
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Table 3.1. Minimal inhibitory and bactericidal concentrations (mg/mL) for all test 

strains (ESBL type in brackets) in the presence of CHX (n=3). 

± standard deviation of the mean of 3 replicates 

 
	

3.3.2. Benzalkonium chloride MIC and MBC 

	
The average MIC and MBC for BZC in this study were 0.018 mg/mL and 0.023 

mg/mL compared to the MIC and MBC ECOFF which were 0.032 mg/ml and 

0.032mg/mL, respectively. There was no statistically significant difference between 

E. coli strains when comparing their BZC MIC and MBC values (P=0.13; Two-way 

ANOVA; Graphpad PRISM8) (Table 3.2). These results suggest that although 

these strains carry different resistance genes (Table 3.2), these did not affect their 

baseline susceptibility to BZC. There was a 2-fold difference in MIC and MBC (i.e. 

0.02 mg/mL to 0.04mg/mL) for isolates UCD-CFS ECP-1L3 and UCD-CFS ECP-

25P5. The highest MIC and MBC values obtained were 0.02 mg/mL (UCD-CFS 

ECP-1L3, UCD-CFS ECP-1B2, UCD-CFS ECP-13P5, UCD-CFS ECP-13P4, UCD-

 

 CHLORHEXIDINE DIGLUCONATE 

ISOLATE MIC MBC 

ATCC 25922  0.005 ± 0.000 0.005 ± 0.000 

UCD-CFS ECP-1L3 (CTX-M-14) 0.005 ± 0.000 0.005 ± 0.000 

UCD-CFS ECP-1L4 (CTX-M-14) 0.005 ± 0.000 0.005 ± 0.000 

UCD-CFS ECP-IB2 (CTX-M-14) 0.007 ± 0.003 0.007 ± 0.003 

UCD-CFS ECP-13P5 (CTX-M-15) 0.010 ± 0.000 0.010 ± 0.000 

UCD-CFS ECP-13P4 (CTX-M-15) 0.002 ± 0.000 0.005 ± 0.000 

UCD-CFS ECP-25P5 (TEM-20) 0.005 ± 0.000 0.005 ± 0.000 

UCD-CFS ECP-25OS1 (TEM-20) 0.005 ± 0.000 0.005 ± 0.020 
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CFS ECP-25P5, UCD-CFS ECP-25051) and 0.04 mg/mL (UCD-CFS ECP-1L3, 

UCD-CFS ECP-25P5) respectively. Compared with ECOFF values obtained by 

Morrissey et al. (2014), MIC values here were 3.2-fold less and MBC values were 

4.2-fold less.  
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Table 3.2 Minimal inhibitory and bactericidal concentrations (mg/mL) for all test strains (ESBL type in brackets) in the presence of BZC (n=3). 

± Standard deviation of the mean of 3 replicates 

 

 
 

BENZALKONIUM CHLORIDE 

ISOLATE MIC MBC 

ATCC 25922  0.01 ± 0.00 0.01 ± 0.00 

UCD-CFS ECP-1L3 (CTX-M-14) 0.02 ± 0.00 0.04 ± 0.00 

UCD-CFS ECP-1L4 (CTX-M-14) 0.01 ± 0.00 0.01 ± 0.00 

UCD-CFS ECP-IB2 (CTX-M-14) 0.02 ± 0.00 0.02 ± 0.00 

UCD-CFS ECP-13P5 (CTX-M-15) 0.02 ± 0.00 0.02 ± 0.00 

UCD-CFS ECP-13P4 (CTX-M-15) 0.02 ± 0.00 0.02 ± 0.00 

UCD-CFS ECP-25P5 (TEM-20) 0.02 ± 0.00 0.04 ± 0.00 

UCD-CFS ECP-25OS1 (TEM-20) 0.02 ± 0.00 0.02 ± 0.00 



	50	 	

3.3.3. Growth kinetics without biocides 

	
After 24 hours incubation in the Bioscreen C analyser, OD600 values were plotted 

against time for all isolates without any biocide exposure to demonstrate baseline 

growth kinetics (Figure 3.7). In order to determine differences in growth kinetics the 

specific growth rate (hour-1), lag phase length (min) and maximum OD600 reached 

were compared between isolates.  

 

Table 3.3 shows the baseline specific growth rates (hour-1) for eight E. coli isolates. 

When comparing between isolates, the difference between the values was 

statistically significant (P=0.003) (Table 3.3). It has been discussed that organisms 

that have slower growth rates are more able to survive adverse conditions (Williams, 

1988; Brown & Williams, 1985; Brown et al., 1985). Studies have demonstrated the 

correlation between decreased growth rates and a decrease in susceptibility to a 

number of environmental stressors (Berney et al., 2006, Lindqvist and Barmark, 

2014). Evans et al. (1990) demonstrated that a specific growth rate of ≤ 0.15 h-1 was 

linked to decreased susceptibility to cetrimide, a commonly used QAC. Wright & 

Gilbert (1987) however, found that the relationship between slow growth rate (ca 

0.08 h-1) and sensitivity of E. coli to CHX was inconclusive. 

 

Table 3.3. shows baseline lag phase lengths (λ) for E. coli isolates. The isolate with 

the highest Lag phase was UCD-CFS ECP-25051 (140min ± 12.2), the lowest was 

UCD-CFS ECP-IB2 (83.0 ± 12.5 min). The lag phase was strain dependent 

(P=<0.0001; ONE WAY ANOVA; Graphpad PRISM8), suggesting that baseline lag 

phase is a strain unique physiological process. 
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Figure 3.7. Shows baseline growth curves for all isolates in the presence of broth only (n=3).
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Table 3.3. Baseline values for specific growth rate (h-1), Lag phase length (min) and Maximum OD600 for each isolate (ESBL type in brackets)  

(n=3). 

± Standard deviation of the mean of 3 replicates 

 

ISOLATE SPECIFIC GROWTH RATE LAG PHASE LENGTH MAXIMUM OD600nm  

ATCC 25922 0.12 ± 0.01 128.0 ± 8.2 1.60 ± 0.16 

UCD-CFS ECP-1L3 (CTX-M-14) 0.16 ± 0.04 88 .0± 11.3 1.20 ± 0.11 

UCD-CFS ECP-1L4 (CTX-M-14) 0.15 ± 0.02 88.0 ± 11.3 1.26 ± 0.08 

UCD-CFS ECP-IB2 (CTX-M-14) 0.17 ± 0.04 83.0 ± 12.5 1.22 ± 0.13 

UCD-CFS ECP-13P5 (CTX-M-15) 0.12 ± 0.01 138.0 ± 11.3 0.67 ± 0.04 

UCD-CFS ECP-13P4 (CTX-M-15) 0.16 ± 0.02 100.0 ± 7.7 1.38 ± 0.02 

UCD-CFS ECP-25P5 (TEM-20) 0.13 ± 0.02 138.0 ± 11.3 0.63 ± 0.03 

UCD-CFS ECP-25OS1 (TEM-20) 0.12 ± 0.01 140.0 ± 12.2 0.67 ± 0.12 
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3.3.3.1. Growth kinetics in the presence of CHX 

3.3.3.1.1 Specific growth rate and the application of minimal 

selective concentrations 

	
Growth rates and percentage increase and decrease growth rate in the absence of 

biocides were calculated (Table 3.4) (é= Increase; ê= Decrease). The addition of 

CHX at 0.00005 mg/mL, 0.0002 mg/mL and 0.0008 mg/mL triggered an increase in 

specific growth rate for all isolates (except for UCD-CFS ECP-IB2 at 0.0008 

mg/mL; 1% ê. There was a significant difference in growth rates between non-

exposed and exposed strains (P=<0.0001; T-TEST; Graphpad PRISM8). As 

previously mentioned Wright and Gilbert (1987) found that a few small, transient 

CHX susceptibility differences at low growth rate (ca 0.08 h-1) in E. coli however 

these data were inconclusive (Wright and Gilbert, 1987). There was no significant 

difference between growth rates for CHX exposure at concentrations 0.00005 

mg/mL and 0.0002 mg/mL (P=0.16 T-TEST; Graphpad PRISM8) and between 

0.0002 mg/mL and 0.0008 mg/mL. (P=0.38: T-TEST; Graphpad PRISM8). Gomez 

Escalada et al. (2005) demonstrated that triclosan at sub-inhibitory concentrations 

affected the growth rate of E. coli, although this link was not concentration 

dependent (Gomez Escalada et al., 2005), the significant difference was found 

between non-exposed and exposed bacteria. Here, the specific growth rate 

decreased for most isolates that survive CHX 0.002 mg/mL. There was a 

significant difference between specific growth rates at concentrations 0.0008 

mg/mL and 0.002 mg/mL (P=0.0001; T-TEST; Graphpad PRISM8). The decrease 

of specific growth rate has been associated with decreased sensitivity to 

antimicrobials and biocides. Here, it was demonstrated that low concentrations 

(0.00005 mg/mL, 0.0002 mg/mL and 0.0008 mg/mL) of CHX increased specific 

growth rate. On the contrary, higher concentrations of CHX (≥ 0.002 mg/mL) 
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decreased specific growth rate of E. coli. Furthermore, there was a statistically 

significant difference of growth rates between strains (Inclusive of ATCC25922 - 

P=<0.0001; Exclusive of ATCC25922 – P=<0.0001; ONE WAY ANOVA; Graphpad 

PRISM8). Our data suggest that the alteration of specific growth rate in response to 

CHX presence was strain dependent.  

 

Specific growth rate was applied with the intention of investigating whether a 

Minimal Selective Concentration (MSC) or a “sub-MIC selective window” could be 

observed with biocide as was previously identified in the case for antibiotics 

(Gullberg et al., 2011, Sandegren, 2014). This method has been applied to free 

chlorine and monochloramine (Microorganisms: Bacillus, Paenibacillus, Acidovarax 

& Micrococcus) with success  (Khan et al., 2017). Figure 3.8 shows the specific 

growth rates of all E. coli isolates in halving concentrations of CHX. When 

analysing this data, MICsusc =  minimal inhibitory concentration of the susceptible 

strain, MICres =  minimal inhibitory concentration of the resistant strain and MSC =  

minimal selective concentration. 

 

Table 3.5. Minimal selective concentrations for CHX sensitive isolates UCD-CFE 

ECP-1L3 and UCD-CFE ECP-1B2 (ESBL type in brackets) when compared to 

CHX tolerant isolate UCD-CFE ECP-13P5. 

STRAIN MSC MICsusc 
MICsusc/MS

C 

UCD-CFE ECP-1L3 

(CTX-M-14) 
0.0014 0.002 1.4 

UCD-CFE ECP-1B2 

(CTX-M-14) 
0.00005 0.005 100 
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Isolates ATCC25922, UCD-CFE ECP-1L4, UCD-CFE ECP-13P5, UCD-CFE ECP-

13P4, UCD-CFE ECP-25P5 and UCD-CFE ECP-25051 did not demonstrate an 

MSC. In this study, UCD-CFE ECP-13P5 had the highest MIC of 0.02 mg/mL 

(Figure 3.9). MSC values were identified for UCD-CFE ECP-13P5 when compared 

to UCD-CFE ECP-1L3 and UCD-CFE ECP-13P5 when compared to UCD-CFE 

ECP-1B2 (Figure 3.9 and Figure 3.10). Table 3.5 shows the MSC and its ratio 

with MICsusc. The MSC for UCD-CFS ECP-1B2 is 1/100th of the MICsusc.
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Table 3.4.  Specific growth rate (h-1) and percentage (%) increase or decrease compared to non-exposed E. coli  in varying concentrations of CHX 

(n=3).  

  CHX CONCENTRATION (mg/mL) 

ISOLATE 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 
0.16 ± 0.03 

36% é 

0.15 ± 0.02 

23% é 

0.15 ± 0.03 

25% é 

0.06 ± 0.05 

48% ê 
- - - 

UCD-CFS ECP-1L3 (CTX-M-14) 0.17 ± 0.01 

8% é 

0.17 ± 0.03 

4% é 

0.17 ± 0.01 

4% é 

0.17 ± 0.05 

6% é 
- - - 

UCD-CFS ECP-1L4 (CTX-M-14) 0.18 ± 0.02 

21% é 

0.17 ± 0.00 

12% é 

0.17 ± 0.01 

10% é 

0.02 ± 0.04 

84% ê 
- - - 

UCD-CFS ECP-IB2 (CTX-M-14) 0.19 ± 0.02 

13% é 

0.17 ± 0.01 

3% é 

0.17 ± 0.01 

1% ê 

0.11 ± 0.13 

37% ê 
- - - 

UCD-CFS ECP-13P5 (CTX-M-15) 0.19 ± 0.02 

22% é 

0.18 ± 0.03 

14% é 

0.19 ± 0.02 

17% é 

0.13 ± 0.02 

17% ê 

0.10 ± 0.03 

37% ê 

0.07 ± 0.03 

57% ê 
- 

UCD-CFS ECP-13P4 (CTX-M-15) 0.16 ± 0.01 

31% é 

0.15 ± 0.01 

25% é 

0.15 ± 0.02 

27% é 

0.05  ± 0.08 

60% ê 
- - - 

UCD-CFS ECP-25P5 (TEM-20) 0.15 ± 0.01 

15% é 

0.14 ± 0.02 

15% é 

0.14 ± 0.00 

13% é 
- - - - 

UCD-CFS ECP-25OS1 (TEM-20) 0.15 ± 0.01 

25% é 

0.16 ± 0.01 

30% é 

0.16 ± 0.03 

31�é 
- - - - 

± Standard deviation of the mean of 3 replicates  é= Increase; ê= Decrease - indicates no growth 



	57	 	

 

Figure. 3.8 Specific growth rates (min-1) of E. coli isolates incubated in the presence of varying concentrations of CHX (n=3).  
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Figure 3.9. Minimal selective concentration (MSC) of UCD-CFE ECP-1L3 when compared with UCD-CFE ECP-13P5. 
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Figure 3.10. Minimal selective concentration (MSC) of UCD-CFE ECP-1B2 when compared with UCD-CFE ECP-13P5.
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3.3.3.1.2 Lag phase extension 

	
Table 3.6 shows the lag phase length (λ) of E. coli isolates in the presence of 

various concentrations of CHX. CHX concentration effected statistically significant 

increase in lag phase, a statistically (P=<0.0001; TWO WAY ANOVA; Graphpad 

prism8). As CHX concentration increases, so does the lag phase for isolates UCD-

CFS ECP-1L3, UCD-CFS ECP-1B2, UCD-CFS ECP-13P5, UCD-CFS ECP-13P4 

and UCD-CFS ECP-25051. There was a significant difference for lag phase length 

between strains (P=0.0001; TWO WAY ANOVA; Graphpad PRISM8), reflecting the 

baseline data obtained and indicating that this is likely due a strain dependent 

physiologically controlled process. UCD-CFS ECP-13P5 demonstrated the longest 

lag phase length overall (615 ± 584 min) at 0.01 mg/mL CHX, the concentration 

immediately below the MIC. However, this value has a high standard deviation 

suggesting that lag phase at this concentration is highly variable. Isolate UCD-CFS 

ECP-13P5 had an LE value of 12.00 at 0.01 mg/mL CHX indicating that Lag phase 

length is twelve times longer at this concentration. This isolate has the highest MIC, 

although LE12.00 is not the highest LE value observed, assuming that LE is a 

determinant of increased tolerance (Li et al., 2016) the rising LE value may be 

reflective of adaptation to CHX which lends UCD-CFS ECP-13P5 with an elevated 

MIC. UCD-CFS ECP-1L3 has the highest value (LE = 14.20 min) at 0.002 mg/mL 

CHX, which is the concentration immediately below the MIC for this isolate.  

 

3.3.3.1.3 Maximum OD600 

	
Table 3.7 shows the maximum Optical Density values obtains after 24h incubation 

in the presence of halving concentrations of CHX. OD is based on turbidity of a cell 

suspension (Koch, 1961, Koch, 1970) and is applied as a measurement of cell 

growth and is implemented assuming that the OD value is directly proportional to 
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actual cell number (Stevenson et al., 2016). As CHX concentration increases, the 

maximum OD600 reached appeared to decrease with the exception of isolates 

ATCC25922 and UCD-CFS ECP-13P5 (Table 3.7). This trend however is not 

statistically significant between no biocide and 0.00005 mg/mL CHX (P=0.88; T-

TEST; Graphpad PRISM8) but is between 0.0008 mg/mL and 0.002 mg/mL CHX 

(P=0.0004; T-TEST; Graphpad PRISM8). A lower maximum OD suggests a lower 

actual cell count, which indicates that a fitness cost has been present throughout 

cell replication (Hall et al., 2014). 
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Table 3.6. Lag phase length (min) and Lag phase extension (LE) after 24 hours incubation in varying concentrations of CHX (n=3). 

 BIOCIDE CONCENTRATION (mg/mL)   

 No Biocide 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 120 ± 0 
130 ± 17 

LE1.00 

120 ± 0 

LE1.00 

135 ± 0 

LE1.13 

540 ± 476 

LE7.63 
- - - 

UCD-CFS ECP-1L3 (CTX-M-14) 
80 ± 9 

95 ± 9 

LE1.20 

90 ± 0 

LE1.20 

95 ± 9 

LE1.20 

160 ± 277 

LE14.20 
- - - 

UCD-CFS ECP-1L4 (CTX-M-14) 
80 ± 9 

85 ± 9 

LE1.00 

95 ± 9 

LE1.00 

100 ± 9 

LE1.00 

240 ± 416 

* 
- - - 

UCD-CFS ECP-IB2 (CTX-M-14) 
75 ± 15 

80 ± 9 

LE1.00 

90 ± 0 

LE1.00 

85 ± 9 

LE1.20 

595 ± 548 

LE14.20 
- - - 

UCD-CFS ECP-13P5 (CTX-M-15) 
95 ± 9 

100 ± 9 

LE1.17 

100 ± 9 

LE1.11 

100 ± 9 

LE1.17 

290 ± 109 

LE2.50 

560 ± 60.62 

LE6.00 

615 ± 548 

LE12.00 
- 

UCD-CFS ECP-13P4 (CTX-M-15) 
135 ± 15 

145 ± 9 

LE1.00 

140 ± 17 

LE1.00 

150 ± 15 

LE1.11 

240 ± 416 

* 
- - - 

UCD-CFS ECP-25P5 (TEM-20) 
130 ± 9 

150 ± 30 

LE1.00 

145 ± 23 

LE1.00 

145 ± 23 

LE1.00 
- - - - 

UCD-CFS ECP-25OS1 (TEM-20) 
135 ± 15 

145 ± 9 

LE1.11 

143.33 ± 19 

LE1.00 

151.66 ± 14 

LE1.11 
- - - - 

± Standard deviation of the mean of 3 replicates  * Value not obtained  - Indicates no growth 
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Table 3.7.  Maximum optical density reached (OD600) after 24 hours incubation in varying concentrations of CHX (n=3).  

 

± Standard deviation of the mean of 3 replicates  

 

 

 

 BIOCIDE CONCENTRATION (mg/mL) 

ISOLATE No Biocide 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 1.60 ± 0.16 1.57 ± 0.24 1.41 ± 0.16 1.47 ± 0.21 0.57 ± 0.52 - - - 

UCD-CFS ECP-1L3 (CTX-M-14) 1.20 ± 0.11 1.26 ± 0.29 1.09 ± 0.26 1.14 ± 0.22 0.24 ± 0.38 - - - 

UCD-CFS ECP-1L4 (CTX-M-14) 1.25 ± 0.08 1.30 ± 0.27 1.19 ± 0.27 1.09 ± 0.25 0.15 ± 0.16 - - - 

UCD-CFS ECP-IB2 (CTX-M-14) 1.21 ± 0.12 1.33 ± 0.26 1.16 ± 0.24 0.99 ± 0.18 0.23 ± 0.19 - - - 

UCD-CFS ECP-13P5 (CTX-M-15) 1.37 ± 0.02 1.15 ± 0.33 0.82 ± 0.21 0.91 ± 0.35 0.64 ± 0.19 0.71 ± 0.26 - - 

UCD-CFS ECP-13P4 (CTX-M-15) 0.67 ± 0.12 0.91 ± 0.31 0.74 ± 0.25 0.66 ± 0.16 0.31 ± 0.51 - - - 

UCD-CFS ECP-25P5 (TEM-20) 0.63 ± 0.03 0.95 ± 0.33 0.60 ± 0.11 0.58 ± 0.90 - - - - 

UCD-CFS ECP-25OS1 (TEM-20) 0.67 ± 0.12 0.91 ± 0.31 0.58 ± 0.07 0.57 ± 0.10 - - - - 
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3.3.4. Growth kinetics in the presence of BZC 

3.3.4.1. Specific growth rate and the application of minimal 

selective concentrations 

	
Table 3.8 shows the specific growth rate values and the percentage increase or 

decrease between BZC exposed and non-exposed cells. When evaluating the 

effect of BZC on the percentage increase or decrease of specific growth rate, it 

was notable that there was always a decrease at the concentration immediately 

below the BZC MIC (0.002 mg/mL) (Table 3.8). The lowest decrease was in the 

case of isolate UCD-CFS ECP-13P4 (3%) and the highest was that of 1L3 (69%). 

Although there was a difference for increase or decrease in specific growth rate 

and concentration, the correlation was not concentration dependent from 0.00005 

mg/mL to 0.0008 mg/mL (P=<0.0001 ONE-WAY ANOVA; Graphpad PRISM8), 

neither was it dependent on strain (P=0.88 ONE-WAY ANOVA; Graphpad 

PRISM8). However, 0.002 mg/mL BZC caused a consistent decrease in growth 

rates for all isolates. 

 

Whitehead et al. (2011) worked with S. enterica, which, in response to high-level 

QAC exposure (in-use concentration; 10 mg/mL) exhibited consistent, reduced 

growth rates and low-level decreased sensitivity to ciprofloxacin, tetracycline and 

chloramphenicol, although no change is sensitivity to the challenge biocide was 

observed. In response to a low dose QAC challenge (0.05 mg/mL) survivors 

demonstrated the same or reduced growth rates as the initial inoculum, and the 

same survival percentage when re-challenged, suggesting that adaptation under 

these conditions was a transient physiological process (Wales and Davies, 2015). 

Data from Table 3.8 suggests similar pattern for E. coli, at BZC concentrations 
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below 0.002 mg/mL specific growth rate was not affected. However, at 0.002 

mg/mL caused specific growth rate to decrease. 

 

Figure 3.11 shows growth rates of E. coli isolates incubated in halving 

concentrations of BZC. A minimal selective concentration range was not observed. 

In previous studies based upon the MSC a known resistant strain is used as a 

comparison with a known susceptible strain. In this case, all isolates had the same 

MIC meaning that comparison could not be made. 

 

3.3.4.2. Lag phase extension 

	
Table 3.9 shows the lag phase length and lag phase extensions for E. coli in 

halving concentrations of BZC. There was an increase in lag phase length for all 

isolates at BZC 0.002 mg/mL. No statistically significant difference (P=>0.97 T-

TEST; Graphpad PRISM8) was found between no biocide exposed isolates and 

exposure to BZC 0.00005 mg/mL, 0.0002 mg/mL and 0.0008 mg/mL. However, 

there was a significant difference (P= 0.002 T-TEST; Graphpad PRISM8) between 

lag phases at 0.0008 mg/mL and 0.002 mg/mL BZC. A difference was also 

observed between strains suggesting that the resistance genes carried by strains 

UDC-CFS ECP-1L3, UDC-CFS ECP-1L4, UDC-CFS ECP-1B2, UDC-CFS ECP-

13P5, UDC-CFS ECP-13P4, UDC-CFS ECP-25P2 and UDC-CFS ECP-25051 do 

may affect this part of their growth kinetics. The highest lag phase length (610 ± 

62.5 min) and LE (4.52) was observed for isolate ATCC25922. As previously 

discussed, all strains had the same MIC for BZC (Table 3.2). 

 

3.3.4.3. Maximum OD600 
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Table 3.10 shows the maximum Optical Density values obtains after 24 h 

incubation in the presence of halving concentrations of BZC. There were no 

concentration dependent changes in maximum OD (P=0.88 Two-Way ANOVA; 

Graphpad PRISM8). There were strain dependent changes in maximum OD 

observed (P=0.67 Two-Way ANOVA; Graphpad PRISM8). These data suggest that 

the lowest and (highest immediately below the MIC) concentration of BZC tested, 

had no consistent effect on maximum OD.
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Table 3.8.  Specific growth rate (h-1) and percentage (%) increase or decrease compared to non-exposed E. coli in varying concentrations of BZC 

(n=3).  

  BZC CONCENTRATION (mg/mL) 

ISOLATE 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 
0.16 ± 0.01 

11% é 

0.14 ± 0.01 

2% ê 

0.16 ± 0.02 

9% é 

0.2 ± 0.01 

31% ê 
- - - 

UCD-CFS ECP-1L3 (CTX-M-14) 0.16 ± 0.01 

19% ê 

0.18 ± 0.01 

11% ê 

0.17 ± 0.01 

17% ê 

0.06 ± 0.01 

69% ê 
- - - 

UCD-CFS ECP-1L4 (CTX-M-14) 0.18 ± 0.01 

0.21% é 

0.18 ± 0.01 

3% é 

0.16 ± 0.01 

10% ê 

0.08 ± 0.03 

57% ê 
- - - 

UCD-CFS ECP-IB2 (CTX-M-14) 0.19 ± 0.01 

2% ê 

0.18 ± 0.01 

9% ê 

0.18 ± 0.01 

7% ê 

0.11 ± 0.02 

43% ê 
- - - 

UCD-CFS ECP-13P5 (CTX-M-15) 0.17 ± 0.01 

2% é 

0.18 ± 0.01 

8% é 

0.19 ± 0.00 

11% é 

0.15 ± 0.00 

7% ê 
- - - 

UCD-CFS ECP-13P4 (CTX-M-15) 0.17 ± 0.01 

26% é 

0.15 ± 0.01 

8% é 

0.16 ± 0.00 

18% é 

0.13  ± 0.02 

3% ê 
- - - 

UCD-CFS ECP-25P5 (TEM-20) 0.15 ± 0.01 

9% ê 

0.16 ± 0.00 

0.25% é 

0.15 ± 0.01 

8% ê 

0.14 ± 0.01 

15�ê 
- - - 

UCD-CFS ECP-25OS1 (TEM-20) 0.16 ± 0.01 

6% ê 

0.15 ± 0.01 

14% ê 

0.15 ± 0.01 

5�ê 

0.15 ± 0.02 

10�ê 
- - - 

± Standard deviation of the mean of 3 replicates  é= Increase; ê= Decrease - indicates no growth 
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Figure 3.11. Specific growth rates (h-1) of E. coli isolates incubated in the presence of varying concentrations of BZC (n=3).  
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Table 3.9. Lag phase length (min) and Lag phase extension (LE) after 24 hours incubation in varying concentrations of BZC (n=3). 

± Standard deviation of the mean of 9 replicates * Value not obtained  - Indicates no growth 

 BIOCIDE CONCENTRATION (mg/mL) 

ISOLATE No Biocide 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 
135 ± 0 

135 ± 0 

LE1.00 

135 ± 0 

LE1.00 

155 ± 34.64 

LE1.15 

610 ± 62.5 

LE4.52 
- - - 

UCD-CFS ECP-1L3 (CTX-M-14) 
95 ± 8.66 

95 ± 8.66 

LE1.00 

100 ± 8.66 

LE1.05 

95 ± 8.66 

LE1.00 

315 ± 77.94 

LE3.32 
- - - 

UCD-CFS ECP-1L4 (CTX-M-14) 
95 ± 8.66 

95 ± 8.66 

LE1.00 

100 ± 8.66 

LE1.05 

105 ± 15 

LE1.11 

370 ± 31.2 

LE3.89 
- - - 

UCD-CFS ECP-IB2 (CTX-M-14) 
90 ± 0 

95 ± 8.66 

LE1.06 

95 ± 8.66 

LE1.06 

100 ± 8.66 

LE1.11 

200 ± 113.58 

LE2.22 
- - - 

UCD-CFS ECP-13P5 (CTX-M-15) 
105 ± 0 

100 ± 8.66 

LE0.95 

100 ± 8.66 

LE0.95 

105 ± 0 

LE1.00 

125 ± 8.66 

LE1.19 
- - - 

UCD-CFS ECP-13P4 (CTX-M-15) 
140 ± 8.66 

150 ± 15 

LE1.07 

145 ± 8.66 

LE1.04 

150 ± 15 

LE1.07 

165 ± 26 

LE1.18 
- - - 

UCD-CFS ECP-25P5 (TEM-20) 
145 ± 8.66 

145 ± 8.66 

LE1.00 

145 ± 8.66 

LE1.00 

145 ± 8.66 

LE1.00 

165 ± 15 

LE1.14 
- - - 

UCD-CFS ECP-25OS1 (TEM-20) 
145 ± 8.66 

140 ± 8.66 

LE0.97 

145 ± 8.66 

LE1.00 

140 ± 17.32 

LE0.97 

160 ± 17.32 

LE1.10 
- - - 
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Table 3.10. Maximum Optical density reached (OD600) after 24 hours incubation in varying concentrations of BZC (n=3). 

 

± Standard deviation of the mean of 9 replicates 

 

 

 

 BIOCIDE CONCENTRATION (mg/mL) 

ISOLATE No Biocide 0.00005 0.0002 0.0008 0.002 0.005 0.01 0.02 

ATCC 25922 1.60 ± 0.16 1.62 ± 0.08 1.62 ± 0.07 1.60 ± 0.07 0.75 ± 0.10 - - - 

UCD-CFS ECP-1L3 (CTX-M-14) 1.20 ± 0.11 1.30 ± 0.13 1.23 ± 0.13 1.41 ± 0.04 1.25 ± 0.02 - - - 

UCD-CFS ECP-1L4 (CTX-M-14) 1.25 ± 0.08 1.16 ± 0.16 1.39 ± 0.14 1.17 ± 0.26 1.14 ± 0.07 - - - 

UCD-CFS ECP-IB2 (CTX-M-14) 1.21 ± 0.12 1.31 ± 0.23 1.33 ± 0.20 1.31 ± 0.12 1.18 ± 0.25 - - - 

UCD-CFS ECP-13P5 (CTX-M-15) 1.37 ± 0.02 1.04 ± 0.29 1.20 ± 0.31 1.49 ± 0.14 1.25 ± 0.01 - - - 

UCD-CFS ECP-13P4 (CTX-M-15) 0.67 ± 0.12 0.90 ± 0.28 0.79 ± 0.35 1.09 ± 0.12 1.06 ± 0.11 - - - 

UCD-CFS ECP-25P5 (TEM-20) 0.63 ± 0.03 1.29 ± 0.12 0.72 ± 0.21 0.92 ± 0.33 0.75 ± 0.21 - - - 

UCD-CFS ECP-25OS1 (TEM-20) 0.67 ± 0.12 0.96 ± 0.26 0.86 ± 0.43 0.97 ± 0.34 1.03 ± 0.09 - - - 
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3.3.5. Baseline antibiotic susceptibility 

	
Table 3.11. shows the baseline antibiotic susceptibility values based on the 

EUCAST disc diffusion method (EUCAST, 2015). Antibiotic resistance was 

highlighted in red. The standard reference strain ATCC25922 was susceptible to all 

antibiotics tested (Table 3.11). This identifies a distinct difference between this 

strain and the other isolates. None of the isolates tested presented resistance to 

imipenem. This supports the findings of Zhao et al., (2013) who identified activity 

against CTX-M ESBL producing E. coli (Zhao et al., 2014). Furthermore, that study 

identified resistance of CTX-M ESBL producing isolates to ampicillin (17 isolates), 

cefotoxin (3 isolates) and ciprofloxacin (12 isolates). Here, no isolates were found 

to be resistant to cefoxitin and ciprofloxacin, however all isolates except UCD-CFS 

ECP-1B2 were resistant to ampicillin. 

A recent study undertaken by Xie et al. (2016) identified 37 CTX-M-type ESBL 

producing isolates that carried CTX-M-type resistance to naladixic acid, 

trimethoprim- sulfamethoxazole, chloramphenicol, and ciprofloxacin (Xie et al., 

2016). Data in Table 3.11 highlight resistance to trimethoprim and trimethoprim-

sulfamethoxazole (UCD-CFS ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS ECP-1B2 

and UCD-CFS ECP-13P5). Isolates UCD-CFS ECP-1L3, UCD-CFS ECP-1L4 and 

UCD-CFS ECP-13P5 demonstrated the same antibiotic resistant phenotypes with 

resistance to amoxicillin, cefpodoxime, tetracycline, streptomycin, cephalothin, 

trimethoprim and trimethoprim-sulfamethoxazole. Isolates UCD-CFS ECP-13P4, 

UCD-CFS ECP-25P5 and UCD-CFS ECP-25051 are grouped together for their 

resistance to amoxicillin, cefpodoxime and cephalothin. Isolates UCD-CFS ECP-

1B2 and UCD-CFS ECP-13P5 are resistant to streptomycin (Table 3.11),  
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Table 3.11. Antibiogram to show the zones of inhibition of all test strains when exposed to chosen antibiotics in the EUCAST disk diffusion assay 

(n=3).   

± Standard deviation of the mean of 3 replicates 

• No EUCAST definition data available, in the case of insusceptibility the value is considered resistant. 

Where EUCAST breakpoints determined resistance, values are highlighted in red. 

ANTIBIOTIC ATCC25922 
UCD-CFS 

ECP-1L3 

UCD-CFS 

ECP-1L4 

UCD-CFS 

ECP-IB2 

UCD-CFS 

ECP-13P5 

UCD-CFS 

ECP-13P4 

UCD-CFS 

ECP-25P5 

UCD-CFS 

ECP-25O51 

Ampicillin 19.5 (1.53) 0 (0) 0 (0) 19.5 (0.58) 0 (0) 0 (0) 0 (0) 0 (0) 

Amoxicillin/clavulanic acid 21.5 (1) 19 (1.15) 19 (0.58) 21.5 (1) 20 (0) 22.5 (2.12) 22 (1.15) 23 (1.73) 

Chloramphenicol 24.5 (1) 24 (1.15) 23.5 (1) 20.5 (1) 24.5 (0.58) 24.5 (2.12) 25.5 (1) 23.5 (2.52) 

Ciprofloxacin 31.5 (1.53) 31 (1.53) 31 (1) 28 (1.53) 33.5 (4.04) 40.5 (0) 44 (4.58) 40 (0) 

Cefpodoxime 24 (1.53) 0 (0) 0 (0) 21 (3.06) 0 (0) 0 (0) 0 (0) 0 (0) 

Cefoxitin 26 (3.06) 22 (1.15) 22 (1.15) 21 (0.58) 24 (1) 31.5 (0.71) 32 (1.53) 31.5 (1) 
Tetracycline 23.5 (0.58) *0 (0) *0 (0) *0 (0) *0 (0) 27.5 (0.71) 29.5 (1) 28.5 (1.73) 

Streptomycin 13.5 (1) 12 (0.58) 11 *0 (0) *0 (0) 17 (1.41) 17 (0) 17 (1.15) 

Imipenem 29.5 (0.58) 28.5 (1) 28 (0.58) 28.5 (1) 31.5 (1) 33 (1.41) 32 (0.58) 31.5 (0.6) 

Cephalothin 16 (1.15) *0 (0) *0 (0) 17.5 (1) *0 (0) *0 (0) *0 (0) *0 (0) 

Nalidixic acid 25.5 (1) 21 (0) 22 (0.58) 20.5 (0.58) 24 (0.58) 22 (1.41) 23.5 (2.52) 22.5 (2.1) 

Trimethoprim-

sulfamethoxazole 
23 (0.06) 0 (0) 0 (0) 0 (0) 0 (0) 34 (0.15) 33 (0.06) 32 (0.12) 

Trimethoprim 22 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 34 (0.06) 33 (0.06) 34 (0.06) 
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Table 3.12 highlights the ESBL resistance characteristics of the isolates and the 

shared intrinsic antibiotic resistance that was identified in Table 3.10. The principal 

ESBL families of clinical importance include TEM and CTX-M (Bush and Jacoby, 

2010). Pitout et al., (2004) identified that all isolates studied that presented CTX-M-

14 and CTX-M-15 were resistant to CPD. This would support the findings in Table 

3.11 where isolates UCD-CFS ECP-13P5 and UCD-CFS ECP-13P4 who carry CTX-

M-15 are CPD resistant. UCD-CFS ECP-1L3 and UCD-CFS ECP-1l4 which carry 

CTX-M-14 are also resistant to CPD, UCD-CFS ECP-1B2 is the only isolate with the 

CTX-M-14 gene to not have resistance to CPD (Table 3.11), AMP resistance has 

recently been discovered in E. coli isolated from rabbit farms in China containing 

TEM-type ESBLs (Zhao et al., 2018) which is in keeping with results from Table 3.12 

where isolates UCD-CFS ECP-25P5 and UCD-CFS ECP-25051 are AMP resistant. 

 

Table 3.12. ESBL characteristics and shared antibiotic resistance observations  

ISOLATE ESBL 
SHARED ANTIBIOTIC 

RESISTANCE 

ATCC 25922 
Information 

unattained 
No resistance observed 

UCD-CFS ECP-1L3 

CTX-M-14 TE, W, SXT UCD-CFS ECP-1L4 

UCD-CFS ECP-IB2 

UCD-CFS ECP-13P5 
CTX-M-15 AMP, CPD, CF 

UCD-CFS ECP-13P4 

UCD-CFS ECP-25P5  

TEM-20 
AMP, CPD, CF 

UCD-CFS ECP-25OS1 

TE, tetracycline; W, Trimethoprim; SXT, trimethoprim-sulfamethoxazole; 

AMP, ampicillin; CPD, cefpodoxime; CF, cephalothin 
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Although isolate UCD-CFS ECP-13P5 (CTX-M-15) shares antibiotic resistance with 

UCD-CFS ECP-13P4 (CTX-M-15) as would be expected due to their common 

ESBLs, It also shares antibiotic resistance with all other ESBL carrying isolates which 

carry ESB-type CTX-M-14 and TEM-20. Previously demonstrated was that UCD-CFS 

ECP-13P5 has the highest CHX MIC and MBC of all of the isolates, this is significant 

as streptomycin and CHX both enter the cell via self-promoted uptake through the 

displacement of cations in the bacterial cell envelope and re-organisation of 

lipopolysaccharides (Hancock, 1981). The similarities in mode between streptomycin 

(and other aminoglycosides) and CHX have led to a discussion at to whether 

reduced CHX (and other biguanide biocides) uptake is linked to reduced 

aminoglycoside uptake. 

	
3.4. Conclusion 

	
Baseline biocide susceptibility profiles were obtained successfully using MIC/MBC 

determination of CHX and BZC. Differences in susceptibility were observed for CHX 

(Table 3.1). UCD-CFS ECP-13P5 had the highest MIC and MBC at 0.01 (± 0.00) 

mg/mL  this level of susceptibility falls in the middle proportion of the ECOFF values 

demonstrated by Morrisey et al. (2014). MIC values for BZC ranged from 0.01-0.02 

mg/mL for all isolates (Table 3.2); there was no significant difference between MICs 

between strains (P=0.13; TwoWay ANOVA; Graphpad PRISM8). The MIC and MBC 

values for BZC fell in the lower portion of the ECOFF values, 23.5% of isolates tested 

had an MIC and 28.3% had an MBC of 0.008 mg/mL (Figure 3.3). No clinically 

relevant resistance was found for any of the isolates to BZC or CHX according to the 

ECOFF values observed by Morrisey et al. (2014). 
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Baseline growth kinetics differed between strains with the exception of growth rate, 

which remained constant between isolates for BZC (P=0.008). The most variable 

differences following biocide exposure were found within lag phase length and 

maximum OD600 values. Li et al. (2016) suggested that lag phase extension (LE) is a 

determinant of decreased susceptibility in antibiotic and biocide exposed bacteria. 

UCD-CFS ECP-13P5 demonstrated the highest MIC and MBC to CHX (0.01mg/mL ± 

0.00mg/mL), LE values in the presence of CHX for this isolate increased with 

concentration (Table 3.6). This relationship may be indicative of adaptive responses 

that lend to this isolate’s elevated MIC (Li et al., 2016). However the highest LE value 

was observed for UCD-CFS ECP-1L3 (Table 3.6), which did not demonstrate an 

elevated MIC (0.000 ± 0.00 mg/mL) in the presence of CHX. For both CHX and BZC, 

a concentration of 0.002 mg/mL had the most altering effect on growth rate, lag 

phase length and maximum optical density reached. Baseline antibiotic susceptibility 

profiles are in keeping with expectations considering the drug exporter genes that we 

know our environmental isolates to express (Table 3.12)  

 

Antibiotic susceptibility profiles were obtained, and breakpoints were assessed 

according to EUCAST (2015). The standard reference strain ATCC29522 was 

susceptible to all antibiotics tested (Table 3.11).  Resistance was observed in 

isolates UCD-CFS ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS ECP-1B2, UCD-CFS 

ECP-13P4, UCD-CFS ECP-13P5, UCD-CFS ECP-25P5 and UCD-CFS ECP-25051, 

Isolates shared resistance phenotype depending on the ESBL resistance gene they 

carry. Strains that possess CTX-M-14 (UCD-CFS ECP-1L3, UCD-CFS ECP-1L4 and 

UCD-CFS ECP-1B2) were resistant to tetracycline, trimethoprim and trimethoprim-

sulfamethoxazole. Strains that have CTX-M-15 (UCD-CFS ECP-13P4 and UCD-CFS 

ECP-13P5) and TEM-20 (UCD-CFS ECP-25P5 and UCD-CFS ECP-25051) were 

resistant to ampicillin, cefpodoxime and cephalothin. The resistant phenotypes 

displayed by the isolates that carry ESBL resistance genes were in line with previous 
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findings (Pitout et al., 2004, Xie et al., 2016, Zhao et al., 2014). Isolate UCD-CFS 

ECP-13P5 has CTX-M-15, it shared common antibiotic resistance phenotypes with 

all other ESBL carrying isolates with ESBL-type CTX-M-14 and TEM-20. The 

combination of the antibiotic resistance profile and a higher MIC of UCD-CFS ECP-

13P5 is significant as some antibiotics and CHX have a common mode of entry 

(Hancock,1981). It is debated that reduced CHX (and other biguanide biocides) 

uptake may be linked to reduced antibiotic uptake. 

	
The ‘minimal selective concentration’ hypothesis, as first defined in relation 

antibiotics by Gullberg et al. (2011), was successfully applied to CHX using isolates 

UCD-CFS ECP-1L3, UCD-CFS ECP-1B2 and UCD-CFS ECP-13P5. Isolate UCD-

CFS ECP-13P5 provided the MICres (0.01 mg/mL) as it was less susceptible to CHX 

than the other isolates. UCD-CFS ECP-1L3 and UCD-CFS ECP-1B2 provided the 

MICsusc, 0.002 mg/ml and 0.005mg/mL respectively (Table 3.4). The MSC value for 

UCD-CFS ECP-1L3 was 0.0014mg/mL, 1.4 times lower than the MICsusc (Figure 

3.9). The MSC value for UCD-CFS ECP-IB2 was 0.00005 mg/mL, 100 times lower 

than the MICsusc (Figure 3.9). The MSC could not be observed for any of the other 

strains, neither could it be observed for any of the strains when exposed to BZC. 

Previous studies based upon the MSC have employed a known resistant strain as a 

control comparison with known susceptible strains. Here, as MIC values were similar 

for other isolates for CHX further comparisons could not be observed. It is assumed 

that an MSC was not observed for BZC for the same reason.  

 

The next chapter will explore the in-situ concentrations of biocides that remain on 

surfaces after disinfection. Using the baseline data gained from this chapter, it will 

investigate the impact of residual concentrations of CHX and BZC on the biocide and 

antibiotic susceptibility profiles. A modified carrier test will attempt to replicate in-situ 

disinfection situations and provide a method for evaluating real to life exposure of 
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bacteria to residual concentrations of biocidal actives. The concentrations of CHX 

found to be present on surfaces after application and surface drying will be compared 

to the MSC values observed for UCD-CFS ECP-1L3 and UCD-CFS ECP-1B2. 

Isolate UCD-CFS ECP-13P5 is of interest due to its elevated MIC and MBC values 

and multiple antibiotic resistance phenotypes, therefore this isolate will provide a 

focus with UCD-CFS ECP-1B2 and ATCC29522 for comparison.  Additional study 

was needed to explore in depth the mechanisms that may be responsible for the 

changes in growth kinetics that have been observed in this chapter. Efflux was 

investigated with a focus on the difference of activity after exposure to high and low 

concentrations of BZC. The aim was to elucidate whether or not adaptation to 

biocides differs depending on the concentration of the biocide present, and to identify 

which mechanisms are responsible for changes in phenotype that may occur as a 

result of exposure.  
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CHAPTER FOUR: THE EFFECT OF EXPOSURE TO BIOCIDE 

RESIDUES ON ANTIMICROBIAL SUSCEPTIBILITY PROFILE, 

EFFLUX AND METABOLISM 
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4.1. Introduction 

There is a growing intrigue as to how the cleaning and disinfection products that we 

use are influencing acute bacterial stress responses and ultimately their evolution 

(Maillard, 2018, Webber et al., 2015, White and McDermott, 2001). Information is a 

necessity in a climate in which our current lines of clinical treatments, namely 

antibiotics, are being made redundant to the elevating antibiotic resistance crisis 

(O’Neill, 2014). If we can understand how exposure to the biocides we use may 

potentiate microbial resistance, there is a possibility of developing new processes to 

ensure there are effective treatments available in the future. Generally, studies 

investigating changes after exposure focus on genotyping species to observe an up 

or down-regulation response of certain genes pertaining to potential susceptibility 

shifts (Weber et al., 2005). These data are useful, although a genotypic change does 

not always result in a phenotypic response (Bergmiller et al., 2017, Burga and 

Lehner, 2012, Orgogozo et al., 2015). Additional information about how phenotypic 

shifts occur as a result of biocide exposure is necessary to provide practical, clinically 

relevant data that can be applied to in-situ usage. Changes in phenotypic traits such 

as growth rate, biocide susceptibility, inactivation kinetics, efflux and metabolism are 

markers that can be used to predict shifts in tolerance (Knapp et al., 2015, Li et al., 

2017). This information can be substantiated with phenotype stability testing to 

investigate how transient a change is (Knapp et al., 2015). 

 

4.1.2 Efflux as a primary resistance mechanism to biocides in bacteria 

	
When a bacterium is exposed to a toxic substance, such as a biocide, cellular stress 

responses are triggered via genetic expression, which result in a cascade of defence 

mechanisms that work to minimise cell damage and ultimately prevent cell death 

(Seier-Petersen et al., 2014). These mechanisms work to extrude, degrade or modify 
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noxious compounds so that normal cell growth can resume (Seier-Petersen, 2014). 

When considering antibiotics, target sites are usually substrate specific i.e. they 

inactivate one specific cellular process rendering a microbe incapable of functioning 

normally (Kapoor et al., 2017). When considering biocides, target site specificity is 

less common and usually multiple target sites are implicated. For this reason, it is 

less likely for bacteria to become resistant to a biocide, as there are more obstacles 

to overcome for survival. However, the induction of resistance mechanisms as a 

result of exposure may cause subsequent cross-resistance to unrelated compounds 

(Maillard et al., 2013). 

 

For a biocide to be effective it must first penetrate the cell envelope. There are two 

principal pathways through the cell envelope and into a	 bacterial cell: diffusion 

through porins and through lipid mediated transport (Delcour, 2009). Toxic chemical 

compounds are prevented from entering and reaching their target site within the cell 

through altering functional porins located at the cell wall. Antibiotic and biocidal 

resistance mediated by changes in cell permeability has been identified in a number 

of species including E. coli  (Hancock and Baddiley, 1985; Poole, 2002).  

Functional changes in cell permeability has been closely linked to efflux mechanisms, 

with the cell wall acting as a gateway for the efflux pumps to expel unwanted 

substances (Fernández and Hancock, 2012). Efflux pumps are energy dependent 

transport mechanisms that in the case of cell defence expel toxic substances, 

preventing them from entering the cell and inflicting damage. The presence of efflux 

pumps are not an indication of resistance, both susceptible and non-susceptible 

bacteria carry efflux pumps, in fact they are present in all microorganisms (Blanco et 

al., 2016b). However, they are mechanisms through which decreased susceptibility 

or resistance may be mediated. It is debated that the origin of efflux pumps is 

ancient. This is supported by the fact that efflux pumps have the capability to 

transport a broad variety of substances aside from synthetic drugs and commonly 
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used antibiotics such as heavy metals and organic solvents, substances found in the 

natural environment. It is surmised that the primary purpose of efflux pumps is not 

solely to act as a defence mechanism, but to partake in the regulation of normal cell 

metabolic function (Blanco et al., 2016a). However, it is clear that efflux pumps are a 

vital determinant of resistance whether due to active efflux or the part that they play 

in cell regulation (Alibert et al., 2017; Maillard, 2018).  

 

Figure 4.1 shows the principle families of efflux systems, the Resistant-Nodulation 

Superfamily (RND), Small Multidrug Resistance (SMR) family,	 Proteobacterial 

Antimicrobial Compound Efflux (PACE) family, Major Facilitator (MFS) family, 

Multidrug and Toxic Compound Extrusion (MATE) family and the Cation Diffusion 

Facilitator (CDF) family. The adenosine triphosphate (ABC) superfamily is not 

pictured in figure 4.1. SMR, MFS, MATE, CDF and ABC families can all be found in 

both Gram-negative and Gram-positive bacteria. The RND superfamily is specific to 

Gram-negative. The ABC superfamily family relies upon ATP hydrolysis as a source 

of energy (Lubelski et al., 2007). MATE pumps are driven by Na+/H+ drug antiport 

systems (Alvarez-Ortega et al., 2013) and the RND, SMR and MFS families rely on 

proton motive force (PMF) which in turn is dependent on pH. The effect of pH on 

efflux has been investigated previously in E. coli (Amaral et al., 2014, Martins et al., 

2009). It was shown that E. coli is more efficient at effluxing ethidium bromide when 

at lower pH. RND transport systems are important efflux producers in E. coli and are 

providers of intrinsic multidrug transports. Unlike the SMR, PACE, MFS, MATE and 

CDF families, which are single component systems, RND systems are comprised of 

a tripartite structure consisting of the RND pump, found in the inner membrane, a 

periplasmic adapter protein and an outer membrane protein (OMP). This tripartite 

complex ensures that toxic compounds are transported outside of the cell and do not 

stay in the periplasmic space, as is such with the other families, making it more 

difficult for them to re-enter the cell. The AcrAB-TolC transporter is part of the 
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hydrophobic and amphiphilic (HAE-RND) RND subfamily and has the capability to 

transport an array of substrates. This family has previously been isolated in E. coli, 

the deletion of AcrB has been shown to result in the increased uptake of ethidium 

bromide (EtBr) and decreased efflux activity (Paixão et al., 2009).  

 

Figure 4.1: Schematic representation of the principle classes of efflux systems: 

Resistance-nodulation (RND) family, small multidrug resistance (SMR) family,	

proteobacterial antimicrobial compound efflux (PACE) family, major facilitator (MFS) 

family, multidrug and toxic compound extrusion (MATE) family and the cation 

diffusion facilitator (CDF) family. 

Image taken from Slipski et al. (2017). 

 

 

 

Although a single family of efflux pumps can individually extrude a variety of different 

substrates, efflux pumps act in tangent, resulting in an enhanced plasticity and threat 

to biocide efficacy (Alcalde-Rico et al., 2016). Singlet pumps such as those belonging 
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to the MFS family pump substrates out of the cell into the periplasmic space 

(inactivation and detoxification processes occur here); substrates are then caught by 

the RND tripartite systems and pumped externally. This synergy was demonstrated 

in a study involving E. coli, undertaken by Tal and Schuldiner (Tal and Schuldiner, 

2009). They described the overlapping of functionality of transporters such as AcrAB-

TolC (RND family), emrE (SMR family) and mdfA (MFS family) efflux. The AcrAB 

efflux gene has been shown to be responsible for tolerance to several antibiotic 

substrates such as ciprofloxacin, tetracycline, chloramphenicol, erythromycin and 

ampicillin (Sulavik et al., 2001); levofloxacin (Opperman et al., 2014) and tigecycline 

(Hirata et al., 2004). Moreover, several studies have associated the overexpression 

of efflux pumps to clinical infections (Kosmidis et al., 2012, Pakzad et al., 2013, Sato 

et al., 2013). 

 

Due to the widened substrate specificity of efflux pumps, the interaction between 

efflux mechanisms and disinfectant compounds is a warranted line of investigation. 

Overexpressed efflux pumps have been associated with changes in susceptibility 

phenotype to antimicrobials in several studies (Alonso-Calleja et al., 2015, Grande 

Burgos et al., 2016). Prolonged low-level exposure of chlorhexidine digluconate 

(CHX) or benzalkonium chloride (BZC) have been shown to induce activity of the 

MexCD-OprJ (RND family) of Pseudomonas aeruginosa (Fraud et al., 2008, Morita et 

al., 2003). Furthermore low level exposure of these biocides have proven to result in 

both elevated MICs to the biocide and cross resistance to a number of antibiotics in 

E. coli (Table 4.1). Buffet-Bataillon et al. (2015) showed that changes in susceptibility 

are sometimes linked to efflux pump activity, the study demonstrated that the 

overexpression of MDR efflux pumps induced by QAC exposure lead to MDR efflux 

pump mediated fluoroquinolone cross-resistance (Buffet-Bataillon et al., 2015). 

(Grande Burgos et al., 2016) highlighted that after a 12-day exposure of E. coli and 

non-typhoidal Salmonella strains to sub-MIC benzalkonium chloride and 



	84	 	

glutaraldehyde (150 mg/mL; 150 mg/mL), strains produced a mean product MIC 

increase of 31%, which correlated with increases in MIC for all antibiotics tested. 

Furthermore, when strains were exposed to the efflux pump inhibitor PaβN MICs 

decreased rendering the strains more susceptible, suggesting that efflux pumps were 

responsible for the changes in susceptibility phenotype that were observed. 

 

A member of the PACE family, denoted the ACEI pump has been recently identified 

as a chlorhexidine mediated extrusion system. ACEI was originally discovered in A. 

baumannii and was induced by chlorhexidine exposure (Hassan et al., 2012; 2013; 

2015; 2018) resulting in efflux-facilitated resistance.



	85	 	

Table 4.1:  Previously reported fold changes in MIC (mg/mL) for E. coli isolates after low-level exposure to CHX and BZC and 

concurrent antibiotic cross-resistance. Where –R is stated, an MIC could no longer be found and strain was considered resistant. 

BIOCIDE STRAIN 
MIC FOLD CHANGE 

AFTER EXPOSURE 
CROSS-RESISANCE (MIC fold change) REFERENCE 

CHX 
NCIMB8545 ≤ 6-fold Tobramycin Wesgate et al., 2016 

NCTC12900 (O157) Approx. 50-fold No cross-resistance reported Braoudaki & Hilton, 2004 

BZC 

ATCC11776 6-fold 

Ampicillin 5-fold; chloramphenicol 24-fold; gentamicin 2-fold; kanamycin 

2-fold; nalidixic acid-4 fold; norfloxacin 3-fold; Penicillin 2-fold; 

tetracycline-8 fold 

Langsrud et al., 2003 

DSM 682 6-fold 

Ampicillin 6-fold; chloramphenicol 12-fold; erythromycin 1-fold; 

gentamicin 2-fold; nalidixic acid 8-fold; norfloxacin 300-fold; Penicillin 2-

fold; tetracycline 2-fold 

 

Langsrud et al., 2003 

ATCC47076 6/7-fold 
Chloramphenicol 16-fold; lorfenficol 8-fold; ciprofloxacin 4-fold; nalidixic 

acid 8-fold; ampicillin 2-fold; cafotaxime 8-fold 
Braoudaki & Hilton, 2004 

NCTC12900 (O157) Approx. 100-fold 
Amoxicillin-clavulanic acid – R; cmoxicillin – R; Chloramphenicol – R; 

colistin 10-fold; trimethoprim - R 
Braoudaki & Hilton 2004 

CHX: chlorhexidine; BZC: benzalkonium chloride 

*Table adapted from Kampf, 2018
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4.1.3 Induction of resistance, phenotypic stability and the impact of 

exposure to biocidal residues  

 

As mentioned previously, it is less likely for a microbe to become resistant to a 

biocide than it is to an antibiotic due to their broad activity and multiple cellular target 

sites (Maillard et al., 2013). However, decreased susceptibility to biocides does occur 

as a result of cells surviving exposure. The reduction of concentrations within the cell 

to below lethal levels allows the activation of resistance mechanisms via metabolic 

regulation or genetic mutation (Maillard and Denyer 2009). When disinfectant 

products fail or are used incorrectly there is potential for the active compound to be 

present in less than intended concentrations (Maillard, 2005). It is also the case that 

although products that claim to have residual or prolonged activity may not maintain 

the high level of activity that is necessary to prevent the survival of pathogens. A 

biocide at low residual levels might not efficiently kill an entire bacterial population, or 

will be present within bacterial cells at sub-lethal concentrations due to extrusion or 

degradation via cell resistance mechanisms. In conjunction to a products failure, low-

level concentrations will still impose a stimuli or pressure upon bacteria, resulting in 

stress responses. The regulation of bacterial stress responses can be categorised 

into two main types: 

(i) Global regulation genetic cascade – promotes processes such as 

expression of efflux pumps and down regulation of membrane 

permeability  

(ii) Local regulation via direct activation of the promoter region. 

Global regulator genes such as soxS, acr and mar are responsible for controlling 

measures of cell defence and augment cells plasticity. One of these defences is the 

expression of efflux pumps.  
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When efflux pumps are not naturally expressed at a higher level constitutively their 

expression may be induced by prolonged exposure to toxic compounds (Buffet-

Bataillon et al., 2016). Figure 4.2 Demonstrates how the presence of a biocide can 

induce resistance via the regulation of efflux pump expression. In one instance of 

globally regulated marA-mediated antibiotic resistance was a result of increased 

expression of the AcrAB efflux pump in E. coli (Grande Burgos et al., 2016). 

 

Figure 4.2: The role of efflux pumps in antibiotic resistance.  

Intrinsic resistance: Some MDR efflux pumps such as E. coli AcrAB-TolC present a 

basal level of expression which results in intrinsic antimicrobial resistance (blue 

section). Acquired resistance: De-repression of the expression of the efflux pumps 

can be achieved by mutations at the regulatory proteins, rendering stable acquired 

resistance (yellow). Phenotypic resistance: The expression of efflux pumps can be 

triggered in the presence of specific inducers, rendering transient phenotypic 

resistance (pink). 

Image taken from Blanco et al. 2016 
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Efflux pump inhibitors (EPIs) are used to impede efflux activity and prevent bacterial 

cells from expelling efflux pump substrates. A wide range of EPIs have been 

researched for their possible application in the re-instatement of antibiotics that are 

no longer effective due to clinically relevant pathogens that overproduce efflux 

pumps. Although there have been a plethora of studies investigating the relationships 

between antibiotics and efflux, there is not a lot of research that tackles that of 

biocides such as CHX and BZC. Consequently, this chapter will focus on the use of 

EPIs to isolate the origin of change in biocide susceptibility via the investigation of 

efflux pump activity. The use of EPIs for this purpose has been documented in the 

literature. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) depicted in Figure. 

4.3 is a proton conductor that works by disrupting proton motive force processes at 

the cell membrane. CCCP does not directly inhibit nor change the efflux pump itself 

but eliminates the source of energy that is available for activity of efflux mechanisms, 

rendering pumps inactive. CCCP has been used for inhibiting the activity of the RND 

and MFS family of efflux pumps (Xiong et al., 2000). The RND family work to efflux a 

wide range of compounds (Nikaido and Pagès, 2012). 

 

Figure 4.3: Carbonyl cyanide m-chlorophenylhydrazone (CCCP) 

 

 

 

 

 

 

Phenylalanine-arginine-β-naphthylamide (PaβN; Figure 4.4) is an EPI of the E. 

coli AcrAB-Tolc efflux system (Kinana et al., 2016; Lomovskaya et al., 1996; Misra et 

al., 2015) and AcrEF pump (Misra et al., 2015) of the RND family. PaβN is a 
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substrate of these pumps and so blocks the pumps therefore inhibiting the extruding 

of other compounds. 

 

Figure 4.4: Phenylalanine-arginine-β-naphthylamide (PaβN) 

 

 

 

 

When choosing appropriate EPIs it is important to consider the concentration that is 

used. There are examples where the inhibitors are used at inappropriate 

concentration (LI, 2015). For example, at high concentrations PaβN, alongside its 

primary purpose to inhibit efflux pumps, also has an effect on the destabilisation of 

the cell wall membrane (Lamers et al., 2013). Misra et al. (2015) concluded that at 

0.02 mg/mL PaβN had very weak membrane-destabilising action against E. coli but, 

within 60 s after addition, it inhibited efflux pump activities of AcrAB and AcrEF.  

The process of resistance induction via stress-induced genetic mediation does not 

only apply to the expression of efflux pump activity. The regulatory system PhoE is 

responsible for the modulation of porins located at the outer membrane (OM) 

(Gehring and Nikaido, 1989). Porins enable the transfer of substances from one side 

of a membrane to the other (less than 1000Da in size). Changes in porins’ shape and 

size are responsible for the level of permeability of a cell and have been associated 

with changes in drug susceptibility (Chollet et al., 2002). Furthermore, the finding of 

decreased permeability by decreased porins’ expression was associated with the 

overexpression of AcrAB. There is currently still a gap in the knowledge of how 

compounds commonly used in disinfectant products can influence efflux activity and 
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other regulatory defence systems and how, if any, resulting phenotypic changes 

differ depending on exposure concentration and duration.  

 

When assessing the risk of a biocide that can induce changes in susceptibility of a 

microorganism, it is important to determine whether or not this change is stable or 

transient. It is helpful to categorise levels of susceptibility and distinguish between 

resistance, tolerance and persistence. Figure 4.5 depicts the differences in 

resistance, tolerance and persistence.  

 

RESISTANCE 

Þ Intrinsic – Natural, inherent insusceptibility  

Þ Acquired – genetically defined, stable changes that arise from either mutation 

or acquisition of genetic material (e.g. via horizontal gene transfer (HGT) 

(Meyer and Cookson, 2010) 

TOLERANCE 

Þ Phenotype adaption – Transient withstanding of exposure to toxic 

concentrations that would have otherwise been fatal (e.g. as a result of 

slowing in metabolic processes) 

PERSISTENCE  

Þ Similar to tolerance in its transient nature, persistence is usually characterised 

by a subpopulation of tolerant cells as opposed to an entire tolerant 

population. 
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Figure 4.5: Resistance, tolerance and persistence 

Image taken from Brauner et al & Balaban et al, 2019 

	

“Resistance, tolerance and persistence are distinct responses to antibiotic treatment 

that lead to increased survival compared with susceptible cells. a | To inhibit the 

growth of resistant bacteria, a substantially higher minimum inhibitory concentration 

(MIC) of the antibiotic is needed than for susceptible bacteria. Notably, persistence 

and tolerance do not lead to an increase in the MIC compared with susceptible 

bacteria. b | By contrast, tolerance increases the minimum duration for killing (MDK; 

for example, for 99% of bacterial cells in the population (MDK99)) compared with 

susceptible bacteria. c | Persistence leads to a similar MIC and a similar initial killing 

of the bacterial population compared with susceptible bacteria; however, the MDK for 

99.99% of bacterial cells in the population (MDK99.99) can be substantially higher 

owing to the survival of the persister cells. Note that pure exponential killing of the 

susceptible strain is rarely observed because most bacterial cultures have some level 

of persistence. The data shown are only illustrations and not actual measurements” 

(Brauner et al & Balaban et al, 2019) 

 
 
Resistance to a biocide can be quantified using markers such as MIC and MBC 

values however tolerance and persistence do not always result in a change in MIC 

(Figure 4.5a) where as resistance infers an increase in concentration, tolerance and 

persistence infer an increase in the minimal length of time the required for the cells to 

be inactivated (Figure 4.5b and c). Inactivation kinetics can be used as a tool for 
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observing interactions between a biocide and populations as well as identifying the 

nature of changes in susceptibility as a result of exposure (Maillard & Denyer, 2009). 

 

There currently exist a number of practical (Knapp et al., 2013; Wesgate et al. 2016) 

and mathematical (Balaban et al, 2019) models to predict whether or not exposure of 

a biocide will result in resistance, tolerance or persistence of a microorganism. This 

practical information is invaluable, nevertheless if new processes are to be devised 

with the technology intended to prevent resistance, it is necessary that the 

mechanisms behind these outcomes be further understood.  

 

4.1.4. Horizontal gene transfer, focusing on conjugation 

	
Bacteria typically reproduce through the process of binary fission. During this process 

the mother cell undergoes physical changes that result in the direct replication of its 

chromosomal DNA. A copy of this DNA is allocated to each of the two daughter cells 

produced. The daughter cells that result through binary fission are identical copies of 

the mother cell. This process referred to as vertical gene transfer (VGT) allows 

genetic information to be passed down through a single lineage. With the exception of 

single point mutations this process does not present opportunities for the distribution 

of genetic diversity within microbial systems. There are three main independent 

mechanisms of gene transfer in prokaryotic cells that make genetic alteration and 

dissemination possible; transformation, transduction and conjugation (Bushman, 

2002). These are referred to as methods of horizontal gene transfer (HGT). During 

the process of HGT, genetic information is passed from either the environment or 

from one bacterial cell to another and is integrated into its new hosts DNA.  

 

The exchange of genetic materials via HGT is enabled through the mediation of 

mobile genetic elements (MGEs). MGEs are fragments of DNA that encode enzymes 
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and other proteins that mediate the movement of DNA within genomes (intracellular 

mobility) or between bacterial cells (intercellular mobility) (Frost et al., 2005). The term 

MGEs encompasses plasmids, bacteriophage, transposable elements and group I 

and II introns. The activity of MGEs can be noted in all prokaryotic genome 

sequences (Gogarten and Townsend, 2005) and these mobile pockets of genetic 

material add to the large accessible genetic diversity that can be seen within a 

bacterial species. E. coli ATCC 25922 possesses a genome size of 5.20-Mbp, which 

includes two plasmids of 48,488 and 24,185-bp, respectively (Minogue et al., 2015). 

The prokaryotic genome does not only contain requisite genes. Along with domestic 

genetic information that can be found in all members of a taxon (the core-genome) 

and that codes for fundamental cellular processes such as reproduction, are non-core 

genes.  Non-core genes make up the accessory genome, are not present in all 

members of a taxon and are not essential for cellular function, however may offer 

other advantages such as acquired antibiotic resistance. The combination of the core 

genome and the non-core genome for an entire taxon is referred to as the pan-

genome; it is usually the accessory genome that accounts for the majority. This was 

demonstrated in the case of 61 E. coli isolates whose genomes were sequenced and 

revealed that of the pan-genome, only 6% of gene families formed the shared core 

genome, meaning that 90% of the pan-genome was made up solely of accessory 

genes (Lukjancenko et al., 2010). This is suggestive that MGEs play a large role in 

the genetic makeup of microorganisms. The horizontal exchange of mobile genetic 

material is more likely to occur between closely related organisms rather than those 

that are distantly related (Skippington and Ragan, 2012). However, the pan-genome 

represents thousands of prospective novel genes that are available to the whole 

taxon. The size of the accessory genome is a testament to the amount of gene 

variability and motility within a bacterial species, it is through the exchange of these 

variations that bacterial populations adapt and consequently evolve.  
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HGT and the uptake of MGEs usually incur a large cost on the host bacterial cell 

population. This cost may arise from the various metabolic elements involved within 

the transfer process, through loss of functionality within the cell due to the genetic 

insertion or due to cell death as a result of the newly acquired genetic element 

(Baltrus, 2013). There is often a cost/benefit trade-off between VGT and HGT where 

in the case of the bacterial cell survival is its goal and in the case of the genetic 

element successful dissemination is the desired outcome. The transfer of MGEs 

appears to occur mostly in times of cell stress and toxic environments, in these 

situations selective pressure favours dissemination of advantageous genetic traits. 

This was demonstrated in the case of E. coli where a non-conjugative plasmid initially 

decreased fitness in the host population however, with the addition of antibiotics the 

hosts fitness was regained (Bouma and Lenski, 1988). Therefore, it is generally 

assumed that successfully transferred genetic material commonly provides a selective 

advantage to the recipient however, this is not strictly a necessary outcome, 

transferred genes may also be neutral (Gogarten and Townsend, 2005). MGEs may 

either be passed on directly through vertical genetic transfer or laterally through HGT, 

whether or not one pathway is used over the other is usually decided by the costs that 

they impose on their hosts (Turner 1998, Turner 2004, Haft 2009).  

 

Conjugation is the transfer of genetic material from one bacterial cell to another via 

direct cell-to-cell contact. Joshua Lederberd and Edward Tatum who set out to 

investigate whether or not bacteria utilise reproductive pathways similar to sexual 

reproduction initially discovered this form of horizontal gene transfer in 1946. Through 

conjugative transfer, bacterial cells are able to exchange genetic information not only 

with cells of the same strain and species but also between other bacterial species 

(Giedraitiene et al., 2011).  Conjugation requires independently replicating genetic 

elements called conjugative plasmids, or chromosomally integrated conjugative 

elements such as integrons or transposons (Frost et al., 2005). Conjugative plasmids 
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often carry genes that code for multidrug resistance. Large sized plasmids, usually 

considered >50kb (Carattoli, 2013), are often associated with the transport of genes, 

which code antibiotic resistance, an example being Extended-Spectrum Beta-

Lactamases (Wang, et al., 2013). ESBL production in E. coli poses as a significant 

causative agent of nosocomial and community acquired infections in Europe and the 

United States (Coque et al., 2008). Plasmids have been identified as vehicles for 

genes that code for ESBLs (Garcillán-Barcia et al., 2011). Replicon typing of plasmids 

is seen as a method of surveillance of the acquisition and spread of antimicrobial 

resistance (Carattoli, 2013; Wang et al., 2012). 

 

It is generally agreed that the use of antibiotics act to promote horizontal gene 

transfer in bacterial populations however there are counteracting arguments that 

insist there may be more to the complex interaction than that. Lopatkin et al. (2016) 

suggests that instead of promoting horizontal gene transfer, the relationship between 

the exposure of bacterial cells to antibiotics and the increase in prevalence of 

resistance was related more to cell death and population dynamics (Lopatkin et al., 

2016). It is clear that although investigations into these processes are underway, little 

is still clear about the complex interactions between antimicrobials, bacterial 

populations and genetic transfer. Furthermore, the relationship between biocides and 

the spread of resistance through HGT needs to be investigated thoroughly. Jutkina et 

al., (2018) recently justified the need for further investigation of biocides and HGT 

with the demonstration that exposure of low concentrations of CHX (200 times below 

the MIC) and triclosan (1/20th below the MIC) can significantly increase frequencies of 

transfer of antibiotic resistance. Understanding the significance of the role that 

selective pressures such as biocide exposure play in the exchange of MGEs could be 

the key to slowing down plasmid mediated antibiotic resistance (Amábile-Cuevas and 

Heinemann, 2004; Jutkina et al., 2018) 
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4.1.5 Aims and objectives 

	
The aims of this chapter were to firstly ascertain a realistic understanding of the 

concentration of remaining CHX and BZC residues deposited on a surface after 

application. Then it will investigate the effect that biocide drying over time has on 

biocide efficacy.  

In parallel the risk of decreased bacterial susceptibility due to low-level residual 

biocidal concentrations will be determined with a focus on MIC, MBC and antibiotic 

susceptibility using standardised test protocol as well as looking at inactivation 

kinetics. 

 

This chapter also aims to explicate the relationship between active efflux 

mechanisms and exposure to CHX and BZC at two sub-MIC concentrations. 

Ethidium Bromide (EthBr) accumulation assays will provide insight into the resistance 

mechanisms utilised in response to biocide toxicity and elucidate possible origins of 

changes in susceptibility after exposure. Emphasis will be placed on a comparison 

between efflux activities at exposure to very low-level residual concentrations and 

higher sub-MIC biocide concentrations (immediately below MIC).  

 

Finally, changes of MIC/MBC antibiotic susceptibility phenotypes will be explored for 

their stability over a time period of 10 daily passages. Results will indicate whether or 

not changes in susceptibility profile are transient and only correspond to an exposure 

period.  
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4.2. Materials and Methods 

4.2.1 Determination of biocide concentration remaining after surface 

drying 

4.2.1.1. Application, drying and recovery of biocide 

	
One mL of 20 mg/mL CHX (Sigma-Aldrich) or 4.5 mg/mL BZC (Sigma-Aldrich) was 

pipetted into a glass flat-bottomed McCartney bottle (Fisher scientific) ensuring that 

neither the liquid nor pipette touched the sides or rim of the bottle. The 1 ml of CHX 

was removed via pipette at 0 h and left to dry at room temperature (21°C) in a 

category two biological safety cabinet for 6, 24, 48, 96 or 168 hours. After the 

appropriate drying time 1 mL of sterile de-ionised water (diH20) was added to the 

McCartney bottle and the remaining CHX was re-suspended using a vortex mixer 

and magnetic stirrer for 1 minute. This solution was aspirated and dispensed into a 

glass autosampler vial (Fisher scientific) for HPLC analysis. If required samples were 

refrigerated (2-4°C) and stored up to 1month before being discarded.  

 

4.2.1.2.  High-Performance Liquid Chromatography (HPLC) of 

CHX after drying on a surface 

	
After application, drying and recovery of the biocide (Section 4.2.1.1) HPLC analysis 

was performed in order to quantify the amount of chlorhexidine remaining. The 

mobile phase was a 1:1 ratio of water and acetonitrile (HPLC grade, Sigma Aldrich, 

UK) with 0.5% trifluroacetic acid (HPLC grade, Sigma Aldrich, UK). Retention rate 

was 6 minutes. An initial calibration curve was performed with a CHX standard stock 

(20 mg/mL). Halving concentrations running from 0.5 mg/mL to 0.001 mg/mL were 

analysed (n=3). The regression coefficient (R2) for the calibration-standardised curve 
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was 0.99874, this gives confidence that the data are not variable beyond validity. An 

R2 value closer to +1 describes less variability in values, the further from +1 the more 

variability between values.  

     

4.2.2 The effect of biocidal residues on microbial susceptibility profile 

after drying 

4.2.2.1 Modified carrier test and cell survival after exposure 

	
Modified carrier tests were performed to assess bacterial cell survival after exposure 

to surface dried, residual concentrations of CHX. Briefly, standardised bacterial 

suspensions were prepared (Section 2.4) and used within 15 min of preparation. One 

mL of 20 mg/mL CHX or 4.5 mg/mL BZC was pipetted into a glass flat-bottomed 

McCartney bottle as described in Section 4.2.1.1. The 1 ml was removed via pipette 

at 0 h and the bottle left to dry at room temperature (21°C). A separate glass bottle 

was used for each CHX drying time point of 6, 24 or 168 hours. After the appropriate 

drying time 20 μl of standardised inoculum (108cfu/mL) was added to the bottom of 

the McCartney bottle and left for an exposure time of either 5 min or 24 h. Following 

exposure, 1 mL of De-Engley neutraliser was added to the bottle and the remaining 

inoculum was re-suspended using a vortex mixer for 1 min. The suspensions were 

serially diluted and enumerated using the drop counting method (Section 2). Drops 

were placed onto a MHB agar plate (E&O, UK) and incubated for 16-24 hours. The 

log reduction was determined (Equation 4.1). 

 

Equation 4.1. 

Cfu/mL = number of colonies x dilution factor / volume plated 
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In addition, 100 μL suspension was removed from the test vial after neutralisation, 

placed into 10 mL MHB and incubated for 18-24 hours 37°C in order to ascertain 

whether survivors were present after biocide exposure and to perform additional 

susceptibility testing (Sections 4.2.2.; 4.2.3 and 4.2.4). 

 

4.2.2.2 Minimal Inhibitory and minimal bactericidal 

concentrations after exposure 

	
After exposure to either CHX or BZC in a modified carrier test (Section 4.2.3.1) 100 

μl of test suspension was removed and added to 10 ml MHB and incubated for 24 h 

at 37°C. Suspensions were then tested using the BS EN ISO: 20776-1 (ISO, 2006) 

broth microdilution method as described in detail in Section 3.2.1. Briefly, cultures 

with positive growth after incubation were centrifuged at 5000g for 10 min and re-

suspended in 10 mL PBS. Suspensions that grew were standardised to a viable cell 

concentration of 1 x 108 CFU/mL. A 96 well microtitre plate was prepared with 

halving dilutions of biocide (CHX/BZC) in 50 μL double strength MHB, finally 50 μL 

standardized bacterial cultures were added to each well. Each plate was incubated 

for 24 hours at 37°C and results were recorded based on positive or negative growth. 

The MIC was the lowest concentration in which no growth was visible. Twenty μL 

was taken out of each well and plated onto a DE neutralising agar plate and 

incubated for 24 hours at 37°C. The MBC was recorded as the lowest concentration 

that showed no growth. 

 

4.2.2.3 Antibiotic susceptibility after exposure 

	
After recovery following exposure (Section 4.2.2.2) viable bacteria (1 x 104 CFU/mL) 

were spread onto a MHB agar plate. Antibiotic susceptibility discs (BD) were placed 
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onto the agar surface as described in section 3. Zones of inhibition were read, and 

breakpoints calculated in accordance to the EUCAST (2016) protocol. 

 

4.2.3 Effect of exposure to biocidal residues on efflux mechanisms  

4.2.3.1 Ethidium Bromide use in the detection of efflux pump 

activity  

	
Ethidium Bromide (EtBr) is a fluorescent dye that is able to enter a bacterial cell and 

bind to intracellular components via DNA intercalation; subsequently the dye 

produces a strong signal. When the dye is in an aqueous solution alone, it produces 

a much weaker, if no signal. If there is no efflux, EtBr will produce a strong signal, 

when efflux activity is high the dye will be pumped out of the cell, therefore the signal 

will be low. EthBr has been used extensively to investigate efflux mechanisms in E. 

coli and has worked particularly well when investigating AcrAB-TolC efflux systems 

(paixao et al 200, Pal et al., 2019). 

 

4.2.3.2 Use of carbonyl cyanide m-chlorophenylhydrazone and 

phenylalanine-arginine-β-naphthylamide as efflux pump 

inhibitors 

Prior to performing efflux activity assays in this chapter, MIC values were obtained for 

EPIs. Average MIC for CCCP was ≥ 0.010 ±0.009 mg/mL; for PaβN the MIC was ≥ 

0.010 ±0.008 mg/mL. PaβN was used in this experiment at 0.005 mg/mL and CCCP 

at a concentration of 0.0002 mg/mL.  

 

Overnight bacterial cultures of each E. coli strain were prepared in accordance with 

Section 2.2.2. Bacterial cultures were re-suspended and adjusted to an OD600 of 0.1 
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in 20 mL of sterile MHB (1 x 108 CFU/mL). Suspensions were then incubated at 37°C 

in a shaking incubator (120rpm) until the mid-log growth phase was reached (OD600 

of 0.2-0.3; 2 to 3 hours approx.). Bacterial cells were washed with diH2O and 

centrifuged once to remove unwanted supernatant and spent media, as described in 

section 2. Suspension was adjusted to a final OD600 of 0.4. On mL of each strain 

suspension was removed and boiled (95°C) for 10 min to be used as a positive 

control. Fifty μL of an EtBr stock solution (10 mg/mL) was added to each well of a 96 

well microtitre plate to give a final concentration of 0.005 mg/mL. Fifty μL of EPI was 

added to appropriate wells to give a final concentration of 0.1 mM CCCP and 0.5 

mg/mL PABN. One hundred μL of either boiled bacteria cells or test bacteria cells 

were added to the plate and 50 μL of PBS was added to those wells without EPI. The 

final volume of all wells was 250 μL. Plates were read in the TECAN plate reader at 

37°C for an initial 10 min to obtain baseline fluorescence values. After 10 min an 

injection of 50 μL CHX was added to each well. Half of the 96 well plate was exposed 

to 0.00005 mg/mL and the other half was exposed to 0.002 mg/mL. The plate was 

read in the plate reader for an additional 50 min (1 hour in total). Background controls 

consisting of biocides or EPI and EthBr with no bacteria, were run alongside 

experimental sets and used to normalise data accounting for any fluorescence 

omitted by inhibitory compounds used. The pH was kept constant throughout this 

experiment, as this can be a determining factor in the expression of efflux phenotype 

(Martins et al., 2009; Amaral et al., 2011). 

 

 

4.2.4 Inactivation kinetics 

	
One mL of standardised bacteria culture (1 x 109 CFU/mL) was mixed with 1 mL 

PBS. Eight mL of CHX at 20 mg/mL, 0.002 mg/mL or 0.007mg/mL was added to the 
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bacterial suspension and vortexed for 30 s. The E. coli strains UCD-CFS ECP-1B2 

and UCD-CFS ECP13P5 were exposed to 20 mg/mL or 0.002 mg/mL CHX for 

contact times of 0, 0.5, 1, 3 and 5 min at room temperature. Contact time for strains 

with 0.007 mg/mL were 0, 0.5, 1, 3, 5, 10, 20, 30 and 60 min. This concentration was 

selected to compare the sub-MIC concentration (0.002 mg/mL) to the concentration 

of CHX found on a surface (Section 2): 0.006 mg/mL ± 0.002. Following these 

contact times 1 mL of each test suspension was added to 9mL DE neutralising agar 

and vortexed for 30 s. One hundred μL of the neutralised mixture was diluted in 900 

μL PBS and surviving bacteria were enumerated in duplicate on MHB using the drop 

counting method. Plates were incubated at 37°C for 24 h and CFU/mL were 

calculated. Inactivation kinetics were plotted using the Log10 CFU/mL recovered over 

time. 

 

4.2.5. Phenotype stability testing 

The stability in biocide and antibiotic susceptibility changes observed after biocide 

exposure was assessed through successive passaging of surviving bacteria in 

biocide-free broth or broth supplemented with CHX (0.002 mg/mL).  The protocol 

followed by Knapp et al. (2015) was adhered to. Ten daily passages were performed 

(24 h) and biocide MIC, MBC and antibiotic susceptibility values were reevaluated 

after passage 1, 5 and 10. Validation of culture and inspection of homogeneity was 

made after every passage by plating subculture onto a selective media plate and 

examining a Gram stain under the microscope.  

 

4.2.6. Conjugation assay 

To determine the conjugative transfer of AMP resistance, the liquid mating method 

was followed as described by (Lambrecht et al., 2017). For each test three 
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independent biological replicates were assayed. A single colony for each replicate 

was inoculated into 5 mL MHB (16-18h, 37°C). The donor strain, UCD-CFS ECP-

13P5) was grown in the presence of ampicillin (100 μg/mL) and the recipient strain 

(E. coli J35R) was grown in the presence of rifampicin (100 μg/mL). Cultures were 

centrifuged (5000g), washed with PBS and re-suspended in 5 mL MHB. Strains were 

10-fold diluted in MHB with CHX to obtain an exposure concentration of 0.00005 

mg/mL or 0.002 mg/mL. A control was performed with no biocide exposure. Initial 

mating concentrations ranged from 2.30 x 107 CFU/mL to 7.30 x 107 CFU/mL for the 

donor strain (UCD-CFS ECP-13P5) and 1.17 x 108 CFU/mL to 7.30 x 108 CFU/mL for 

the recipient strain (E. coli J35R). Donor and recipient strains were mixed in a ratio of 

1:5. Liquid mating was performed for 4 hours at room temperature (25°C). At the end 

of the 4 hours mating period donors, recipients and transconjugants were 

enumerated using the spread plating technique. Enumerated mating suspensions 

were plated onto media containing ampicillin (100 μg/mL) (donors & 

transconjugants), rifampicin (100 μg/mL) (recipient + transconjugants) or double 

selective plates containing ampicillin (100 μg/mL) and rifampicin (100 μg/mL) 

(transconjugants). Plates were incubated overnight 16-18h, 37°C) and colonies were 

counted. The limit of detection for enumeration was 1 CFU/mL. The limit of 

quantification was ≥10 colonies/plate. Transfer ratios were calculated as the number 

of transconjugants divided by the number of recipients, defined in equation 4.2. 

 

Equation 4.2. 

!"#$%&'"	"#)*+ = 	$-./'"	+&	)"#$%0+$1-2#$)%$-./'"	+&	"'0*3*'$)%  

4.2.7 Statistical analysis 

Pearson’s correlation analysis was used to determine the relationship between 

surface drying time and the concentration of CHX determined via HPLC. One-Way 
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and Two-way Analysis of Variance (ANOVA) were used when comparing differences 

between single and multiple factors respectively.  

	

4.3 Results and discussion 

4.3.1 Determination of biocide concentration remaining after drying via 

HPLC 

4.3.1.1 Chlorhexidine digluconate 

	
After the addition of 1 mL CHX (20 mg/mL) and its removal from, the bottom of a 

glass McCartney bottle (Section 4.2.1.1), the remaining concentration over time was 

quantified using the HPLC method. There was an average of 99.97% (± 0.01) 

decrease in concentration after the solution was removed at time zero and drying 

times of 6, 24, 48, 96 and 168 hours. Figure 4.6 shows the concentrations of CHX 

recovered after each drying time. This finding is in agreement with Thomas et al., 

(2004) where it was found that regardless of either the drying time or the amount of 

concentration initially added, the concentration of CHX applied to the bottle surface 

decreased by 98.8%. 

Figure 4.6. The concentration of CHX (20 mg/mL) recovered after drying on a 

surface. Error bars are standard deviation of the mean of three replicates. Dashed 

lines depict the average MIC and MBC values for E. coli isolates in this study 

obtained in Section 3.3.1. (n=3) 
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 CHX concentration did not decrease over time (0-168 h) after drying on a surface 

(P=0.62; Pearsons correlation analysis, r2=0.07; Graphpad PRISM8). The capability 

of a substance to persist is termed its substantivity and is determined by the degree 

of physical and chemical bonding to the surface and resistance to removal or 

inactivation. It has been demonstrated that CHX has a strong substantivity. Khademi 

et al. (2006) demonstrated that after 5 min application of 2% CHX, the substantivity 

was up to 4 weeks (Khademi et al., 2006). This strength in prolonged activity is due 

to the protein bound nature of CHX, lending to persistent slow release efficacy 

(Mohammadi et al., 2009). 

 

It is most important to note that these remaining biocidal concentrations are close to 

the MIC and MBC values that were obtained in Section 3.3.1. The highest baseline 

MIC and MBC values recorded were 0.01 mg/mL (UCD-CFS ECP-13P5). The lowest 

MIC and MBC values recorded were 0.002 mg/mL (UCD-CFS ECP-13P4) and 0.005 

mg/mL (ATCC25922, UCD-CFS ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS ECP-

13P4, UCD-CFS ECP-25P5, UCD-CFS ECP-25015). These data suggest that in-situ 
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biocidal concentrations may not always be present at the intentionally excessive 

active concentration. Furthermore, the concentration may be lower than that needed 

to inhibit microbial growth, in this instance E. coli. This is demonstrated in Figure 4.6, 

for which the range of baseline MIC and MBC values obtained in Section 3.3.1 are 

overlaid.  

 

The average MIC and MBC for CHX against the isolates tested was 0.006 ± 0.002 

mg/mL, the concentration recovered from the surface on average was 0.006 ± 0.002 

mg/mL.  The exact concentration needed to inhibit growth of the strains tested 

leaving no margin for error in case of product failure despite the initial application of 

20 mg/mL. When comparing these findings with that of Morrissey et al., (2014), it falls 

around 10-fold below, ECOFF MIC and MCB for CHX were 0.064 mg/mL and >0.064 

mg/mL respectively.  

 

4.3.2 The effect of biocidal residues on microbial susceptibility profile 

after drying 

4.3.2.1 Modified carrier test and cell survival after exposure 

Eight E. coli isolates were exposed to surface dried residues of either CHX or BZC 

through a modified carrier test in order to ascertain whether or not the concentration 

present was still sufficient to produce total bacterial kill. Survivors were enumerated 

and biocidal efficacy of residual CHX and BZC was compared. Post exposure MIC, 

MBC and antibiotic susceptibility assays were carried out to determine whether or not 

survivors had undergone a phenotype change in susceptibility. 
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4.3.2.1.1 Chlorhexidine digluconate  - 5 minutes and 24 hours 

exposure, range of surface drying times 

	
When 1 mL of 20 mg/mL CHX solution was added to the bottom of a glass 

McCartney bottle and was removed after 0 h time point, the amount of CHX 

remaining was sufficient to prevent any microbial recovery of all isolates tested 

(Table 4.2).	 

After 6 hours of drying CHX onto a glass surface, there was some recoverable 

growth for isolates UCD-CFS ECP-1L4 and UCD-CFS ECP-13P5 with Log10 reductions 

of 3.48 and 5.63 respectively (Table 4.2).  

 

The majority of biocide testing standards specify ≥4Log10
  or ≥5Log10

 reduction as 

part of the pass criteria (EN13697: 2001; EN14561: 2006; EN14349: 2007; EN13727: 

2012).  There was no significant difference found for CHX activity between isolates 

(P=0.12; One-Way ANOVA; GraphPad PRISM 8). 

 

There was no significant difference between drying time and Log10 reduction  

(P=0.34; Two-Way ANOVA; GraphPad PRISM 8) suggesting that CHX activity is 

stable after drying on a surface over time (168 hours). This result is complimentary to 

data from section 4.3.1.1 where drying time did not correlate with a decrease in CHX 

concentration. This finding would support the claims of residual activity made by 

some marketed biocidal products containing CHX (Jaiben et al., 2017). 

 

Table 4.2: Log10
 reductions after modified carrier test with residual concentrations of 

CHX for 5 min (n=3).  

 LOG10 REDUCTION IN CFU/ML 
DRYING TIME (h) 

CONCENTRATION 
(mg/ml) 

0 
0.0049 mg/mL 

CHX 

6 
0.0097 mg/mL 

CHX 

24 
0.0047 mg/mL 

CHX 

168 
0.0075 mg/mL 

CHX 
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ATCC 25922 
>5.82 
± 0.15 

>5.82 
± 0.15 

>5.82 
± 0.15 

>5.83 
± 0.08 

UCD-CFS ECP-1L3 
>5.81 
± 0.44 

>5.81 
± 0.44 

>5.81 
± 0.44 

5.34 
± 0.49 

UCD-CFS ECP-1L4 
>5.93 
± 0.29 

5.08 
± 0.41 

>5.93 
± 0.29 

>5.99 
± 0.05 

UCD-CFS ECP-IB2 
>6.00 
± 0.21 

>6.00 
± 0.21 

>6.00 
± 0.21 

5.60 
± 0.60 

UCD-CFS ECP-13P5 
>5.89 
± 0.13 

5.76 
± 0.28 

>5.89 
± 0.13 

>5.93 
± 0.05 

UCD-CFS ECP-13P4 
>5.67 
± 0.40 

>5.67 
± 0.40 

5.55 
± 0.41 

5.49 
± 0.68 

UCD-CFS ECP-25P5 
>5.78 
± 0.26 

>5.78 
± 0.26 

>5.78 
± 0.26 

>5.81 
± 0.01 

UCD-CFS ECP-25OS1 
>5.80 
± 0.30 

>5.80 
± 0.30 

>5.80 
± 0.30 

>5.92 
± 0.30 

The limit of detection was 1 x 102 CFU/mL (2 Log10). Instances where recoverable 

growth was present are highlighted in bold text. 

 

Twenty four hours exposure time proved enough for the CHX concentration 

remaining on the glass surface after drying (0-168 hours) to prevent any recoverable 

colonies of the eight E. coli isolates (Table 4.3). There was a significant difference 

found between Log10 reductions of all isolates exposed to CHX at either 5 min or 24 h 

(P=0.34; ONE-WAY ANOVA; GraphPad PRISM 8). Although CHX residues are lower 

than the intended 20 mg/mL application (Section 4.3.1.1), they are still effective with 

a 24 h exposure. Some variability in results can be observed (Table 4.2) with some 

isolates. Such variability may be explained by the difference in residual CHX 

concentration left on surfaces after drying (Figure 4.6). In some instances, not all 

bacteria were killed, and one can therefore consider what adaptions and changes the 

remaining survivors may undergo in response to the low-level CHX exposure. 

Table 4.3 Log10
 reductions after modified carrier test with residual concentrations of 

CHX for 24h (n=3).	

 LOG10 REDUCTION IN CFU/ML 
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The limit of detection was 1 x 102 CFU/mL (2 Log10) 

	
4.3.2.1.2 Benzalkonium chloride – 5 minutes and 24 hours 

exposure after range of surface drying times 

	
In some instances, 5 min exposure to BZC after 0 hours drying was not sufficient to 

provide either total kill or 4 Log10 reduction (Table 4.4). This can be observed for 

isolates UCD-CFS ECP-1L4, UCD-CFS ECP-IB2, UCD-CFS ECP-25P5 and UCD-

CFS ECP-25OS1.  

 

 

 

Table 4.4 Log10
 reductions after modified carrier test with residual concentrations of 

BZC for 5 min (n=3). 

 

 LOG10 REDUCTION IN CFU/ML 

DRYING TIME (h) 
CONCENTRATION 

(mg/ml) 

0 
0.0049 mg/mL 

CHX 

6 
0.0097 mg/mL 

CHX 

24 
0.0047 mg/mL 

CHX 

168 
0.0075 mg/mL 

CHX 

ATCC 25922 
>5.73 
± 0.15 

>5.73 
± 0.15 

>5.73 
± 0.15 

>5.73 
± 0.15 

UCD-CFS ECP-1L3 
>5.92 
± 0.05 

>5.92 
± 0.05 

>5.92 
± 0.05 

>5.92 
± 0.05 

UCD-CFS ECP-1L4 
>5.97 
± 0.06 

>5.97 
± 0.06 

>5.97 
± 0.06 

>5.97 
± 0.06 

UCD-CFS ECP-IB2 
>5.83 
± 0.15 

>5.83 
± 0.15 

>5.83 
± 0.15 

>5.83 
± 0.15 

UCD-CFS ECP-13P5 
>5.91 
± 0.04 

>5.91 
± 0.04 

>5.91 
± 0.04 

>5.91 
± 0.04 

UCD-CFS ECP-13P4 
>5.85 
± 0.02 

>5.85 
± 0.02 

>5.85 
± 0.02 

>5.85 
± 0.02 

UCD-CFS ECP-25P5 
>5.71 
± 0.12 

>5.71 
± 0.12 

>5.71 
± 0.12 

>5.71 
± 0.12 

UCD-CFS ECP-25OS1 
>5.70 
± 0.06 

>5.70 
± 0.06 

>5.70 
± 0.06 

>5.70 
± 0.06 
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DRYING TIME (h) 0 6 24 168 

ATCC 25922 
5.70 

± 0.00 
5.70 

± 1.09 
4.39 

± 1.80 
1.83 

± 0.27 

UCD-CFS ECP-1L3 
>5.83 
± 0.25 

0.81 
± 1.07 

2.45 
± 0.60 

1.87 
± 0.22 

UCD-CFS ECP-1L4 
5.04 

± 1.36 
4.50 

± 2.29 
3.28 

± 1.80 
2.85 

± 2.05 

UCD-CFS ECP-IB2 
5.92 

± 0.09 
1.32 

± 1.21 
3.78 

± 1.82 
2.81 

± 1.36 

UCD-CFS ECP-13P5 
>5.85 
± 0.11 

2.73 
± 1.44 

2.15 
± 1.97 

3.33 
± 1.98 

UCD-CFS ECP-13P4 
>5.66 
± 0.08 

2.45 
± 2.95 

4.51 
± 2.06 

1.80 
± 0.13 

UCD-CFS ECP-25P5 
4.64 

± 1.58 
1.81 

± 1.17 
4.24 

± 1.45 
1.96 

± 0.05 

UCD-CFS ECP-25OS1 
4.37 

± 1.34 
1.86 

± 1.66 
3.05 

± 1.85 
3.25 

± 2.20 
 

The limit of detection was 1 x 107 CFU/mL (2 Log10). Instances where recoverable 

growth was present are highlighted in bold text. 

 

The difference between BZC surface concentration and Log10 reduction was 

statistically significant (P= 6.85654E-10; ONEWAY ANOVA; GraphPad PRISM8) 

suggesting that drying affects the efficacy of BZC activity. Although the concentration 

of BZC was not analysed over drying time, it may be suggested that concentration of 

BZC has decreased over time, making it less effective. 

 

There was a difference (P=3.26076E-7; T-TEST; Graphpad PRISM8) between BZC 

activity at 0 hours and 6 hours drying, there was no statistically significant difference 

of BZC activity between 6 hours and 24 hours drying (P=0.05837; T-TEST; 

Graphpad PRISM8). However, there was a statistically significant difference 

(P=0.00896; T-Test; Graphpad PRISM8) in BZC activity between 24 h and 168 h 

drying of BZC. This suggests that the longer BZC is left to dry on the surface, the 

less efficacious it is against the E. coli isolates tested.  This cannot be confirmed 

conclusively as BZC concentrations after drying could not be analysed. 
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Maybe not surprisingly, Log10 reductions after 24 h exposure to BZC residual 

concentrations were higher (P=<0.0001; One-Way ANOVA; Graphpad PRISM8) than 

after 5 min exposure (Table 4.5). There was no statistically significant difference 

(P=0.98; One-Way ANOVA; Graphpad PRISM8) found between the efficacies of 

BZC on the different isolates. Furthermore, the length of time that the BZC was left to 

dry did not produce a difference (P=0.54; One-way ANOVA; Graphpad PRISM8) in 

activity when bacteria were exposed for 24 hours. 

 

Table 4.5 Log10
 reductions after modified carrier test with residual concentrations of 

BZC for 24h (n=3). 

 

 LOG10 REDUCTION IN CFU/ML 
DRYING TIME (h) 0 6 24 168 

ATCC 25922 
>5.63 
± 0.78 

>5.24 
± 0.10 

>5.63 
± 0.78 

2.99 
± 1.23 

UCD-CFS ECP-1L3 
>5.77 
± 0.14 

5.71 
± 0.09 

>5.77 
± 0.14 

1.77 
± 0.14 

UCD-CFS ECP-1L4 
>5.76 
± 0.13 

>5.76 
± 0.13 

>5.76 
± 0.13 

1.23 
± 0.14 

UCD-CFS ECP-IB2 
4.85 

± 1.44 
>4.96 
± 0.09 

>5.68 
± 0.09 

1.75 
± 0.67 

UCD-CFS ECP-13P5 
>5.52 
± 0.04 

>5.52 
± 0.04 

4.36 
± 2.04 

1.62 
± 0.05 

UCD-CFS ECP-13P4 
>5.51 
± 0.96 

4.34 
± 2.03 

>5.51 
± 0.96 

3.08 
± 2.32 

UCD-CFS ECP-25P5 
>5.52 
± 0.07 

3.76 
± 0.82 

>5.52 
± 0.07 

2.37 
± 0.95 

UCD-CFS ECP-25OS1 
4.54 

± 1.65 
>5.48 
± 0.02 

>5.49 
± 0.01 

2.30 
± 0.10 

 

The limit of detection was 1 x 107 CFU/mL (2 Log10). Instances where recoverable 

growth was present are highlighted in bold text. 
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4.3.2.3 Minimal inhibitory and minimal bactericidal concentrations of 

cells surviving exposure 

4.3.2.3.1 Chlorhexidine digluconate - 5 minutes and 24 hours 

exposure after range of surface drying times  

	
Table 4.6 shows the changes in MIC and MBC values after exposure to CHX. 

Recovered bacteria always demonstrated a change in MIC or MBC (expect for UCD-

CFS ECP-13P5, 6 h dried CHX, repeat 1). The highest MIC fold change of 32-fold, 

corresponding to an increase in MIC from 0.005 mg/mL to 0.16 mg/mL, were 

observed for isolates ATCC 25922, UCD-CFS ECP-1L3, UCD-CFS ECP-1L4 and 

UCD-CFS ECP-1B2. These findings contradict those of Wesgate et al. (2016) who 

found that exposure to CHX did not render E. coli less sensitive to either CHX or a 

number of antibiotics.   

 

After 0-168 h of CHX drying onto a glass surface, corresponding to the presence of 

residual concentration of 0.0049 mg/mL, 0.0097 mg/mL, 0.0047 mg/mL and 0.0075 

mg/mL CHX, no viable bacteria were recovered after 24 h exposure (Section 

4.3.1.2.1) precluding the investigation into MIC /MBC changes. 
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Table 4.6 MIC, MBC values (mg/mL) and fold change after modified carrier test with residual concentrations of CHX for 5 min (n=3).  

- No recoverable growth post-exposure

  MIC MBC 
 EXPOSURE TIME: 5 minutes 

 

DRYING TIME (h) 
CONCENTRATION 

(mg/ml) 

 
Baseline 

0 
0.0049mg/mL 

CHX 

6 
0.0097mg/mL 

CHX 

24 
0.0047mg/mL 

CHX 

168 
0.0075mg/mL 

CHX 
 

Baseline 
0 

0.0049mg/mL 
CHX 

6 
0.0097mg/mL 

CHX 

24 
0.0047mg/mL 

CHX 

168 
0.0075mg/mL 

CHX 

ATCC 25922 
Repeat:    1 0.005 - - - 0.16 (32-fold) 0.005 - - - 0.16 (32-fold) 

2 0.005 0.04 (8-fold) - 0.04 (8-fold) - 0.005 0.04 (8-fold) - 0.08 (16-fold) - 
3 0.005 - - - - 0.005 - - - - 

UCD-CFS ECP-1L3 
1 0.005 - - - 0.16 (32-fold) 0.005 - - - 0.31 (62-fold) 
2 0.005 - 0.04 (8-fold) 0.04 (8-fold) - 0.005 - 0.04 (8-fold) 0.04 (8-fold) - 
3 0.005 - - - 0.16 (32-fold) 0.005 - - - 0.16 (32-fold) 

UCD-CFS ECP-1L4 
1 0.005 - - - 0.16 (32-fold) 0.005 - - - 0.16 (32-fold) 
2 0.005 - 0.04 (8-fold) - - 0.005 - 0.04 (8-fold) - - 
3 0.005 - - - - 0.005 - - - - 

UCD-CFS ECP-IB2 
1 0.005 - - - 0.16 (32-fold) 0.005 - -  0.31 (62-fold) 
2 0.005 - - 0.04 (8-fold) - 0.005 - - 0.08 (16-fold)  
3 0.01 - - 0.08 (8-fold) 0.16 (16-fold) 0.01 - - 0.08 (8-fold) 0.16 (16-fold) 

UCD-CFS ECP-13P5 
1 0.01 - 0.01 - - 0.01 - 0.01 - - 
2 0.01 - - - - 0.01 - - - - 
3 0.01 - 0.04 (4-fold) 0.08 (8-fold) 0.1 (10-fold) 0.01 - 0.04 (4-fold) 0.08 (8-fold) 0.16 (16-fold) 

UCD-CFS ECP-13P4 
1 0.002 - - - - 0.005 - - - - 
2 0.002 - - - - 0.005 - - - - 
3 0.002 - - - - 0.005 - - - - 

UCD-CFS ECP-25P5 
1 0.005 - - - - 0.005 - - - - 
2 0.005 - - - - 0.005 - - - - 
3 0.005 - - 0.04 (8-fold) - 0.005 - - 0.04 (8-fold) - 

UCD-CFS ECP-25OS1 

1 0.005 - - - - 0.005 - - - - 
2 0.005 - - - - 0.005 - - - - 
3 0.005 - - - - 0.005 - - - - 
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4.3.2.3.2 Benzalkonium chloride - 5 minutes and 24 hours exposure 

after range of surface drying times 

Tables 4.7 and 4.8 show the changes in MIC and MBC values after exposure to BZC where 

incidences of post-exposure recovery were possible. There were no increases in MIC or 

MBC values following BZC exposure, however there were frequently incidences of decrease 

in MIC or MBC suggesting that the isolates become more susceptible to BZC following 

exposure to residues.  

After neutralisation surviving bacteria were added to Muller-Hinton broth and incubated 

overnight.  Muller-Hinton broth is a nutrient rich media; recovery of pre-treated organisms in 

media such as this can lead to an underestimation of recoverable organisms due to the 

phenomenon termed “nutrient shock” (Azevedo et al., 2012; Davis, 2014; Emerson et al., 

2017). Through this method, only bacteria that are able to undergo damage repair and 

recover reproduction processes will be recovered, eliminating cells that are damaged but not 

dead, which are coined as viable but not countable (VBNC). It is difficult to isolate VBNC 

population, however, it is worth noting that they are of interest as they will have undergone 

significant change in cell metabolic regulation and given the chance have the potential to 

persist further exposure. 
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Table 4.7 MIC, MBC values (mg/mL) of E. coli isolates after modified carrier test with BZC exposure 5 minutes, after a range of BZC surface 

drying times. Fold change indications are also included (n=3). 

- No recoverable growth post-exposure 

    MIC MBC 
   EXPOSURE TIME : 5 minutes 

 

DRYING 
TIME 
(hrs) 

 
Baseline 

0 6 24 168 

 
Baseline 

0 6 24 168 

ATCC 25922 

Repeat:   
1 0.01  

- 
0.005 0.002 

0.001 
0.01  

- 
- 0.002 0.001 

2 0.01  - - - 0.001 0.01  - - - 0.001 
3 0.01  - - 0.005 0.001 0.01  - - 0.005 0.001 

UCD-CFS 
ECP-1L3 

1 0.02 - 0.005 0.005 0.001 0.04  - 0.005 0.002 0.001 
2 0.02  - 0.01 - 0.001 0.04  - - - 0.001 
3 0.02  - 0.005 0.002 0.001 0.04  - - 0.01 0.001 

UCD-CFS 
ECP-1L4 

1 0.01  -  0.002 0.001 0.01  - - 0.002 0.001 
2 0.01  - 0.01 0.002 0.001 0.01  - - 0.002 0.002 
3 0.01  0.01  0.005 0.001 0.01  0.01 - 0.005 0.001 

UCD-CFS 
ECP-IB2 

1 0.02 0.005 0.01 0.002 - 0.02  0.005 - 0.002 - 
2 0.02  - 0.01 0.005 0.001 0.02  - - 0.005 0.001 
3 0.02  - 0.01 0.005 0.001 0.02  - - 0.005 0.002 

UCD-CFS 
ECP-13P5 

1 0.02  - 0.01 0.005 0.001 0.02 - - 0.01 0.002 
2 0.02  - 0.005 0.002 0.001 0.02  - - 0.002 0.001 
3 0.02  - 0.01 0.005 0.002 0.02  - - 0.01 0.002 

UCD-CFS 
ECP-13P4 

1 0.02  - 0.01 - 0.001 0.02  - - - 0.001 
2 0.02  - 0.01 0.005 0.001 0.02  - - 0.005 0.001 
3 0.02  - 0.01 0.005 0.002 0.02  - 0.002 0.01 0.002 

UCD-CFS 
ECP-25P5 

1 0.02  - 0.01 - 0.001 0.04  - 0.002 - 0.001 
2 0.02  0.01 0.005 0.005 0.002 0.04  0.01 0.005 0.005 0.002 
3 0.02  - 0.01 0.005 0.002 0.04 - 0.002 0.005 0.002 

UCD-CFS 
ECP-25OS1 

1 0.02  0.005 0.01 0.005 - 0.02  0.005 - 0.005 - 
2 0.02  0.01 0.005 - 0.002 0.02  0.01 - - 0.002 
3 0.02  - 0.01 0.01 0.002 0.02  - - 0.01 0.002 
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Table 4.8 MIC, MBC values (mg/mL) of E. coli isolates after modified carrier test with BZC exposure 24 h, after a range of BZC surface 

drying times. Fold change indications are also included (n=3). 

- No recoverable growth post-exposure	

   MIC MBC 
   EXPOSURE TIME: 24 hours 

 

DRYING 
TIME 
(hrs) 

 
Baselin
e 0 6 24 168 

 
Baseline 

0 6 24 168 

ATCC 25922 

Repeat:   
1 0.01  

- - - - 
0.01  

- - 
0.002 - 

2 0.01  - - - 0.001 0.01  - - - 0.001 
3 0.01  - - - 0.001 0.01  - - - 0.001 

UCD-CFS 
ECP-1L3 

1 0.02 - 0.005 - 0.001 0.04  - 0.005 - 0.001 
2 0.02  - - - 0.001 0.04  - - - 0.001 
3 0.02  - - - 0.001 0.04  - - - 0.001 

UCD-CFS 
ECP-1L4 

1 0.01  - - - 0.001 0.01  - - - 0.001 
2 0.01  - - - 0.001 0.01  - - - 0.001 
3 0.01  - - - 0.001 0.01  0.01 - - 0.001 

UCD-CFS 
ECP-IB2 

1 0.02 0.005 - - - 0.02  0.005 - - - 
2 0.02  - - - 0.001 0.02  - - - 0.001 
3 0.02  - - - 0.001 0.02  - - - 0.001 

UCD-CFS 
ECP-13P5 

1 0.02  - - - 0.001 0.02 - - - 0.002 
2 0.02  - - 0.002 0.001 0.02  - - - 0.001 
3 0.02  - -  0.001 0.02  - - 0.002 0.001 

UCD-CFS 
ECP-13P4 

1 0.02  - - - 0.001 0.02  - - - 0.001 
2 0.02  - - - 0.001 0.02  - - - 0.001 
3 0.02  - 0.005 - - 0.02  - 0.002 - - 

UCD-CFS 
ECP-25P5 

1 0.02  - 0.005 - 0.001 0.04  - 0.002 - 0.001 
2 0.02  - 0.005 - 0.001 0.04  - 0.005 - 0.001 
3 0.02  - - - 0.001 0.04 - 0.002 - 0.001 

UCD-CFS 
ECP-25OS1 

1 0.02  - - - 0.001 0.02  0.005 - - 0.001 
2 0.02  - - - 0.001 0.02  - - 0.005 0.001 
3 0.02  - 0.005 - - 0.02  - - - - 
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4.3.2.4 Antibiotic susceptibility phenotype of cells surviving exposure 

 4.3.2.4.1 Chlorhexidine digluconate - 5 minutes and 24 hours exposure 

after range of drying times 

	
A change in antibiotic susceptibility was considered clinically significant when the breakpoint 

according to the EUCAST (EUCAST, 2015) method was marked as resistant. There was 

one clinically significant change in antibiotic susceptibility phenotype after exposure to 

biocide residues of CHX (0.0049 mg/mL, surface dried 24h). This change was for 

tetracycline from sensitive to resistant (zone of inhibition = 0 mm) after 5 min exposure of 

isolate UCD-CFS ECP-25P5. Antibiotic susceptibility testing was not performed for 24h CHX 

exposure as all bacteria were inactivated (Table 4.3). CHX surface dried for 6, 12 and 168 

hours did not appear to consistently result in a clinical change in antibiotic susceptibility 

phenotype after exposure to CHX residues of 0.0047 mg/mL and 0.0075 mg/mL. All 

recorded zones of inhibition and breakpoint classifications can be viewed in the appendices 

(File name: Appendices > appendix one > Breakpoint-Table-EUCAST).  

 

 

4.3.2.4.1 Benzalkonium chloride - 5 minutes and 24 hours exposure 

after range of drying times 

	
There were a number of clinically significant changes in susceptibility phenotype in 6 (ATCC 

25922, UCD-CFS ECP-IB2, UCD-CFS ECP-13P5, UCD-CFS ECP-13P4, UCD-CFS ECP-

25P5 and UCD-CFS ECP-25OS1) out of 8 of the E. coli isolates exposed to BZC (Table 

4.9). Isolates UCD-CFS ECP-1L3 and UCD-CFS ECP-1L4 did not undergo any change in 

phenotype, therefore were not included in Table 4.9. However, all antibiotics susceptibility 

results are included the appendix. Five minutes exposure to BZC after 168 hours drying in a 

modified carrier test effected the most change including a shift from sensitive to resistant for 

antibiotics ampicillin, cefpodoxime, tetracycline, cephalothin, trimethoprim, trimethoprim-
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sulfamethoxazole and streptomycin. Bore et al. (2007) demonstrated that exposure to BZC 

resulted in decreased susceptibility to ciprofloxacin, chloramphenicol, naladixic acid, 

cefotaxime and ampicillin. Here, the isolate that demonstrated the most consistent pattern of 

phenotype change was UCD-CFS ECP-13P4, which had 7 incidences of shift from sensitive 

to resistant for antibiotics tetracycline, streptomycin, amoxicillin-clavulanic acid, 

trimethoprim-sulfamethoxazole and trimethoprim most commonly the shift involved 

trimethoprim-sulfamethoxazole  and trimethoprim.  

 

There were three occurrences of a shift from previously resistant to sensitive for isolates 

UCD-CFS ECP-IB2, UCD-CFS ECP-I3P5 and UCD-CFS ECP-25051 with antibiotics 

tetracycline, streptomycin, trimethoprim-sulfamethoxazole, trimethoprim, ampicillin, 

cefpodoxime and cephalothin (Table 4.9). Tetracycline crosses the outer membrane of 

Gram-negative bacteria through the OmpF and OmpC porin channels (Chopra et al., 1992; 

Schnappinger & Hillen, 1996) and accumulates in the periplasm where it is able to diffuse 

through the lipid bilayer. The energy depended process of uptake is controlled through the 

pH component of the proton motive force process (Nikaido et al., 1993; Schnappinger & 

Hillen, 1996; Ghai et al., 2018) BZC causes increased permeability, and disruption of 

membrane potential and electron transport chain. Therefore, it was hypothesised that after 6 

h drying, BZC concentration was high enough to cause substantial damage to bacterial cells, 

which results in alteration to the outer membrane allowing enhanced uptake of antibiotics 

such as tetracycline.
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Table 4.9: Clinically relevant changes in antibiotic susceptibility phenotype according to EUCAST breakpoint values for eight E. coli isolates 

before and after exposure to BZC (4.5 mg/mL; 5 min and 24 h) via a modified carrier test. 

  BZC 0 hours drying BZC 6 hours drying BZC 24 hours drying BZC 168 hours drying 

 
Exposure 
time 

5m 24h 5m 24h 5m 24h 5m 24h 

ATCC 25922 

Repeat: 1         

2       
AMP, 
CPD,TE,CF,W,SXT 

 

3         

UCD-CFS ECP-IB2 

1 TE,S,W,SXT    CPD    

2   IPM      

3         

UCD-CFS ECP-13P5 

1         

2    TE,S,SXT.W     

3         

UCD-CFS ECP-13P4 

1       SXT,W  

2   TE,S,SXT,W  AMC,W,SXT  SXT,W  

3   TE,S,SXT,W  SXT,W  SXT,W  

UCD-CFS ECP-25P5 

1         

2         

3       TE,S,SXT,W  

UCD-CFS ECP-25OS1 
1         

2 AMP,CPD,CF        

3  SXT,W       

Green text represents a change in phenotype from intrinsically resistant to clinically sensitive in accordance with EUCAST breakpoints 

 Red text represents a change in phenotype from clinically sensitive to clinically resistant in accordance with EUCAST breakpoint. Ampicillin (AMP), amoxicillin (AMC), 

imipenem (IMP), tetracycline (TE), trimethoprim (W), trimethoprim/sulfamethoxazole (SXT), streptomycin (S), cefpodoxime (CPD), cephalothin (CF)
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4.3.4 Effect of exposure to biocidal residues on efflux mechanisms 

Figure 4.7 and 4.8 show the change in relative fluorescence with or without the inclusion of 

an EPI following the addition of two concentrations of CHX or BZC at 10 min incubation. The 

figures are examples of only three of the isolates (ATCC25922, UCD-CFS ECP-IB2 and 

UCD-CFS ECP-13P5) that underwent efflux assays. All efflux experiment results can be 

found in the appendices (File name: Appendices > appendix two >Efflux histograms).  

With the addition of CHX or BZC at 0.00005 mg/mL, the relative fluorescence either remains 

minimal or decreases, inferring the extrusion of EthBr from within the cells, in turn 

suggesting the activation of efflux pump mechanisms. The inclusion of the EPI CCCP with 

CHX (0.00005 mg/mL) causes the level of fluorescence to rise (P=<0.0001; One-Way 

ANOVA; Graphpad PRISM8), confirming that efflux pumps were in fact responsible for the 

previously lower values. As CCCP has been found to work well with inhibition of the RND, 

MFS and SMR superfamilies due to its disruption of the PMF (Slipski et al., 2017), it is 

possible that these efflux systems may be responsible for the decrease in fluorescence 

following the addition of 0.00005 mg/mL CHX. The expression of MexXY (a homologue of 

the RND-type AcrAB pumps in E. coli) efflux systems (members of the RND superfamily) in 

P. aeruginosa have been linked to biocide exposure. Morita et al, (2003) found that the 

RND-type efflux pump MexCD-oprJ was induced by the addition of BZC (20 mg/L) and CHX 

(concentration not stated), allowing previously susceptible bacterial cells to grow in the 

presence of 1 mg/L norfloxacin. On the contrary, PaβN does not appear to work well 

(P=<0.0001; One-Way ANOVA; Graphpad PRISM8) to inhibit the efflux of EthBr at 0.00005 

mg/mL CHX, which would suggest that the primary pump activity it is not orchestrated by 

RND-type pumps such as the AcrAB-TolC efflux system, specifically AcrAB and AcrEF. The 

literature suggests that this EPI is a primary inhibitor of these (Lomovskaya et al, 2001; 

Misra et al., 2015; Olliver ET AL 2005; Kinaria et al., 2016). Although the RND superfamily is 

well documented and prolific in its involvement with antimicrobial resistance (Russel et al., 
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1993; Fralick, 1996) it is possible that other efflux pumps are active. Hassan et al. (2013, 

2015, 2018) have described how the Proteobacterial Antimicrobial Compound Efflux (PACE) 

family is abundantly present in Gram-negative bacteria. Of particular interest here is an 

active CHX efflux protein, “Acel”, Hassan et al. (2013, 2015, 2018) found that the over-

expression of the AceI efflux pump in E. coli resulted in significant increase of resistance to 

CHX. Furthermore, Hassan et al. (2013, 2015, 2018) found the EPI CCCP to be a reliable 

inhibitor of Acel efflux activity, therefore supporting the theory that Acel efflux pumps may be 

involved in the efflux activity observed in Figure 4.7 In order to confirm the source of efflux 

activity in the E. coli isolates in this study (Figures 4.7, 4.8) either specific pump targeted 

genetic analysis or whole genome sequencing could be undertaken.  

 

The findings presented in Figure 4.7 Illustrate a distinct difference between efflux 

involvement at high (0.002 mg/mL) and low (0.00005 mg/mL) concentrations of CHX 

exposure. The addition of the higher concentration of CHX 0.002 mg/mL resulted in a rise in 

relative fluorescence level, this is most noticeable for ATCC25922. The highest relative 

fluorescence value following the addition of CHX 0.002 mg/mL is 0.51 (Figure 4.7). It may 

be that at this concentration of CHX, changes in cell membrane permeability occur, inducing 

cytoplasmic leakage, meaning that Ethbr that is bound to nucleic acids is able to fluoresce 

outside of the cell, resulting in an increase of relative fluorescence. Here, inactivation 

kinetics experiments show that CHX at 0.002 mg/mL caused a 1.67 Log10 reduction in viable 

cells after 5 min CHX exposure meaning that 96% of the starting inoculum was damaged 

enough to prevent replication. (Section 4.3.4.3.) It is also possible that structural changes in 

the outer membrane as a result of either stress or damage impinge the activity of efflux 

pumps (Castillo et al, 2006; Knapp et al, 2016). Kuyyakanond et al. (1992) demonstrated 

that membrane disruption was the principle damaging effect that CHX had on E. coli K12. 

However, CHX does not affect ATP hydrolysis even at bactericidal concentrations 
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(Kuyyakanond et al.,1992), and as such it is unlikely that the increase in fluorescence is due 

to the disabling of ATP dependant efflux pumps such as those belonging to the MFS family. 

 

When we observe the graphs demonstrating the inclusion of PaβN and 0.002 mg/mL CHX, 

fluorescence is clearly higher (P=<0.0001; One-Way ANOVA; Graphpad PRISM8) than that 

when an EPI is included. Kinana et al. (2016) described in depth the process of influx and 

efflux of PaβN and compared it to three homologs in the context of the inhibition of nitrocefin 

efflux in E. coli. PaβN works as a competitive inhibitor of substrates of the AcrAB-TolC efflux 

systems. It binds to promoter regions of the pump blocking the way for other molecules to be 

extruded. Kiniana et al. (2016) found that PaβN has a modest affinity to AcrB pumps and is 

pumped out rapidly when it interacts with them. It has been reported that two homologs of 

PaβN (Ala β-naphthylamide, Arg β-naphthylamide) act as efflux stimulators in the case of 

nitrocefin. It was suggested that as these molecules are effluxed so rapidly (Lomovskaya et 

al., 2001, Kiniana et al., 2016) they “sweep off” other substrates with them. Although this 

explanation cannot be conclusively applied to our findings on the efflux relationship of CHX 

with PaβN, it might provide a starting point for further investigation. These observations of 

the difference between EPI inclusion at the higher concentration of CHX could not be seen 

with exposure to BZC (Figure 4.8).  

 

Figure 4.8 shows the change in relative fluorescence with or without the inclusion of an EPI 

following the addition of two concentrations BZC at 10 min incubation. Here, it was observed 

that PaβN is not an effective inhibitor of efflux pumps that are active during the presence of 

BZC at 0.00005 mg/mL and 0.002 mg/mL. Again, this would suggest that the primary pump 

activity it is not orchestrated by RND-type pumps such as the AcrAB-TolC efflux system  

(Lomovskaya et al, 2001, Misra et al., 2015, Olliver et al., 2005, Kinaria et al., 2016). CCCP 

does significantly inhibit efflux pump activity at 0.00005 mg/mL BZC. As was demonstrated 

with CHX (0.00005 mg/mL and 0.002 mg/mL), there is a distinct difference in efflux activity 
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at the low (0.00005 mg/mL) and high (0.002 mg/mL) concentration of BZC tested. As BZC is 

also a membrane active biocide, changes in membrane permeability and leakage of EthBr 

may also explain the difference in relative fluoresce values observed when comparing BZC 

concentration. We have previously seen a loss of resistance to tetracycline, streptomycin, 

trimethoprim-sulfamethoxazole and trimethoprim for UCD-CFS ECP-13P5 when exposed to 

BZC for 24 hours (6h surface dried), This was explained by changes in cell membrane 

permeability which would support the findings of the efflux assay. 

 

Figure 4.9 demonstrates a change in efflux activity after previous exposure (5min) of E. coli 

to CHX (surface dried for 24 h, 0.0047 mg/mL). Exposure was undertaken through the 

modified carrier test. The relative fluorescence level of UCD-CFS ECP-IB2 spiked with the 

addition of CHX at both high and low concentrations. The difference in efflux activity seen in 

Figure 4.7, following the addition of 0.00005 mg/mL and 0.002 mg/mL, was no longer 

observed. It can be seen that exposure to residual CHX levels for 5 min incited a change in 

either the activity of E. coli efflux phenotype or the biochemical ability for the mechanisms to 

perform efficiently. In the first 10 min incubation of the efflux assay, normal efflux levels were 

demonstrated. The addition of CHX at even low (0.00005 mg/mL) concentration appeared to 

have a negative effect on efflux activity in UCD-CFS ECP-IB2 (Figure 4.9). Relative 

fluorescence values are generally higher for isolates that have been exposed to CHX (carrier 

test, 0.0047 mg/mL) before undergoing the efflux assay (Figure 4.7.). The reasons for this 

are inconclusive. However, it may be suggestive of accumulative damage and change in 

membrane permeability after continuous exposure of the biocide.  



	124	 	

 

 

Figure 4.7: Relative fluorescence values of E. coli isolates ATCC 25922, UCD-CFS ECP-IB2 and UCD-CFS ECP-13P5 for 60 min with the 

addition of CHX (0.00005 mg/mL or 0.002 mg/mL) at 10 minutes incubation.            CHX 0.00005 mg/mL           CHX 0.00005 mg/mL + EPI 

          CHX 0.002 mg/mL              CHX 0.002 mg/mL +EPI 
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Figure 4.8: Relative fluorescence values of E. coli isolates ATCC 25922, UCD-CFS ECP-IB2 and UCD-CFS ECP-13P5 for 60 min with the 

addition of BZC (0.00005 mg/mL or 0.005 mg/mL) at 10 minutes incubation.            BZC 0.00005 mg/mL           BZC 0.00005 mg/mL + EPI 

          BZC 0.002 mg/mL              BZC 0.002 mg/mL +EPI 
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Figure 4.9: Relative fluorescence values of previously exposed E. coli isolates UCD-CFS ECP-IB2 and UCD-CFS ECP-13P5 for 60 min with 

the addition of CHX (0.00005 mg/mL or 0.002 mg/mL) at 10 minutes incubation.            CHX 0.00005 mg/mL           CHX 0.00005 mg/mL + EPI 

          CHX 0.002 mg/mL              CHX 0.002 mg/mL +EPI 
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4.3.5. Effect of exposure to biocidal residues on the stability of phenotypic 

change and inactivation kinetics 

4.3.5.1. Choice of isolates to further study 

In all instances after exposure, although the Log10 reductions were substantial, survivors 

were recoverable (Table 4.10). Isolates UCD-CFS ECP-13P5 and UCD-CFS ECP-IB2 

were selected for further investigation due to their ability to recover and grow after 

exposure to 5 min CHX (dried on surface for 24 and 168 hours) (Section 4.3.2.1). These 

isolates were also selected as they demonstrated changes to CHX in their susceptibility 

phenotype; in the case of UCD-CFS ECP-IB2 there was an 8-fold increase in MIC and a 

16-fold increase in MBC (Section 4.3.2.2). Both isolates were subjected to a modified 

carrier test and survivors were kept for further testing. 	
 

Table. 4.10 Log10 reduction after 5 min CHX exposure (n=2). 

	
 

 

 

 

 

 

 

 

 

Changes in MIC and MBC phenotype were observed in recovered cultures following 

exposure to CHX (Table 4.11). The most notable change was an 8-fold increase in MIC 

observed for isolate UCD-CFS ECP-IB2 after 5 min exposure to CHX (surface dried for 168 

  
Log10 reduction 

EXPOSURE TIME: 5 minutes 

 Repeats 
24 

0.0047 mg/mL  

168 

0.0075 mg/mL 

UCD-CFS ECP-1B2 
1 5.49 5.44 

2 4.76 5.13 

UCD-CFS ECP-13P5 
1 5.22 4.48 

2 5.03 5.62 



	128	 	

hours before microbial exposure). There were also instances of MIC and MBC decrease, 

which was not seen with CHX exposure in section 4.3.2.2. 
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Table 4.11 MIC, MBC and fold changes after CHX exposure (n=2). 

 

	
	

  MIC (mg/mL) MBC (mg/mL) 

  EXPOSURE TIME: 5 minutes 

 

R
ep

ea
ts

  

Baseline 

24 

0.0047 

mg/mL 

168 

0.0075 

mg/mL 

Baseline 

24 

0.0047 

mg/mL 

168 

0.0075 

mg/mL 

UCD-CFS ECP-1B2 
1 0.02 0.04 (4-fold) 0.16 (8-fold) 0.02 0.02 0.04 (2-fold) 

2 0.02 0.01 0.04 (4-fold) 0.02 0.02 0.02 

UCD-CFS ECP-13P5 
1 0.02 0.005 0.02 0.02 0.005 0.01 

2 0.02 0.002 0.08 (4-fold) 0.02 0.005 0.04 (2-fold) 
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4.3.5.2. Phenotype stability 

In order to ascertain whether or not a change in susceptibility was transient or permanent, 

the MIC, MBC and the antibiotic susceptibility was assessed for stability over time following 

exposure to 0.002 mg/mL CHX. Passages were performed successively over a ten-day 

period.  

 

Figure 4.10 and 4.11 depict changes in MIC and MBC values over the course of 10 

passages with or without CHX. There was no difference in MIC when compared to the pre-

exposure value. After one passage, UCD-CFS ECP-13P5 demonstrated a 8-fold increase 

in MBC (from 0.02 to 0.16 mg/mL CHX) when kept in the presence of CHX. However, when 

the isolate was passaged without the biocide the MIC returned to the pre-exposure value 

(0.02 mg/mL) (Figure 4.10). This demonstrates that the phenotypic change in MIC was 

transient. Forbes et al. (2014) found no change in MIC and MBC after CHX exposure. 

Wesgate et al. (2016) also found no stable changes in MIC or MBC after E. coli exposure 

to CHX 0.0005 mg/mL. All changes to MBC for UCD-CFS ECP-13P5 were unstable and by 

passage 10 the MBC returned to the pre-exposure value (0.02 mg/mL) (Figure 4.11). 

Isolate UCD-CFS ECP-1B2 also demonstrated an 8-fold increase in MBC after one 

passage in the presence of CHX. Changes in MIC and MBC were not stable and returned 

to the pre-exposure value after 10 passages in broth only. 

 

Table 4.12 presents clinically relevant changes in antibiotic susceptibility (UCD-CFS ECP-

13P5) after ten passages in CHX (24h surface dried 0.0047 mg/mL or 168 h surface dried 

0.0075 mg/mL) or in broth only. Changes in antibiotic susceptibility (from sensitive to 

resistant according to EUCAST (2014) that were stable over ten passages were 

demonstrated for amoxicillin-clavulanic acid and isolate UCD-CFS ECP-13P5. Such 
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changes were not observed previously in section 4.3.2.3 where antibiotic susceptibility 

remained the same (sensitive) after CHX exposure. According to a report from Public 

Health Wales Healthcare Associated Infection, Antimicrobial Resistance & Prescribing 

Programme (HARP) on antimicrobial resistance in Wales from 2008-2017 (Heginbothom et 

al., 2018) there was a statistically significant increase in resistance rates for amoxicillin-

clavulanic acid between 2016 and 2017 which would suggest that resistance to this 

antibiotic is an increasing issue. A transient change from sensitive to resistant was 

observed for cefoxitin (initial exposure) and imipenem at passage 5 after CHX exposure 

(168 h surface dried 0.0075 mg/mL). Carbapenems such as imipenem are usually reserved 

for severe infections and resistance is less prevalent, in England 0.1% of bloodstream 

infections were as a result of carbapenem resistant E. coli in 2017 (PHE, 2018). Resistance 

to carbapenems due to the presence of CTX-M15-type ESBL producing bacteria has been 

previously reported (Liang et al., 2018). There were also transient changes in MBC for 

UCD-CFS ECP-13P5 at passage one in the presence of CHX (Figure 4.10). Gram-

negative bacteria alter cell membrane potential and porin size when exposed to certain 

stressors (Oliver et al., 2002; Koebnik et al., 2000), which can prevent antibiotics from 

reaching their target sites. As previously discussed, CHX targets and causes changes to 

the cell membrane. The reduction in membrane permeability and the consequential IMP 

resistance may be an adaption of UCD-CFS ECP-13P5 to the sub lethal concentration of 

CHX.  

 

Table 4.12 shows clinically relevant changes in antibiotic susceptibility (UCD-CFS ECP-

1B2) after ten passages in CHX (24 h surface dried 0.0047 mg/mL or 168 h surface dried 

0.0075 mg/mL) or in broth only. Previously (section 4.3.2.4.), no change to antibiotic 

susceptibility was seen after initial exposure of UCD-CFS ECP-IB2 to CHX. Here changes 

to resistant were observed for amoxicillin-clavulanic acid after initial exposure (168 h 

surface dried CHX 0.0075 mg/mL). The resistance observed for amoxicillin-clavulanic acid 
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was no longer present after passage one however it re-appeared after passage 5 implying 

that this change was caused by physiological mechanisms of adaption such as porin 

regulation and efflux expression (Fernández & Hancock, 2019) and can therefore be 

switched on and off in an adaptive response to environmental stressors. Stable changes 

(from susceptible to resistant) were observed for ampicillin, amoxicillin-clavulanic acid, 

cefpodoxime and cephalothin from passage 5 until passage 10. These changes were 

observed both in the presence of CHX (0.002 mg/mL) and when passaged in broth only. 

This suggests that these changes are due to mutations. Mutational resistance can occur for 

both porin-encoding genes and efflux pumps (Lou et al., 2011; Fernández & Hancock, 

2019). 

 

Previously (section 4.3.2.4.), no change to antibiotic susceptibility was seen after initial 

exposure of UCD-CFS ECP-IB2 to CHX. Cefpodoxime is a third-generation cephalosporin, 

PHE report that 13% of bloodstream infections in England (2017) were as a result of 

carbepenem resistant E. coli (PHE, 2018). The WHO global report on surveillance of 

antimicrobial resistance (2014) states that E. coli resistance to third-generation 

cephalosporin was reported in Africa, The Americas, Eastern Mediterranean region, 

Europe, South-East Asia and the Western Pacific. Oliver et al. (2002) demonstrated that 

low-level resistance to cefpodoxime in E. coli might be due to essential changes in major 

outer membrane proteins (OMP), which in turn lead to changes in porin regulation. This 

was shown to confer resistance phenotypes regardless of whether or not the isolate was an 

ESBL producer (Oliver et al., 2002). Fernández & Hancock (2019) describe how a synergy 

between efflux and low-permeability of the cell envelope in E. coli provide excellent 

defences against antimicrobials. Table 4.13 presents studies that highlight examples of 

efflux pump activity and incidences of resistance to antibiotics relevant to this thesis.  UCD-

CFS ECP-1B2 demonstrated transient resistance to ciprofloxacin after passage 5 in broth 

only. Ciprofloxacin resistance was demonstrated in E. coli due to the up-regulation of the 
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YdhE (MATE) efflux pump (Table 4.13) (Morita et al.,1988). Other fluroquinolones are 

shown to be effluxed by pumps from the ABC, MFS, and RND families (Table 4.13), 

suggesting that these efflux pumps may be active after previous exposure to CHX (24 h 

surface dried 0.0047 mg/ml and 168 h surface 0.0075 mg/mL). As seen in Figure 4.9 after 

previous 5 min exposure to CHX (24h surface dried 0.0047 mg/mL) efflux activity appeared 

to cease where it was previously present (Figure 4.7). This would suggest that efflux may 

not be responsible for the changes in antibiotic susceptibility for UCD-CFS ECP-1B2 seen 

in this section. On the other hand, efflux activity did occur in UCD-CFS ECP-13P5 after 

previous exposure to CHX (24h surface dried 0.0047 mg/mL), indicating that increased 

efflux activity may be the cause of changes in antibiotic susceptibility towards amoxicillin-

clavulanic acid, cefoxitin and Imipenem (Table 4.11).  
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Figure 4.10: Average MIC and MBC values of UCD-CFS ECP-13P5 before and after 1, 5 and 10 passages in CHX (n=3).  

Standard deviation of the mean is shown  
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Figure 4.11: Average MIC and MBC values of UCD-CFS ECP-1B2 before and after 1, 5 and 10 passages in CHX (n=3).  

Standard deviation of the mean is shown  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Baseline Post

exposure

Passage 1 Passage 5 Passage

10

M
IC

 (m
g/

m
L) MIC

Broth only

24h dried CHX

(0.0047mg/mL)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Baseline Post

exposure

Passage 1 Passage 5 Passage 10

M
IC

 (m
g/

m
L) MBC Broth only

24h dried CHX

(0.0047mg/mL)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Baseline Post

exposure

Passage 1 Passage 5 Passage

10

M
IC

 (m
g/

m
L) MIC

Broth only

168h dried CHX

(0.0075mg/mL)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Baseline Post

exposure

Passage 1 Passage 5 Passage 10

M
IC

 (m
g/

m
L) MBC

Broth only

168h dried CHX

(0.0075mg/mL)



	136	 	

Table 4.11. Clinically relevant changes in antibiotic susceptibility phenotype according to EUCAST breakpoint values for E. coli isolate 

UCD-CFS ECP-13P5 before and after initial exposure to, and passage in, CHX or broth only (20 mg/mL; 5 min after CHX surface drying 

for 24 and 168 h) via a modified carrier test. 

  
CHX 24 hours drying 
(0.0047mg/mL) 

CHX 168 hours drying 
(0.0075mg/mL) 

  CHX BROTH ONLY CHX BROTH ONLY 

 
Exposure 
time 

5m 5m 5m 5m 

INITIAL EXPOSURE 
Repeat: 1 AMC - AMC, FOX - 

2 AMC - AMC, FOX - 

PASSAGE 1 
1 AMC * AMC * 

2 AMC AMC AMC AMC 

PASSAGE 5 
1 AMC AMC AMC AMC 

2 AMC AMC AMC, IPM AMC 

PASSAGE 10 
1 AMC AMC AMC AMC 

2 AMC AMC AMC AMC 

- Not tested * No change in antibiotic susceptibility observed 

Red text represents a change in phenotype from clinically sensitive to clinically resistant in accordance with EUCAST breakpoints 

amoxicillin/clavulanic acid (AMC), imipenem (IMP), cefoxitin (FOX) 
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Table 4.12. Clinically relevant changes in antibiotic susceptibility phenotype according to EUCAST breakpoint values for E. coli isolate 

UCD-CFS ECP-1B2 before and after initial exposure to and passage in CHX or broth only (20 mg/mL; 5 min after CHX surface drying 

for 24 and 168 h) via a modified carrier test. 

 

  
CHX 24 hours drying 

(0.0047mg/mL) 
CHX 168 hours drying 

(0.0075mg/mL) 
  CHX BROTH ONLY CHX BROTH ONLY 
 Exposure time 5m 5m 5m 5m 

INITIAL EXPOSURE 
Repeat: 1 * - AMC - 

2 * - AMC - 

PASSAGE 1 
1 * * * AMC 

2 * AMC AMP AMC 

PASSAGE 5 
1 * AMP,CIP,CPD,CF AMP,AMC,CPD,CF AMP,AMC,CIP,CPD,CF 

2 * AMP,AMC,CIP,CPD,CF AMP,AMC,CPD,CF AMP,AMC,CIP,CPD,CF 

PASSAGE 10 
1 CF AMP,AMC,CPD,CF AMP,AMC,CPD,CF AMP,AMC,CPD,CF 
2 CF AMP,AMC,CPD,CF AMP,AMC,CPD,CF AMP,AMC,CPD,CF 

- Not tested * No change in antibiotic susceptibility observed 

 Red text represents a change in phenotype from clinically sensitive to clinically resistant in accordance with EUCAST breakpoints	
Ampicillin (AMP), amoxicillin/clavulanic acid (AMC), cefpodoxime (CPD), cephalothin (CF), ciprofloxacin (CIP)
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Table 4.13. Examples of efflux pump activity and incidences of antibiotic resistance  

FAMILY PUMP 
RESISTANCE 

IDENTIFIED 
REFERENCE 

ABC MacAb-TolC Fluoroquinolones 
Garrido et al., 1988 

Lomovskaya et al., 1996 

MFS 
QepA, QepA2 Fluoroquinolones 

Cattoir et al., 2008 

Yamane et al., 2007 

MdfA Fluoroquinolones Nilsen et al., 1996 

MATE 
NorE Fluoroquinolones Yang et al., 2003 

YdhE (Ciprofloxacin) Morita et al., 1988 

RND 
AcrAB-TolC 

β-Lactam 

Fluoroquinolone 

Fralick, 1996 

Russel et al., 1993 

AcrEF-TolC Fluoroquinolone Russel et al., 1994 

 

4.3.5.3 Inactivation kinetics 

Following the modified carrier test, UCD-CFS ECP1B2 and UCD-CFS ECP-13P5 underwent 

inactivation kinetics assays. This was to ascertain whether previous exposure to CHX 

residue had an effect on the rate of re-introduced microbial reduction over time. UCD-CFS 

ECP-13P5 and UCD-CFS ECP-1B2 were exposed to CHX at 20 mg/mL, 0.007 mg/mL or 

0.002 mg/mL. These concentrations were chosen to represent the in-use concentration (20 

mg/mL), the concentration found left on a surface (0.006 ± 0.002 mg/mL; Section 4.3.1.1) 

and the concentration below the MIC value (0.002 mg/mL) in order to exert a selective 

pressure but not necessarily kill all microbial cells.  
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When exposed to 20 mg/mL for 30 s no viable bacteria were recovered for UCD-CFS ECP-

13P5 or UCD-CFS ECP- 1B2 Figures 4.11 and 4.12). UCD-CFS ECP-13P5 exposure to 

0.007 mg/mL CHX resulted in 2.56 ± 0.15 Log10 reduction after 30 s. There was no 

significant difference (P = <0.0001; T-Test; Graphpad PRISM8) in Log10 reduction between 

30 s and 60 min exposure. There was a 1.67 Log10 reduction in viability after 30 s exposure 

to 0.002 mg/mL CHX. This loss of viability did not increase with a 5 min contact time. There 

was no statistical difference (P = <0.0001; T-Test; Graphpad PRISM8) in efficacy of CHX at 

20 mg/mL or 0.002 mg/mL between UCD-CFS ECP-13P5 previously exposed to CHX 

residues (0.0047mg/mL or 0.0075mg/mL). However, pre-exposure to CHX dried on surface 

for 24 h and 168 h rendered the isolates more susceptible to 0.007 mg/mL CHX after 30 s. 

This may be explained by accumulative damage following repeated exposure of CHX, 

rendering them particularly susceptible to CHX. As 0.007 mg/mL CHX is a higher 

concentration than the MIC, the initial reduction followed by tolerance may be explained in 

terms of population persistence (Figure 4.11) (Balaban et al, 2019). This explanation may 

be investigated further through phenotypic microarrays in order to ascertain whether or not 

changes in metabolic regulation are present. When comparing these findings to those in 

section 3, it can be postulated that the slowing down in lag phase and the decrease of 

specific growth rate may be the decrease in metabolic processes that are usually attributed 

to population persistence (Brauner et al, Balaban et al, 2019). 
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Figure 4.12: Inactivation kinetics of exposed and non-exposed E. coli isolate UCD-CFS ECP-13P5 in the presence of CHX (20 mg/mL, 

0.007 mg/mL and 0.002 mg/mL) over a 5 min contact time. 
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Figure 4.13: Inactivation kinetics of exposed and non-exposed E. coli isolate UCD-CFS ECP-1B2 in the presence of CHX (20mg/mL, 

0.007mg/mL and 0.002mg/mL) over a 5 minute contact time. 
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4.3.6. Exploring the effect of exposure to biocide residues on gene transfer 

by conjugation 

4.3.6.1. Choice of Isolates to further study  

	
Isolate UCD-CFS ECP-13P5 was selected for further investigation due to its ampicillin 

resistance (Section 3.3.5) and its ability to recover and grow after exposure to 5 min CHX 

(dried on surface for 24 and 168 h) (Section 4.3.2.1). The recipient strain E. coli J35R was 

chosen for its chromosomally encoded rifampicin resistance. 	

	

4.3.6.2. Conjugation assay  

	
Table 4.14 shows transfer ratios of ampicillin resistance from UCD-CFS ECP-13P5 to J35R 

before and after CHX exposure. UCD-CFS ECP-13P5 showed an ampicillin resistance 

transfer ratio in the range of 1.34 x 10-5. The presence of 0.00005 mg/mL CHX did not 

demonstrate a statistically significant change in rate of transfer (P=0.730; T-Test; Graphpad 

PRISM8). Jutkina et al. (2018) demonstrated that 0.00002 mg/mL CHX increased transfer 

frequency rates of sulfamethoxazol resistance in E. coli. An increase in conjugative transfer 

of ampicillin resistance in E. coli has also been reported after exposure to sub-inhibitory 

concentrations of chlorine, chloramine and hydrogen peroxide (Zhang et al., 2017).  

 

The presence of 0.002 mg/mL CHX caused a statistically significant decrease in conjugative 

transfer (P=0.009 T-TEST; Graphpad PRISM8). Conjugation appeared to stop altogether 

with a rate of transfer of 0 (Table 4.14). The halting of conjugative transfer might be 

explained by the effect that membrane active CHX has on the synthesis conjugative 

apparatus (Masaudi et al., 1991; Pearce et al., 1999). However, it was noted that the 
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number of donors and recipients also decrease after exposure at this concentration (0.002 

mg/mL). The number of donors decreased from 7.86 Log10 to 4.60 Log10 which amounts to a 

3.26 Log10 loss after exposure. The number of recipients decreases from 8.51 Log10 to 4.70 

Log10, a 3.81 Log10 loss. As conjugation relies upon cell-cell contact, fewer cells will result in 

less cell mating. Therefore the stopping of conjugative transfer may be due to the loss of 

viable cells through CHX exposure. This experiment was performed on growing cells as 

outlined by Lambrecht et al.  (2017). It has been suggested and demonstrated for E. coli in 

relation to cefotaxime, that bacterial conjugation is defined by the phase of growth that they 

are undertaking; non-growing cells usually demonstrate higher rates of transfer than growing 

cells (Lampokowska et al., 2008; Headd & Bradford, 2018). Here, we used exponential 

growing cells, which might have impinged on conjugation efficiency. 
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Table 4.14 Log10 values of donors and recipients before and after mating and the rate of conjugative transfer (n=3). 

  

Number (Log10) of 

donors in 

1 mL 

Number (Log10) of 

recipients in 1 mL 
   

  

Before 

mating 

After 

mating 

Before 

mating 
After mating 

Donor to 

recipient ratio 

Number (Log10) of 

transconjugants in 

1 mL 

Rate of transfer 

No 

exposure 7.36 7.04 8.07 7.70 1:5 2.79 1.3417E-05 

0.00005 

mg/mL 7.86 8.72 8.51 8.53 1:5 3.58 1.55894E-05 

0.002 

mg/mL 7.86 4.60 8.51 4.70 1:5 0.00 0 



	145	 	

4.4 Conclusion 

	
The concentration of biocide that was recovered after drying was 98.8% lower than 

that initially applied. The significance of this result becomes apparent as the 

average remaining concentration (0.006 ± 0.002 mg/mL) was the same as the 

average MIC of the isolates tested 0.006 ± 0.002 mg/mL). This allowed for 

bacterial survivors (UCD-CFS ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS ECP-1B2, 

UCD-CFS ECP-13P5, UCD-CFS ECP-13P4) after a 5 min (Table 4.2) exposure 

CHX at a range of residual concentrations (0.0049-0.0097 mg/mL) but not after 24 

hours (Table 4.3). These results obtained after 5 min CHX exposure were not 

consistent for each experimental repeat. Variability could also be seen for 

concentration on the surface after drying (Figure 4.5). However, the variations in 

bacterial recovery and CHX concentration were random and cannot be explained 

by the decrease in concentration over time as shown by pearsons correlation 

analysis (P=0.62; Pearsons correlation analysis, r
2

=0.07; Graphpad PRISM8). The 

variance of the concentration recovered after 0-168 hours is indicative that there is 

a potential for failure of a biocide after application in-situ. The average 

concentration of CHX recovered from the surface between 0-168 hours drying 

(0.006 ± 0.002 mg/mL) was lower than the ECOFF value (0.064 mg/mL) obtained 

by Morissey et al. (2018), indicating that only 1.1% of E. coli isolates included in the 

study would not survive treatment of 0.006 mg/mL CHX. Furthermore, the average 

MIC value for the ECOFF study was 0.04 mg/mL. This encompasses 36.1% of the 

isolates studied, meaning these would also survive in the event of a residual 

surface concentration of 0.006 mg/mL as demonstrated in this chapter. The 

average CHX concentration that was recovered on the surface (0.006 ± 0.002 

mg/mL) was above the MSC-MICsusc range (Table 3.4; Figure 3.8; Figure 3.9) 

for the two isolates analysed (UCDCFS ECP-1L3, 0.0014-0.002 mg/mL and UCD-
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CFS ECP-1B2, 0.00005-0.005 mg/mL). However, both of these isolates 

demonstrated survival after 5 min exposure to CHX 0.0075 mg/mL (surface dried 

168 h) (Table 4.2). Furthermore 0.0075 mg/mL is within the MICsusc to MICres 

concentration range for both isolates (0.005-0.02 mg/mL). It has been discussed 

that at this higher range of concentrations, there is a stronger selection pressure, 

which may result in inactivation of susceptible sub-populations and the persistence 

of more tolerant cells (Figure 4.3c). The possibility of persistent cells was reflected 

in the results from CHX inactivation kinetics (Section 4.3.5.3) where a decrease in 

viable cells of 1.67 Log10 was demonstrated after exposure of UCD-CFS ECP-13P5 

and UCD-CFS ECP-1B2 to CHX 0.002 mg/mL, followed by no further decrease but 

apparent persistence (Figure 4.11; Figure 4.12).  

 

Exposure to residual levels of CHX (0.0049 mg/mL, 0.0097 mg/mL, 0.0047 mg/mL 

and 0.0075 mg/mL) resulted in elevated MIC and MBC values. The elevated MIC 

values obtained (Table 4.6) were higher than the average concentration of CHX 

found on surface (0.006 mg/mL). The determination of MIC values is an indicator of 

the ability for a biocide to alter the bacterial phenotype; the MBC is a more 

significant indication of the lethality of a biocide (Maillard & Denyer, 2009). No 

increases in MIC or MBC values were observed after residual BZC exposure 

(Table 4.8; Table 4.9). Instead, decreases in MIC and MBC values were 

demonstrated, possibly attributed to a cellular damage or the fitness cost of 

adaption (McBain et al., 2004). McBain et al. (2004) showed that when E. coli 

demonstrated triclosan resistance, it also demonstrated an increase in 

susceptibility to CHX. The reasons for this were inconclusive but it was surmised 

that bacteria underwent transient physiological changes during exposure to 

triclosan that rendered them more susceptible to CHX. Cross-susceptibility was 

also demonstrated with E. coli after repeated exposure to CHX, increased 

susceptibility to ciprofloxacin and ampicillin were observed (Forbes et al., 2019). 
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Antibiotic susceptibility changes were observed after one exposure to residual 

concentrations of CHX (0.0047 & 0.0075 mg/mL) for isolates UCD-CFS ECP-13P5 

and UCD-CFS ECP-1B2 (Table 4.11. & Table 4.12) from susceptible to resistant 

for amoxicillin-clavulanic acid and cefoxitin. Changes in amoxicillin-clavulanic acid 

susceptibility were stable once appeared for UCD-CFS CEP-13P5 and appeared 

both in the presence of CHX (0.002 mg/mL) and when passaged in broth only. 

These stable changes of decreased susceptibility are suggestive of the selection of 

mutations that render the isolate more tolerant (Lou et al., 2011; Fernández & 

Hancock, 2019). Conversely, another type of susceptibility change was 

demonstrated, where amoxicillin-clavulanic acid resistance was observed after the 

first exposure to CHX (0.0075 mg/mL) but disappeared until passage 5 where it 

reappeared and maintained presence until passage 10, indicating that this change 

in antibiotic resistance phenotype was as a result of a transient physiological 

adaptation. These data imply that residual concentrations of CHX can induce 

changes in antibiotic susceptibility (from sensitive to resistant) that are mediated 

through selection of mutation and transient adaptive physiological changes. 

 

There were distinct differences in efflux activity between high and low 

concentrations of CHX and BZC (Figure 4.7, Figure 4.8). High efflux activity was 

observable at the lower concentrations of CHX and BZC only (0.00005 mg/mL). 

CCCP appeared to be a good indicator of CHX mediated efflux activity for 

ATCC25922, UCD-CFS ECP-13P5 and UCD-CFS ECP-1B2. The likelihood of a 

recently discovered CHX efflux pump AceI, a member of the PACE super family 

was discussed as CCCP was proven to work as a successful indicator of this pump 

(Hassan et al., 2013; 2015; 2018). PAβN was not a good inhibitor of efflux pump 

activity of CHX or BZC which lead to the conclusion that RND efflux pumps were 

most likely not the primary source of efflux activity (Lomovskaya et al, 2001, Misra 



	148	 	

et al., 2015, Olliver ET AL 2005, Kinaria et al., 2016). The presence of 0.002 

mg/mL CHX and BZC efflux decreased dramatically. This was attributed to 

changes in the cell membrane and the possible leakage of EthBr due to structural 

cell damage. This may be supported by the previous finding of the loss of 

resistance to tetracycline, streptomycin, trimethoprim and after residual BZC 

exposure. The residual concentration of BZC left on a surface after drying was not 

determined; it is possible that this concentration is similar to the high concentration 

used in the efflux study (0.002 mg/mL). Pre-exposure to CHX dramatically changes 

efflux activity of UCD-CFS ECP13P5 and UCD-CFS ECP-1B2 via the efflux assay, 

which presents a second CHX challenge. There was no longer efflux activity at 

0.00005 mg/mL CHX, the reasons for this were inconclusive but as it is known that 

CHX is a membrane active biocide (Maillad and Denyer 2002). Accumulative 

damage to the bacterial cell membrane may be preventing the efflux pumps from 

working. It was previously outlined (Section 4.3.5.3) that after 30s exposure to 

0.007 mg/mL CHX there was a reduction in viable cells of 2.56 ± 0.15 Log10. No 

further reduction was seen after 60 min exposure. 0.007 mg/mL is close to the 

average concentration of CHX recovered from the surface (0.006 ± 0.002 mg/mL), 

therefore the loss of efflux could be due to the loss of cell viability after two 

successive exposures (starting inoculum was ≈ 8.00Log10). Viable counts were not 

performed after exposure before the efflux assay was performed, for this reason 

the explanation is inconclusive.  

 

The propensity for biocides to induce the transfer of plasmid-mediated resistance is 

well documented (Zhang et al., 2017; Jutkina et al., 2018). This study aimed to 

investigate the difference of effect between low (0.00005 mg/mL) and high (0.002 

mg/mL) residual concentrations of CHX. There was a difference in the effect of 

high and low residual concentrations of CHX on conjugal transfer of ampicillin 
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resistance from isolate UCD-CFS ECP-13P5. However, this difference could not be 

attributed to the pressures of the higher concentration of CHX alone as it was 

unclear whether the halting of conjugation was in part down to the loss of viable 

cells and therefore the loss of cell-to-cell contacts. It is possible that 0.002 mg/mL 

CHX damages conjugal apparatus in turn leading to a decrease in conjugal 

transfer, but this is currently inconclusive. 

 

From the data obtained in this section it appears that the experimental design is a 

good representation of the in-situ circumstances of biocidal application and the 

estimation of residual concentrations left on surfaces. For example, in this study 1 

mL of 20 mg/mL solution of standard CHX or 0.45 mg/mL BZC was first added, 

then immediately removed from a glass surface. In true to life circumstances, firstly 

the product would most likely be applied using a cloth or mop, which means that 

the liquid, including the biocide will be absorbed and removed from the surface 

rapidly. Moreover, a biocidal product based upon active CHX or BZC would be 

formulated with a number of other compounds including preservatives and 

surfactants. Susceptibility testing to biocides is usually performed in aqueous 

solutions containing only the biocide active. It is suggested that this might lead to 

an over-estimation of the real to life outcomes of biocides impact to microbial 

susceptibility (Forbes et al., 2019).  

 

The next section will look further into physiological changes might lead to the 

changes in MIC, MBC, antibiotic susceptibility and efflux resistance phenotypes 

that have been observed in this section and will aim to understand how metabolic 

regulation is linked to these changes.  
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CHAPTER 5: CHANGES IN METABOLIC 

REGULATION AS A RESULT OF EXPOSURE 

TO CHX RESIDUAL CONCENTRATIONS  
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5.1. Assessing CHX Mediated Changes in E. coli 

Metabolism Using the Phenotypic Microarray 

5.1.1. Information obtainable through the “Omics” cascade  

	
The “omics” cascade (Figure 5.1), as described by (Dettmer et al., 2007) depicts 

the associations of the genome, transcriptome, proteome and the metabolome. 

The term “omics” denotes a global assessment of a group of molecules (Hasin et 

al., 2017).  

Whilst genetics studies focus on single genes, genomics investigations delve into 

whole genomes. These results give an insight into the possibilities of bacterial 

phenotype dependent on the presence of certain genes.  However, the presence of 

a gene does not always confer a phenotype.  The transcriptome is the complete set 

of RNA transcripts that are produced by the genome, under specific circumstances. 

Transcriptomic assays explore and identify genome-wide RNA levels. What and 

how much of a transcript is expressed can be distinguished. The proteins 

responsible for genetic occurrences, peptide abundance, alteration and interactions 

can be unearthed through proteomic assays. The metabolome can be defined as a 

complete set of metabolites (i.e. amino acids, carbohydrates, fatty acids) in an 

organism or cell. Studying the metabolome provides an insight into how 

environmental fluctuations can result in biological changes. Metabolomic tests 

investigate what has and is happening as a result of a combination of genomic, 

transcriptomic and proteomic expressions (Schellenberger et al., 2010).  
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Figure 5.1 The “Omics cascade, modified and adapted from Dettmer et al., 

2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encompassing, and at the forefront of the “omics” cascade is phenomics, the 

analysis of live cells. Using one form of “omics” assay (Figure 5.2) is useful for 

identifying differences in biological pathways and can provide markers for potential 

change. However, in the search for a comprehensive understanding of 

environment-mediated global regulation, and for confirmation of what genetic 

expression means in terms of phenotypic outcome, all of the “omics” faculties can 

be combined. The integration of several “omics” classes is referred to as “multiple-

omics” and is depicted in Figure 5.2.  
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Figure 5.2 Multiple-omics approaches. Taken from Hasin et al. (2017). 

“Omics data are collected on the entire pool of molecules, represented as circles. Except 

for the genome, all data layers reflect both genetic regulation and environment, which may 

affect each individual molecule to a different extent. The thin red arrows represent potential 

interactions or correlations detected between molecules in different layers—for example, 

the red transcript can be correlated to multiple proteins. Within layer interactions, although 

prevalent, are not depicted. Thicker arrows indicate different potential starting points or 

conceptual frameworks for consolidating multiple omics data to understand disease. The 

genome first approach implies that one starts from associated locus, while the phenotype 

first approach implies any other layer as the starting point. The environment first approach 

(not shown) examines environmental perturbations.” (Hasin et al., 2017). 

	

	

	

	

	

	

	

	

	

	

(Suzuki et al., 2014) combined phenotype and genotype mapping for drug 

resistance in E. coli and showed that expression levels of a small number of well-

known resistance-related genes (i.e. acrB & ompF) can predict changes in 

resistance and susceptibility. (Mensah et al., 2019) combined genomic and 

metabolomics analysis to compare metabolic properties of pathogenesis in 

Salmonella typhimurium to commensal E. coli K12 in order to understand how 
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metabolism contributes towards niche adaption of bacteria. The extent of metabolic 

involvement in antimicrobial resistance is also a research topic that the “omics 

cascade” can help elucidate.  

 

5.1.2. The Phenotype microarray 

	
Phenotype microarray (Biolog, Inc., Hayward, CA, United States) is a high-

throughput technique that can provide insight into phenotype changes by using cell 

respiration as a biomarker. A tetrazolium violet dye is used as a colorimetric 

reporter system; reduction of the dye results in the development of a purple colour, 

which accumulates over time providing a direct measurement of respiration levels. 

Mechanisms of resistance, such as mutations or gene regulation can entail a 

fitness cost due to excessive energy and resource demands (Maharjan and 

Ferenci, 2017). Furthermore, bacteria often employ less efficient metabolic 

mechanisms to counter the effect of a toxic substance such as a biocide (Maharjan 

and Ferenci, 2017).  Examining changes in metabolic regulation can supplement 

information gained from growth kinetics and antimicrobial susceptibility profiling 

when investigating bacterial responses to stressors such as biocide exposure. 

Respiration does not only occur when a bacteria cell is growing, the phenotype 

microarray can detect phenotypes that do not lead to growth (Bochner et al., 2001). 

E. coli has been analysed as a model cellular system to validate the Biolog system 

(Bochner et al., 2001).  
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5.1.3. The bacterial cell wall and the effect of chlorhexidine 

digluconate on the membrane integrity  

	
The cell wall of a Gram-negative bacterium lends itself to their intrinsic tolerance to 

some antibiotics and acts as a barrier to toxic substances (Whitfield and Roberts, 

1999). It consists of an outer membrane (cell envelope), the periplasmic space and 

a peptidoglycan layer (Figure 5.3).  

 

Figure 5.3 Gram-negative cell wall structures. Taken from Denyer & Maillard, 

(2002). 

	 	
	
	
The outer membrane carries a negative net charge and is comprised of a bilayer of 

lipopolysaccharides and phospholipids, which is embedded with porins (Denyer 

and Maillard, 2002). Lipopolysaccharides are responsible for membrane 

impermeability characteristics of Gram-negative bacteria (Russell, 2003, Silhavy et 

al., 2010). Porins are hydrophilic channels that span the outer membrane through 

to the periplasmic space; they are responsible for the regulation of outer membrane 

permeability. Porins are classified into two groups: i) the general diffusion porins 
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(i.e. OmpC, OmpE and OmpF) are non-specific channels that allow diffusion of 

small hydrophilic molecules (Denyer and Maillard, 2002) and ii) the specific porins 

(i.e. PhoE) regulate the transport of particular solutes and are associated with the 

passage of negatively charged molecules. The loss of porins or the alteration of 

porin shape and size has been related to antimicrobial resistance (Gootz, 2006, 

Poole, 2002). The periplasmic space consists of polysaccharides that facilitate 

nutrition, transport and cell wall maintenance and oligosaccharides that are 

responsible for osmoregulation within the cell (Beveridge and Kadurugamuwa, 

1996). The periplasm is a pertinent centre for metabolic processing (Denyer and 

Maillard, 2002). Lastly, the peptidoglycan wall that borders the inner membrane 

confers shape and provides the bacterium with mechanical strength (Salton & Kim 

1996). Overall the role of the cell wall as a defence mechanism is to limit the 

uptake of noxious compounds into the cell and minimise cell damage.  

 

Cationic compounds such as CHX and QACs are membrane active biocides that 

have a significant damaging effect to the cell membrane of microorganisms 

including Gram-negative bacteria such as E. coli (AD, 1999, Denyer and Stewart, 

1998). Hugo & Longworth (1966) suggested that the direct effect of CHX is a 

disruption of the cytoplasmic membrane. CHX and QACs combine with 

phospholipids in the cell wall. Cationic peptides have a greater affinity for LPS than 

divalent cations in the cell envelope therefore they displace them and disrupt the 

normal permeability barrier of the outer membrane (Hancock et al., 1990). 

Changes in fatty acid composition in P. aeruginosa as a result of QAC exposure 

have been documented (Guerin-Mechin et al., 2000). The ability to alter membrane 

lipid composition is crucial for bacterial survival and adaptation in response to 

environmental stress (Rowlett et al., 2017). Rowlett et al. (2017) demonstrated that 

through the elimination of E. coli membrane proteins PE, CL or PG/CL 

phospholipid defects incur internal stress for the cell and in turn triggers the 
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activation of cell envelope and cytoplasmic stress responses. When a bacterial cell 

comes under stress such as the presence of a biocide, global metabolic 

rearrangements are coordinated via changes in the cell transcriptome, proteome 

and metabolome, coupled with cell wall restructuring (Martínez and Rojo, 2011, 

Needham and Trent, 2013, Needham et al., 2013, Rowlett et al., 2017, Silhavy et 

al., 2010). The cell wall acts to detect and instigate signalling cascades that lead to 

well known stress response pathways in order to protect bacterial fitness. For 

example, in E. coli at least five response pathways are induced in response to cell 

envelope stress (Bae, Cpx, Psp, Rcs, and σ
E

) (Bury-Moné et al., 2009). Stress 

response pathways have been demonstrated to co-ordinate corresponding 

physiological functions, which in turn leads to distinct bacterial phenotypes. These 

comprehensive processes form an all-inclusive adaptive response (Needham and 

Trent, 2013, Ruiz and Silhavy, 2005) that may result in transiently reduced 

susceptibility to antimicrobials that is dependent on bacterial metabolic shift (Levin 

and Rozen, 2006). 

 

5.1.4. The Kyoto Encyclopedia of Genes and Genomes Database 

and the Mapping of Metabolic Pathways  

	
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a reference database for 

pathway mapping. Pathway maps represent acquired information on molecular 

interaction, reaction and relation networks for: metabolism; genetic information 

processing; cellular processes; organismal systems; human diseases; drug 

development (https://www.genome.jp/kegg; Accessed on: 20.07.2019). KEGG is 

an amalgamation of fifteen manually curated databases (Kanehisa et al., 2016), a 

list of these databases can be viewed in the appendices (File name: Appendices > 

appendix three > KEGG database List). Figure 5.4 shows an example KEGG 
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metabolic pathway map and the sectioned areas of each type of metabolism. 

These maps allow intricate analysis of the relationship between different metabolic 

processes. 

Figure 5.4 Metabolic pathways.  

Taken from http://ibm4.life.nthu.edu.tw/KPST/ Accession date: 26.07.2019 
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5.1.5. Aims 

	
This chapter focused on the ability of an E. coli isolate (UCD-CFS EFP-13P5) to 

metabolise substrates following growth in the presence of CHX at 2 sub-MIC 

concentrations (0.00005 mg/mL and 0.002 mg/mL). Phenotypic microarrays were 

performed in order to ascertain whether CHX exposure results in modifications in 

metabolic phenotype. Foremost, a comparative analysis was performed between 

bacteria grown on media only and that grown in the presence of CHX. Moreover, 

the effect that concentration of CHX has on the metabolic capabilities of E. coli 

UCD-CFS EFP-13P5 was explored.  

5.2. Materials and methods 
5.2.1. Justification of choice of isolate 

	
E. coli isolate UCD-CFS EFP-13P5 has the highest MIC and MBC (0.01 mg/mL) 

values of all of the isolates tested in this study. Additionally, this isolate is clinically 

resistant to six of the antibiotics tested (ampicillin, cefpodoxime, tetracycline, 

streptomycin, trimethoprim and trimethoprim-sulfamethoxazole) (Chapter 3: 

Section 3.3.5) likely due to the presence of CTX-M-15 ESBLs (Chapter 2; Section 

2.2.1; Table 2.1). Moreover, after exposure to residual levels of CHX UCD-CFS 

ECP-13P5 developed additional stable resistance to amoxicillin-clavulanic acid, 

cefoxitin and imipenem. UCD-CFS ECP-13P5 demonstrated efflux activity in the 

presence of CHX 0.00005 mg/mL, although efflux activity decreased significantly at 

0.002 mg/mL CHX, highlighting a distinct difference in phenotype when exposed to 

low and high concentrations of CHX. For these reasons UCD-CFS ECP-13P5 will 

undergo phenotypic microarray analysis with the aim of understanding how 

metabolic processes interlink with biocide susceptibility. 
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5.2.2. Justification of residual concentrations of CHX 

	
The lowest concentration of CHX tested in the previous investigations was 0.00005 

mg/mL. This concentration affected growth kinetics of isolates (Chapter 3: Section 

3.3) and produced changes in susceptibility (Chapter 4: Section 4.3.2). The use of 

0.00005 mg/mL CHX provides a low toxicity level whilst providing an environment 

for adaptive tolerances. 0.002 mg/mL is a high sub-inhibitory concentration of CHX. 

This high sub-inhibitory concentration creates a sub-optimal environment that 

should provide selective advantage for more tolerant bacterial cells and exert a 

pressure for metabolic changes. 

 

5.2.3. Bacterial preparation and exposure to CHX 

 

E. coli UCD-CFS ECP-13P5 was grown to its 3
rd

 generation with three subsequent 

sub-cultures onto MHA agar (incubated at 37°C; 16-18h). One loopful of colonies 

was taken from a MHA plate containing bacterial growth, streaked onto a new MHA 

plate and incubated at 37± 2°C for 18-24h. Two independent biological replicates 

were grown for each test; the two replicates were tested on a separate day (n=8). 

The 3
rd

 generation was sub-cultured onto three MHA agar plates containing no 

CHX, 0.00005 mg/mL CHX or 0.002 mg/mL CHX. A preliminary test was performed 

in order to ensure that the isolate would grow on the agar plates with the CHX 

present. These sub-cultures were incubated at 37± 2°C for 16-18h. 
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5.2.4. Justification of phenotypic microarray plates 

	
Phenotype microarray (PM) plates named PM1 to PM10 (excluding PM5) were 

selected for the assay. Each plate contains a defined set of small molecule 

substrates including carbon, nitrogen, phosphorous and sulphur, peptide nitrogen 

sources (Bochner et al., 2001).  The individual integrated substrates that make up 

each plate for testing are included in the appendices (File name: Appendices > 

appendix three > Layout of Phenotype Microplates) where plate templates are 

shown. Table 5.1 provides a brief list of details of the plates selected.  

 

Table 5.1 A list of the PM microplates selected for use and their substrate class 

PLATE IDENTIFICATION SUBSTRATE CLASS 

PM1 Carbon sources 

PM2A Carbon sources 

PM3B Nitrogen sources 

PM4A Phosphorous and sulfur sources 

PM6 Peptide nitrogen sources 

PM7 Peptide nitrogen sources 

PM8 Peptide nitrogen sources 

PM9 Osmolytes 

PM10 pH 

 

5.2.5. Phenotype microarray 

	
Before being loaded into the PM microplates for experimentation, UCD-CFS ECP-

13P5 was incubated for 16-18 h on MHA plates containing no CHX, 0.00005 

mg/mL CHX or 0.002 mg/mL CHX. After incubation in the presence of CHX or not, 

several colonies were selected with a sterile plastic culture loop and suspended 
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into Inoculating Fluid-0 (IF-0; Biolog, Inc., Hayward, CA, United States) until a cell 

density of 42% transmittance (T42%) was reached in a turbidimeter (Biolog, Inc., 

Hayward, CA, United States). For plates PM1-PM2, 15 ml of T42% cell suspension 

was mixed with 75 mL of Biolog redox dye mix A (1:5 dilution) in order to create a 

final cell suspension of T85%. For PM 3-8, 680 µL of a 2 M-sodium succinate/200 

µM ferric citrate solution was added to 68 mL of the T85% cell suspension. One 

hundred µL of each mixture was pipetted into each well of the appropriate 

microplate. All PM plates were incubated in an OmniLog reader at 37°C for 72 h. 

Readings were taken every 15 min and data were analysed in OmniLog PM 

software (Biolog, Inc). Each experiment was performed in duplicate on two 

separate days with independent bacterial cultures. 

 

5.2.6. Analysis of Phenotype Microarray data 

	
	
Data obtained from PM experiments were collated and analysed in OmniLog PM 

software. Well A1 for plates 2-8 were negative control wells where no metabolism 

was seen. Data were primarily “A1-zeroed”, any noise obtained in well A1 was 

subtracted from the data in wells A2 to H12. Figure 5.5 depicts an example data 

output formulated through the OmniLog PM software. It is possible for two strains 

or conditions to be compared at one time; each is allocated as either red (usually 

the reference) or green. Where the two data sets overlap it is coloured yellow. In 

the comparison example below (Figure 5.5) the reference strain is achieving 

higher levels of metabolism than the experiment.  
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Figure 5.5 Data output from PM microarray.  

Taken from: https://www.biolog.com/; Accessed on: 25.07.2919 

 

	
Figure 5.6 shows the different parameters that can be calculated from the kinetic 

plots obtained through the PM experiment. The area under the curve was 

determined and compared when analysing the data obtained from the PM 

microarray. In order to define differences between data sets the “metabolic 

distance” is used. This is the “average height” of the curve and the threshold is 

arbitrarily set to 20,000 by the OmniLog PM software. The higher the metabolic 

distance, the more stringently selective it is for the difference between data sets. 

As the threshold value can be manually selected at whichever value necessary, it 

is a subjective analysis. For the purpose of the analysis in this chapter the 

threshold value for metabolic distance was set to 15,000 in order to highlight more 

metabolic differences. The OmniLog PM software does not offer an in-built 

statistical analysis. Biolog users have created software packages that perform 

statistical analysis (Henry et al., 2010). These statistical models were not employed 

for the purpose of this analysis. 
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Figure 5.6 Parameters derived and calculated from kinetic plots by OmniLog PM 

software. Taken from: https://www.biolog.com/; Accessed on: 25.07.2919.  

Lag: period of time where the bacteria adjust to their environment before they will 

start to replicate. Slope: linear regression of the exponential growth phase. 

Inflection time: time taken to reach the end of exponential growth phase and the 

point at which the curve flattens and stationary phase begins. Area under the 

curve: measure of the complete metabolic activity over the time point measured. 

	

	

5.3. Results and discussion 

5.3.1. Phenotype microarray 

	
The effect of microbicidal concentrations on the metabolism of E. coli UCD-CFS 

ECP-13P5 was assessed using the OmniLog reader (Biolog, Inc., Hayward, CA, 

United States). The difference in dye intensity was a direct indication of the levels 

of metabolism involved. Time series charts that plot time against dye intensity were 

produced for each well and recorded by the OmniLog PM software. Differences in 

metabolism were compared with a focus on the effect of low (0.00005 mg/mL) and 
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high (0.002 mg/mL) sub-MIC CHX concentrations. As changes in CHX 

susceptibility phenotype were observed in Chapter 4 (Section 4.3.2), we 

hypothesise that changes to metabolic regulation will be observed when UCD-CFS 

ECP-13P5 has been exposed to CHX. 

 

Figure 5.7 depicts phenotype microarray plates (PM) with metabolic distances of 

15,000 or above. These data represent an average of two independent replicates. 

Growth in the presence of CHX 0.00005 mg/mL decreased the ability of UCD-CFS 

ECP-13P5 to metabolise salicin (PM2; Well D2; Mode: Carbon source), 6.5% NaCl 

(PM9; Well A8; Mode: Osmotic sensitivity) and 4% Urea (PM9; Well E9; Mode: 

Osmotic sensitivity) (Figure 5.7 a).  The metabolism of methylene diphosphonic 

acid increased in the presence of 0.00005 mg/mL CHX.   
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Figure 5.7 UCD-CFS ECP-13P5 phenotype microarray output plots (n=2). a) 

Bacterial metabolism when exposed to no Biocide compared with 0.00005 mg/mL 

CHX (PM2, PM4 & PM9); b) Bacterial metabolism when exposed to no Biocide 

compared to 0.002 mg/mL CHX (PM9 & PM10); c) Bacterial metabolism when 

exposed to 0.00005 mg/mL compared to 0.002 mg/mL CHX (PM2) 

a)  
	

	
b)  

 

c)  
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Salicin is a plant-derived β-glycoside and a secondary metabolite (Prasad and 

Schaefler, 1974). Demain and Fang defined it as a natural metabolic product that is 

not essential for vegetative growth of the organism, but is considered as a 

differentiation compound conferring adaptive roles (e.g. functioning as defence 

compounds; signalling molecules; metal transport) (Demain and Fang, 2000). The 

ability to metabolise salicin is a silent genetic mechanism regulated by the 

bgl operon of E. coli. The existence of “silent” and “cryptic” genes in 

microorganisms is a phenomenon that is recognised but not entirely understood. 

Although it is common for these two terms to be used in tandem, it is suggested 

that silent genes are distinct from cryptic genes. Although cryptic genes may also 

be silent, it is thought that they are retained due to the selection process, whereas 

silent genes are expected to have only a transient existence in the genome. As 

microorganisms commonly exist in conditions of limited resources and competition, 

the ability to utilise sources of energy where others cannot provides a fitness 

advantage. Salicin originates in the leaves of plants from the genus Salix. Harwani 

et al. (2012) and Madan et al. (2005) demonstrated that strains that carry an 

activated bgl operon outcompete the wild-type strain in competition experiments, 

even when β-glucosides are not supplemented in the medium (Harwani et al., 

2012, Madan et al., 2005). Moreover, they postulate the possibility that 

the bgl operon exerts a regulatory effect on downstream target genes other than 

those implicated in β-glucoside catabolism, expression of which provides a fitness 

advantage in the stationary phase.	 When the group investigated upregulated 

proteins in the proteome of the Bgl
+

 strain they were mainly participants in transport 

functions or enzymes involved in cellular metabolism. It was concluded that 

Bgl
+

 cells are more adept at nutrient procurement and utilisation as a result of 

activating additional metabolic functions. The metabolism of methylene 

diphosphonic acid increased in the presence of 0.00005 mg/mL CHX.   
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It has been demonstrated that the elevated expression of the bgl operon can occur 

even in the absence of β-glycosides (Harwani et al., 2012). The oligonucleotide-

peptide transporter gene oppA (a member of the ABC transporter super family) 

was found to be over-expressed in bgl
+

 E. coli (Harwani et al., 2012). oppA has 

been involved in functions related to oligonucleotide-peptide uptake and the 

recycling of cell wall peptides (Hiles et al., 1987). Furthermore, oppA is linked to 

RpoS (a stress activated sigma factor) expression, the combination of the bgl 

operon, oppA and RpoS expression were attributed to a growth advantage during 

stationary phase of E. coli (Maden et al., 2005). It has been demonstrated that 

RpoS-dependent gene expression leads to general stress resistance of cells 

(Battesti et al., 2011). Figure 5.8 a) and b) show the data output from the OmniLog 

PM software after 72 hours of reading.  

 

Figure 5.8 UCD-CFS ECP-13P5 phenotype microarray output plots (n=2) for 

salicin. Bacterial metabolism when exposed to a) 0.00005 mg/mL CHX and b) 

0.002 mg/mL CHX  

 

a)                b) 

 

It can be observed that where UCD-CFS ECP-13P5 has previously been exposed 

to CHX 0.00005 mg/mL the metabolism of salacin has an elongated lag and does 

not start to increase until 28.30 hours. For UCD-CFS ECP-13P5 that has been 
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exposed to 0.002 mg/mL or no CHX the metabolism of salacin starts at 17.96 

hours. 

 

Growth in the presence of CHX 0.002 mg/mL decreased the metabolism of 6% 

NaCl (PM9; Well B1; Mode: Osmotic sensitivity) and 5% urea (PM9; Well E10; 

Mode: Osmotic sensitivity). However, the metabolism of pH4.5 + L-serine (PM10; 

Well C4) and pH + 9.5 phenylethlamine (PM10; Well G8; Mode: pH, 

decarboxylase) increased in the presence of 0.002 mg/mL CHX. The only 

difference in metabolism when comparing the two exposure concentrations 

(0.00005 mg/mL and 0.002 mg/mL) was with salicin where UCD-CFS ECP-13P5 

was less efficient at metabolising salicin when exposed to 0.00005 mg/mL than 

when exposed to 0.002 mg/mL or not exposed to biocide.  

 

Figure 5.9 shows the metabolic pathway mapping of E. coli K12 (produced with: 

https://www.genome.jp/kegg; accessed on: 24.07.19). Areas of metabolic change 

observed in this study are highlighted. All of the changes observed in this study 

were located in the areas of amino acid metabolism, carbohydrate metabolism, 

metabolism of co-factors and vitamins and the biosynthesis of secondary 

metabolites. There is a clear difference in amount of changes observed for 0.00005 

mg/mL and 0.002 mg/mL CHX, the higher concentration producing more changes 

than the lower.  
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Figure 5.9 metabolic pathway mapping. Location of pathways that include 

substrates involved in observed metabolic changes (n=2). a) bacteria exposed to 

no biocide compared with exposure to 0.00005 mg/mL CHX. b) bacteria exposed 

to no biocide compared with exposure to 0.002 mg/mL CHX.  

é= increased metabolism of substrate       ê= decreased metabolism of substrate 

a) 
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When observing PM data from each individual replicate (n=2) more differences can 

be observed. All differences in output values for metabolic distance for both 

replicates can be observed in the appendices (File name: Appendices > appendix 

three > BIOLOG Data). Table 5.2 highlights all increases, decreases and equality 

of metabolism during the phenotype microarray experiment. Growth in the 

presence of CHX (0.00005 and 0.002 mg/mL) increased the ability of UCD-CFS 

ECP-13P5 to metabolise pH 4.5 L-alinine (PM10; Well B2; Mode: pH, 

decarboxylase), pH 9.5 phenylethylamine (PM10; WellG8; Mode: pH, deaminase) 

and 6% NaCl + betaine (PM9; Well B2; Mode: osmolyte, betaine) when compared 

to no biocide exposure (Table 5.2).  

 

Table 5.2 All observed Increase (é), decrease (ê) or equality (=) of metabolism 

after exposure to CHX. 

 Compared to No CHX Compared to each other 

 0.00005 mg/mL 0.002 mg/mL 0.00005 mg/mL 0.002 mg/mL 

Salicin ê = ê é 

Methylene diphosphonic acid é = é ê 

pH 4.5 + L-Alanine é é = = 

pH 4.5 + L-Serine = é = = 

pH 9.5 + Phenylethylamine é é = = 

5.5%NaCl = ê é ê 

6%NaCl = ê é ê 

6% NaCl + Betaine = ê = = 

6%NaCl + Creatinine = ê = = 

4% Urea ê = ê é 

5% Urea ê ê = = 
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Alanine is a fundamental component of protein in the form of L-alanine (L-Ala). L-

alanine and its isomer D-alanine (D-Ala) are small molecule amino acids that E. 

coli can utilise as the single source of carbon, nitrogen and energy (Kim et al., 

2010). Figure 5.10 Depicts the pathway through which L- and D-alanine are 

utilised through the glycolysis pathway to produce pyruvate. L-alanine is essential 

to the production of D-alanine. L- alanine is converted by racemase enzymes DadX 

and Alr into D-alanine, which is in turn converted into pyruvate. Aside from their 

role in the synthesis of pyruvate in the glycolysis pathway, L- and D-alanine 

participate in the biosynthesis of cross-links in the peptidoglycan cell wall. D-

alanine and L-alanine are utilised in cell wall synthesis at a 3:1 mix. During the 

cross-linking of peptides to form the peptidoglycan wall, transpeptidation reactions 

cleave intrastrand peptide D-Ala-D-Ala bonds to form interstrand peptides DAP-ε-

NH-D-Ala or –Glys-D-Ala (Gumbart et al., 2014, Walsh, 1989).  

 

Figure 5.10 The role of L-alanine and D-alanine in the glycolysis pathway. 

https://biocyc.org/ accessed on 23/06/2019 
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Trivedi et al. (2018) describes how an increase in alanine level interferes with the 

transcriptional regulation of peptidoglycan transpeptidases in P. aeruginosa 

(Trivedi et al., 2018). In this example, a dadA (loss-of-function) mutant 

demonstrated that as D-alanine levels increased, the expression of ponA and dacC 

(genes that encode cell wall enzymes) was inhibited; a decrease in cross-linking 

was observed leading to a lack of cell wall stiffness. The cell wall is an integral part 

of a Gram-negative bacterial cell’s defence; it protects the cell from environmental 

stressors and regulates substrate import and export. In accordance with the 

knowledge gained from Trivedi et al. (2018) in P. aeruginosa, it is plausible that 

CHX incites an energy deficit or an increased necessity for the conversion of L-

alanine to D-alanine in order to promote cell-wall synthesis, improve cross-linking 

and stiffen, or thicken the cell wall.  

 

UCD-CFS ECP-13P5 was less efficient at metabolising 6% NaCl + betaine after 

exposure to 0.002 mg/mL CHX. The reason for the metabolic decrease is not 

known at this time, however betaine is involved in osmoregulation (Ly et al., 2004) 

Glycine-betaine is an osmo-protectant that confers tolerance to urea in E. coli by 

preventing denaturation of the cytoplasm (Benaroudj et al., 2001). CHX is a 

cationic biguanide that disrupts the bacterial membrane via displacement of 

associated divalent cations, ultimately resulting in a reduction of membrane fluidity 

and osmoregulation (Bay and Turner, 2009, Slipski et al., 2018). 
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5.4. Conclusion 

All of the changes observed were located in the areas of amino acid metabolism, 

carbohydrate metabolism, metabolism of co-factors and vitamins, and the 

biosynthesis of secondary metabolites. Amino acids are essential for the 

biosynthesis of proteins and cell wall peptidoglycan. For this reason, the cell wall is 

a major source of amino acids. Proteins contain various combinations of twenty 

common L-amino acids and have regulatory or catalytic functions or are involved in 

binding and transport processes of the bacterial membrane (Fox et al., 1990). The 

increase of amino acid metabolism after CHX exposure would suggest that UCD-

CFS ECP-13P5 is directing mechanisms primarily towards cell membrane 

processes such as changes in outer membrane structure or possibly signalling 

functions (Bury-Moné et al., 2009). The cell wall acts to detect and instigate 

signalling cascades that lead to well known stress response pathways in order to 

protect bacterial fitness (Guo and Gross, 2014). Stress response pathways 

regulated by sigma factors have been demonstrated to co-ordinate corresponding 

physiological functions, and ultimately bacterial phenotypes (Asmar et al., 2017, 

Bury-Moné et al., 2009, Fox et al., 1990, Guo and Gross, 2014, Needham and 

Trent, 2013, Ruiz and Silhavy, 2005). The resulting phenotypes may demonstrate 

transient reduced susceptibility to antimicrobials (Levin and Rozen, 2006). There is 

a clear disparity in the number of changes seen after pre-exposure to a low 

(0.00005 mg/mL) and high (0.002 mg/mL) sub-MIC concentration of CHX. 4% urea 

and salicin were metabolised equally with no previous biocide exposure and 0.002 

mg/mL CHX (Table 5.2). This may be explained through the process of biocide-

mediated microbial selection and adaptation. When UCD-CFS ECP-13P5 is 

exposed to the low concentration of CHX (0.00005 mg/mL), its presence may have 

an altering effect on metabolic regulation (Levin and Rozen, 2006). For example, 

we saw the increase of L-alanine utilisation (Table 5.2). However, it has been 
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previously demonstrated that 0.002 mg/mL CHX was a concentration high enough 

to reduce viable cell count by 1.67 Log10 after 5 min (Chapter 4; Section 4.3.2). It 

is therefore postulated that 0.002 mg/mL acts as a stronger selective pressure that 

resulted in the survival of a sub-population capable of the same level of salacin 

metabolism as non-exposed cells. This is interesting as the ability to utilise salicin 

as a carbon source has been previously demonstrated to provide a competitive 

advantage to capable E. coli populations (Harwani et al., 2012, Madan et al., 

2005). In addition, a combination of the increased utilisation of amino acids and 

carbohydrates suggest that CHX induces a membrane related stress response of 

UCD-CFS ECP-13P5. This stress response is more apparent after exposure to 

0.002 mg/mL, a higher sub-lethal concentration of CHX, demonstrating a distinct 

difference in responses to CHX concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	176	 	

 

 

 

 

 

 

 

CHAPTER 6: GENERAL DISCUSSION 
 

 

 

 

 

 

 

 



	177	 	

6. General discussion 

	
This study sought to investigate differences between the exposure effects of CHX 

and BZC at high (0.002 mg/mL) and low (0.00005 mg/mL) sub-MIC concentrations. 

Moreover, this study aimed to produce a realistic estimation of the residual 

concentration of CHX left on a surface after disinfection. Focus was placed on the 

resulting susceptibility phenotypes of E. coli after exposure; in what way these 

were related to metabolic regulation and how findings relate to the risk of 

resistance.  

	
6.1. Chlorhexidine digluconate (CHX) 

6.1.1.  CHX residues left on a surface 

	
It has been discussed that the microbicidal efficacy of a biocidal active is depended 

on environmental factors such as concentration, contact time, interfering 

substances, temperature and pH. These factors can all reduce or quench the 

activity of a biocide and may result in concentrations that is below the MIC 

(Maillard, 2002, A Rutala and J Weber, 2007). Wesgate el al. (2016) described the 

term “during use exposure” which represents the realistic condition (i.e. 

concentration, contact time, temperature, organic load) of product use during its 

application. During use exposure is different to “low concentration” which often 

reflects a concentration below the minimal inhibitory concentration, which is not 

necessarily representative of a concentration that occurs in practice. Some biocidal 

products make claims of a “residual biocidal activity”. CHX is most often 

incorporated into disinfectant products at 2% (20 mg/mL) and is often marketed 

with claims of residual activity of up to 6 hours, and most recently 48 hours when 

applied to the skin surface (George et al., 2017). Furthermore, microorganisms 
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have been reported to survive on surfaces for prolonged periods of time, for 

instance some Enterococcus species have been reported to survive for up to 46 

months (Kramer et al., 2006). If biocide products that possess long-lasting effects 

are not present at the required concentration, surviving bacteria have potential to 

adapt under selective pressure. In turn, this adaptive process gives rise to the 

development and transmission of antimicrobial resistance (Andersson et al., 2012, 

Gadea et al., 2017, Gullberg et al., 2014, Gullberg et al., 2011, Maillard, 2013, Qiu 

et al., 2012, Ramm et al., 2015, Tuladhar et al., 2012). In Chapter 4, Section 

4.3.1.1 the amount of CHX recovered on a surface after application and drying was 

assessed. The amount of CHX recovered is representative of the during use 

exposure concentration (Wesgate et al., 2016). The concentration of biocide that 

was recovered after drying was 98.8% lower than that initially applied with an 

average of 0.006 ± 0.002 mg/mL (Figure 6.1). This was the same concentration as 

the average MIC of the isolates tested (Chapter 3: Section 3.3.1; Table 3.1).  
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 Figure 6.1. The concentration of CHX (20 mg/mL) recovered after drying on a 

surface, average, highest and lowest baseline MIC observed and obtained MSC 

values for E. coli isolates in this study obtained in Chapter 3; Section 3.3.1. (n=3). 

Dashed lines depict the high and low sub-MIC concentrations.  – Yellow line: lower 

sub-MIC tested. Red line: highest sub-MIC tested 

 

 

Following exposure to the residual concentration of CHX, survivors (UCD-CFS 

ECP-1L3, UCD-CFS ECP-1L4, UCD-CFS ECP-1B2, UCD-CFS ECP-13P5, UCD-

CFS ECP-13P4) were recovered after a 5 min (Chapter 4: Section 4.3.2: Table 

4.2) but not after 24 hours (Chapter 4: Section 4.3.2: Table 4.3), implying that 

there is a realistic potential for failure of a biocide after short in situ exposure in this 

case. In terms of clinical application, the ECOFF breakpoints collated by (Morrissey 

et al., 2014) for CHX indicated that only 1.1% of E. coli isolates included in the 

study would not survive treatment of 0.006 mg/mL CHX. As ECOFF values are 
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intended to be a realistic representative of clinical significance, the finding of 

residual CHX concentrations of around 0.006 mg/mL would imply that the majority 

of clinically important E. coli strains are potentially not being inactivated. Isolate 

UCD-CFS ECP-13P5 demonstrated a slightly elevated tolerance of CHX 

(MIC/MBC of 0.01 mg/mL; Chapter 4: Section; Table 3.1). Indeed the MIC/MBC 

of UCD-CFS ECP-13P5 was higher than that of the average residual concentration 

CHX found on the surface (0.006 ± 0.002 mg/mL) after application (Figure 4.6).  

 

6.1.2. Minimal Selective Concentration of CHX and Resistance 

	
	
The ‘minimal selective concentration’ hypothesis (Gullberg et al., 2014, Gullberg et 

al., 2011, Liu et al., 2011, Sandegren, 2014) was applied successfully to CHX 

using isolates UCD-CFS ECP-1L3, UCD-CFS ECP-1B2 and UCD-CFS ECP-13P5 

(Chapter 3: Section: Table 3.4). Table 6.1 displays a summary of all of the 

relevant values and changes that were obtained throughout this thesis. The MSC 

value for UCD-CFS ECP-1L3 was 0.0014 mg/mL, 1.4 times lower than the 

MICsusc (Table 6.1). The MSC value for UCD-CFS ECP-IB2 was 0.00005 mg/mL, 

100 times lower than the MICsusc (Table 6.1). However, both of these isolates 

demonstrated survival after 5 min exposure to CHX 0.0075 mg/mL (surface dried 

168 h) and transient increases in MIC and MBC. Furthermore, isolate UCD-CFS 

ECP-1B2 demonstrated stable changes in antibiotic susceptibility to 

amoxicillin/clavulanic acid, ampicillin, ciprofloxacin, cefpodoxime and cephalothin 

(Table 6.1).  
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Table 6.1. Summary of all of the relevant values and changes that were obtained throughout this thesis 
MIC/MBC/MSC are recorded in mg/mL; NT – Not Tested; RC – Residual Concentration, this is an average of all of the concentrations 
recovered of the surface during the carrier test = no change in value before and after exposure; 
é I�����������������������������������������; ê Decrease in previous value after exposure; cephalothin (CF); 
amoxicillin/clavulanic acid (AMC); cefoxitin (FOX); imipenem (IMP); ampicillin (AMP); ciprofloxacin (CIP); cefpodoxime (CPD). 
	

    GROWTH KINETICS CHANGE AFTER EXPOSURE TO 
CHX 

TRANSIENT 
CHANGE STABLE CHANGE  

STRAIN ESBL CHX 
CONC. 

INITIAL
MIC 

GROWTH 
RATE 

LAG 
PHASE 

MAX 
OD MSC EFFLUX MIC/ 

MBC ABS MIC/ 
MBC ABS METABOLIC CHANGE 

ATCC25922 

N
T 

0.00005 ����� é = = 
NT 

é NT = NT 

NT 

0.002 ê é ê ê 
RC (0.006) NT NT é = 

UCD-CFS ECP-
1L3 

C
TX

-M
-1

4 

0.00005 0.005 = = = 
0.0014 NT NT = NT 0.002 = é ê 

RC (0.006) NT é = 

UCD-CFS ECP-
1L4 

0.00005 ����� é = = 
NT NT NT = NT 0.002 ê é ê 

RC (0.006) NT é = 

UCD-CFS ECP-
1B2 

0.00005 ����� é = = 

0.00005 

é NT 
= 

NT 0.002 ê é ê ê 

RC (0.006) NT ê é CF, AMC AMC, AMP, 
CIP, CPD, CF 

UCD-CFS ECP-
13P5 

C
TX

-M
-1

5 

0.00005 ���� é = = 

NT 

é 

NT = NT 

é phenylethlamine, L-ala 
ê urea, salicin 

0.002 ê é ê ê é phenylethlamine, L-serine, L-ala 
ê urea, creatinine, betain, NaCl 

RC (0.006) NT ê é FOX, IPM  NT 

UCD-CFS ECP-
13P4 

0.00005 0.002 é = = 
NT NT NT = NT 

NT 

0.002 ê é ê 
RC (0.006) NT = =  

UCD-CFS ECP-
25P5 

TE
M

-2
0 

0.00005 ����� é = = 
NT NT NT = NT 0.002 NT RC (0.006) é TE  

UCD-CFS ECP-
25051 

0.00005 ����� é = = 
NT NT NT = 

 
0.002 NT  
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It was discussed that at this higher sub-MIC range of concentrations, there is a 

stronger selection pressure, which may result in inactivation of susceptible sub-

populations and the persistence of more tolerant cells (Figure 6.2).  

 

Figure 6.2. A comparison between the theory of persistent bacterial populations 

and data obtained from inactivation kinetics (Chapter 4: Section 4.3.5.3: Figure 

4.12). (Trastoy et al., 2018) 

 

The possibility of persistent cells was reflected in the results from CHX inactivation 

kinetics (Chapter 4: Section 4.3.5.3) where a decrease in viable cells of 1.67 

Log10 was demonstrated after exposure of UCD-CFS ECP-13P5 and UCD-CFS 

ECP-1B2 to CHX 0.002 mg/mL, followed by no further decrease but apparent 

persistence (Figure 6.2). It could be postulated that the concentration of CHX that 

is remaining on a surface after application (0.0047 - 0.0097 mg/mL) might be within 

the MSC range of a strain, (in this case UCD-CFS ECP-1B2; between 0.00005 

mg/mL and 0.005 mg/mL CHX) (Figure 6.1). The next logical step was to 

investigate specific changes within the cells at low sub-MIC CHX concentrations.  

0.00

2.00

4.00

6.00

8.00

10.00

0 0.5 1 3 5 10 20 30 60

R
ec

ov
er

ab
le

 c
ol

on
ie

s 
(L

og
 

C
FU

/m
L)

Time (min)

UCD-CFS ECP-1B2 
0.007mg/mL

Persistent

Susceptible



	183	 	

6.1.3. Efflux of CHX and change in metabolism 

The effect of CHX on the increase and decrease of efflux in isolates ATCC25922, 

UCD-CFS ECP-13P5 and UCD-CFS ECP-1B2 is shown in Table 6.1. There were 

distinct differences in efflux activity between high (0.002 mg/mL) and low (0.00005 

mg/mL) sub-MIC concentrations of CHX (Chapter 4: Section: Figure 4.7). 

0.00005 mg/mL CHX incited efflux activity whereas 0.002 mg/mL prevented it. The 

outer membrane has been previously linked to efflux activity in E. coli. In particular, 

it has been associated with the regulation of molecules in and out of the cell via 

direct cooperation with outer membrane porins (Krishnamoorthy et al., 2016, 

Krishnamoorthy et al., 2017, Fernández and Hancock, 2012). The loss of the outer 

membrane porin OmpF has been identified as a resistance mechanism for E. coli 

against b-lactams (Martinez-Martinez et al., 2000) and fluoroquinolones (Tavío et 

al., 1999). In Chapter 4, resistance to ciprofloxacin, cefoxitin and 

amoxicillin/clavulanic acid were observed. It is possible that these resistances are 

related to a change in outer membrane structure. This change could be related to 

changes in membrane porins and the efflux activity demonstrated after CHX 

exposure. Resistance of UCD-CFS ECP-13P5 to cefoxitin and imipenem was 

transient (Table 4.12), likewise with UCD-CFS ECP-1B2 resistance to 

amoxicillin/clavulanic acid (Table 4.11). Bornet et al. (2000) suggested that porin 

loss could be reversible (Bornet et al., 2000). It is plausible that the alteration or 

loss of porins is the reason for transient changes in MIC and MBC values after 

exposure to CHX.  

 

Baseline growth kinetics differed between strains with the exception of growth rate, 

which remained constant between isolates for CHX. Lag phase extension (LE) was 

assessed as a determinant of decreased susceptibility in biocide exposed bacteria 

(Li et al., 2017). UCD-CFS ECP-13P5 showed the highest MIC and MBC to CHX 
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(0.01 mg/mL), which may suggest that it possesses a selective advantage that 

owes to decreased susceptibility to CHX. LE values in the presence of CHX for this 

isolate increased with concentration (Table 6.1). This may be indicative of adaptive 

responses that lend to this isolate’s elevated MIC (Li et al., 2017). However the 

highest LE value was observed for UCD-CFS ECP-1L3  (Table 6.1), which did not 

demonstrate an elevated MIC (0.005 mg/mL). For both CHX and BZC, a 

concentration of 0.002 mg/mL had the most altering effect on growth rate, lag 

phase length and maximum optical density reached.  

	

	
There are several examples throughout this study where results have indicated a 

distinct difference in the selection process of high and adaption of bacteria at low 

concentrations biocides, differences between effects of CHX 0.00005 mg/mL or 

0.002 mg/mL on: 

•  Growth kinetics (Chapter 3). 

• Efflux activity (Chapter 4). 

• The selection of an adapted sub population of UCD-CFS ECP-13P5 during 

inactivation kinetics (Chapter 4). 

Adaptation was also demonstrated when analysing the phenotype microarray 

and the ability for UCD-CFS ECP-13P5 to metabolise and utilise certain 

substrates. Salicin and 4% Urea were more effectively metabolised in the case 

of no CHX exposure and the highest concentration of CHX (0.002 mg/mL) 

(Chapter 5: Section 5.3.1: Table 5.2). The growth kinetics of UCD-CFS ECP-

13P5 in no CHX, 0.002mg/mL CHX and 0.00005 mg/mL CHX are displayed in 

Figure 6.3. 
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Figure 6.3 Growth kinetics of UCD-CFS ECP-13P5 in the presence of CHX at 

increasing concentrations (n=3). 

	

 

 It is observable that the length of lag phase for no biocide and 0.00005 mg/ml CHX 

are not significantly different (95 ± 8.66 and 100 ± 8.66 respectively; P= 0.5185; T-

TEST; Graphpad PRISM 8). However, when grown in the presence of the higher 

(sub-inhibitory) concentration of CHX (0.002 mg/mL), there was an extended lag 

phase of 290 ± 109 mins. As the concentration increases, the length of lag phase 

extends further as can be seen in the case of concentrations 0.005 mg/mL (560 ± 

60.62) and 0.01 mg/mL (615 ± 548). An extended lag phase is associated with the 

adaption of microbial populations (Rolfe et al., 2012). All of the changes observed 

in the phenotype microarray were located in the areas of amino acid metabolism, 

carbohydrate metabolism, metabolism of co-factors and vitamins and the 

biosynthesis of secondary metabolites (Table 6.3). The increase of amino acid 

metabolism after 0.002 mg/mL CHX exposure, and the increase of lag phase 

length would suggest that UCD-CFS ECP-13P5 is adapting through regulatory 

mechanisms directed primarily towards cell membrane processes such as changes 
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in outer membrane structure or possibly signalling functions. Moreover, we know 

that at this concentration of CHX the population of cells able to adapt are selected 

for through persistence. We have therefore demonstrated that at an established 

“during use” residual concentration of CHX, it is possible for bacteria to survive the 

disinfection process, adapt to incur transient increases in susceptibility and stable 

cross-resistance to antibiotics and be selected amongst less tolerant sub-

populations.
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6.2. Benzalkonium Chloride (BZC) 

6.2.1. BZC residues left on a surface 

The remaining residual concentration of BZC after drying could not be determined 

during this study. It would be interesting to perform the same modified carrier test, 

as a significant difference in BZC efficacy was demonstrated between 24 h and 

168 h drying (P=0.00896; test) (Chapter 4: Section 4.3.2) and owing the reported 

risks of bacterial resistance and cross-resistance associated with BZC (Curiao et 

al., 2016, Forbes et al., 2017, Langsrud et al., 2004, Nhung et al., 2016, Pagedar et 

al., 2012). 

 

6.2.2. Minimal Selective Concentration of BZC  

The MSC could not be obtained for BZC as there was no comparison between 

susceptible and resistant strains available. It might be useful in future to apply the 

comparison of strains that are susceptible and resistant, this may highlight more 

MSC relationships and better define the effect of a concentration range of biocides 

on bacterial growth. 

 

6.2.3. Efflux of BZC and resistance 

There was a distinct difference in efflux activity at the low (0.00005 mg/mL) and 

high (0.002 mg/mL) sub-MIC concentration of BZC tested (P=<0.001; T-TEST; 

Graphpad PRISM8). BZC is a membrane active biocide, like CHX, so 

concentration dependent changes in membrane permeability may also explain the 

difference in relative fluoresce values observed. We have previously seen a loss of 

resistance to tetracycline, streptomycin, trimethoprim-sulfamethoxazole and 

trimethoprim for UCD-CFS ECP-13P5 when exposed to BZC for 24 hours (6h 
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surface dried). This was explained by changes in cell membrane permeability 

which would support the findings of the efflux assay.  

 

6.4 Biocidal product regulation the development of a predictive 

protocol to evaluate the risk of resistance 

	
As previously discussed, there is no standard protocol to evaluate and predict the 

risk of the development of resistance to biocides. (Knapp et al., 2015) designed a 

decision tree based method that allows the step-by-step assessment of a biocides 

potential to cause resistance. This protocol is intended for use with formulated 

biocides in order to provide a realistic understanding of risk when a product is 

applied in-situ. Figure 6.4 is the decision tree devised by Knapp et al. (2015). 

According to the decision tree CHX is at “risk of stable resistance development” to 

antibiotics (derived from stable antibiotic resistances seen in UCD-CFS ECP-1B2 & 

13P5). The next logical step according to the decision tree is to undertake genomic 

characterisation of the test strains in order to uncover the mechanisms involved 

with the resistance risk posed. The scope of this study has not allowed for 

genotypic investigations. Furthermore, as this thesis unveiled a distinct difference 

in phenotype adaption between high and low biocide exposure it seems pertinent 

to suggest the inclusion of a range of biocide testing concentrations using the 

predictive protocol. Testing a high concentration of biocide through the predictive 

protocol will depict the “worst case scenario”, however it will also exclude bacterial 

populations that also have the potential to develop resistance and will pose a 

strong selection pressure but will not provide information about adaptive potential. 

We suggested that “during use exposure” of realistic residual active concentrations 

should be included. The “conditions for granting an authorisation” section of the 

Biocidal Products Regulation (BPR, EU, 2012, p21.) stipulates that the responsible 
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regulatory body must be notified if the product owner is aware, or becomes aware 

that the BP is not sufficiently effective or that there is potential development of 

resistance to the active substance. The findings of this study suggest that 

combined with the possible application of the resistance risk decision tree by 

Knapp et al. (2015) would provide a structured platform that could be implemented 

before a product is allowed to go to market. 
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Figure 6.4 Decision tree and proposed protocol for the prediction of bacterial resistance of CHX after modified carrier test. Circled are the 

protocols performed through this thesis.     Indicates the pathway undertaken as a result of susceptibility testing.  
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6.5. Key findings 

This thesis aimed to: 

• Obtain realistic residual surface concentrations of biocides  

• Observe transient and stable changes in antimicrobial susceptibility as a 

result of biocide exposure  

• Identify differences between selection and adaption processes at high and 

low sub-MIC biocide concentrations 

• Relate metabolic alterations to observed susceptibility phenotype after 

biocide exposure 

In answer to the aims of the thesis we have demonstrated that a 0.006 mg/mL is a 

realistic during use exposure concentration of CHX. At this residual concentration it 

is possible for CHX susceptible bacteria to survive the disinfection process, adapt 

through metabolic alterations, incur transient increases in susceptibility and stable 

cross-resistance to antibiotics. Furthermore, our results show that a transiently 

adapted population may be selected amongst less tolerant sub-populations. Using 

the seven distinct plasmid-mediated ESBL isolates has provided an additional 

opportunity to understand how high and low sub-MIC concentrations of CHX affect 

the transfer of resistance via conjugation. It was found that it was possible for the 

isolate UCD-CFS ECP-13P5 to transfer ampicillin resistance naturally and at 

0.00005 mg/mL CHX at the same rate. However 0.002 mg/mL CHX prevented 

conjugative transfer. 

	

	

	

	



	

6.6. Future experimentation 

Further investigations are warranted based on the findings of this study in order to 

provide a more indicative representation of the application of formulated biocidal 

products. Testing was undertaken using simple aqueous solutions containing pure 

biocidal actives. It has been suggested that this might lead to an over-estimation of 

the real to life outcomes of biocides impact to microbial susceptibility (Forbes et al., 

2019).  

 

The information gained through the phenotype microarray (Chapter 5: Section 

5.3) would be enhanced with a direct comparison to genotypic expression of the 

bacteria grown in the same conditions, such as the study undertaken by Chaudhuri 

et al. (2010).  As an endorsement of this thesis it would be recommended that 

phenotypic microarray could be added to the decision tree as part of the protocols 

applied to investigate mechanism. Supplementary to the mandatory analysis 

software (Biolog, Inc., Hayward, CA, United States) that aids the data production of 

the phenotype microarray, additional structures such as the KEGG database and, 

duct Tape provide tools that combine both phenotypic and genetic expression in 

order to form a more complete picture of cellular processes. Mutational changes 

found within the resistant genes on plasmids or mutations that alter the function of 

chromosome-encoded genes might contribute to the antibiotic resistant 

mechanisms (Lister et al., 2009) Next generation sequencing (NGS) technology 

has the capability to analyse the whole genome, whole proteome and whole 

transcriptome (Ramanathan et al., 2017). Bacterial genomes within species are 

made up of both a commonly shared core genome and a so called “accessory 

genome” which introduces variability or genetic polymorphisms between strains of 

the same species (Schürch et al., 2018). This variability can originate from point 

mutations, homologous recombination and differences in genome content. Point 



	

mutations, in particluar single-nucelotide polymorphisms (SNPs) and mutations in 

antibiotic resistance genes have been utilised to investigate clinically relevant 

antibiotic resistant strains (Petkau et al., 2017). The application of this technology 

would further enhance the findings of this study, would provide a comprehensive 

summary of the links between genotype and phenotype of my strains and provide 

insight into the selective advantage that was identified in isolate UCD-CFS ECP-

13P5. 
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APPENDICES 

All appendices data is stored on the included USB flash drive. Flash drive contents 

are as follows: 

 Appendix one 

• File name: Breakpoint-Table-EUCAST.Pdf 

Contents: Contains Breakpoint cut-offs and method tips for EUCAST disk 

diffusion method 

Appendix two 

• File name: Antibiotic susceptibility data (EUCAST).xlsx 

Contents: Raw data from EUCAST antibiotic susceptibility testing 

(data relevant to chapter three and four) 

• File name: Efflux histograms.xlsx 

Contents: Histograms from efflux assays that were not displayed in 

Chapter 4. 

Appendix three 

• File name: BIOLOG data.xlsx 

Contents: Collated raw data values (Metabolic distance) from the 

Phenotype Microarray experiment (Chapter 5) 

• File name: KEGG database list.docx 

Contents: A reference list of all databases utilised to form the KEGG 

pathway-mapping package (Chapter 5) 

• File name: Layout of Phenotype Microplates.pdf 

Contents: Phenotype Microarray plate layouts, including substrate 

identity and mode (Chapter 5) 
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