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Abstract: We give a probabilistic analysis of a phenomenon in statistics which, until recently,
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components tend to possess more predictive power for a response variable than lower-ranking
ones despite the procedure being unsupervised. Our result, in its most general form, shows
that the phenomenon goes far beyond the context of linear regression and classical principal
components — if an arbitrary distribution for the predictor X and an arbitrary conditional
distribution for Y |X are chosen then any measureable function g(Y ), subject to a mild con-
dition, tends to be more correlated with the higher-ranking kernel principal components than
with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance
then the tendency is explicitly quantified by exploring how unitary invariance relates to the
Cauchy distribution. The most general results, for technical reasons, are shown for the case
where the kernel space is finite dimensional. The occurency of this tendency in real world
databases is also investigated to show that our results are consistent with observation.
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1. Introduction

Kernel principal component analysis (Schölkopf, Smola, and Müller, 1997, 1998) is one of the most
widely used methods for unsupervised dimension reduction. It captures directions of maximal varia-
tion among arbitrary nonlinear paths by performing an eigendecomposition of the kernel covariance
operator thereby, with its nonlinearity, greatly expanding the scope and power of classical principal
component analysis (Jolliffe, 2002). A core feature of this method is its use of the “kernel trick”.
This trick implies that if an operation depends only on inner products then a lower dimensional
nonlinear projection of the data can be extracted without dealing directly with the projection co-
efficients. This versatile idea also appears in other settings, such as the support vector machine
and, more recently, sufficient (or supervised) dimension reduction. See Vapnik (1998), Fukumizu,
Bach, and Jordan (2004, 2009), Yeh, Huang, and Lee (2009), Hsing and Ren (2009), Shi, Belkin,
and Yu (2009), Li, Artemiou and Li (2011), Lee, Li and Chiaromonte (2013), Artemiou and Dong
(2016), and Li and Song (2017). Some other variations of principal component analysis include
principal curves (Hastie and Stuetzle, 1989) and functional principal component analysis (Rice and
Silverman, 1991 and Silverman, 1996).

We consider the following question: if we perform kernel principal component analysis (KPCA)
on a sample of vector-valued predictors, without regard to any response variable, would regressing
a response on the leading components be more useful than regressing on the lower-ranking compo-
nents? The question is rooted in, and subsumes, a well-known long enduring debate concerning the
predictive value of principal components in linear regressions. Researchers have specifically debated
the common practice of regressing a scalar response variable on the first few principal components
of the predictors. Principal component analysis (PCA) is an unsupervised dimension reduction
technique — i.e. the extraction process does not use any information from the response — so there
is the possibility that the first few principal components are the least related to the response. There
have been arguments both for and against this practice. See, for example, Hotelling (1957), Kendall
(1957, page 75), Cox (1968), Hocking (1976), Mosteller and Tukey (1977, page 307), Jolliffe (1982),
Hawkins and Fatti (1984), and Scott (1992). See Cook (2007) for a thought-provoking account of
this debate. This problem has received renewed interest due to the increasing ubiquity of high-
dimensional datasets, especially those with small sample sizes, as principal component analysis is
often used as a prescreening method to reduce the dimension of a dataset before a regression anal-
ysis is applied. See, for example, Alter, Brown, and Botstein (2000), Chiaromonte and Martinelli
(2002), Bura and Pfeiffer (2003), and L. Li and H. Li (2004).

Let X be a p-dimensional random vector and Y a real random variable. Li (2007) conjectured,
in a discussion of Cook (2007), that if the linear model Y = βTX + ε holds then the first principal
component of X is the most likely to be the most correlated with Y . This is assuming that: (1)
X and ε are independent, and (2) the coefficient vector β and the covariance matrix Σ of X are
chosen randomly and independently.

Artemiou and Li (2009) rigorously formulated and proved a variation on this conjecture. Let
U1, . . . , Up be the 1st, . . . , p th principal components of the p-dimensional random vector X and

let Corr(A,B) = Cov(A,B)/
√

Var(A)Var(B) be the correlation of real random variables A and B.
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They showed that, under some assumptions on β and Σ, the following holds when i < j.

P
(
Corr2(Y,Ui|β,Σ) > Corr2(Y,Uj |β,Σ)

)
> 1/2.

Ni (2011) refined and strengthened this result, using stronger assumptions, by showing the fol-
lowing.

P
(
Corr2(Y,Ui|β,Σ) > Corr2(Y, Uj |β,Σ)

)
= (2/π)E

(
arctan[(λi/λj)

1
2 ]
)
, (1)

where λi is the eigenvalue corresponding to the ith principal component Ui. The right hand side of
(1) is at least 1/2, since λi ≥ λj , and increases with the ratio λi/λj . We note that Ni (2011) made a
tacit assumption on the distribution of the covariance matrix to obtain this result. This assumption
is discussed in Jones and Artemiou (2019+) and is similar to our notion of unitary invariance. The
above theoretical probability, under a reasonable assumption given in Li (2007) and with p = 2,
was calculated to be 2/π by Ni (2011). This refined the empirical estimate of 0.65 computed by
simulation in Li (2007). These results confirm theoretically that principal components, though they
are derived without reference to any response, do in fact tend to contain some information about
the response with the higher-ranking ones tending to have more predictive value than the lower-
ranking ones.

These results were then broadened to more general settings by Artemiou and Li (2013). The most
significant setting considered was that of the very general conditional independence model. This
model frequently appears in the sufficient dimension reduction framework so it worth exploring the
predictive power of principal components, in this setting, to provide a basis for method comparison.

Hall and Yang (2010), from an alternative perspective, considered the question — in the linear
regression context — of whether it is better to select a subset of principal components other than
the first few. They proved that the conventional choice achieves a minimax result in that the largest
mean squared difference between the fitted values and the signal possible at each step is minimised
by choosing the principal components in the usual order. It is notable that this result holds for all
sample sizes as opposed to merely asymptotically.

We show, in this paper, that higher-ranking kernel principal components also have the tendency to
be more informative of the response than lower-ranking ones. A crucial assumption that was needed
to prove the results of (Artemiou and Li, 2009, 2013) is that the random regression coefficients have
a spherically symmetric distribution. Spherical distributions, and the related concept of Haar mea-
sures, have been studied extensively in the literature — see e.g. Fang et al (1990), and Muirhead
(1982). Some of the most well-known kernels (e.g. the Gaussian kernel) induce infinite-dimensional
feature spaces and some other kernels (e.g. for example polynomial kernels) use finite-dimensional
feature spaces. It is known that spherical distributions do not exist in infinite-dimensional spaces
(see Jones and Artemiou (2019+)) because the identity operator is not compact on such spaces.
The work in section 4 focuses on finite-dimensional kernels to avoid the complications of this lim-
itation. The infinite-dimensional case is nevertheless considered in section 5 by presenting a result
that relies on a different assumption.

The most far-reaching result of this paper, theorem 4 in section 4.3, states that if nature picks —
without favouritism — an arbitrary distribution for X and an arbitrary conditional distribution for
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Y |X then any measureable function g(Y ), subject to a mild condition, tends to have more correla-
tion with the higher-ranking kernel principal components. We assume that, similarly to Artemiou
and Li (2009) and Ni (2011), the random operator Σ has an arbitrary orientation. This is formu-
lated in terms of unitary invariance meaning that Σ is the same random element independently of
the coordinate system from which it is observed. The result of theorem 4 requires no restrictive
assumption meaning that no statistical models, parametric or nonparametric, are imposed on the
relationship between X and Y .

We begin in section 2 by showing empirically, through investigating three databases, that the
described phenomenon holds in real-world datasets. We then, in section 3, outline the construction
of KPCA and layout the goal of this paper in technical terms. We present and prove the main results
in section 4. Some discussion on the case with infinite-dimensional kernels is provided in section 5.
We close with some concluding remarks in section 6 and give acknowledgements in section 7.

2. Some empirical evidence

We present here some empirical evidence, from three databases, that shows how the predictive
tendency of the kernel principal components analysis (when using a kernel that has a finite-
dimensional feature space) manifests itself in naturally collected data sets. We select data sets, from
the databases, according to three pre-specified criteria: (i) they have univariate responses; we choose
randomly if the response is multivariate, (ii) they have no categorical predictors, and (iii) they are
not artificially constructed. The first database, from which we select 33 data sets according to the
above criteria, is that provided in the Arc software (http://www.stat.umn.edu/arc/software.html).
This database is also used in Artemiou and Li (2009) in the context of classical principal compo-
nents analysis. The second database, from which we select 53 data sets, consists of data sets from
a multivariate analysis textbook by Johnson and Wichern (2007), The third database, from which
we select 54 data sets, is the CMU StatLib database (http://lib.stat.cmu.edu/index.php).

We use a second-order polynomial kernel with unit scale and offset to construct the boxplots
(figure 1) for the first 5 principal components of the 3 databases. We use the kernelMatrix function
in the kernlab R library (Karatzoglou et al, 2018) to compute the principal components. The
absolute values of the sample correlation between each of the first 5 kernel principal components
and the response are calculated. We obtain, e.g. from the Arc database, 33 correlations (one for
each dataset) for each of the 5 kernel principal components. It is evident from the boxplots that
higher-ranking kernel principal components tend to have stronger correlations with the response.
The first kernel principal components, in particular, have considerably stronger correlations with
the response than the other components. We again stress — as is evident in the figure — that the
tendency is probabilistic.

3. Technical construction of KPCA

The following notation is adopted throughout the rest of this paper. Let U, V and W be generic
random variables defined on some probability space. The notation U ⊥⊥ V will mean that U and V
are independent and, similarly, U ⊥⊥ V |W will mean that U and V are independent conditioning on
W . Capital letters such as X,Y, Z will denote random variables or vectors; capital letters such as
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Fig 1: Boxplots for the absolute correlations between the response and the first 5 kernel principal
components (second-order polynomial kernel with unit scale and offset) of the predictors in three
databases. Upper panel: 33 data sets from the Arc database. Lower-left panel: 53 data sets from
Johnson and Wichern (2007). Lower-right panel: 54 data sets from CMU StatLib database.
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A, B, C will denote sets or matrices; script letters such as H,L,M denote collections of functions
or measures; fraktur letters such as R,F,G denote collections of sets. The symbol R denotes the

set of real numbers; the symbol N denotes the set of natural numbers {1, 2, . . .}. The notation
D
=

means “equal in distribution”.

We suppose that X and Y are defined on a probability space (Ω,F, P ) and let ΩX = {X(ω) : ω ∈
Ω} denote the range of X. Let H be a separable Hilbert space, defined over R, whose members are
real-valued functions defined on ΩX . Let 〈·, ·〉H denote the inner product in H and let ‖ · ‖H denote
the induced norm.

KPCA is traditionally formulated in the following manner. The first kernel principal component
is the function u1 in H that solves

argmax
f∈H,‖f‖H=1

Var[f(X)] (2)

For k = 2, 3, . . ., the kth kernel principal component uk is the solution to (2) subject to the
orthogonality constraints:

Cov[uk(X), ui(X)] = 0, i = 1, . . . , k − 1.

This is much more general than the classical (linear) principal component analysis because the
maximization is carried out among all functions in H rather than just functions of the form aTX.

The term “kernel” comes from the fact that H may be taken to be a reproducing kernel Hilbert
space derived from a positive definite mapping, or kernel function, K : ΩX × ΩX → R. A kernel
function induces the kernel space H to be the closed linear span of functions with the form

a1K(·, x1) + · · ·+ amK(·, xm), x1, . . . , xm ∈ ΩX , a1, . . . , am ∈ R.

The inner product 〈·, ·〉H is specified by 〈K(·, x1),K(·, x2)〉H = K(x1, x2). More details are provided
in Aronszajn (1950). This particular form of H has no bearing on the question we are investigating
so we only assume H to be a separable Hilbert space. We nevertheless adopt the term for ease of
writing.

The kernel principal components analysis can, similarly to the classical procedure, be represented
as an eigen-decomposition problem. Consider the bilinear form b : H×H → R defined by

b(f, g) = Cov[f(X), g(X)].

If b is bounded then there is, see e.g. Hsing and Eubank (2015), a bounded and self-adjoint linear
operator Σ : H → H which satisfies

b(f, g) = 〈f,Σg〉H = 〈Σf, g〉H.

This operator Σ is called the covariance operator of X. Under the assumption that Σ is a compact
operator, which is always so when H is finite-dimensional, it has a discrete spectral decomposition∑∞
i=1 λiPi, where λ1 > λ2 > · · · ≥ 0 are real numbers and Pi is the projection onto the linear

subspace

ker(Σ− λiI) = {f ∈ H : Σf = λif},

6



where I : H → H is the identity operator and ker denotes the kernel of a linear operator. These
projections are orthogonal to each other; i.e. PiPj = 0 whenever i 6= j. It can be shown that any
function in ker(Σ− λi) is the ith kernel principal component (up to rescaling).

The central question pursued in this paper is considered under two levels. The first level is the
fully nonparametric regression model

Y = f(X) + ε. (3)

It is assumed that f : Rp → R is an arbitrary function in H and ε ⊥⊥ X. Our question here is: would
the higher-ranking kernel principal components, given a randomly selected regression function f
and a randomly selected covariance operator Σ for X, tend to be more correlated with the response
than the lower-ranking ones?

The second level is the most general. Suppose Y and X are dependent but the dependence is
not restricted by any model (parametric or nonparametric). Our question here is: would the higher-
ranking kernel principal components, given a randomly selected conditional distribution for Y |X
and a randomly selected covariance operator Σ for X, tend to be more correlated with the response
or, more generally, measureable functions of the response than the lower-ranking ones?

The result at the first level is not technically, despite first appearances, a special case of the result
at the second level because the conditions we assume to investigate the question are different. We
solve the nonparametric regression problem first because it involves most of the techniques needed
for the other model.

4. Predictive power of KPCA with finite-dimensional kernels

We first give the definitions of unitarily invariant random functions and operators then we state
some of the desirable properties these entities possess. We then establish the predictive potential
of finite-dimensional KPCA in a nonparametric regression setting and then in an arbitrary X-Y
relationship. We assume that all Hilbert spaces referred to, in this setting, are finite-dimensional
so that we can use some sort of uniformity either on the regression coefficient vector or on the
covariance operator.

4.1. Unitarily invariant random functions and operators

We give rigorous definitions, based on the notion of unitary invariance, of an arbitrary function
f ∈ H and an arbitrary covariance operator Σ : H → H. The results in this section depend on some
basic facts from linear algebra so proofs are omitted.

Let n ∈ N and let Nn denote {1, . . . , n}. Let H be an n-dimensional Hilbert space with orthonor-
mal basis {ui : i ∈ Nn}. The inner product between two members of H is〈∑

i∈Nn

αiui,
∑
j∈Nn

βjuj

〉
H

=
∑
i∈Nn

αiβi.
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Any f ∈ H can be expressed as
∑
i∈Nn

αiui. The sequence of Fourier coefficients (the Fourier
sequence) of an element f ∈ H, with respect to the orthonormal basis of H, is the sequence

{〈f, ui〉H : i ∈ Nn} =


〈∑
j∈Nn

αjuj , ui

〉
H

: i ∈ Nn

 =

{∑
i∈Nn

αiδij : i ∈ Nn

}
= {αi : i ∈ Nn}.

We call the αi’s the weights f assigns to the ui’s.

An arbitrary function in H should intuitively have equal probability of assigning any coefficients
to the basis. The magnitude of f is, furthermore, irrelevant as we are concerned with quantities
such as Corr(Y, u(X)|f) rather than f itself so what matters is the relative weights that f gives to
each ui. We have so far considered arbitrariness of f in terms of a basis but it is desirable that a
formal definition of f be basis-free. These considerations lead us to the following definition.

Definition 1. An H-valued random variable f is said to be unitarily invariant if, for any unitary

operator U : H → H, we have f
D
= U(f).

The next proposition makes clear why unitary invariance characterises “arbitrariness”. We call,
in the following, the vector A = (α1, . . . , αn)T — for any f = α1u1 + . . . + αnun ∈ H — the
coordinate of f with respect to {u1, . . . , un}. We will, if the basis is obvious from the context,
simply say the coordinate of f .

Proposition 1. An H-valued random variable is unitarily invariant if and only if its coordinate
with respect to any orthonormal basis of H is a spherically distributed Rn-valued random variable.

We note that, while omitted, the proof of Proposition 1 relies on Lemmas 1 and 2 which are, in
some sense, dual to each other.

Lemma 1. Suppose that u1, . . . , un form an orthonormal basis for H and let T : Rn → Rn be a
unitary operator. The operator U : H → H defined by

U(h) =
∑
j∈Nn

Tj(C)uj

is a unitary operator on H. C is the coordinate of h and Tj(C) denotes the j-th component of T (C).

Lemma 2. Suppose that u1, . . . , un form an orthonormal basis for H and let U : H → H be a
unitary operator. Let h be an arbitrary element of H with coordinate C, and let D be the coordinate
of U(h). Define the operator T : Rn → Rn by T (C) = D. We have then that T is a unitary operator
on Rn.

Proposition 1 tells us that a unitarily invariant random function f has equal probability of as-
signing any weights to the basis provided that the norm of the weight vector remains constant. A
unitarily invariant random function is therefore, taking into consideration that the norm of f is
irrelevant for our discussion, fully arbitrary.

We now define an arbitrary covariance operator Σ : H → H. Our motivation comes from the
definition of an orientationally uniform random matrix given in Artemiou and Li (2009, 2013).

8



Let R be the σ-field of Borel sets in R and let L(H) be the space of linear operators on H. A
random linear operator A is a mapping from Ω to L(H) such that, for any f1, f2 ∈ H, the function
ω 7→ 〈A(ω)f1, f2〉H is measurable with respect to F/R. See Skorohod (1976, 1984). We define a
random covariance operator Σ : H → H as a bounded and self-adjoint random linear operator such
that, for any f1, f2 ∈ H, 〈Σ(ω)f1, f2〉H ≥ 0 almost surely P .

Definition 2. A random covariance operator Σ : H → H is said to be unitarily invariant if, for

any unitary operator U : H → H, we have Σ
D
= UΣU−1.

This definition intuitively means that the operator Σ is the same random object irrespective
of the coordinate system for H from which it is observed. The eigenspaces, in other words, are
equiprobable to have any orientation. This implies that every unit norm function in H has an equal
probability of being the 1st, . . . , nth kernel principal component of the operator Σ. This is a fitting
description that the distribution of X is chosen without regard to any response variable Y . Notice
that, unlike Artemiou and Li (2009), this definition does not require that the eigenvalues and eigen-
vectors of Σ are independent.

We will use the following technical assumption on Σ, in addition to unitary invariance, when it
is treated as a random operator.

Assumption 1. With probability one, each nonzero eigenvalue of Σ has multiplicity 1.

This ensures that a nonzero eigenvalue, and its corresponding unit-norm eigenvector, are uniquely
determined by Σ (modulo sign for the eigenvector). We note that if u is a random vector with a
spherical distribution then so is −u. Taking this into consideration along with the fact that squared
correlations are unaffected by sign means that taking the eigenvector modulo sign has no bearing
on our results. This condition is made to achieve technical clarity and simplicity and we believe it
can be avoided by a more elaborate analysis than presented here.

4.2. Nonparametric regression case

We now tackle the first problem stated in section 3. We first give the distribution of the ratio of
two Fourier coefficients of a unitarily invariant random function.

Lemma 3. If f =
∑
i∈Nn

αiui is a unitarily invariant random function in H then the ratio between
two random weights of f has a standard Cauchy distribution.

Remark 1. We assume that P (f = 0) = 0 as if f = 0 then Y = ε so Y ⊥⊥ X. We want to exclude
the case of independence. This is assumed throughout this section.

Proof. The weights of f are, by proposition 1, a spherically symmetric random vector. The ratio of
any two components of such a vector, by theorem 1 of Arnold and Brockett (1992), has a standard
Cauchy distribution.

The next theorem assumes f to be a unitarily invariant random function in H and the covariance
operator Σ to be fixed.

Theorem 1. Let λ1 > λ2 > · · · > λk be the k distinct nonzero eigenvalues of Σ. Let ui be, for
each i in {1, · · · , k}, the eigenvector corresponding to eigenvalue λi. Suppose the nonparametric
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regression model (3) holds where f is a unitarily invariant random element in H and f ⊥⊥ X.
Suppose ε ⊥⊥ (X, f), E(ε) = 0, Var(ε) = τ2 <∞. For i < j ≤ k, the following holds.

P
{

Corr2[Y, ui(X)|f ] ≥ Corr2[Y, uj(X)|f ]
}

= (2/π) arctan[(λi/λj)
1
2 ] ≥ 1/2.

Proof. Let f1, . . . , fn be a basis for H so that f =
∑
i∈Nn

αifi where (α1, . . . , αn)
T

is a spheri-

cally distributed random vector. We can hence write f(X) = αTψ(X) where α = (α1, . . . , αn)
T

and ψ(X) = (f1(X), . . . , fn(X))
T
. Conditioning on f is equivalent to conditioning on α. Similarly

ui(X) = βT
i ψ(X). It can be shown that βi is the i-th eigenvector of the covariance matrix of ψ(X)

and the corresponding eigenvalue is λi. Replacing the β in Ni (2011) with our α, the X with our
ψ(X), and the UT

i with our βi, we apply theorem 2 of that paper to obtain the result. The con-
ditional independences assumed there are implied by those we assume here. The result does not
depend on the choice of basis as the basis was chosen arbitrarily.

The interpretation of this theorem is that if nature chooses an arbitrary function f fromH for the
nonparametric regression model (3) then, for any i < j, the magnitude of the correlation between Y
and ui is larger than the magnitude of the correlation between Y and uj in (2/π) arctan[(λi/λj)

1
2 ]×

100 percent of the time. We now extend this result to the situation where Σ is also random.

Theorem 2. Suppose that model (3) holds where X is a random vector whose covariance operator
is Σ and Σ is a random covariance operator satisfying assumption 1. Suppose f is a unitarily
invariant random function in H and ε ⊥⊥ X|(f,Σ), (f,Σ) ⊥⊥ ε, f ⊥⊥ (X,Σ). Suppose that E(ε) = 0
and Var(ε) = τ2 < ∞. For i < j ≤ k (k being the number of nonzero eigenvalues of Σ), the
following holds.

P
{

Corr2[Y, ui(X)|f,Σ] ≥ Corr2[Y, uj(X)|f,Σ]
}

= (2/π)E{arctan[(λi/λj)
1
2 ]} ≥ 1/2.

We briefly, before proving the theorem, explain the various conditional independences assumed.
The conditional independence ε ⊥⊥ X|(f,Σ) is the usual regression assumption except that we have
taken into consideration that f and Σ are random. The assumption (f,Σ) ⊥⊥ ε means the parameter
of the distribution of X and the regression function are independent of the error. This is reasonable
considering that these quantities are usually assumed nonrandom. f ⊥⊥ (X,Σ) means that nature
chooses f completely independent of X and its orientation. This then characterises exactly the
arbitrariness we desire.

Proof of theorem 2. We apply, by a similiar argument to used to show theorem 1, theorem 2 from
Ni (2011) to obtain the result.

4.3. Arbitrary conditional distribution case

We now deal with the general situation where X and Y are dependent but the dependence is not
restricted by any model. This requires a different set of conditions from those assumed in theorem
1. We assume, instead of taking f to be unitarily invariant, Σ to be a unitarily invariant random
operator.

We do need, while we assume no model for the relation between X and Y , the following condi-
tional independence

Y ⊥⊥ Σ|X. (4)
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This implies that Y is related to X through its value only and does not depend on its covariance
operator. This is a very mild assumption. Consider, e.g., the following scenario (where g is an
unknown function and ε ⊥⊥ X)

Y = g(X, ε).

The distribution of Y , in this case, conditional on X depends only on the distribution of ε and
the value of X and not on Σ (except through X). The nonparametric regression model (3) clearly
satisfies this condition. The following, where µ(·) and σ(·) are unknown functions, is another example

Y = µ(X) + σ(X)ε, ε ⊥⊥ X.

We also note that Y ⊥⊥ X|g(X), for some function g, is a special case of (4). This model is used
extensively in the literature on nonlinear sufficient dimension reduction (SDR) and accommodates
both of the examples listed above.

We will need the following lemma.

Lemma 4. Suppose that u1, u2 are random functions in H such that: (1) 〈u1, u2〉H = 0 and (2)

(u1, u2)
D
= (U(u1), U(u2)) for any unitary operator U : H → H. For any (nonrandom) function

f ∈ H, f 6= 0, the ratio 〈f, u1〉H/〈f, u2〉H has a standard Cauchy distribution.

This lemma, despite its appearance, is quite different from lemma 3 because, since u1 and u2
are random and f is fixed, the vector (〈f, u1〉H, 〈f, u2〉H)T may not have a spherically contoured
distribution so the result of Arnold and Brocket (1992) cannot be directly applied. The idea of
the proof is to introduce an artificial random function f̃ and then condition on u1, u2, so that we
“transfer” randomness from (u1, u2) to f̃ . The method for proving lemma 3 can then be applied.

Remark 2. We, before proving lemma 4, note that if X(Z) is some random variable X, dependent
on another random variable Z, such that X(Z)|Z = z1 has the same distribution for any z1 then
X(Z) has that same distribution unconditionally despite X(z1) and X(z2) possibly being different
random variables for z1 6= z2.

Proof of lemma 4. Because U−1 is also a unitary operator, we have

(u1, u2)
D
= (U−1(u1), U−1(u2)).

Consequently,

(〈f, u1〉H, 〈f, u2〉H)
D
=
(
〈f, U−1(u1)〉H, 〈f, U−1(u2)〉H

)
= (〈U(f), u1〉H, 〈U(f), u2〉H) .

The distribution of (〈f, u1〉H, 〈f, u2〉H) thus depends on f only through ‖f‖H ≡ a > 0. Let f̃ be
a random element in H that is independent of (u1, u2) and uniformly distributed on the sphere
S(a) = {g ∈ H : ‖g‖H = a}. We have then that, for any Borel subset A of R and any nonrandom
function f0 with ‖f0‖H = a,

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|f̃ = f0) = P (〈f0, u1〉H/〈f0, u2〉H ∈ A). (5)
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This implies

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|f̃) = P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A). (6)

The right hand side can be rewritten as

E[P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A|u1, u2)].

f̃ is unitarily invariant, because f̃ ⊥⊥ (u1, u2), when conditioning on (u1, u2). Moreover, 〈u1, u2〉H =
0. The ratio 〈f̃ , u1〉H/〈f̃ , u2〉H, conditioning on (u1, u2), has a standard Cauchy distribution —
by lemma 3 — regardless of the value of (u1, u2). This means that the ratio 〈f̃ , u1〉H/〈f̃ , u2〉H is
independent of (u1, u2) and therefore has a standard Cauchy distribution unconditionally. It follows
that

P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A) = PC(A)

where PC(A) is the probability of A under the standard Cauchy distribution. By equalities (5) and
(6), and the discussion preceding them, we have

P (〈f, u1〉H/〈f, u2〉H ∈ A) =P (〈f0, u1〉H/〈f0, u2〉H ∈ A)

=P (〈f̃ , u1〉H/〈f̃ , u2〉H ∈ A) = PC(A).

Hence 〈f, u1〉H/〈f, u2〉H has a standard Cauchy distribution as claimed.

We now establish the main result of this section.

Theorem 3. Suppose that Σ is a unitarily invariant covariance operator satisfying assumption 1
and Y ⊥⊥ Σ|X. Let g(Y ) be any measurable function of Y such that the function x 7→ E[g(Y )|X = x]
belongs to H. We have, with probability 1,

P
{

Corr2[g(Y ), ui(X)|Σ] ≥ Corr2[g(Y ), uj(X)|Σ]
}

= (2/π)E
{

arctan[(λi/λj)
1
2 ]
}

for any two eigen-pairs (λi, ui) and (λj , uj) of Σ satisfying i < j and

Cov[g(Y ), ui(X)|Σ] 6= 0, Cov[g(Y ), uj(X)|Σ] 6= 0. (7)

Remark 3. We note, before establishing the theorem, that the sign of the eigenvectors is irrelevant
as, for any random variables A and B, we have Corr2(A,−B) = Corr2(A,B). We therefore take
eigenvectors modulo sign.

Proof. We begin by noting that condition (7) implies, with probability 1,

λi > 0, λj > 0, 〈f, ui〉H 6= 0, 〈f, uj〉H 6= 0.

We have

Corr2(g(Y ), ui(X)|Σ) = Corr2(E(g(Y )|X,Σ), ui(X)|Σ)

= Corr2(E(g(Y )|X), ui(X)|Σ)

= Corr2(f(X), ui(X)|Σ),
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where the second equality follows from Y ⊥⊥ Σ|X and f is defined to be the function given by
f(x) = E(g(Y )|X = x). This is equal to, by the definition of correlation and the construction of
the principal components,

Cov2(f(X), ui(X)|Σ)

Var(f(X)|Σ)Var(ui(X)|Σ)
=

〈f,Σui〉2

λiVar(f(X)|Σ)
=

λi〈f, ui〉2

Var(f(X)|Σ)
.

This implies that

P
{

Corr2[g(Y ), ui(X)|Σ] ≥ Corr2[g(Y ), uj(X)|Σ]
}

= P

{
Corr2[g(Y ), ui(X)|Σ]

Corr2[g(Y ), uj(X)|Σ]
≥ 1

}
= P

{
λi〈f, ui〉2

λj〈f, uj〉2
≥ 1

}
= P

{
−

√
λi
λj
≤ 〈f, uj〉
〈f, ui〉

≤

√
λi
λj

}
.

By assumption 1, ignoring a probability null set, (λi, λj , ui, uj) is uniquely determined (modulo
sign) by Σ. (λi, λj , ui, uj) then is a function of Σ. Write this function as (λi(Σ), λj(Σ), ui(Σ), uj(Σ)).

We have, by the unitary invariance of Σ, UΣU−1
D
= Σ. This implies that

(λi(UΣU−1), λj(UΣU−1), ui(UΣU−1), uj(UΣU−1))
D
= (λi(Σ), λj(Σ), ui(Σ), uj(Σ)). (8)

We note that

λi(UΣU−1) = λi(Σ), λj(UΣU−1) = λj(Σ),

ui(UΣU−1) = U(ui(Σ)), uj(UΣU−1) = U(uj(Σ)).

This implies that equality (8) reduces to

{λi(Σ), λj(Σ), U(ui(Σ)), U(uj(Σ))} D
= {λi(Σ), λj(Σ), ui(Σ), uj(Σ)}.

The argument for all random elements is now Σ so we drop it in the notation. We can now rewrite

the above as {λi, λj , U(ui), U(uj)}
D
= (λi, λj , ui, uj). This implies

(ui, uj)|(λi, λj)
D
= [U(ui), U(uj)]|(λi, λj).

By lemma 4, as applied to the conditional probability given (λi, λj), the conditional distribution of
the ratio 〈f, uj〉H/〈f, ui〉H|(λi, λj) has a standard Cauchy distribution. This implies

P

(
〈f, uj〉2H
〈f, ui〉2H

≤ λi
λj

∣∣∣∣λi, λj) = (2/π) arctan[(λi/λj)
1
2 ]. (9)

Taking the unconditional expectation on both sides completes the proof.

This theorem says that if nature selects an arbitrary covariance operator for X then, regard-
less of the form of dependence between X and Y , any measurable function g(Y ) tends to have
a larger squared correlation with ui than with uj . The relative frequency of this tendency is
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(2/π)E{arctan[(λi/λj)
1
2 ]} × 100 percent.

We next consider the situation where a random relation between X and Y is chosen in addition
to choosing a covariance operator Σ for X. The randomness has to be imposed directly on the
conditional distribution of Y |X rather than on some aspect of it such as the regression function
f in model (3). We therefore introduce the notion of a random conditional distribution of Y given X.

Let Rp denote the σ-field of Borel sets in Rp. We recall that a conditional distribution of Y |X
is a mapping

κ : R× ΩX → [0, 1]

such that (i) for each ω ∈ Ω, the function A 7→ κ(A,X(ω)), R → [0, 1] is a probability measure
on R; (ii) for each A ∈ R, the function ω 7→ κ(A,X(ω)), Ω → [0, 1] is a version of the conditional
probability P (Y ∈ A|X). Let K be the collection of all such mappings κ. We assume, for simplicity,
that H is rich enough to contain all bounded measurable functions of X so that, for each κ ∈ K and
each A ∈ R, κ(A, ·) ∈ H. We define a random element in K, or a random conditional distribution
of Y |X, to be a mapping

ν : Ω→ K, ω 7→ νω(·, ·),

such that, for each A ∈ R, the function Ω→ H , ω 7→ νω(A, ·) is measurable B/Rp. We note that
if H is a set of numbers, rather than a set of functions, then our definition reduces to the classical
definition of a random probability measure. See, for example, Kingman (1967). We use the notation
Y |(X, ν) ∼ ν to indicate that a ν is chosen from K to be the conditional distribution of Y |X.

If, for each A ∈ R, κ(A,X) is almost surely constant, then κ represents the conditional distribu-
tion under which X and Y are independent. Let K0 be the collection of all such κ. The tendency
described in this paper occurs only when X and Y are related in some way (as both correlations
inside the probability are 0 otherwise) so we exclude the case of independence from consideration.
This is formulated as P (ν ∈ K0) = 0. This assumption is reasonable. Consider, for example, the
simple case where X and Y are standard normal variables. The dependence of X and Y is com-
pletely determined by their correlation ρ. The probability of independence of X and Y is 0 if we
assume ρ to have a continuous distribution.

Theorem 4. Suppose that the covariance operator Σ of X is unitarily invariant and satisfies
assumption 1. Suppose that ν is a random element of K such that P (ν ∈ K0) = 0 and

Y |(X, ν) ∼ ν, ν ⊥⊥ (X,Σ), Y ⊥⊥ Σ|(X, ν). (10)

Let g be any measurable function of Y such that the random function mν(·) =
∫
g ν(dω, ·) belongs

to H almost surely and, with probability 1,

Cov[g(Y ), ui(X)|ν,Σ] 6= 0, Cov[g(Y ), uj(X)|ν,Σ] 6= 0. (11)

We have then, for any i < j,

P{Corr2[g(Y ), ui(X)|ν,Σ] ≥ Corr2[g(Y ), uj(X)|ν,Σ]} = (2/π)E{arctan[(λi/λj)
1
2 ]}.
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The independence and conditional independence in (10) have a similar interpretation to those in
theorem 2: Y ⊥⊥ Σ|(X, ν) means that the distribution of Y |(X, ν) does not depend on Σ; ν ⊥⊥ (X,Σ)
means that the relation between X and Y does not depend on X or its covariance operator Σ. The
assumption P (ν ∈ K0) > 0 is to ensure functions satisfying (11) exist.

Proof of theorem 4. We begin similarly to the proof of theorem 3 by noting that

Cov[g(Y ), ui(X)|ν,Σ] = Cov{E[g(Y )|ν,Σ, X], ui(X)|ν,Σ}.

We also have, since Y ⊥⊥ Σ|(X, ν), that

E[g(Y )|ν,Σ, X] = E[g(Y )|ν,X] = mν(X).

We see that ν ⊥⊥ (X,Σ) implies mν ⊥⊥ (X,Σ). We hence, for any κ ∈ K, have that

Cov[mν(X), ui(X)|ν = κ,Σ] = Cov[mκ(X), ui(X)|Σ] = 〈mκ,Σui〉H = λi〈mκ, ui〉H.

This implies

Cov[mν(X), ui(X)|ν,Σ] = λi〈mν , ui〉H.

We have, by ν ⊥⊥ (X,Σ), that

Var[ui(X)|ν,Σ] = Var[ui(X)|Σ] = λi.

It follows that

Corr2[g(Y ), ui(X)|ν,Σ]

Corr2[g(Y ), uj(X)|ν,Σ]
=
λi〈mν , ui〉H
λj〈mν , uj〉H

.

We see that mν ⊥⊥ (ui, uj , λi, λj) implies mν ⊥⊥ (ui, uj)|(λi, λj). We hence have, for any κ ∈ K,
that

P

(
〈mν , uj〉2H
〈mν , ui〉2H

<
λi
λj

∣∣∣∣ ν = κ, λi, λj

)
= P

(
〈mκ, uj〉2H
〈mκ, ui〉2H

<
λi
λj

∣∣∣∣λi, λj) .
We see, by similiar reasoning to that used to show (9), that the right hand side is (2/π) arctan[(λi/λj)

1
2 ].

We have thus proved that

P

(
〈mν , uj〉2H
〈mν , ui〉2H

<
λi
λj

∣∣∣∣ ν, λi, λj) = (2/π) arctan[(λi/λj)
1
2 ].

Taking the conditional expectation on both sides of the above equality completes the proof.

Remark 4. The results of theorems 3 and 4 do not require Y to be univariate. It is apparent that
Y can be multivariate by appropriately altering the definition of a random conditional distribution
for Y |X. There may be some technicalities, not immediately apparent to us, worth investigating
in future research for whether Y can be an infinite-dimensional object or, even more generally, a
generic random variable where the codomain can be any measureable space.

15



We now, to test how our theory holds up in real data sets, compare the estimated values of

Πij = (2/π)E{arctan[(λi/λj)
1
2 ]}, Pij = P{Corr2(Y, ui|ν,Σ) ≥ Corr2(Y, uj |ν,Σ)}

for each of the three databases described in section 2. These two values should be the same according
to our theory. The values of Πij and Pij are estimated as follows. Let D1, . . . , Dm represent the data
sets in each database where m = 33, 53, 54 for the respective databases. We compute, for each Dk,
the ith empirical eigenvalues of the covariance operator induced by the second order polynomial
kernel with unit scale and offset that was used as described in section 2. Denote these eigenvalues
as λ̂ik. The value Πij is then estimated by

Π̂ij =
2

πm

m∑
k=1

arctan[(λ̂ik/λ̂jk)
1
2 ].

The probability Pij is estimated similarly. We compute, for each dataset Dk, the sample correlation
between the ith kernel principal component and the response. Denote this correlation by ρ̂ik. Pij
is then estimated by

P̂ij =
1

m

m∑
k=1

I(ρ̂2ik ≥ ρ̂2jk).

The results are presented in Table 1.

Table 1: Comparison of Π̂ij and P̂ij for three databases. “J & W” in the
table stands for the database in Johnson & Wichern (2007).

Arc J & W (2007) CMU StatLib

(i, j) Π̂ij P̂ij Π̂ij P̂ij Π̂ij P̂ij
1 vs 2 0.936 0.727 0.917 0.585 0.969 0.667
2 vs 3 0.875 0.667 0.767 0.585 0.824 0.648
3 vs 4 0.817 0.455 0.771 0.660 0.774 0.593
4 vs 5 0.831 0.636 0.772 0.453 0.772 0.519

Table 1 shows reasonable agreements between Π̂ij and P̂ij , at least in overall trends. It is inter-

esting to see that P̂ij seems to fluctuate more than Π̂ij does. This is perhaps to be expected because,
intuitively, Πij acts as a theoretical expectation of the relative predictive potentials of ui and uj
based purely on the properties of the predictors themselves. It should also be noted that equality
Pij = Πij is marginal in nature. A pair of eigenfunctions ui, uj are considered without reference
to the other eigenfunctions. Perhaps this explains why, in Table 1, a relatively good agreement is
sometimes followed by a relatively poor agreement and nonadjacent pairs seem to agree better. We
believe, within our current theoretical framework, that it is possible to compute probabilities such
as

P{Corr2(Y, ui|ν,Σ) ≥ Corr2(Y, uj |ν,Σ) ≥ Corr2(Y, uk|ν,Σ)}

for i < j < k, and such joint probabilities might improve the agreement.
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Fig 2: Boxplots for the absolute correlations between the response and the first 5 kernel principal
components of the predictors in three databases. Upper panel: 33 data sets from the Arc database.
Lower-left panel: 53 data sets from Johnson and Wichern (2007). Lower-right panel: 54 data sets
from CMU StatLib database. The kernel is the Gaussian kernel with a data-adaptive value for σ.
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5. Predictive power of KPCA with infinite-dimensional kernels

The difficulty in extending the previous results to infinite-dimensional KPCA arises from the fact
that spherical distribution cannot be extended to infinite-dimensional spaces. One therefore cannot
apply the notion of unitary invariance to functions or operators in those spaces as we did in the
previous section. We discuss, in this section, a way to extend the results for nonparametric regression
to infinite-dimensional KPCA by using a stronger assumption. All Hilbert spaces in this section
will be assumed separable and infinite-dimensional although the results apply analogously in finite-
dimensional spaces.

Assumption 2. Let Σ be either a fixed or random compact operator on H. This Σ will be the
covariance operator of X. Let ui be the i-th eigenvector of Σ. We assume that f is a random
element of H such that there exist finite subvectors of the sequence (〈f, uk〉)k∈N which are spherically
distributed.

This assumption removes some of the arbitrariness of f given by unitary invariance as it is no
longer the case that f is equiprobable in assigning any weight sequence to the basis vectors. We
rather have equiprobability for some finite subsets. The ratio of any two components of such a
subset has a standard Cauchy distribution. This observation can be used to prove a similar result
to the first we derived for the case of nonparametric regression.

Theorem 5. Suppose that Σ is a compact operator. Let λ1 > λ2 > · · · be the distinct eigenvalues
of Σ. Suppose the nonparametric regression model (3) holds and that f satisfies assumption 2 with
f ⊥⊥ X. Suppose also that ε ⊥⊥ (X, f), E(ε) = 0, Var(ε) = τ2 <∞. Let k ∈ N and V = (v1, . . . , vk)
be a subvector of N such that v1 < . . . < vk and (〈f, uv1〉, . . . , 〈f, uvk〉) has a spherical distribution.
We have the following whenever i < j ≤ k and λvj > 0.

P
{

Corr2[Y, uvi(X)|f ] ≥ Corr2[Y, uvj (X)|f ]
}

= (2/π) arctan[(λvi/λvj )
1
2 ].

We now have the following result as a consequence of theorem 5 when Σ is also random. The
proof is similar to theorem 2 with the only difference being that we replace the unitarily invariant
assumption with assumption 2. The proof relies on Ni (2011).

Theorem 6. Suppose that model (3) holds where X is a random vector whose covariance operator
is Σ. Σ is assumed to be a random covariance operator satisfying assumption 1. Let λ1 > λ2 > · · ·
be the distinct eigenvalues of Σ. Suppose that f satisfies assumption 2 with f ⊥⊥ X. Suppose also
that ε ⊥⊥ (X, f), E(ε) = 0, Var(ε) = τ2 < ∞. Let k ∈ N and V = (v1, . . . , vk) be a subvector
of N such that v1 < . . . < vk and (〈f, uv1〉, . . . , 〈f, uvk〉) has a spherical distribution. We have the
following whenever i < j ≤ k and λvj > 0.

P
{

Corr2[Y, uvi(X)|f,Σ] ≥ Corr2[Y, uvj (X)|f,Σ]
}

= (2/π)E(arctan[(λvi/λvj )
1
2 ]).

To prove the results for an arbitrary X-Y relationship would require us to impose further restric-
tions on the covariance operator which may be undesirable. We will therefore leave this for further
investigation in the future.

We demonstrate in figure 2 that similar results to the ones we had in figure 1 can be achieved
with an infinite-dimensional kernel. These infinite-dimensional kernel principal components are
computed using the centered Gram matrix described in Fukumizu, Bach, and Jordan (2009) with
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the Gaussian kernel. The parameter σ for the Gaussian kernel is determined adaptively for each
data set, according to the following procedure. Let X1, . . . , Xn represent the observed predictors of
a data set. We use the average of the Euclidean distances of {‖Xi −Xj‖ : i, j = 1, . . . , n, i < j} as
the value of σ.

6. Conclusion

This paper is an attempt at explaining, through a systematic probabilistic analysis and an empirical
investigation of three databases, the phenomenon that the first few kernel principal components
tend to have more predictive power for a response variable than lower-ranking ones. This occurs
even though the response is not designed in any way to be associated with these components. This
phenomenon has long been noticed, and was a focal point of a historical debate, in the context of
linear regression and classical principal component analysis. This problem is even more important
today because, in its most general form, it lies at the intersection of supervised, unsupervised, and
semi-supervised dimension reductions.

This work is a continuation of Li (2007), Artemiou and Li (2009, 2013) and Ni (2011), but goes
far beyond the linear regression and classical principal component analysis setting which these au-
thors considered. The most general form of our result states, essentially, that if nature selects an
arbitrary distribution for the predictor X and an arbitrary conditional distribution for Y |X then
the first few kernel principal components tend to have the most predictive power for a measureable
function of Y . This tendency can be explicitly quantified with the Cauchy distribution.

Theorem 4 is the most far-reaching result of this paper but the other results are not special cases
of it. This is because they are established under different sets of conditions and in different contexts.
The result for nonparametric regression in section 4.2 is derived under the assumption that the re-
gression function f is a unitarily invariant random function with no restrictions on the covariance
operator Σ. The result for arbitrary X-Y relation in section 4.3 is based on the assumption that Σ
is a unitarily invariant random covariance operator with virtually no restriction on the conditional
distribution ν.

We must emphasise again that the tendency studied in this paper, and the previous works cited
above, is probabilistic. The tendency clearly manifests itself in a collection of data sets but it cannot
be used to draw a definite conclusion about any particular data set. It is indeed possible that the
response may well be most strongly related to the least important principal components. We should
incorporate response data, whenever available, in order to achieve stronger predictive power. This
approach is taken, for example, in the field of sufficient dimension reduction.

We conclude with a brief discussion of some avenues for further investigation. We did not consider
the case of arbitary X-Y relation in the infinite-dimensional setting as doing so would require the
imposition of stricter assumptions on Σ. Future work could consider the naturalness of making
such assumptions and what implications they have. We noted in remark (4) that the results for
the finite-dimensional arbitrary X-Y relation case did not depend on Y being univariate and noted
that future work could consider how abstract an object Y can be. The main results in this paper
depend on the ratio of eigenvalues of some covariance operator. We know that, when H is induced
by a reproducing kernel, the covariance operator depends on the choice of kernel. Future work could
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consider whether the results can be strengthed for particular choices of the kernel or, more generally,
consider how the choice of kernel affects the results. Dicker et al (2017) showed, along these lines,
an upper bound on the risk of KPCR estimators with the conventional choice of the first k kernel
principal components to be their “regularisation family”. The work they did could be investigated
under a different choice of what kernel components are retained.
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