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Abstract. This paper addresses the problem concerning approximating human
cognitions and semantic extensions regarding acceptability status of arguments.
We introduce three types of logical equilibriums in terms of satisfiability, entail-
ment and semantic equivalence in order to analyse balance of human cognitions
and semantic extensions. The generality of our proposal is shown by the existence
conditions of equilibrium solutions. The applicability of our proposal is demon-
strated by the fact that it detects a flaw of argumentation actually taking place in
an online forum and suggests its possible resolution.

1 Introduction

Argumentation is a verbal, social and rational activity [17]. It is also a daily activity in
the sense that thinking hard has almost the same meaning as arguing oneself carefully.
Meanwhile, it is unclear how one should engage in and facilitate rational argumentation.
This is because there seems to be no universal evaluation standard telling what rational
argumentation is. However, in this paper, we argue that one aspect of such standards
is given by acceptability semantics, e.g., Dung’s acceptability semantics [13], as well
as more advanced ones, e.g., stage semantics [18], semi-stable semantics [10], ideal
semantics [14], CF2 semantics [5] and prudent semantics [12].

These and most acceptability semantics have the language independence principle
[4] meaning that they intrinsically refer not to contents, e.g., sentences and words, ex-
isting in arguments but to relations, e.g., attack and support relations, existing between
arguments when they define acceptability status of arguments. We thus call them (for-
mal) semantic acceptability in the sense that such contents do not directly affect evalu-
ation.3 By contrast, we call human judgment based on contents of arguments cognitive
acceptability. Both acceptability might be the same in some situations, but different and
moreover incompatible in other situations. As an example, let us consider the following
two conflicting arguments A and B attached with their votes.

Argument A (having 1001 positive votes) Veterinarians should have a right to apply
animal euthanasia to pets because they must respect pet owners’ will.

3 We recognise that sentences existing in arguments indirectly affect semantic acceptability in
the sense that they define relations among arguments.
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Argument B (having 1002 positive votes) It is not acceptable to allow veterinarians
to kill innocent pets because they cannot confirm pets’ own will.

In terms of semantic acceptability, e.g., Dung’s semantics, A and B cannot be ac-
ceptable at the same time because they are in conflict, i.e., attack each other. However,
in terms of cognitive acceptability, A and B should be acceptable at the same time
because they have a lot of positive votes. Now, does this situation show that agents
who vote for both A and B are irrational or the truth is that there is no attack relation
between these arguments? We think neither is true. The conflict is a result of rational
judgment caused by focusing on different sources of information: on the one hand, a
relation between arguments, and on the other hand, contents of arguments. Then, would
it be reasonable to leave the conflict as it is, as the existing contradiction? We think that
the acceptability should be at least compatible each other. Therefore, in this paper we
investigate what kind of difference exists between cognitive and semantic acceptability,
and how we should approximate and resolve them.

A difficulty associated with these questions is how to make a detailed analysis of the
difference in a unified way. Our novel approach is to introduce equilibriums to analyse
balances between cognitive and semantic acceptability using an entailment relation of
propositional logic. In this paper, we divide the difference into three types: satisfiability,
entailment and semantic equivalence. We formalise a detection of unsatisfiability, and
resolutions of satisfiability, entailment and semantic equivalence. We show that there
always exist contraction-based satisfiability, entailment and semantic-equivalence res-
olutions, and there always exist their expansion-based resolutions under the condition
that agent’s perceptions do not violate conflict-freeness of acceptability semantics.

The contributions of this paper are as follows. Firstly, to the best of our knowledge,
this is the first paper arguing for the need for balancing between agent’s perceptions and
semantic extensions. Although some recent work covers a change of agent’s perceptions
and semantic extension, it handles a change of either of them and their balanced change
is outside its scope (See Section 5). By benefitting from expression and analytical power
of propositional logic, this paper makes it possible to handle sensitively balanced con-
tractions and expansions of them (See Section 3). Secondly, this paper relates to both
theory and practice of computational argumentation. In fact, we demonstrate how our
theoretical concepts, i.e., equilibrium notions, highlight flaws of argument actually tak-
ing place in an online forum, and suggest their possible resolutions (See Section 4).

2 Preliminaries

Dung’s acceptability semantics [13] is a general and abstract theory of formal argu-
mentation. It is general in the sense that the semantics reinterprets consequence rela-
tions of various approaches for nonmonotonic reasoning. It is abstract in the sense that
the semantics is defined on a directed graph, called an abstract argumentation frame-
work, denoted by AF . AF is defined as a pair 〈Args,Atts〉 where Args is a set of
arguments and Atts ⊆ Args × Args is a binary relation on Args ((A,B) ∈ Atts
means “A attacks B”). Suppose A ∈ Args and S ⊆ Args. S attacks A iff some
member of S attacks A. S is conflict-free iff S attacks none of its members. S de-
fends A iff S is conflict-free and S attacks all arguments attacking A. Given AF ,
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Dung’s acceptability semantics defines four kinds of sets, called extensions, of ac-
ceptable arguments. S is a complete extension iff S is a fixed point of the function
F : Pow(Args) → Pow(Args) where F (S) = {a|S defends a} and Pow(Args)
is the power set of Args. S is a grounded (resp. preferred) extension iff it is the min-
imum (resp. a maximal) complete extension with respect to set inclusion. S is a stable
extension iff it is a complete extension attacking all members in Args \ S. We assume
functions arg(AF ) and att(AF ) to refer to the set of arguments Args and attack rela-
tions Atts of AF , respectively.

Example 1. Let AF be the argumentation framework where arg(AF ) = {A, B, C,
D}, and att(AF ) = {(B,C), (C,B), (C,D), (D,D)}. The graph representation of
AF and four types of extensions are described in the left and right below, respectively.

– Preferred extensions: {A,B}, {A,C}
– Stable extension: {A,C}
– Grounded extension: {A}
– Complete extensions: {A}, {A,B}, {A,C}

3 Equilibrium-Based Resolutions

3.1 Semantic and cognitive acceptabilities

We introduce a propositional language associated with an abstract argumentation frame-
work. It is used to describe acceptability status of arguments in the framework.

Definition 1 (Language). Let AF be an abstract argumentation framework. A propo-
sitional language LAF associated with AF is defined as follows. For all arguments
X ∈ arg(AF ), x is an atomic formula of LAF . When x and y are formulas of LAF ,
(x ∧ y), (x ∨ y), (x→ y) and ¬x are formulas of LAF .

For all atomic formulas x ∈ LAF , “x is true” intuitively means “argument X is accept-
able.” Given an extension, arguments are acceptable if and only if they are members
of the extension. Different two extensions define alternative memberships. Therefore, a
logical expression of extensions is defined as follows.

Definition 2 (Extensions). Let AF be an abstract argumentation framework and E be
a set of extensions of AF . A logical expression of E is given as follows.4

{
∨
E∈E

(
∧

X∈E
x ∧

∧
X∈Args\E

¬x)}

Example 1 (continued). Logical expressions of all types of extensions of AF are given
as follows.

– Preferred extensions : {(a ∧ b ∧ ¬c ∧ ¬d) ∨ (a ∧ ¬b ∧ c ∧ ¬d)}
– Stable extension: {a ∧ ¬b ∧ c ∧ ¬d}
– Grounded extension: {a ∧ ¬b ∧ ¬c ∧ ¬d}

4 The exclusive OR is strictly appropriate. However, we use OR because of their equivalence.
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– Complete extensions: {(a∧¬b∧¬c∧¬d)∨ (a∧ b∧¬c∧¬d)∨ (a∧¬b∧ c∧¬d)}

In what follows, we assume a fixed and arbitrary abstract argumentation framework
AF and acceptability semantics ε. We use function ε(AF ) to refer to the logical expres-
sion of the set of extensions of AF with respect to ε. We assume a fixed and arbitrary
consistent set Σ ⊆ LAF of formulas. On the one hand, ε(AF ) is used to represent
semantic extensions, and on the other hand,Σ is used to represent cognitive extensions.

3.2 Satisfiability resolution

This subsection discusses how to detect and resolve incompatibility between cognitive
acceptability Σ and semantic acceptability ε(AF ). A minimally unsatisfiable set is a
minimal subset of cognitive acceptability that causes incompatibility with semantic ac-
ceptability.

Definition 3 (Minimally unsatisfiable set). Σ↓ ⊆ LAF is a minimally unsatisfiable
set with respect to AF iff Σ↓ is a minimal subset of Σ with respect to ⊇ such that
ε(AF ) ∪Σ↓ is unsatisfiable.

An order relation between abstract argumentation frameworks is introduced to refer to
maximality and minimality of frameworks.

Definition 4 (Subframework/superframework). Let AFi and AFj be abstract argu-
mentation frameworks. AFi is a subframework of AFj (or AFj is a superframework of
AFi), denoted by AFi v AFj , iff arg(AFi) ⊆ arg(AFj) and att(AFi) ⊆ att(AFj).

An unsatisfiable core is intuitively a minimal subframework preserving incompatibility
existing between AF and Σ.

Definition 5 (Unsatisfiable core). An abstract argumentation framework AF↓ is an
unsatisfiable core of AF with respect to Σ iff there is a minimally unsatisfiable set Σ↓
with respect to AF , and AF↓ is a minimal subframework of AF such that Σ↓ is a
minimally unsatisfiable set with respect to AF↓.

Example 2. Let us consider the following argumentation framework AF and the satis-
fiable set Σ = {a, a→ b,¬c} ⊆ LAF .

Complete extensions ofAF is {(a∧¬b∧c)∨(¬a∧b∧¬c)∨(¬a∧¬b∧¬c)}. In this situ-
ation,Σ1 = {a, a→ b} andΣ2 = {a,¬c} are minimally unsatisfiable sets with respect
toAF . The followingAF1 andAF2 are the unsatisfiable cores ofAF with respect toΣ.

A question here is how to resolve incompatibility between cognitive and seman-
tic acceptability. When we consider the situation where semantic acceptability imposes
cognitive acceptability to change, a possible resolution is to change the cognitive ac-
ceptability. A maximally satisfiable set is a maximal subset of the cognitive acceptabil-
ity that causes no incompatibility with the semantic acceptability.
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Definition 6 (Maximally satisfiable set). Σ↓ ⊆ Σ is a maximally satisfiable set with
respect to AF iff Σ↓ is a maximal subset of Σ with respect to ⊇ such that ε(AF ) ∪Σ↓
is satisfiable.

Meanwhile, when we consider the situation where cognitive acceptability imposes on
semantic acceptability to change, a possible resolution is to contract or expand AFs.
Each maximally and minimally satisfiable framework represents a contraction and ex-
pansion of AFs, respectively.

Definition 7 (Maximally/minimally satisfiable framework). Let AFl be an abstract
argumentation framework. AFl is a maximally (resp. minimally) satisfiable framework
with respect to Σ iff AFl is a maximal subframework (resp. minimal superframework)
of AF with respect to w such that ε(AFl) ∪Σ is satisfiable.

A contraction is appropriate when an AF is uncertain in the sense that existence of argu-
ments and attacks is unclear. An expansion is appropriate when an AF is incomplete in
the sense that there can exist additional arguments or attacks. A satisfiability resolution
is defined as an equilibrium point between cognitive and semantic acceptability.

Definition 8 (Satisfiability resolutions). LetAFl be an abstract argumentation frame-
work and Σ↓ ⊆ Σ be a set. The pair (AFl, Σ↓) is a satisfiability resolution of (AF,Σ)
iff Σ↓ is a maximally satisfiable set with respect to AFl and AFl is a maximally or
minimally satisfiable framework with respect to Σ↓.

In particular, we call satisfiability resolutions contraction-based when they are based
on maximally satisfiable frameworks, and expansions-based when they are based on
minimally satisfiable frameworks.

Example 2 (continued). All possible contraction-based and expansion-based satisfia-
bility resolutions of (AF,Σ) are described in the left and right below, respectively.

( , {a} )

( , {a→ b,¬c} )

( , {a, a→ b,¬c} )

( , {a} )

( , {a→ b,¬c} )

( , {a,¬c} )

( , {a,¬c} )

Here, the domain of discourse for possible expansions of AF is assumed to be given by
the complete graph AFD as follows.

3.3 Entailment resolution

This subsection deals with the issue that semantic acceptability cannot entail cognitive
acceptability. The first approach for solving this problem is to change cognitive accept-
ability. We define a maximally entailed set as follows.
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Definition 9 (Maximally entailed set). Σ↓ ⊆ Σ is a maximally entailed set with re-
spect to AF iff Σ↓ is a maximal subset of Σ with respect to ⊇ such that ε(AF ) |= Σ↓
holds.5

The second approach is to contract or expand argumentation frameworks defining se-
mantic acceptability. Both maximally and minimally entailing frameworks are minimal
changes of AFs whose semantic acceptability entails cognitive acceptability.

Definition 10 (Maximally/minimally entailing framework). Let AFl be an abstract
argumentation framework. AFl is a maximally (resp. minimally) entailing framework
with respect to Σ iff AFl is a maximal subframework (resp. minimal superframework)
of AF with respect to w such that ε(AFl) |= Σ holds.

An entailment resolution is defined as an equilibrium point between the acceptabilities.

Definition 11 (Entailment resolutions). LetAFl be an abstract argumentation frame-
work and Σ↓ ⊆ Σ be a set. The pair (AFl, Σ↓) is an entailment resolution of (AF,Σ)
iff Σ↓ is a maximally entailed set with respect to AFl and AFl is a maximally or mini-
mally entailing framework with respect to Σ↓.

We call entailment resolutions contraction-based (resp. expansion-based) when they are
based on maximally (resp. minimally) entailing frameworks.

Example 2 (continued). All possible contraction-based and expansion-based entailment
resolutions of (AF,Σ) are described in the left and right below, respectively.

( , ∅ )

( , {a} )

( , {a} )

( , {a→ b,¬c} )

( , {a, a→ b,¬c} )

( , ∅ )

( , {¬c} )

( , {a→ b} )

( , {a→ b,¬c} )

( , {a} )

( , {a,¬c} )

3.4 Semantic equivalence resolution

This subsection asks how to make cognitive and semantic acceptability coincide with
each other. The first approach is to change cognitive acceptability. A maximally (resp.
minimally) equivalent set is a maximal subset (resp. minimal superset) of the cognitive
acceptability that is equivalent to the semantic acceptability.

Definition 12 (Maximally/minimally equivalent set). Σl ⊆ LAF is a maximally
(resp. minimally) equivalent set with respect to AF iff Σl is a maximal subset (resp.
minimal superset) of Σ with respect to ⊇ such that Σl ⇔ ε(AF ) holds.6

5 ε(AF ) |= Σ↓ denotes that, for all x ∈ LAF , if x ∈ Σ↓ then ε(AF ) |= x.
6 Σ↓ ⇔ ε(AF ) denotes that Σ↓ |= ε(AF ) and ε(AF ) |= Σ↓ hold.
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The second approach is to change AFs defining semantic acceptability. Both maximally
and minimally equivalent frameworks are minimal changes of AF whose semantic ac-
ceptability is equivalent to the cognitive acceptability.

Definition 13 (Maximally/minimally equivalent framework). Let AFl be an ab-
stract argumentation framework.AFl is a maximally (resp. minimally) equivalent frame-
work with respect to Σ iff AFl is a maximal subframework (resp. minimal superframe-
work) of AF with respect to w such that Σ ⇔ ε(AFl) holds.

A semantic equivalence resolution is formally defined as an equilibrium point between
cognitive and semantic acceptability.

Definition 14 (Semantic equivalence resolutions). Let AFl be an abstract argumen-
tation framework and Σl ⊆ LAF be a set. The pair (AFl, Σl) is a semantic equiv-
alence resolution of (AF,Σ) iff Σl is a maximally or minimally equivalent set with
respect to AFl and AFl is a maximally or minimally equivalent framework with re-
spect to Σl.

Example 2 (continued). The followings are all contraction-based semantic equivalence
resolutions of (AF,Σ).

( , {a, a→ b,¬c} )

( , {a, a→ b} )

( , {a} )
( , ∅ )

Note that, for example, (〈{A,B,C}, {(B,C)}〉, {a, a→ b,¬c, b}) is not a contraction-
based semantic equivalence resolution. Meanwhile, there is no expansion-based se-
mantic equivalence resolution of (AF,Σ). So, we here consider another example with
Σ∗ = {a ∨ b, c}. We assume a set ΣD ⊆ LAFD

of a domain discourse for possible
expansions of Σ∗ where AFD is the complete graph as shown in the previous example.
There is the following expansion-based semantic equivalence resolution of (AF,Σ∗).

( , {a∨ b, c,¬b∧ d} )

4 Generality and Applicability

4.1 Characterising existence of resolutions

In this subsection, we show the necessary and sufficient conditions of the existence of
our equilibrium-based resolutions. We use the model checking techniques [8] to analyse
argumentation theoretic properties of equilibriums. According to the literature, a set
S ⊆ arg(AF ) of arguments is conflict-free iff the set {x ∈ LAF |X ∈ S} is a model of
the formula ΦAF defined as follows.

ΦAF =
∧

A∈arg(AF )

(a→
∧

B:(B,A)∈att(AF )

¬b)

We divide expansion-based and contraction-based resolutions into three types: Σ
fixation,Σ expansion andΣ contraction. The first theorem supposes the situation where
Σ is fixed in expansion-based resolutions.



8

Table 1. Summary of the existence of resolutions.

Expansion-based resolutions Contraction-based resolutions
Σ fixation Σ expansion Σ contraction Σ fixation Σ expansion Σ contraction

(Theorem 1) (Theorem 2) (Theorem 3) (Theorem 4) (Theorem 5) (Theorem 6)
Satisfiability X (cond.) X (cond.) X X X X
Entailment X (cond.) X (cond.) X X

Equivalence X (cond.) X

Theorem 1. For any AF and consistent set Σ ⊆ LAF , there exist abstract argumen-
tation frameworks AF↑ such that (AF↑, Σ) are expansion-based satisfiability (entail-
ment, respectively) resolutions of (AF,Σ) iffΣ do not violate the conflict-free property,
i.e., Σ 6|= ¬ΦAF .

There does not always exist an expansion-based semantic equivalence resolution (AF↑, Σ)
even when Σ do not violate the conflict-free property. An example case is when AF =
〈{A}, ∅〉 and Σ = ∅. The next two theorems suppose the situations where Σ can be
expanded and contracted in expansion-based resolutions, respectively.

Theorem 2. For any AF and consistent set Σ ⊆ LAF , there exist abstract argumen-
tation frameworks AF↑ and supersets Σ↑ of Σ such that (AF↑, Σ↑) are expansion-
based satisfiability (entailment and semantic equivalence, respectively) resolutions of
(AF,Σ) iff Σ do not violate the conflict-free property, i.e., Σ 6|= ¬ΦAF .

Theorem 3. For any AF and consistent set Σ ⊆ LAF , there exist abstract argumen-
tation frameworks AF↑ and subsets Σ↓ of Σ such that (AF↑, Σ↓) are expansion-based
satisfiability (entailment, respectively) resolutions of (AF,Σ).

Note that Theorems 2 and 3 include Theorem 1, i.e., the case of Σ↓ = Σ and
Σ↑ = Σ, as special cases, respectively. The next theorem regarding contraction-based
resolutions supposes the situation where Σ is fixed.

Theorem 4. For any AF and consistent set Σ ⊆ LAF , there exists an abstract ar-
gumentation framework AF↓ such that (AF↓, Σ) is a contraction-based satisfiability
resolution of (AF,Σ).

There does not always exist an entailment and semantic equivalence resolution. For
example, whenAF = 〈{A}, ∅〉 andΣ = {¬a}, there is neither entailment nor semantic
equivalence resolution. The next two theorems suppose the situations where Σ can be
expanded and contracted in contraction-based resolutions, respectively.

Theorem 5. For any AF and consistent set Σ ⊆ LAF , there exist an abstract argu-
mentation frameworkAF↓ and a supersetΣ↑ ofΣ such that (AF↓, Σ↑) is a contraction-
based satisfiability resolution of (AF,Σ).

Theorem 6. For any AF and consistent set Σ ⊆ LAF , there exist abstract argumen-
tation frameworks AF↓ and subsets Σ↓ of Σ such that (AF↓, Σ↓) are contraction-
based satisfiability (entailment and semantic equivalence, respectively) resolutions of
(AF,Σ).
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Fig. 1. The left graph shows a whole dispute relations and a summary of positive and negative
votes. The right graph shows an argumentation framework constructed from the left graph.

Table 1 shows the summary of the above mentioned theorems in terms of change
of Σ. Symbol “X” means that there exists a resolution. Meanwhile, “(cond.)” means
that there exists a resolution if and only if Σ does not violate the conflict-free property.
These facts show generality of equilibriums-based approaches in the sense that they
have the ability to give resolutions for all types of equilibriums.

4.2 Application illustration in online forum

Application potential is one of important criteria for evaluating accuracy of research
proposals. This subsection illustrates applicability of our equilibrium based resolutions
to argumentation analysis in online debate forums.

CreateDebate [1] is an online forum preserving a number of written arguments,
casted votes, and relationships, e.g., dispute, support and clarification relations, among
arguments. On the left in Figure 1, we show a whole dispute structure and a summary
of users’ votes that are both extracted from argument on abortion actually taking place
in CreateDebate. The edges represent the whole dispute relations and the white (resp.
black) nodes represent that they get user’s positive votes above (resp. below) average.
On the right in Figure 1, we show a partial graph of the left that especially focuses on
discussing a specific subject on abortion. We represent it as an abstract argumentation
framework, denoted byAF , with a symmetric attack relation, i.e., if (X,Y ) ∈ att(AF )
then (Y,X) ∈ att(AF ), for all X,Y ∈ arg(AF ). We assume that ε(AF ) represents
the logical expression of the set of preferred extensions. We define agents’ cognitions
Σ from the votes to individual arguments in such a way that x ∈ Σ holds when node
X is white and ¬x ∈ Σ holds when node X is black.

Fig. 2. The inconsistent cores of the argumentation framework shown in the right in Figure 1.
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Figure 2 shows all unsatisfiable cores of AF with respect to Σ.7 It is observed
that {k, j}, {g,¬i, k,m} and {¬e,¬f} ⊆ Σ are minimally unsatisfiable subsets of Σ
with respect to AF . The inconsistent cores verify consistency between acceptance of
arguments coming from the argumentation structure and user’s votes. They are useful
in the sense that they tell where people should pay attention to resolve incompatibility
between agent cognitions and semantic extensions.

A consistent core is obtained by eliminating attacks (K,J), (J,K), (E,F ), (F,E) ∈
att(AF ) fromAF . Given theAF , the left and right graphs in Figure 3 show a contraction-
based and an expansion-based satisfiability resolutions, respectively.

Fig. 3. A contraction-based (left) and an expansion-based (right) satisfiability resolutions.

Note that Σ has no change in the contraction-based resolution, although it changes
to Σ \ {k,¬e} in the expansion-based resolution. The satisfiability resolutions facili-
tate rational argumentation in the sense that they suggest simultaneous updates on both
argumentation frameworks and users’ cognitions.

Given the expansion-based resolution, Figure 4 shows a contraction-based entail-
ment resolution and a contraction-based semantic equivalence resolution.

Fig. 4. A contraction-based entailment resolution (left) and a contraction-based semantic equiva-
lence resolution (right).

Both resolutions change their attack relations by changing some mutual attacks to
one-directional. Note that the entailment resolution has the contractionΣ\{¬f}, but the
semantic equivalence resolution has the expansion Σ ∪{e,¬k, q}. Note that a semantic
equivalence resolution is stricter than an entailment resolution, and an entailment reso-
lution is stricter than a satisfiability resolution. Each type of resolution corresponds to
agent’s attitude of how much closeness between cognitive and semantic acceptability
they require.

7 The rightmost graph is not an unsatisfiable core when complete extensions are assumed.
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5 Conclusions and Discussion

Our motivation of this work is that, as with us human beings, agent’s perceptive de-
velopment can be achieved by resolving the gaps between cognitive and semantic ac-
ceptability. In this paper, we introduced equilibrium-based satisfiability resolutions, en-
tailment resolutions and semantic equivalence resolutions. We showed generality of
our proposal by proving existence conditions of their resolutions. We demonstrated its
applicability to online forums. The limitations of this paper is that our equilibrium-
based resolutions mention nothing about sentences additional arguments should have.
Our expansion-based resolutions only mention about an attack relation that additional
arguments should have with other arguments.

This paper relates to research studies of belief revisions on abstract argumentation
frameworks (AFs). [11] proposes a typology of revisions of AFs in terms of changes
on extensions. [6] addresses a problem of how to modify AFs so that a desired set of
arguments becomes an extension of revised AFs. [7] handles changes of AFs by in-
troducing several revision operators that satisfy AGM (Alchourrón, Gärdenfors, and
Makinson) postulates [2]. These research studies commonly focus on changes of AFs.
In contrast, [16] focuses on belief revisions on agents’ perceptions about acceptability
status of arguments, and provide web-platform ArgTech that alerts users to irrational
agents’ perceptions through incompatibility checking with the complete labelling [3].
[9, 15] focus on changes of both AFs and agents’ perceptions, and deal with resolutions
of incoherence of agent’s beliefs by expanding AF and constraints on its outcomes. In
contrast, we primarily focus on balancing between perceptions (or constraints) and out-
comes of argumentation. We thus introduce equilibrium mechanisms to handle simulta-
neous changes of them although the related work handles, at most, each of them. Notice
that the resolutions analysed in Section 4.2 can only be achieved as an equilibrium, and
a change of either AF or agents’ perceptions is a special case of our equilibrium-based
resolutions. Moreover, although the related work focuses on expansions and incoher-
ence (“satisfiability” in this paper), this paper further deals with contraction and intro-
duces entailment and semantic equivalence resolutions.

A Proofs

Proof. (Theorem 1) (⇒) Assume Σ |= ¬ΦAF . ΦAF↑ |= ΦAF holds because att(AF↑) ⊇
att(AF ) holds, for all AF↑ w AF . Thus, Σ |= ¬ΦAF↑ holds. Since ε(AF↑) |= ΦAF↑ holds,
{ΦAF↑}∪Σ is unsatisfiable and ε(AF↑) 6|= Σ holds. Thus, there is neither minimally satisfiable
framework nor minimally entailing framework with respect to Σ. (⇐) It is sufficient to show
entailment resolutions. Assuming that Σ 6|= ¬ΦAF holds, there is a model M of Σ and ΦAF ,
i.e.,M |= Σ∪{ΦAF }. We want to show that there isAF↑ w AF such that, for all x ∈M (resp.
x /∈ M ), ε(AF↑) |= x (resp. ε(AF↑) |= ¬x) hold. Consider AF⇑ adding a new argument Y
attacking only all arguments X where x /∈ M holds. Obviously, ε(AF⇑) |= ¬x, for all x /∈ M .
Consider AF↑ adding another new argument Z attacking only all arguments attacking X where
x ∈ M holds. Here, since M |= ΦAF holds, for all (X,Y ) ∈ att(AF ), if y ∈ M then x /∈ M ,
and vice versa. Thus, ε(AF↑) |= x, for all x ∈M .

Proof. (Theorems 2, 3, 4, 5 and 6 (Sketch)) Similar to Theorem 1 or obvious from the case
AF = 〈∅, ∅〉 or Σ = ∅.
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