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Abstract 

Estimation of the long-memory parameter from the log-periodogram (LP) regression, 

due to Geweke and Porter-Hudak (GPH), is a simple and frequently used method of 

semi-parametric estimation. However, the simple LP estimator suffers from a finite 

sample bias that increases with the dependency in the short-run component of the 

spectral density. In a modification of the GPH estimator, Andrews and Guggenberger, 

AG (2003) suggested a bias-reduced estimator, but this comes at the cost of inflating the 

variance. To avoid variance inflation, Guggenberger and Sun (2006) suggested a 

weighted LP (WLP) estimator using bands of frequencies, which potentially improves 

upon the simple LP estimator. In all cases a key parameter in these methods is the need 

to choose a frequency bandwidth, m, which confines the chosen frequencies to be in the 

‘neighbourhood’ of zero. GPH suggested a ‘square-root’ rule of thumb that has been 

widely used, but has no optimality characteristics. An alternative, due to Hurvich and 

Deo (1999), is to derive the root mean square error (rmse) optimising value of m, which 

depends upon an unknown parameter, although that can be consistently estimated to 

make the method feasible. More recently, Arteche and Orbe (2009a,b), in the context of 

the GPH estimator, suggested a promising bootstrap method, based on the frequency 

domain, to obtain the rmse value of m that avoids estimating the unknown parameter. 

We extend this bootstrap method to the AG and WLP estimators and to consideration of 

bootstrapping in the frequency domain (FD) and the time domain (TD) and, in each 

case, to ‘blind’ and ‘local’ versions. We undertake a comparative simulation analysis of 

these methods for relative performance on the dimensions of bias, rmse, confidence 

interval width and fidelity. 
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I. Introduction 

There have been a number of suggestions to improve the basic log-periodogram, LP, 

estimator of the long-memory parameter, d, due to Geweke and Porter-Hudak (1983), 

(hereafter GPH) which, although popular, is known to be biased in finite samples, see 

for example Agiakloglou et al (1993). Andrews and Guggenburger (2003), hereafter 

AG, suggested improving the GPH estimator by basing an estimator of d on a higher 

order Taylor series expansion of the log periodogram. This method, however, inflates 

the estimator variance and, to avoid this undesirable feature, Guggenberger and Sun 

(2004, 2006), hereafter GS, suggested a method that weights N component LP 

estimators of increasing bandwidths into a single estimator, referred to as a weighted 

LP, WLP, estimator; by an appropriate choice of parameters, the bias can be controlled 

without inflating the variance; thus, the WLP estimator offers the possibility of 

dominating the simple LP and AG estimators. 

 

Whilst our preliminary simulations indicated that the WLP procedure offered 

improvements over the simple LP estimator, recent research has suggested that 

bootstrapping can be a fruitful way of improving the LP estimator, especially in 

determining the bandwidth, m, which is the number of spectral frequencies included in 

the LP pseudo-regression. Whilst the variance is driven down as m increases, the 

inclusion of too many short-run frequencies increases the bias; on the other hand, 

reducing the number of included frequencies reduces the bias, but increases the 

variance. Hence, as Arteche and Orbe (2009b), hereafter AO, have shown, m is a key 

parameter in determining the actual, rather than theoretical, properties of the resulting 

estimator. 

 

There have been a number of suggestions to overcome the problem of choosing m in the 

context of the standard LP regression. 1) GPH (1983) suggested the square root rule, m 

= n , where n  is the number of observations; this idea has led to the use of a 

mechanical rule of the form m = n , but without any clear uniformity on the choice of 

 . 2) Hurvich and Deo (1999), hereafter HD, suggested choosing m to minimise the 

root mean squared error, rmse, of the LP estimator; although this is not quite a ‘plug-in’ 
rule, it is relatively easy to implement with prior estimation of an extended LP 



regression. 3) For the standard case, AO (2009b) suggested a bootstrap version of the 

rmse rule, which performed well relative to the HD method.  

 

In order to undertake a comparison of the leading LP-based estimators, we consider a 

number of issues in this paper, as follows: 

 

1. The design of a bootstrap scheme for the WLP estimator that respects the underlying 

sequential nature of the N component LP estimators. This is important in order to mimic 

the way that the data is generated. (A bootstrap is also undertaken for the AG estimator, 

but that is a trivial extension of that for the LP estimator.) 

2. The design of bootstraps for the frequency domain (FD) and, alternately, the time 

domain (FD) for the various LP estimators considered here. 

3. Bootstrapping using local resampling in both the FD and TD cases. 

4. Simulating the rmse of the WLP estimator (and other estimators) in order to select the 

operational bandwidth and compare that choice with others, including a mechanical rule 

and a feasible implementation of the HD rule. 

5. We also undertake a comparative analysis of the LP, AG and WLP estimators across 

these various dimensions in terms of an rmse comparison and the fidelity of the 

resulting confidence intervals. 

 

Some preliminary comments motivate these issues. On point 1), care has to be taken in 

the design of the WLP bootstrap procedure in order to preserve the sequential way in 

which the data is generated for the N component LP estimators. A residual based 

bootstrap is used here but, for example, an unrelated resampling scheme for each of the 

N LP estimators does not respect the generation of the data in the actual WLP 

procedure. On point 2), the bootstrap can be based on resampling in the frequency 

domain, as in AO (2005), (2009a, b), or in the time domain, as in Franco and Reisen 

(2004, 2007), Poskitt (2008) and Kapetanios and Papailias (2011). On point 3), 

resampling in either the FD or TD may be ‘blind’ or ‘local’ in some form see, for 

example, Paparoditis and Politis (1999, 2001, 2003) and AO (2009b). The bootstrap 

scheme used here for the WLP estimator may be described as a ‘sighted’ bootstrap in 
the sense of respecting the sequential nature of the component LP estimators.  

 

The differences between ‘blind’, ‘local’ and ‘sighted’ resampling schemes are described 

in detail in section 4, but some motivation for these terms can be simply described at 

this point. In a standard bootstrap from a sample of length T (for time) or M (for 

frequency), resampling can occur from anywhere in the sample, that is t = 1, …, T or j = 

1, …, M, respectively; however, to mimic the properties of an estimator that does not 



use all of the time or frequency observations, a (fixed) window of limited length around 

some usually centred point is specified; for example, sample from adjacent observations 

or frequencies, in which case the resampling process is described as ‘local’, that is from 
the ‘window’ of choice. The situation is more complex in the case of the WLP 

estimator, which uses an increasing sequence of frequencies for several LP estimators, 

weighting the end result to obtain an overall estimator; thus, it would not be appropriate 

to use a either a ‘blind’ or fixed ‘local’ window resampling scheme. Rather, we allow 

the resampling window to increase in length to reflect the increasing number of 

frequencies that are used in calculating the component LP estimators: heuristically, it is 

able to ‘see’ how the choice of ‘local’ is not fixed but expands with the required number 

of frequencies. 

 

On point 4), and developing the method in AO (2009b), we use a simulation method to 

select the value of m that minimises the rmse and also compare that choice with an 

operational version of the rule of selecting m by minimising the asymptotic rmse and 

with the often used square-root rule. On point 5) there are a number of dimensions to 

choosing an LP-type estimator, specifically: i) which estimator, ii) which bootstrap 

design, iii) should the bootstrap be in the frequency domain or the time domain and iv) 

how is the number of included frequencies chosen? Thus, we provide some simulation 

guidance on these issues. Moreover, as an issue often of practical concern is to use the 

estimates to form confidence intervals, we also consider the fidelity of the confidence 

interval (CI) coverage compared to the nominal coverage and the coverage width. 

Ideally, one seeks the best fidelity and the shortest interval, but some trade-off may be 

necessary in practice. 

 

This paper is organised as follows. In order to make the paper reasonably self-

contained, the derivation of the LP and WLP estimators, and their properties, are briefly 

outlined in sections 2 and 3, respectively. Section 4 details the bootstrap routine for the 

WLP estimator and section 5 reports the results from a number of simulation 

experiments. Section 6 contains concluding remarks. 

  

2. The log-periodogram estimator (LPE): GPH and AG estimators  

We consider a data series n
1i}y{  with spectral density function given by: 

 

)(f jy   = )(f|)e1(| ju
d2ji

− −−
      (1) 

 
where d  (–½, ½) is the ‘long-memory’ parameter and )(f ju   captures the short-run 

frequency components of the series, such that )(f ju   → G, a finite constant, as 



+→ 0j ; other assumptions are as in AG (2003) and GS (2004, 2006). The LP 

estimator, LPd̂ , is obtained from least squares (LS) estimation of d in the following 

pseudo-regression, for example, Robinson (1995): 

 
)](Iln[ jy   =  jj0 )][ln(d2 +−   j = 1, …, m.   (2) 

 

where 2

jjy |)(|)(I =  is the periodogram of y and )( j  is the discrete Fourier 

transform evaluated at the Fourier frequencies j  = n/j2  for j = 1, ..., [m]; m is a 

user-selected integer truncation parameter confining the frequencies to the 

neighbourhood of the origin from the right ( +→ 0j ). The asymptotic variance of LPd̂  

is )d̂( LP
asym,2  = )m24/(2 , whilst the finite sample standard error of LPd̂  is obtained 

in the usual way from the LS estimation of the regression (2). 

 

To overcome the finite sample bias of the LP estimator, AG (2003) suggested a bias-

reduced estimator, obtained by augmenting the simple LP regression with even powers 
of j , which arises from a Taylor series expansion of )](flog[ ju  , that is: 

 

)](Iln[ jy   = j

r

1k

k2
jkj0 )][ln(d2 ++− 

=


       j = 1, …, m (3) 

 

where )!k2/(b k2k =  and kb  = 0jk
j

ju
k

|
)]}(f{ln[

=



.  

 

The resulting LS estimator is denoted )r(d̂ LP , of which the LP estimator is seen to be 

the special case )0(d̂LP , and the AG estimator for r = 1 is denoted )1(d̂LP .  

 

The asymptotic bias, asymptotic variance of )r(d̂ LP  and the asymptotically optimal 

value of m, obtained by minimising the rmse, are given, respectively, by:  

 

LP
ˆAB(d (r))  = 

r22

r22

r22r
n

m
b

+

+

+       (4) 

))r(d̂( LP
2   = r

2

c
m24


       (5)  

 

)r(mopt
LP   = )r45/()r44(n)r(K ++       (6a) 

 



where K(r)  = 

)r45/(1

2
r22

2
r

r
2

b)r44(24

c
+

+














+


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AG (2003) provide the sets }c{ r  and }{ r  of known constants; for example, 0c  = 1, 1c  

= 2.25, 2c  = 3.52, 3c  = 4.79 and 0  = –2.19, 1  = 2.23, 2  = –0.793, 3  = 0.146. For 

given m, ))r(d̂( LP
2 , r  1, is inflated relative to ))0(d̂( LP

2  by the constant rc . The 

unknown coefficient in )r(mopt
LP  is r22b + , see K(r), which can be estimated from the 

regression (3), but with r of one higher order than required for )r(d̂ LP ; this regression 

uses m  frequencies, where m  = Kn ,  = (8 + 4r)/(9 + 4r), K   0. (The choice of a 

value for K is considered below.) Although not fully automatic, the resulting estimator, 

)r(m̂
opt
LP , is sometimes referred to as a ‘plug-in’ estimator and is based on Hurvich and 

Deo (1999). The AG estimator, despite its improvement in bias reduction, has not, 

however, displaced use of the basic LP estimator, partly because of the variance 

inflation. 

 

3. The weighted LP (WLP) estimator  

The estimator suggested by GS (2004, 2006), hereafter denoted )r(d̂ WLP , controls the 

variance inflation in the AG method. In summary, the GS estimator involves splitting 

the overall number of included frequencies into a finite number N of bands of increasing 

length im  and estimating d using the LP estimator, )m,0(d̂ iLP , for each of the 

frequency intervals. The overall estimator is then a weighted average of the N 

component estimators, where the weights are chosen to ensure asymptotic unbiasedness 

by eliminating the first r dominant terms in the bias. In practice, r is a choice parameter, 

with r fairly small, for example, r = (0, 1, 2), as the variance of the resulting estimator 

increases with r.  

 

The bandwidths of the N component LP estimators are im  = mi , i = 1, …, N, for an 

increasing sequence of i , where ]m[ N   floor[ 2/n ]. These bandwidths,   = 

)',,( N1   , are used to obtain the N estimates )m,0(d̂ iLP , which are components in 

the weighted estimator with corresponding weights )1(w  = )'w,,w( N1  . The 

bandwidths and weights satisfy the following conditions (see GS, 2004, 2006): 

 

C1)  =

N

1i iw  = 1; C2)  =


N

1i

j2
iiw  = 0,  for j = 1, …, r; C3)  =

+
N

1i

r22
iiw  = .  

 

C1 ensures that the weighted LP estimator is asymptotically unbiased; C2 follows from 

eliminating the r-th order bias involving terms in r2)n/m( ; and C3 controls the 



multiplicative constant of the dominant bias term, r22)n/m( + , enabling )r(d̂ LP  and 

)r(d̂ WLP  to have the same term, (   = [1, –0.429, 0.1515] for r = [0, 1, 2]); for further 

details see GS (2004, 2006, Theorem 2, Lemma 3.1, and remark c, therein). Condition 3 

also provides the basis of obtaining an estimator of r22b + , see equation (14) below, as 

an input to the ‘plug-in’ selection of m.  
 

These three conditions are satisfied by the following regression: 

 

)m,0(d̂ iLP  = d +  =


r

1j

j2
ij2  + )( j2

ir22 − +  + ju    i = 1, …, N.  (7) 

 

The WLP estimator of )'',d(  , where   = )',...,,( r22r22 + , is obtained by an 

application of GLS to (7), resulting in: 

 

)''ˆ),r(d̂( WLP   = ),0(d̂W LP        (8) 

 

where W = 111 'Z)Z'Z( −−−  .  

 

The notation is as follows: 

),0(d̂LP   = ))'m,0(d̂,),m,0(d̂( NLP1LP   is the vector of LP estimators for frequency 

bands j , j  ;....,;m...,,1m;m,...,1( 211 + )m....,,1m N1N +− ;  

iZ  = )',...,,,1( r22
i

r2
i

2
i − + , Z = )''Z,,'Z( N1  ;  

ij  = ),max(/1 ji  ;   

'w )i(  is the i-th row of W.  

 

The WLP estimator of d of order r is a weighted combination of the N )m,0(d̂ iLP  

estimators, conveniently written as follows:  

 

)r(d̂ WLP  = ),0(d̂'w LP)1(         (9) 

 

The relevant properties of )r(d̂ WLP  are, see GS (2004, 2006): 
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The parameters   and *
rc  in (10) and (11) govern the asymptotic properties of the 

estimator and relate to the corresponding parameters in AG (2003). The variance 

))r(d̂( WLP
2  is as ))r(d̂( LP

2 , but with rc  replaced by *
rc ; hence, for ))r(d̂( WLP

2  

to dominate ))r(d̂( LP
2 , it must be the case that *

rc   rc  for given m. GS show that it 

is possible to choose   such that *
rc   rc . For example, when r = 1,   = 1  and   = 

(0.5, 0.55, …, 2.0) then *
1c  = 1.38, which compared to 1c  = 2.25 of )1(d̂LP  represents a 

variance reduction of approximately 39%; whilst *
1c  can be further reduced, for 

example choosing N  = 3 results in *
1c  = 1, larger values of N  imply that the 

underlying LP regressions use more frequencies, which will increase the bias although 

they reduce the variance (see GS, 2004, Remark 6). 

 

The HD equivalent method for selecting m by estimating the rmse-driven optimal value, 

but for the WLP estimator, is obtained as follows. The unknown coefficient in (12b) is 

r22b + , which can be estimated by:  

 

r22b̂ +  = 
2 2r

2 2r
2 2r

r

ˆ n

m

+
+

+




       (13) 

 

see GS (2004), where m  = )1)2r(4/()2r(4Kn +++ . N auxiliary regressions are run first using 

mi  frequencies to obtain, say, )'m(w )2r( +  and )m,,0(d̂LP  ; r22
ˆ

+  in (13) is then the 

weighted combination r22
ˆ

+  = )m,,0(d̂)'m(w LP)2r( + . The resulting estimator r22b̂ +  is 

used to form )r(m̂
opt
WLP , see (12a). As in standard LP estimation, K is a user-chosen 

constant and, from previous work, we considered K  [0.1, 0.2, 0.3, 0.4], finding the 

choice to lie between K = 0.1 and K = 0.2; the former is favoured for a selection 

motivated by minimising the bias, whereas the latter is preferred for minimising the 

rmse and is used in the simulations reported below. Although dependent on the user-

chosen value of K, this method is referred to as ‘plug-in’. The   sequence was (as in 

GS, 2004)   = ( 1 , 1  +  , …, N ), 1  = 0.5, N  = 2,   = 0.05, which implies 

that *
1c  = 1.38, (see ibid., Table 1).  



 

4. Bootstrapping the LP and WLP estimators 

Bootstrapping the LP and WLP estimators can take place in either the frequency domain 

(FD) or the time domain (TD) and we consider each in turn. A residual-based frequency 

domain bootstrap was suggested for the standard LP estimator by AO (2005, 2009a, b), 

whereas guidance for the time domain bootstrap is provided by Franco and Reisen 

(2004, 2007) and Kapetanios and Papailias, hereafter KP, (2011). For related work see 

also Bisaglia and Procidano (2003), Bisaglia et al (2008), Silva et al., (2006), Murphy 

and Izzeldin (2009) and Buhlmann (2002), and for a theoretical justification for the use 

of the bootstrap for long-memory processes, with further simulation results, see Poskitt 

(2007) and Kapetanios (2010). 

 

In the context of the standard LP regression, AO (2009b) suggested a bootstrap method 

to choose the value of m, noting that, and as confirmed in our preliminary simulations, 

the key to good performance of the LP estimator is in choosing the value of m. We 

extend the AO procedure to the WLP case and to the time domain. The general 

bootstrap procedure involves an iterative scheme to choose the value of m that 

minimizes the bootstrap rmse, the principle of which is as follows. Let )m,m( 21  M, 

where 1m  and 2m  are the minimum and maximum values of m for each iteration; 

2m ][floor 2
n  for the LP procedure and 2N m  ][floor 2

n  for the WLP procedure. 

)1(m  is the initial value of m that starts the process, where 2
)1(

1 mmm   and, 

although not critical, a sensible choice of )1(m  errs on the side of a relatively small 

value of m, so as to control the bias. 

 

The design of the algorithm is to start with )1(m , and project the regression based on 
)1(m  frequencies to obtain a set of residuals extended to include all 2m  frequencies, 

from which to resample and construct the bootstrap data. The initial value of m, )1(m , is 

then sequentially updated through an iterative procedure until convergence is achieved 

based on minimizing the bootstrap rmse. We first describe ‘blind’ and ‘local’ bootstraps 

for the LP and AG estimators and, subsequently, a ‘sighted’ bootstrap for the WLP 

estimator; we then consider variations arising from bootstrapping in the time domain. 

 

4.1. The LP bootstrap algorithm 

4.1.1. Frequency domain 

i). Estimate the (initial) LP regression jY  = jj0 dX ++ , where jY   )](Iln[ jy   

and jX   )ln(2 j− ; the estimation of this regression requires choosing an initial value 

of m, )1(m , which will be updated through the looping process and referred to in 

general as )i(m . This choice of )1(m  is not critical as it is updated in the algorithm. We 



start the LP algorithm with )1(m  = 5.0n . Let )1(
0̂  and )1(

LPd̂  denote the (initial) estimates 

from the LP regression. In general let )i(
LPd̂  denote the estimate of LPd̂  in the i-th 

iterative round.  

ii). Generate the residuals from the initial regression with m = )1(m , that is jê  = 

jj ŶY − , where )1(
j

Ŷ  = j
)1(

LP
)1(

0 Xd̂ˆ + , j = 1, …, )1(m , and then project these over 

frequencies, j = )1(m  + 1, …, 2m ; denote the complete set of residuals as )i(̂  = 

2m
1jj

}ˆ{ = , where i = 1 for the initial round. 

iii). For a fixed value of m  M, construct the bootstrap replicates (in the frequency 

domain) of jY , that is b
j

Y  = )1(
j

Ŷ  + )1(
j

e , j = 1, …, m , where, in the ‘blind’ bootstrap, 

the )1(
j

e  are resamples from anywhere in )1(̂ , with equal probability.  

iv). For each value of b = 1, …, B, estimate LPd̂ , denoted m,b
LPd̂ ; then loop b over 1, …, 

B, and obtain the rmse of B
1b

m,b
LP }d̂{ =  relative to the starting value 

)i(
LPd̂ .  

v). Repeat steps iii) and iv) for all m  M.  

vi). Determine the m that minimizes the rmse for m  M; denote this value of m as 
)i(

minm , with associated )i(
minrmse ; this is the value of m with the minimum rmse on the i-

th iteration conditional on the i-th starting value of m, )i(
m . 

vii). Use 
)i(

minm  as the initial value in the next iterative round and repeat steps i) to vi). 

viii). Stop the process when: 

 













 −+

)i(
min

)i(
min

)1i(
min

rmse

rmsermse
abs    ,  

 

for some small value , taken to be 0.01 in the simulations reported below. The process 

is also stopped if the upper bound, in this case ][floor 2
n , is reached. The selected value 

of minm  is then 
)i(

minm , corresponding to the overall minimum estimate of the rmse 

minimizing value of m, which is used for LP estimation. 

viii). Using 
)i(

minm , estimate LPd , with the estimate denoted )m(d̂LP , m = 
)i(

minm . 

 

ix). Construct the percentile-t confidence interval1 (CI):  

 

)1(CI −   = [ )m(d̂LP
ˆˆ1.96 ( ( ))LPd m  ] 

 



where ))m(d̂(ˆ LP  is the LS estimator of ))m(d̂( LP  from the LP regression using m = 

)i(
minm . 

  

4.1.2. Time domain 

An alternative to the frequency domain bootstrap is a time domain bootstrap, which has 

the following motivation: by hypothesis ty   )d(I , hence, t
d y  = tu  I(0), that is ty  

is integrated of order d, so that its d-th difference is weakly dependent; for convenience 

of notation define the d-th difference of ty  by tx   t
d y . The random variable tx  is 

estimated by replacing the unknown d by an estimate d̂ , and then constructing tx̂   

t
d̂ y  for t = 1 , …, T, using the binomial expansion of d̂)L1( −  applied to ty , setting 

pre-sample values of ty  to zero.  

 

In the TD bootstrap, resampling is from the sequence of tx , that is x = T
1tt }x̂{ = ; 

however, note that tu  I(0) and x is not, therefore, necessarily an i.i.d sequence. For 

example, suppose that ty  is generated by the ARFIMA(1, d, 0) process, t
d

1 y)L1( −  

= t , where t  is weak white noise and || 1   1, then tu  I(0), where tu   

t
1

1 )L1( − − . Thus, in principle, a ‘blind’ bootstrap is not appropriate because of the 
correlation between tu  and su  for t  s; the same line of argument applies to the 

application of a ‘blind’ bootstrap in the frequency domain, but in that case to i  and j , 

i  j . There are a number of bootstrap designs based on restricting the domain from 

which the resampled values are taken and we consider one of these below. In the present 

context, the adopted time domain bootstrap is as follows. 

 
1). As in the frequency-based bootstrap, estimate the (initial) LP regression jY  = 

jj0 dX ++  for each m; as before 
)1(

LPd̂  denotes the LP estimate of d from this 

regression. 

2). Construct tx̂  based on 
)1(

LPd̂ , where: tx̂   t
d̂

y)L1(
)1(

LP− . 

3). For each m  M, construct a bootstrap sample bx̂  = T
1

b
t }x̂{  by resampling b

tx̂  from 

x̂  = T
1t }x̂{ . This is a ‘blind’ bootstrap if the resampling is from any element of x̂ , 

whereas, a local bootstrap restricts the resampling to be from some subset of x̂ . 

4). Estimate d from the LP regression applied to each bootstrap sample and obtain the 

rmse of the resulting bootstrap estimate relative to 
)1(

LPd̂ . 

5). As in the FD bootstrap, update the starting value of m and continue the iterative 

scheme until convergence is achieved. 

 



Justification for the validity of this time-domain bootstrap is provided in KP (2011), 

which is based on weak conditions on the estimator used in step 1). Both the FD and TD 

bootstraps can be combined with a method of local resampling to reduce the 

dependence in the frequency regression residuals underlying the FD resampling scheme 

or in the reconstructed time series observations for the TD bootstrap. 

 

The central feature of such schemes is to reduce the dependence by resampling from a 

subset of m
1jj}ˆ{ =  in the FD bootstrap or T

1tt }x̂{ =  in the TD bootstrap, usually by using 

a ‘window’ that moves through the sample – see, for example, Politis and White (2004)) 

and KP (2011). The particular form used here is a moving window bootstrap, where 

resampling is from a centered window; for example in the case of the TD bootstrap, b
tx̂  

is a resample, with equal probability, from the ‘local’ window 
)x̂,,x̂,x̂,x̂,,x̂( st1tt1tst ++−−  , 1st −  and Tst + . The selected indexes 

are constrained so as not to fall outside the boundaries given by the beginning and end 

of the sample.  

 

The TD procedure requires selection of the resampling width, k = 2s + 1. The 

theoretical justification of Paparoditis and Politis (1999), and the Monte-Carlo 

experiments of Silva et al (2006), suggest that although in principle s should depend on 

the weak dependency in the process, good results are obtained from small s. A similar 

local resampling scheme can also be used in the frequency domain with resampling 
from a moving window of frequencies centred on j̂ . 

 

4.2. AG bootstrap: frequency and time domains 

The FD bootstrap algorithm for the AG estimator )1(d̂LP , is a straightforward 

development of that for the simple LP estimator, where the initial regression becomes 

jY  = j
2
j1j0 dX +++ , with the residuals and the bootstrap replicates defined 

accordingly. The TD bootstrap algorithm reconstructs data in the time dimension using 

)1(d̂LP  rather than )0(d̂LP . 

 

4.3. The WLP bootstrap algorithm 

4.3.1. Frequency domain 

As in the LP case, )m,m( 21  M, but here 2N m  ]int[ 2
n . The algorithm is 

outlined for the case in which the N component estimators are )0(d̂LP . Note that the 

proposed bootstrap is not ‘blind’, but uses resampling of a local form; in particular it is 

referred to here as a locally sequenced or ‘sighted’ bootstrap, in the sense that the 



resampling respects the nature of the increasing frequency subsets that are used in 

obtaining the component LP estimators. 

 

i). )1(m  is again the initial value of m that starts the process, 2
)1(

1 mmm  ; in this 

case )1(
m  serves to determine the set of N frequency bands: )1(

M  = N
1h

)1(
h

}m{ =  where 

)1(
h

m  = )m,,1(
)1(

h , h = 1, …, N; these are the bands for estimation of the N 

component )0(d̂LP  estimators. )1(m  is updated through the iterative process and, in 

general, is referred to as )i(m . 

ii). Obtain the initial estimate )1(
WLPd̂ , as in (8), from the N bands in )1(

M . This estimate 

will be used to evaluate the rmse in the bootstrap loop. 

ii). Consider the first round of the iteration with the first value of m  M to be 

considered, that is 1m , and the first set of frequencies, )1(
1m . Estimate the LP regression 

with frequencies )m,,1(
)1(

1 ; project the residuals from this regression over the full 

set of frequencies in M, that is )m,,1( 21 ; next increment the j  index by 1 to 

consider )1(
2m  and estimate the LP regression with frequencies )m,,1(

)1(
2 , 

again project this regression, but now over )m,,1( 22 ; continue until h = N. In 

general, this gives the extended set of fitted values )1(
Ŷ  = 2h m

1j
)1(

j
}Ŷ{

= , h = 1, …, N, 

and residuals 
)1(

h
̂  = 2h m

1j
)1(

j
}ˆ{

= , h = 1, …, N, from which resampling will take place 

through the   sequence. The sets of residuals so obtained will form the sets from which 

resampling will take place in a sequence that reflects the marginal addition to the fitted 

values and residuals as h increases. (The initial value of m, )1(m , will be updated to 
)i(m  through the iterative loop described in step v.) 

 

iii)a. The bootstrap is a loop based on respecting the sequential nature of the increasing 

bandwidths from which the N component LP estimates are obtained; specifically, 

resampling is from within the N marginal subsets of residuals )1(
)h(̂  for the h-th band. 

iii)a. For the first value 1m  of m  M, construct the set of bootstrap values b
)h(

Y , h = 1, 

that is: b
)1(

Y  = 11m
1j

b
j

}Ŷ{

=  , where b

j
Ŷ  = )1(

j
Ŷ  + )1(

j
e , j = 1, …, 11 m , and )1(

j
e  is a 

random draw with replacement from )1(
)1(

̂ . Note that this a form of local resampling as 

an alternative would be to take all of the resamples from the LP regression with 
)1(

Nm  frequencies for all i . 

iii)b. Obtain the bootstrap LP estimate, denoted b
1,LPd̂ , for this set of frequencies.  



iii)c. For h = 2, extend b
)1(

Y  by (only) adding the marginal frequencies: b
j

Ŷ  = )1(
j

Ŷ  + 

)1(
j

e , j = 1211 m,,1m +  , where )1(
j

e  is a random draw from )1(
)2(

̂  over the same 

(marginal) frequency range; next obtain the LP estimate b
2,LPd̂  for the frequencies 1, …, 

12m . 

iii)d. Continue the sequence of adding the marginal sub-sets of bootstrapped 

observations with draws from the frequencies in the marginal bandwidths. This 

sequence results in the N component estimates of b
h,LP

d̂ , h = 1, …, N, which are 

weighted into the bootstrap WLP estimate b
WLPd̂ , as in (8).  

iii)e. Repeat this procedure B times with initial value )1(m  and, hence, obtain the set of 

bootstrap estimates: m,bs
WLPd̂  = B

1b
b
WLP }d̂{ = , where m  = 1m . 

iv). Obtain the rmse of m,b
WLPd̂  relative to 

)1(
WLPd̂ . 

v). Repeat steps iii) and  iv) for all m  M (note that )1(m  is fixed for this looping).  

 

The next steps, vi) to viii), are as in the case of the simple LP estimator, with the minor 

modification that the upper bound is ][floor
N2

n
 . In summary, given )i(m , the two 

loops (m = 21 m,,m   and b = 1, …, B), serve to determine the value of m that results 

in a minimum over m for the rmse of the bootstrapped WLP estimator; this minimising 

value of m then becomes the new starting value, )1i(m + , for the loops and the process is 

stopped when the difference )i()1i( mm −+  is small in some well-defined sense. The 

overall minimizing value of m, 
)i(

minm , is the rmse minimized value that is used in the 

ultimate WLP estimator, )m(d̂ WLP , m = 
)i(

minm  and in constructing the confidence 

intervals. 

ix). The 95% CI based on asymptotic considerations is:  

 

)1(CI −  = [ ))m(d̂(96.1)m(d̂ WLP
2

WLP  ],  

 

where ))m(d̂( WLP
2  is given by (9) with m = 

)i(
minm .  

 

Note that the bootstrap mimics the data generation process in respect of the generation 
of the values of jY  and the included frequencies. The WLP estimator is constructed 

from the N LP estimators, 
h,LP

d̂ , but note that the observations for the underlying 

regressions only change at the margins of the frequency bands. Schematically, what is 

in effect constructed for each value of m  M, is a 3-dimensional array G, of 



dimensions N, B and mN , with typical values denoted h, b and m, respectively; now 

fix b and obtain the 2-dimensional array over N (rows) and mN  (columns), and 

denote this as D, which is a 2-dimensional ‘slice’ of G along the B axis. The rows of D 

sequentially repeat the non-zero elements in the preceding rows, the case with N = 5 is 

illustrated below: 

 























++++

+++

++

+



m,51m,5m,41m,4m,31m,3m,21m,2m,11,1

m,41m,4m,31m,3m,21m,2m,11,1

m,21m,3m,21m,2m,11,1

m,21m,2m,11,1

m,11,1

545443211

5443211

43211

211

1

dddddddddd

00dddddddd

0000dddddd

000000dddd

00000000dd











 

 

Note that this structure implicitly gives rise to a form of sequenced local resampling. 
Consider the case used in the simulations reported below, where 1  = 0.5 and N  = 2 

with N = 21 and n = 512. Starting with the square root rule, )1(m  = 22, )1(
1m  = 11 and 

)1(
Nm  = 44, so the component LP estimators are based on the frequencies 1 to11 and 

then frequencies 12 to 44 in 20 steps, so that apart from the first, the marginal 

frequencies are either 1 or 2 in number at each margin and, hence, the random draws of 

the residuals are confined to very narrow bands. 

 

4.3.2. Time domain WLP bootstrap 

The TD version of the WLP algorithm is as in the LP case, but with the reconstructed 

data in the time domain based on 
)i(

WLPd̂  rather than 
)i(

LPd̂ . This algorithm proceeds by 

constructing a bootstrap sample bx̂  = T
1

b
t }x̂{  by resampling b

tx̂  from x̂  = T
1t }x̂{ , 

based on 
)i(

WLPd̂  (see the description the LP TD bootstrap). As resampling is, in this 

case, in the time domain, rather than the frequency domain, a local resampling scheme 

may have value-added and we adopt that used for the LP TD bootstrap.  

 

5. Simulations 

5.1. The simulation design 

Data for the simulation experiments were generated by the following models: 

 

Model 1. The ARFIMA(1, d, 0) model2, t
d

1 y)L1( −  = t , where t   niid(0, 1), d = 

0.4, 1   (0.0, 0.5). This model is widely chosen as the basic benchmark model. 

 

Model 2. The ARFIMA(2, d, 0) model, t
d

21 y)L1)(L1( −−  = t , d = 0.4, 1  = 0.4 

and 2 = -0.7, this model has imaginary roots reasonably close to the unit root circle 

with an approximate period of five time units, Priestley (1981).    



 

The sample size for the reported results is n = 1024 and B = 499, with 500 replications 

(the results for n = 512 were qualitatively similar)3. The estimators to be compared fall 

into three classes: the (simple) LP estimator; the AG estimator, which is estimated from 

the LP regression augmented by the squared frequency; the WLP estimator combining 

the N LP estimators. The infeasible estimators that use the Monte-Carlo rmse optimal 

value of m are included for comparison. Bootstrapping alternately uses the frequency 

domain and time domain versions and, where appropriate each version also considers 

‘blind’ and ‘local’ resampling. Guided by AO (2009) and our own simulations, the local 

forms of the bootstraps use a centered window of length 5, being 2 either side of the 

respective frequency for FD or time index for TD. 

 

The LP estimators are: 

i). )m(d̂
opt
LPLP : the LPE, LPd̂ , using m = opt

LPm , as in (5). This estimator is infeasible, 

but provides guidance as to what could be achieved. 

ii). )n(d̂LP : the LPE with m = n , that is the often used GPH square root rule. 

iii). )m̂(d̂
opt
LPLP : the LPE with the ‘plug-in’ version of opt

LPm , that is opt
LPm̂ . 

iv). )m(d̂
minLP : the bootstrapped versions of LPd̂ , with the rmse minimising value of 

m.  

 

The estimators in iv) are alternately in frequency domain (FD) and time domain (TD) 

versions, with ‘blind’ and ‘local’ bootstrapped versions.  

 

The WLP estimator comparators are, in each case for r = (0, 1, 2):  

ix). )m(d̂
opt
WLPWLP : the WLPE using m = 

opt
WLPm , as in (10). Again, whilst infeasible it 

is a useful guide. 

x). )n(d̂ WLP : the WLPE with m = n . 

xi). )m̂(d̂
opt
WLPWLP : the WLPE WLPd̂ , using the ‘plug-in’ estimate 

opt
WLPm̂ . 

xii). )m(d̂
minWLP : the bootstrapped version of WLPd̂  with the rmse minimising value 

of m, this is based on the ‘sequenced’ FD bootstrap.  

 

A TD version of the estimator in xii) is also reported based on ‘blind’ and ‘local’ forms 

of the bootstrap and in each case the weighting allows for the r = 0, 1, 2 cases. 

 

5.2. Results and discussion 



The results are summarised in Tables 1 – 5 and organised by estimator, with each table 

reporting simulation means, simulation rmse and simulation coverage rates and widths, 

which are in each case averages over the number of simulations. There are three rows 

for the results relating to the fidelity of the confidence intervals, being the overall 

rejection proportion and the proportions rejected in the left and right-hand tails, 

respectively; ideally, the first of these should be 95%, with 2.5% in each of the tails. 

The best result for each estimator is indicated in bold, with the second best indicated in 

bold italics. The column headed MC refers to the average over the outer Monte-Carlo 

repetition loop, here 500. 

 

LP 

Whilst the n  rule does well in terms of bias, there is a cost in terms of rmse and the 

wide confidence intervals. We can also rule out TD ‘local’ for its poor bias, rmse and 
interval widths. Of the remaining methods TD ’blind’ has the best performance in terms 

of rmse, although it does not dominate in terms of bias; however, it does well overall 

with the shortest confidence intervals whilst maintaining a relatively good fidelity in its 

confidence intervals. 

 

AG 

Generally, AG does produce a benefit relative to LP/GPH in terms of reducing bias 

across all models and methods, but it does so at a fairly substantial cost in terms of 

increasing the width of the confidence interval and is likely to be ruled out practically 

for that reason. A comparison of methods suggests that 
opt
LPm̂  gives the best overall 

performance with a good performance in terms of rmse, the shortest confidence 

intervals and very good fidelity of the confidence inervals. 

 

WLP 

There are two questions to consider in this case. One relates to an evaluation of the 

selection of m for a given r and the other to the choice of r. In the case of r = 0, the 

choice narrows to be between opt
WLPm̂  and FD ‘seq’, with the latter favoured given its 

slightly better performance in terms of bias and coverage. The TD methods tend to be 

inferior to the FD method, particularly with wide confidence intervals. The same 

general picture emerges for r = 1 and r = 2. Both TD methods are inferior to FD ‘seq’, 
which whilst dominated by opt

WLPm̂  for rmse and interval widths, dominates opt
WLPm̂  in 

terms of bias and confidence interval fidelity. 

 

In comparing different values of r, bias tends to decrease with r, but the rmse and 

confidence interval widths tend to increase with r, although much less so for opt
WLPm̂ , and 



with no particular gain the confidence interval fidelity. Overall, the simulation results 

favour choosing r = 0 combined with FD ‘seq’ or, possibly opt
WLPm̂ . 

 

Comparison between methods 

Comparing LP with AG, whilst AG has some benefit in terms of reducing bias, the 

reduction is quite slight and, although there is some improvement in fidelity, this comes 

at the cost of a substantial increase in the interval widths. Hence, the critical comparison 

is whether it is better to weight the LP estimators as in the WLP estimator. The general 

answer is yes, where the benefit comes in substantially shorter interval widths, whether 

using  opt
WLPm̂  of FD ‘seq’, with no deterioration in bias.  

 

 

 

 

 

 

 

 

Table 1 LPd̂ , n = 1024 

 
opt
LPm  n  opt

LPm̂  FD: 

‘blind’ 

FD: 

‘local’ 
TD: 

‘blind’ 

TD: 

‘local’ 
MC 

Mean         

1  = 0.0 0.366 0.415 0.406 0.398 0.411 0.415 0.334 0.368 

1  = 0.2 0.432 0.416 0.416 0.400 0.416 0.426 0.310 0.434 

1  = 0.5 0.450 0.426 0.451 0.437 0.434 0.475 0.278 0.456 

AR2 0.283 0.409 0.375 0.370 0.393 0.362 0.344 0.311 

Rmse         

1  = 0.0 0.043 0.151 0.106 0.119 0.125 0.085 0.246 0.042 

1  = 0.2 0.064 0.152 0.110 0.122 0.123 0.088 0.269 0.063 

1  = 0.5 0.104 0.152 0.132 0.129 0.132 0.115 0.283 0.100 

AR2 0.130 0.150 0.130 0.136 0.134 0.119 0.193 0.108 

Width         

1  = 0.0 0.114 0.521 0.319 0.388 0.352 0.311 0.439 0.116 

1  = 0.2 0.222 0.522 0.318 0.393 0.352 0.314 0.500 0.214 

1  = 0.5 0.336 0.522 0.320 0.390 0.356 0.312 0.598 0.317 

AR2 0.231 0.521 0.334 0.391 0.358 0.314 0.365 0.244 

Coverage         



1  = 0.0 0.803 0.923 0.887 0.917 0.867 0.943 0.853 0.843 

l-h 0.000 0.037 0.057 0.023 0.057 0.033 0.030 0.000 

r-h 0.197 0.040 0.057 0.060 0.077 0.023 0.117 0.157 

1  = 0.2 0.903 0.923 0.860 0.913 0.863 0.930 0.810 0.907 

l-h 0.087 0.037 0.090 0.030 0.067 0.047 0.047 0.090 

r-h 0.010 0.040 0.050 0.057 0.070 0.023 0.143 0.003 

1  = 0.5 0.887 0.917 0.757 0.840 0.803 0.803 0.820 0.893 

l-h 0.103 0.040 0.217 0.120 0.140 0.190 0.047 0.103 

r-h 0.010 0.043 0.027 0.040 0.057 0.007 0.133 0.003 

AR2 0.473 0.920 0.813 0.810 0.810 0.790 0.870 0.707 

l-h 0.000 0.033 0.027 0.033 0.047 0.017 0.010 0.000 

r-h 0.527 0.047 0.160 0.157 0.143 0.193 0.120 0.293 

 



Table 2 AG , )1(d̂LP , n = 1024 

 
opt
LPm  n  

opt
LPm̂  FD: 

‘blind’ 

FD: 

‘local’ 
TD: 

‘blind’ 

TD: 

‘local’ 
MC 

Mean         

1  = 0.0 0.410 0.411 0.410 0.415 0.414 0.410 0.406 0.410 

1  = 0.2 0.421 0.411 0.411 0.405 0.411 0.407 0.403 0.427 

1  = 0.5 0.427 0.411 0.423 0.414 0.410 0.415 0.413 0.443 

AR2 0.430 0.411 0.412 0.427 0.416 0.417 0.416 0.436 

Rmse         

1  = 0.0 0.108 0.217 0.125 0.169 0.189 0.148 0.151 0.083 

1  = 0.2 0.063 0.218 0.125 0.171 0.193 0.147 0.155 0.062 

1  = 0.5 0.103 0.219 0.129 0.170 0.190 0.150 0.154 0.092 

AR2 0.088 0.215 0.132 0.165 0.187 0.150 0.151 0.087 

Width         

1  = 0.0 0.390 0.890 0.401 0.508 0.555 0.498 0.506 0.318 

1  = 0.2 0.243 0.892 0.401 0.517 0.567 0.506 0.513 0.224 

1  = 0.5 0.373 0.892 0.401 0.511 0.559 0.500 0.518 0.319 

AR2 0.321 0.889 0.403 0.512 0.560 0.505 0.506 0.306 

Coverage         

1  = 0.0 0.920 0.963 0.903 0.887 0.887 0.890 0.900 0.947 

l-h 0.043 0.013 0.040 0.050 0.047 0.047 0.037 0.023 

r-h 0.037 0.023 0.057 0.063 0.067 0.063 0.063 0.030 

1  = 0.2 0.950 0.960 0.900 0.887 0.883 0.883 0.877 0.930 

l-h 0.040 0.013 0.043 0.047 0.050 0.053 0.050 0.063 

r-h 0.010 0.027 0.057 0.067 0.067 0.063 0.073 0.007 

1  = 0.5 0.933 0.957 0.867 0.890 0.883 0.883 0.880 0.903 

l-h 0.043 0.013 0.087 0.053 0.047 0.053 0.053 0.083 

r-h 0.023 0.030 0.047 0.057 0.070 0.063 0.067 0.013 

AR2 0.927 0.967 0.893 0.893 0.887 0.900 0.903 0.913 

l-h 0.053 0.010 0.050 0.060 0.043 0.047 0.043 0.070 

r-h 0.020 0.023 0.057 0.047 0.070 0.053 0.053 0.017 

 



Table 3 
WLPd̂ , r = 0, n = 1024 

 
opt
WLPm

 

n  
opt
WLPm̂

 

FD: 

‘seq’ 

TD: 

‘blind’ 

TD:  

‘local’ 
MC 

 

Mean        

1  = 0.0 0.397 0.414 0.406 0.409 0.437 0.425 0.397 

1  = 0.2 0.420 0.415 0.433 0.417 0.441 0.422 0.433 

1  = 0.5 0.422 0.425 0.483 0.457 0.461 0.434 0.454 

AR2 0.404 0.408 0.397 0.382 0.421 0.425 0.365 

Rmse        

1  = 0.0 0.035 0.137 0.058 0.079 0.129 0.155 0.035 

1  = 0.2 0.070 0.138 0.071 0.081 0.142 0.149 0.060 

1  = 0.5 0.163 0.138 0.115 0.096 0.139 0.148 0.096 

AR2 0.128 0.137 0.086 0.081 0.127 0.127 0.074 

Width        

1  = 0.0 0.145 0.410 0.189 0.275 0.371 0.409 0.145 

1  = 0.2 0.245 0.410 0.194 0.276 0.380 0.406 0.197 

1  = 0.5 0.484 0.410 0.234 0.276 0.368 0.404 0.279 

AR2 0.387 0.410 0.286 0.276 0.384 0.380 0.242 

Coverage        

1  = 0.0 0.967 0.850 0.910 0.913 0.873 0.867 0.967 

l-h 0.013 0.073 0.057 0.050 0.083 0.063 0.013 

r-h 0.020 0.077 0.033 0.037 0.043 0.070 0.020 

1  = 0.2 0.933 0.857 0.787 0.917 0.863 0.850 0.910 

l-h 0.050 0.070 0.193 0.057 0.100 0.087 0.087 

r-h 0.017 0.073 0.020 0.027 0.037 0.063 0.003 

1  = 0.5 0.853 0.863 0.663 0.853 0.863 0.847 0.860 

l-h 0.077 0.077 0.330 0.143 0.107 0.097 0.133 

r-h 0.070 0.060 0.007 0.003 0.030 0.057 0.007 

AR2 0.850 0.850 0.883 0.897 0.897 0.867 0.890 

l-h 0.060 0.067 0.030 0.030 0.050 0.073 0.003 

r-h 0.090 0.083 0.087 0.073 0.053 0.060 0.107 

 



 

Table 4 
WLPd̂ , r = 1, n = 1024 

 
opt
WLPm

 

n  
opt
WLPm̂

 

FD: 

‘seq’ 

TD: 

‘blind’ 

TD: 

‘local’ 
MC 

Mean        

1  = 0.0 0.409 0.414 0.409 0.411 0.463 0.434 0.409 

1  = 0.2 0.429 0.414 0.420 0.411 0.456 0.419 0.428 

1  = 0.5 0.443 0.417 0.494 0.419 0.449 0.421 0.447 

AR2 0.458 0.414 0.324 0.409 0.457 0.441 0.392 

Rmse        

1  = 0.0 0.053 0.191 0.061 0.124 0.219 0.225 0.053 

1  = 0.2 0.060 0.192 0.064 0.124 0.215 0.215 0.060 

1  = 0.5 0.091 0.191 0.115 0.125 0.192 0.201 0.091 

AR2 0.090 0.190 0.202 0.123 0.183 0.210 0.066 

Width        

1  = 0.0 0.204 0.578 0.226 0.389 0.540 0.557 0.204 

1  = 0.2 0.204 0.578 0.226 0.389 0.530 0.547 0.205 

1  = 0.5 0.293 0.578 0.233 0.389 0.517 0.559 0.284 

AR2 0.258 0.578 0.243 0.388 0.531 0.545 0.249 

Coverage        

1  = 0.0 0.950 0.867 0.940 0.883 0.850 0.820 0.950 

l-h 0.027 0.063 0.023 0.053 0.100 0.097 0.027 

r-h 0.023 0.070 0.037 0.063 0.050 0.083 0.023 

1  = 0.2 0.917 0.857 0.937 0.890 0.837 0.827 0.917 

l-h 0.077 0.070 0.040 0.050 0.107 0.083 0.077 

r-h 0.007 0.073 0.023 0.060 0.057 0.090 0.007 

1  = 0.5 0.890 0.860 0.640 0.873 0.843 0.850 0.883 

l-h 0.100 0.073 0.357 0.070 0.103 0.093 0.113 

r-h 0.010 0.067 0.003 0.057 0.053 0.057 0.003 

AR2 0.837 0.877 0.550 0.883 0.860 0.837 0.953 

l-h 0.160 0.057 0.123 0.053 0.087 0.103 0.007 

r-h 0.003 0.067 0.327 0.063 0.053 0.060 0.040 

 



Table 5 
WLPd̂ , r = 2, n = 1024 

 
opt
WLPm

 

n  
opt
WLPm̂

 

FD: 

‘seq’ 

TD: 

‘blind’ 

TD: 

‘local’ 
MC 

Mean        

1  = 0.0 0.408 0.418 0.408 0.414 0.467 0.438 0.409 

1  = 0.2 0.415 0.418 0.413 0.412 0.458 0.431 0.414 

1  = 0.5 0.485 0.419 0.475 0.415 0.483 0.416 0.445 

AR2 0.262 0.420 0.515 0.414 0.466 0.441 0.401 

Rmse        

1  = 0.0 0.066 0.227 0.068 0.159 0.252 0.244 0.065 

1  = 0.2 0.068 0.229 0.069 0.161 0.257 0.270 0.067 

1  = 0.5 0.107 0.229 0.101 0.158 0.269 0.237 0.089 

AR2 0.153 0.225 0.150 0.160 0.283 0.276 0.068 

Width        

1  = 0.0 0.246 0.695 0.254 0.466 0.639 0.644 0.246 

1  = 0.2 0.246 0.695 0.254 0.466 0.641 0.665 0.249 

1  = 0.5 0.246 0.695 0.255 0.466 0.637 0.668 0.291 

AR2 0.246 0.695 0.276 0.466 0.638 0.655 0.259 

Coverage        

1  = 0.0 0.923 0.870 0.930 0.863 0.847 0.833 0.933 

l-h 0.040 0.073 0.030 0.060 0.090 0.093 0.037 

r-h 0.037 0.057 0.040 0.077 0.063 0.073 0.030 

1  = 0.2 0.937 0.867 0.940 0.870 0.867 0.847 0.920 

l-h 0.040 0.073 0.033 0.057 0.087 0.087 0.047 

r-h 0.023 0.060 0.027 0.073 0.047 0.067 0.033 

1  = 0.5 0.700 0.867 0.750 0.863 0.817 0.867 0.893 

l-h 0.300 0.073 0.250 0.067 0.130 0.063 0.093 

r-h 0.000 0.060 0.000 0.070 0.053 0.070 0.013 

AR2 0.437 0.880 0.543 0.837 0.833 0.833 0.940 

l-h 0.000 0.073 0.440 0.080 0.110 0.087 0.023 

r-h 0.563 0.047 0.017 0.083 0.057 0.080 0.037 



6. Concluding remarks 

A number of semiparametric methods have been suggested for the estimation of the 

long-memory parameter based on the log-periodogram regression (LPR), all of which 

have in common the need to truncate the range of frequencies included in the LPR. 

Bootstrap selection methods have become popular of late based on obtaining the 

bootstrap analogue of the optimal number of included frequencies. Such methods can be 

based on a frequency domain (FD) approach or alternately a time domain (TD) 

approach. In this paper we have evaluated the three most popular LP-based methods 

combined with a range of possible methods to choose the number of included 

frequencies; specifically the popular n  rule, the estimated optimum and FD and TD 

bootstraps in ‘blind’, ‘local’ and, where appropriate, ‘sequential’ forms. The latter refers 

to WLP estimator, which is based on increasing the number of included frequencies, 

where care has to be taken in designing the bootstrap so as to respect the sequential 

structure of the component LP regressions.  

 

The title of this paper poses a question, namely is it better to weight the LP estimators, 

as in the WLP estimator, than use the unweighted LP estimator? On the basis of the 

simulation evidence, the answer is yes using r = 0, with notable shorter confidence 

interval widths and noting that higher values of r do not generally improve the 

performance of the WLP estimator or, indeed, the LP estimator, as in the AG case. The 

‘sequenced’ frequency domain version of the WLP works well in this context, but the 

computationally simpler WLP estimator using opt
WLPm̂  is a ‘cheap’ alternative, although 

it loses out on confidence interval fidelity as the serial correlation ( 1 ) in the noise 

increases. 
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1The percentile-t intervals were superior to the corresponding percentile confidence intervals. Further, 

once the rmse minimizing value of m was used, there was no systematic advantage to using the 

percentiles from the distribution of the bootstrap ‘t’ statistic: m,b
LP

t  = )
m,b

LP
d̂(ˆ/)

)1(
LP

d̂
m,b

LP
d̂( − . 

 

2The simulations used the MATLAB FARIMACV routine, which generates data using the autocovariance 

structure of the ARFIMA process corresponding to Type I fBM, see Davidson and Hashimzade (2009).  
  
3 Intensive computation was required to carry out the estimations in this simulation analysis and it would 
have taken approximately 6 months to complete and not practical. To deal with this problem of  lengthy 
simulations, especially those involving simulating bootstrap methods, we used parallel processing across 
multiple computers and submitted the optimized MATLAB codes for different models and parameters 
simultaneously.    
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