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Abstract: Assessing the effect of defect induced stresses on magnetic flux leakage (MFL) signals is a 

complicated task due to nonlinear magnetomechanical coupling. To facilitate the analysis, a multi-

physics finite elemental simulation model is proposed based on magnetomechanical theory. The model 

works by quasi-statically computing the stress distribution in the specimen, which is then inherited to 

solve the nonlinear magnetic problem dynamically. The converged solution allows identification and 

extraction of the MFL signal induced by the defect along the sensor scanning line. Experiments are 

conducted on an AISI 1045 steel specimen, i.e. a dog-bone shaped rod with a cylindrical square-notch 

defect. The experiments confirm the validity of the proposed model that predicted a linear dependency 

of the peak-to-peak amplitude of the normalized MFL signal on applied stress. Besides identifying the 

effect of stress on the induced MFL signal, the proposed model is also suitable for solving the inverse 

problem of sizing the defects when stress is involved. 

Keywords: Magnetic flux leakage, Magnetomechanics, Jiles-Atherton model, Non-destructive testing, 

Finite element method, Multiphysics numerical simulation  

1. Introduction 

The magnetic flux leakage (MFL) method is commonly utilized to non-destructively evaluate the 

damage in ferromagnetic materials due to its reliability, high efficiency and cost-saving. In MFL 

applications, specimens are magnetized and the leakage flux occurring near geometric discontinuities 

is detected by MFL sensors [1, 2]. The detected MFL signals are then used inversely to evaluate the sizes 

of defects. The inverse problem involves many challenges. For example, stress, which is a common 

condition, affects the MFL signal considerably. If being neglected, the inverse problem will lead to a 

significant error in defect sizing. The experimental results of Mandal et al. [3, 4] showed that 

circumferential hoop stress generated by in-service pipelines could alter the peak values of MFL signals 

by more than 40%. Wang et al. [5] found that tensile stress of 100MPa applied to a dog-bone specimen 

with a cylindrical through-hole could cause an increase of 24% in peak-to-peak amplitude of the MFL 

signal. Therefore, to evaluate the sizes of defects accurately, it is necessary to consider the effects of 

stress on the MFL signals. 

To accurately evaluate the effect of stress on the MFL signal, previous work has attempted to 

mathematically fit experimental results with analytical outcomes. Mandal et al. [4] used analytical 

models of Zatsepin-Shcherbinin [6] and Edwards-Palmer [7] to fit experimental data under different 

stresses by altering the densities of magnetic charges. However, stress as an external variable was not 

considered in their models, and the values of the densities were changed artificially. Hence, this method 

could be used qualitatively, rather than quantitatively, to size defects.  

Wang et al. [5] proposed the improved dipole model by introducing the stress-dependent Jiles-Atherton 

(J-A) model into the traditional dipole model. The improved dipole model could accurately predict the 

effect of stress on the MFL signal induced by a defect with regular geometry. However, for non-regular 

geometries the model can no longer provide an analytical solution due to the difficulty in calculating 

the stress concentration and the demagnetizing factor around the defect. The analytical model also only 

considers the stress distribution along the wall of the defect rather than over the whole stress 

concentration area. In addition, even small stresses applied to a defect with a regular or simple geometry 

may transform the geometry of that defect into a more complex one. 
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Compared with the analytical models, the finite element method (FEM) can compete with the former 

due to its flexibility in computation, and it can also give the overall perspective of simulation. A number 

of attempts have been made to model MFL and stress-dependent MFL by using FEM. The pioneering 

finite element modelling of the MFL field by Hwang and Lord [8] paved the way for the numerical 

analysis of defect-induced MFL signals. With improvements in computational capabilities, significant 

progress has been made in this area by considering non-linear material properties [9-11] and coupling 

them with stress [12-15]. Ivanov et al. [12] incorporated stress distributions into the magnetic FEM model 

by varying the permeability in the region under stress. Babbar et al. [13, 14] introduced stress information 

into the magnetic FEM model by adjusting the permeability variable. In other studies, adjustments of 

simulation results fitted to experimental ones were performed by changing one or more magnetic 

properties, which may not correspond to the reality [9-11]. FEM simulations of stress-induced MFL 

signals are more difficult to achieve compared to situations without stress since the magnetic 

permeability, magnetization and demagnetization are stress dependent as well as being nonlinear 

functions of the applied field. Zhong et al. [15] built an FEM model that coupled stress concentration in 

the reversible magnetization region. This could be used to qualitatively evaluate defects rather than 

quantitatively identify defects due to relatively large errors. 

In order to solve the coupled magnetomechanical problem in defect reconstruction from MFL signals, 

a multiphysics FEM model is proposed in this paper by interlinking the physics of mechanics and 

magnetics. To test our model, COMSOL Multiphysics software[16] is chosen using both its solid 

mechanics and low-frequency electromagnetic (AC/DC) modules. The solid mechanics module is used 

to calculate the stress distribution within an AISI 1045 steel specimen with particular attention paid to 

the circumferential square-notch defect on the rod. The electromagnetic module is employed to simulate 

magnetic field under stress, via the Jiles-Atherton-Sablik (J-A-S) theory [17, 18]. Experimental tests are 

conducted to verify the feasibility of the proposed FEM model. Finally, a quantitative prediction on the 

effect of stress on the defect-induced MFL signal is achieved. 

This paper is organized as follows. In Section 2, the multiphysics finite element model is proposed and 

explained along with the simulation results on a case study. In Section 3, the details about the 

verification experiments including the specimen tempered procedure and the configuration of the MFL 

sensor are explained. Both the performance and limitations of the proposed FEM model are discussed 

in Section 4. Finally, the major findings of this study are discussed in Section 5.  

 

2. Magneto-mechanical simulation algorithm and its application to a Case Study 

This paper aims at proposing a universal finite element method for revealing the relation between stress 

and the MFL signal due to a defect with any geometry. In the case of such defect, which is hard to 

describe the stress distribution analytically, the dependence of magnetic hysteretic properties on stress 

makes the problem even more complex. Therefore, the finite element method is employed to simulate 

the real physical phenomenon. 

 

2.1 Step 1: Solid mechanics module 

In order to simplify the formulation and presentation of the theory, a two-dimensional (2D) 

axisymmetric system is chosen, with axisymmetric sample and defect geometries. The theory for three-

dimensional systems that lack symmetry can also be formulated in a similar manner. In addition, to the 

mechanics study, quasi-static conditions are assumed, i.e. negligible changes in stress over the time 

period required to perform magnetic measurements. The simulation also deals with elastic rather than 

plastic stress to avoid nonconvergence of iteration due to strong non-linearity in magnetic behaviour[19]. 
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With these constraints in mind, and assuming that the ferromagnetic material is a mechanically isotropic 

medium, the following equilibrium equation describes the mechanical problem:   

      𝛁𝛔 + 𝐅 = 𝟎                                                                                             (1) 

where 𝛔 is the stress tensor and 𝐅 is the body force. The constitutive relation: 

      𝛔 = 𝐃𝛆                                                                                                        (2) 

is used, where D is the elasticity tensor of the material and 𝛆 is the strain tensor. 

Together with the geometrical constraints of the system, a solution to the mechanical problem is 

obtained using an FEM approach implemented in the solid mechanics module of COMSOL. The results 

of these solid mechanics simulations (i.e., distribution of stress in the ferromagnetic structure) are stored 

and passed as inputs for the magnetic simulations. 

 

2.2 Step 2: Low-frequency electromagnetic module 

The solid mechanics simulations are performed under quasi-static conditions. While the magnetic 

simulations have to be dynamic due to the hysteresis loop where one-to-one correspondence between 

states of magnetization and the applied magnetic field is absent. A time-dependent magnetic field H 

can uniquely determine the magnetization M value at a particular moment of time by employing 

hysteresis model. Besides, the ferromagnetic material of the specimen is chosen to be magnetically 

isotropic following the Jiles-Atherton-Sablik dynamical magnetomechanical hysteretic theory.  

A typical algorithm to solve a time-dependent magnetomechanical problem is as follows [20]: 

(1) Magnetic field (H) is set as a sinusoidal (or triangular) function varying with time (t). Generally, 

this magnetic field can be generated by feeding a sinusoidal alternating current into excitation coils. 

In this paper, the first quarter period of the sinusoidal current is fed into Helmholtz coils to excite 

magnetic field, and then maintaining the current at the peak value so that the magnetic field and 

magnetization remains unchanged in subsequent calculations, as shown in Fig.1a.  H(t), B(t) and 

He(t-Δt) start from H(0), B(0), He(0) and then are updated after every algorithmic loop. 

(2)  For the given actual time step magnetic field H(t+Δt), the magnetization M(t) and increment of 

magnetic field dH(t) can be calculated by 

        𝐌(𝑡) = 𝐁(𝑡)/𝜇0 − 𝐇(𝑡)                                                                       (3) 

𝑑𝐇 = 𝐇(𝑡 + 𝛥𝑡) − 𝐇(𝑡)                                                                         (4) 

where µ0 is the permeability of free space. Then the effective magnetic field He(t) 
[21] and the 

increment of effective field dHe(t) are computed by 

        𝐇𝑒 = 𝐇(𝑡) + (𝛂 +
3𝐛𝛔

𝜇0
) · 𝐌(𝑡) = 𝐇(𝑡) + 𝛂̃ · 𝐌(𝑡)                                              (5) 

   𝑑𝐇𝑒 = 𝐇𝑒(𝑡) − 𝐇𝑒(𝑡 − 𝛥𝑡)                                                                        (6)  

where α quantifies the amount of domain coupling, σ is the stress tensor, the coefficient b is a 

function of magnetostriction (λ) and magnetization (M), and 𝛂̃ is the total interdomain coupling 

parameter. 

(3) According to the J-A model [17, 20-22], the differential magnetization with respect to the magnetic 

field can be expressed as 

     
𝑑𝐌

𝑑𝐇
=

𝛘𝑓

|𝛘𝑓|
·𝛘𝑓+𝐜·

𝑑𝐌𝑎𝑛
𝑑𝐇𝑒

1−𝛂̃[
𝛘𝑓

|𝛘𝑓|
·𝛘𝑓+𝑐·

𝑑𝐌𝑎𝑛
𝑑𝐇𝑒

]

                                                                         (7) 

where c is the reversibility coefficient, Man is an anhysteretic magnetization, which is given by the 

Langevin function in the case of an isotropic material [23]: 
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     𝐌𝑎𝑛(𝑡) = 𝐌𝑠 [coth
𝐇𝑒(𝑡)

𝐚
−

𝐚

𝐇𝑒(𝑡)
]                                                                (8) 

and 𝛘𝑓 = (𝐌𝑎𝑛 − 𝐌)/𝐤, where k is the pinning coefficient. Equation (7) holds true with the 

condition  𝛘𝑓 · 𝑑𝐇𝑒(𝑡) > 0; otherwise, Equation (7) changes to: 

𝑑𝐌

𝑑𝐇
=

𝐜·
𝑑𝐌𝑎𝑛

𝑑𝐇𝑒

1−𝜶̃𝒄·
𝑑𝐌𝑎𝑛

𝑑𝐇𝑒

                                                                                  (9) 

(4) Based on the computed results in previous steps, magnetization M, magnetic induction B and 

effective field He are updated by  

    𝐌(𝑡 + 𝛥𝑡) = 𝐌(𝑡) +
𝑑𝐌

𝑑𝐇
· 𝑑𝐇                                                                       (10) 

  𝐁(𝑡 + 𝛥𝑡) = 𝜇0[𝐇(𝑡 + 𝛥𝑡) + 𝐌(𝑡 + 𝛥𝑡)]                                                          (11) 

       𝐇𝑒(𝑡 − 𝛥𝑡) = 𝐇𝑒(𝑡)                                                                                    (12) 

This data is inputted into the next computing loop repeating the algorithmic steps (2)-(5). These 

procedures are not finished until the last time step is completed. In this case study, the initial 

hysteresis curve is used to reduce simulation time by feeding the first quarter period of the sinusoidal 

current into the excitation coils (see Fig.1). It should be added that this algorithm can obtain all 

magnetization states on the hysteresis loop by feeding the complete alternating current waveform 

into the excitation coils. For example, it will obtain a whole hysteresis loop by using an alternating 

current cycle of one and a quarter periods.  

Before simulation, identification of the key parameters for the model is required. To simplify the 

expressions, the tensors of the J-A parameters are expressed as scalar values since the specimen is set 

as an isotropic material, for example  𝐌𝑠 = [
𝑀𝑠 0 0
0 𝑀𝑠 0
0 0 𝑀𝑠

]  is simplified as Ms.  

 

 
Fig. 1  (a) The magnetic field (H) and magnetization (M) variations with time extracted from a point 

inside a specimen without defect, (b) the M-H part of the hysteresis curve corresponding to (a). 

 

2.3 Case study: Dog-bone like rod of 1045 steel with a square-notch defect 

Similar to Ref.[5], where a cylindrical through-hole on a dog-bone shaped plate specimen was used to 

verify the stress-dependent dipole model, in this paper, a dog-bone shaped rod (shown in Fig.2a) with 

a circumferential square-notch defect is studied to reveal the relation between stress and MFL signal. 

In case of such a defect, it is hard to describe the stress distribution around the defect analytically.  

The solid mechanics is simulated using COMSOL Multiphysics 5.2a. As shown in Fig.2b, a 2-D 

axisymmetric model in the r-z plane is built according to the geometric structure of the dog-bone shaped 
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rod specimen shown in Fig.2a and the sensor designed in our previous research [24]. The geometric 

parameters of the specimen and the defect are listed in Table 1. In the first simulation step, when the 

tensile stress is applied, the mechanical problem is solved in the mechanics module. The free triangular 

mesh using an adaptive algorithm is applied to the specimen with a predefined extremely fine element 

size. Element sizes are set to less than 0.01 mm around the defect adding extremely fine auxiliary lines 

along the periphery of defect to obtain an accurate stress distribution around the defect. 

In the mechanics module, one of the test specimen’s ends is fixed while the other one is subject to a 

force that generates stresses in the “reduced” section (as shown in Fig.2a). The force values are chosen 

such that the average stress values away from the defect varied from 0 MPa to 100 MPa in 10 MPa 

intervals. The stress distribution in the region near the defect is complex due to shape effects leading to 

the stress concentration, and is computed by the stationary solver. The typical result of the applied 

tensile stress (100 MPa) is illustrated in Fig.2c. In the region that is far from the defect, the stress 

distributes nearly uniformly, while in the vicinity of the defect the stress varies sharply, especially at 

the bottom of the square-notch defect. The stress along a cut-line of [(6.5, −0.5), (7.0, -0.5)] is extracted 

to evaluate the variation of stress along the wall of the defect. The curve of the stress on the cut-line is 

plotted in Fig.2d. It can be seen that the stress decreases to zero rapidly and then increases slowly 

towards zero after reaching a minimum at about -13 MPa. Obviously, compared with the stress 

distribution around the cylinder defect in Ref. [5], the stress along the vicinity of the defect is hard to 

describe mathematically justifying the choice of the FEM simulations. After applying the stress, the 

square-notch defect, which initially had a regular shape, has acquired a complex geometry as shown in 

Fig.2c. 

 

Fig. 2  Solid mechanical analysis of a dog-bone shaped rod with a square-notch defect. (a) The tensioned 

test specimen, (b) the 2-D axisymmetric model, (c) the calculated result of stress distribution around 

the defect (notice the change of shape of the specimen near the defect), and (d) stress distribution curve 

extracted along an edge of defect. 

Table 1. The geometric parameters of the modelled specimen 

Geometric 

Parameters  

Length of 

specimen  

Length of the 

central part  

Depth of 

the defect 

Width of 

the defect 

Radius of 

the ends 

Radius of the 

central part 

Sizes (mm) 175 105 1 1 12 7 

The results of solid mechanics module simulations under different stresses are stored in solver sets with 

the stress values which are used as the inputs of the AC/DC module. 
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The test specimen made of 1045 steel is used in this case. The five J-A parameters of 0.4%wt carbon 

steel fitted by nonlinear optimization algorithm [25] are substituted into the finite elemental model to 

simulate the hysteresis curve approximately. Mierczak et al. [26, 27] fitted the average λ vs M values using 

a parabolic function to quantitatively evaluate the effect of stress on magnetic Barkhausen noise (MBN) 

emissions. The linear stress-based MBN model corresponding to the experimental results with high 

coefficients of determination (R2 ≥ 0.9827) [27] validated the feasibility of their proposed model.  

Therefore, based on the previously measured λ vs M curve [17], the coefficient b is determined as 2.2×10-

18 (m2/A2) by the parabolic fitting of the λ vs M curve. In the following experiments the input current is 

set at 3 A, and since the diameter of the wire is 0.35 mm, the input current density in the model is set at 

30 A/mm2 (see Table 2 for the parameter values of the magnetomechnical model). 

Table 2. The J-A model parameters for 0.4wt% carbon steel 

J-A Parameters Value Obtained from  

Saturation magnetization, Ms 1.5755×106 (A/m)  

Domain density, a 1408.1 (A/m)  

Coupling factor, α 0.0024 Ref.[25] 

Pinning parameter, k 2356.5 (A/m)  

Reversibility parameter, c 0.0382  

Magnetostriction coefficient, b 2.2×10-18 (m2/A2) Ref.[17], [25], [26] 

Input current density, J0 30 (A/mm2) Experiment 

 

Fig. 3  Results of the magnetomechanical simulation. (a) Magnetization distribution without stress. (b) 

Magnetization distribution under 100 MPa tensile stress. (c) M-H curves extracted from points A1 and 

A2. (d) M-H curves extracted from points B1 and B2. 
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Fig. 3a and 3b show the simulation results at the final time step for the magnetization under stresses of 

0 MPa and 100 MPa, respectively. To obtain these solutions, two complete and separate simulations 

were needed (for 0 MPa and for 100 MPa stresses) using the algorithm mentioned in Sections 2.1 and 

2.2. It can be found that the magnetization changes significantly near the bottom of the defect, while 

varying only slightly near the top of the defect. To clearly illustrate the magnetization variations under 

different stresses, two characteristic points on each graph are selected. A1, A2, are surface points on the 

defect walls near the bottom of the square-notch, and B1, B2 are surface points near the top of the defect 

wall. Figure 3c shows the comparison of the M-H curves at points A1 and A2, while Fig.3d shows the 

comparison at points B1 and B2. It is obvious that the M-H curves at the points near the bottom of the 

defect change more dramatically than the points near the top. As shown in Fig.2d at 6.0mm distance 

(i.e.point A2 ), the defect causes a significant stress concentration that is more than threefold with respect 

to the applied stress (340 MPa vs. 100 MPa), while at point B2 the stress approaches zero. Despite an 

apparent closeness between the M-H curves at points B1 and B2 observed in Fig.3d, the values differ 

slightly and it does not overlap between those M-H curves. According to the dipole theory [4, 5], the 

magnetic flux leakage field of an off-surface point is influenced by the magnetization states of all points 

along the walls of the defect (e.g., segment A1B1), though the closer the elemental magnetic charge to 

the surface of the specimen, the greater is the effect on MFL. Such a great difference in magnetization 

values along the segment A1B1 also adds to the importance of the full scale problem simulation 

(avoiding any assumptions on the elemental magnetic charge distribution). The final time step 

magnetization results are used to calculate the MFL field with 1mm lift-off that is consistent with 

experiments. The MFL fields under different stresses are shown in Fig.5b and will be discussed later in 

Section 4. 

 

3. Experimental details  

 

Fig. 4  Measured stress-strain curve of the 1045 steel. Inset (a) sketches a prototype of the TMR-based 

MFL sensor; inset (b) shows the experimental setup to measure the surface MFL induced by the defect 

on tensile test specimen. 
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Verification experiments are conducted on a specimen of 1045 steel. The physical dimensions and the 

chemical compositions of the specimen are listed in Table 1 and Table 3, respectively. According to the 

measured stress-strain curve (Fig.4) and stress concentration curve (Fig.2d), the tensile stress applied 

to the specimens in the following experiments is selected to be lower than 100MPa to ensure that the 

specimen remains in the elastic deformation region.  

 

Table 3. Chemical compositions of the 1045 steel (wt. %, with the rest being Fe). 

C Si Mn P S Cr Ni Cu 

0.42-0.50 0.17-0.37 0.50-0.80 0.035 0.035 0.25 0.25 0.25 

A circumferential square-notch defect with both width and depth of 1 mm is machined on the surface 

of the centre of the “Reduced section” as shown in Fig.2a. A Helmholtz coil with magnetic shielding is 

used to provide a static magnetizing field with near-zero background field along the tensile direction of 

the specimen (Fig.4a). The tunnel-magnetoresistance (TMR) sensor together with its power supply 

circuit are mounted onto a linear guide rail. The location of the TMR sensor is concentric with the 

cylindrical specimen with a lift-off distance of 1 mm. The linear guide rail is driven by a step motor to 

enable the TMR device to scan the specimen surface at a speed of 10 mm/s. During scanning, the MFL-

induced voltage signal U(t) is acquired by a TektronixMDO3024 digital oscilloscope with a sampling 

rate of 100 S/s. The measured flux leakage intensity can be calculated using H(t)=ksU(t), where ks is the 

sensitivity of the TMR- 8 mV/V/Oe (100 µV/V/A·m-1) fitting in the range of ±50 Oe (±3978.87 A/m), 

which is lower than its specification, 12 mV/V/Oe (150µV/V/A·m-1) in the field range of ±15 Oe 

(±1193.66 A/m),  for this particular model. In the following experiments, the TMR sensor is supplied 

by 5 V power and used in differential mode doubling the output voltage. Hence, ks is 1 mV/A·m-1 when 

the absolute value of the magnetic field is larger than 1193.66 A/m but lower than 3978.87 A/m. 

Before the experiment, the specimen is annealed at 400°C for 2 h with furnace cooling to release the 

residual stress. As the simulation is conducted on the initial hysteresis stage, the specimen needs to be 

demagnetized before the test. Hence, a commercial demagnetization device is employed for specimen 

demagnetization. The surface magnetic field strength of the specimens is measured after the 

demagnetization process by a Gauss meter to make sure that the surface magnetic field strength is lower 

than 80 A/m. The exciting magnetic field is supplied by the Helmholtz coil, which is fed into 3 A current. 

The experiments are carried out on the specimen with the circumferential square-notch defect and the 

MFL signals are detected by the TMR sensor with the specimen subjected to various stress levels. As 

mentioned above, in order to avoid plastic deformation in the defective zone, the stress applied to the 

specimen is limited to no more than 100 MPa. A stress increment of 10 MPa for data collection matches 

that used for the simulation steps. These experiments have been repeated five times to reduce 

measurement error. 

 

4. Results and discussion 

The simulated MFL results along the z-axis under zero stress are plotted in Fig.5a along with the 

experimentally recorded output voltage of the TMR sensor. At this final time step, the applied magnetic 

field is ~1592 A/m, and the sensitivity of the TMR sensor is 1 mV/A·m-1. Therefore, the maximum 

output voltage of 0.7224 V (±0.02 V) just above the defect corresponds to a magnetic field intensity of 

722.4 A/m (±20 A/m). For comparison, the simulated maximum value of the magnetic field is 

748.78 A/m. In order to reduce the calculation error caused by demagnetization, lift-off and other 

factors, all experimental results and simulated curves are normalized to the maximum amplitude of the 

MFL signal under zero stress. As an example, the normalized results for 0 MPa, 50 MPa and 100 MPa 



9 

stresses are shown in Fig.5b. The simulation MFL shapes and highest amplitudes are consistent with 

the measured ones. It indicates that the proposed finite elemental simulation method is adequate to 

predict the stress-dependent MFL accurately in these conditions. The minimum value of the measured 

MFL signals on the left side of the defect are slightly lower than that of the simulation, while on the 

right side the opposite is seen. It may be caused by the slightly asymmetric shape of the defect due to 

the bevel angle of the machining tool. 

 

Fig. 5  (a) Simulation (solid lines) and experimental (dashed lines) results of the axial components of 

MFL along z-axis under 0MPa. (b) Normalized results of the axial components of MFL along z-axis 

under various stresses. 

To evaluate the relationship between the MFL signal and the applied stress quantitatively, the peak-to-

peak amplitudes Ap of normalized MFL signals are plotted in Fig.6. The dependence of the amplitude 

of the MFL signal on the applied stress obtained from experiment corresponds with the results obtained 

from simulation. The value of Ap demonstrates the approximately linear decreasing trend with 

increasing applied stress from 0 MPa to 100 MPa. This is due to the fact that the dominant stress along 

the defect wall is compressive stress that is increasing with applied stress. The linear equation fits well 

with the measured results with a coefficient of determination higher than 0.99. 

 
Fig. 6  Measured and simulated peak-to-peak amplitudes of the normalized MFL signals obtained 

from different stress conditions. 
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Applied tensile stress of 100 MPa results in an 11.76% decrease in the peak-to-peak amplitude of the 

MFL signals. Compared with our previous research [5], the absolute value of change is smaller, but it 

does not mean that the effect of stress can be omitted when defect dimensions are estimated. In this 

paper, the coupling finite elemental model is proposed to offer a method for solving the effect of stress 

on the MFL signal when the stress distribution around the defect is difficult to describe mathematically. 

Additionally, there may be defects with greater stress gradients distributed along the defect walls, 

resulting in a significantly greater influence on the profile of the MFL signal. Furthermore, if the 

material has higher relative permeability µ or a higher value of the magnetostriction coefficient b, the 

percentage change will be even bigger. 

Several limitations of the proposed FEM model should be stated. Firstly, prior to any simulation, 

knowledge of certain specimen parameters is essential, including the J-A magnetomechanical model 

and spatial dimensions of the defect. As COMSOL uses an iterative method to solve the time-dependent 

problem, some parameters of the J-A model may result in nonconvergence, especially in the case of the 

magnetostriction coefficient b. If b is not selected properly, the model will not perform well since 

stresses on some elements may be beyond the limits of the J-A model. Secondly, in this model, the 

material is set as an isotropic steel and the model is simplified as a 2D axisymmetric structure. 

Anisotropic materials can be solved by assigning various values to different components of the tensors, 

but only directionally anisotropic problems may be solved rather than completely anisotropic. When 

solving anisotropic problems, the model should be built as a 3D structure, which might also face a 

nonconvergence error since the magnetization in an element is more complex than in the case of the 

isotropic problem. Thirdly, during the experiment, the speed of scanning may distort the profile of MFL 

signal due to eddy current effect. As the speed of the sensor was set to a relatively low value of 10mm/s 

in our experiments, the eddy current effect could be considered negligible here. In practical applications 

the scanning speed may be considerably faster and allowance for this velocity effect would need 

implementing using the method proposed in [28, 29]. 

 

5. Conclusion 

A Multiphysics FEM method, which could deal with magnetomechanical problems, was proposed to 

simulate the MFL signal induced by a circumferential square-notch defect on a dog-bone shaped steel 

rod. The stress distribution of the specimen, especially the stress around the defect, was calculated in a 

solid mechanics module using a stationary solver. The results of the stress distribution were 

implemented as initial input values by the AC/DC magnetics module that was used to assess the 

distribution of stress-dependent magnetization in the specimen based on the magnetomechanical model. 

Finally, the MFL fields with 1 mm lift-off were extracted in postprocessing to predict the dependency 

of the peak-to-peak amplitudes of the MFL signal on applied stress. 

Experimental work was conducted to obtain the variation trend of the MFL signal influenced by applied 

stress. The results from the measurements showed that the peak-to-peak value of MFL signal exhibited 

a decreasing trend with the action of increasing stress. It fitted the simulation results well. In this study, 

an increase in tensile stress of 100 MPa caused a decrease of 11.76% in the peak-to-peak amplitude of 

MFL signal. To size the defect accurately, the effect of stress on the MFL signal should be incorporated 

in the calibration process. The proposed multiphysics FEM model provides a valuable tool to evaluate 

the contribution of stress to the induced MFL signal and may be used to solve the inverse problem for 

sizing defects with a complicated stress distribution. 
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