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Abstract. Paleoclimatic and paleoenvironmental reconstruc-

tions are fundamentally uncertain because no proxy is a di-

rect record of a single environmental variable of interest; all

proxies are indirect and sensitive to multiple forcing factors.

One productive approach to reducing proxy uncertainty is the

integration of information from multiple proxy systems with

complementary, overlapping sensitivity. Mostly, such analy-

ses are conducted in an ad hoc fashion, either through qual-

itative comparison to assess the similarity of single-proxy

reconstructions or through step-wise quantitative interpreta-

tions where one proxy is used to constrain a variable rele-

vant to the interpretation of a second proxy. Here we pro-

pose the integration of multiple proxies via the joint inversion

of proxy system and paleoenvironmental time series mod-

els in a Bayesian hierarchical framework. The “Joint Proxy

Inversion” (JPI) method provides a statistically robust ap-

proach to producing self-consistent interpretations of multi-

proxy datasets, allowing full and simultaneous assessment

of all proxy and model uncertainties to obtain quantitative

estimates of past environmental conditions. Other benefits

of the method include the ability to use independent infor-

mation on climate and environmental systems to inform the

interpretation of proxy data, to fully leverage information

from unevenly and differently sampled proxy records, and

to obtain refined estimates of proxy model parameters that

are conditioned on paleo-archive data. Application of JPI to

the marine Mg/Ca and δ18O proxy systems at two distinct

timescales demonstrates many of the key properties, bene-

fits, and sensitivities of the method, and it produces new, sta-

tistically grounded reconstructions of Neogene ocean tem-

perature and chemistry from previously published data. We

suggest that JPI is a universally applicable method that can

be implemented using proxy models of wide-ranging com-

plexity to generate more robust, quantitative understanding

of past climatic and environmental change.

1 Introduction

Paleoenvironmental reconstructions, including reconstruc-

tions of past climate, provide a powerful tool to document

the sensitivity of Earth systems to forcing, characterize the

range of natural responses associated with different modes

of global change, and identify key mechanisms governing

these responses. Throughout the vast majority of the planet’s

history, however, estimates of environmental conditions can

only be obtained through proxy reconstructions. The word

proxy is derived from the Latin word procurare, which in

this context means “to care” or “to manage”. The measurable

physico-chemical quantity in sediments is thus “managed”

into a parameter we want to reconstruct. As implied, the re-

sult is an indirect estimate of past environmental conditions,

often subject to substantial, sometimes poorly characterized,

uncertainty.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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The simplest proxy reconstructions typically focus on a

single environmental variable of interest. Experimental or

natural calibration datasets are used to calibrate mathemat-

ical relationships between the environmental variable and

proxy measure, and these relationships are inverted to ob-

tain quantitative estimates of that variable. Residual variance

in the calibration is treated as noise. In reality, however, no

proxy exists that is sensitive only to a single paleoenviron-

mentally relevant variable, and a large part of the proxy sys-

tem noise reflects the uncharacterized influence of other envi-

ronmental and post-depositional variables. Fossil leaf assem-

blages, for example, exhibit variability that can be associated

with mean annual air temperature but also may be influenced

by many other environmental variables and evolutionary his-

tory (Royer et al., 2005; Greenwood et al., 2004). The satura-

tion state of alkenones produced by marine phytoplankton is

a sensitive recorder of water temperature, but characteristics

of alkenones preserved in marine sediments are also strongly

affected by physiological factors, seasonality of production,

and selective degradation (Conte et al., 1998, 2006). Even

recently emerging clumped isotope techniques, which are in

theory a direct recorder of the temperature of carbonate min-

eral formation, can be affected by factors such as growth rate,

carbonate system disequilibrium, and poorly constrained, po-

tentially variable offsets between the environment of carbon-

ate formation and more commonly targeted atmospheric tem-

perature conditions (Passey et al., 2010; Affek et al., 2014;

Saenger et al., 2012).

Failure to recognize and consider the sensitivity of prox-

ies to multiple environmental factors leads to two impor-

tant problems in traditional proxy interpretations. First, con-

sidering only a single environmental variable in our inter-

pretations maximizes the uncertainty in our reconstructions.

Uncertainty could be reduced if the influence of other vari-

ables is described and constrained. Second, unacknowledged

sensitivity to multiple variables creates potential for biased

proxy interpretations if variation in these variables is non-

random across the reconstruction.

A productive approach to addressing these issues is the

use of proxy system models in the interpretation of proxy

data (Evans et al., 2013). These models represent an attempt

to mathematically describe the complex of environmental,

physical, and biological factors that control how environ-

mental signals are sampled, recorded, and preserved in proxy

measurements. Recent reviews and perspectives are available

discussing the concepts underlying proxy system models and

different ways that they have been applied to proxy interpre-

tation, ranging from substitution for empirical calibrations

in inverse estimation of environmental signals to formal in-

tegration within climate model data assimilation schemes

(Evans et al., 2013; Dee et al., 2016). A growing number

of proxy system models and modeling systems are being de-

veloped (e.g., Tolwinski-Ward et al., 2011; Stoll et al., 2012;

Dee et al., 2015), and useful models span a range of complex-

ity from empirically constrained regressions to mechanistic,

theory-based formulations. Key to any such model is accu-

rate representation of uncertainty in each model component,

which allows even relatively simple, potentially incomplete

models to be used to obtain reconstructions with quantifiable

uncertainty bounds.

Reducing the uncertainty of quantitative paleoenviron-

mental reconstructions, however, further requires adding

constraints to proxy interpretations. In situations where two

or more proxies share sensitivity to common or complemen-

tary environmental variables, it stands to reason that the in-

formation provided by each can be used to refine interpre-

tation of the multi-proxy suite. In practice, a variety of ap-

proaches have been used. Commonly, multi-proxy integra-

tion has been qualitative and focused on confirmation: trends

reconstructed using one proxy system are cross-checked

against a second, providing increased confidence in the re-

construction where the patterns match and prompting further

investigation where they do not (e.g., Grauel et al., 2013;

Keating-Bitonti et al., 2011; Zachos et al., 2006). In other

cases, proxies have been combined quantitatively, but usu-

ally in a stepwise fashion: one proxy system is used to recon-

struct an environmental variable to which it is sensitive, and

those reconstructed values are then used to constrain the in-

terpretation of a second proxy (e.g., Fricke et al., 1998; Lear

et al., 2000). Although it provides a simple strategy to com-

bining complementary proxy information, this approach does

not fully leverage overlapping information that may be con-

tained in multiple systems that respond to common forcing,

is not conducive to robust quantification of uncertainty, and

requires that both proxies sample coeval paleoenvironmental

conditions.

Here we propose a general approach to proxy interpre-

tation that leverages the benefits of proxy models and pro-

vides a robust statistical basis for multi-proxy integration.

The method, which we call Joint Proxy Inversion (JPI), cou-

ples proxy models with simple environmental time series

models representing paleoenvironmental target variables in a

Bayesian hierarchical modeling framework (Fig. 1). The hi-

erarchical model is then inverted using Markov Chain Monte

Carlo methods (Geman and Geman, 1984) to obtain poste-

rior parameter estimates and paleoenvironmental time series

that are conditioned simultaneously on all proxy and calibra-

tion data. Similar approaches have been applied to conduct

large-scale meta-analyses (Tingley and Huybers, 2010; Li et

al., 2010; Tingley et al., 2012; Garreta et al., 2010) but have

not found widespread use in quantitative proxy interpreta-

tion. We begin by describing an implementation of JPI for

the widely used foraminiferal Mg/Ca and δ18O multi-proxy

system, and then we present results demonstrating many of

the merits and challenges of this approach. The examples are

not intended to probe a particularly challenging application

or to formally test or validate the approach but rather to il-

lustrate how JPI offers a robust, accessible framework for the

types of quantitative proxy data interpretations routinely con-

ducted within the paleoenvironmental research community.

Clim. Past, 16, 65–78, 2020 www.clim-past.net/16/65/2020/
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Figure 1. Implementation of JPI for the coupled Mg/Ca and δ18O proxy systems. (a) A schematic is shown. Gray-outlined boxes and text

represent the three components of the Bayesian hierarchical model. Markov Chain Monte Carlo sampling is used to “explore” the prior

parameter space and develop a statistically representative posterior sample of the parameters and paleoenvironmental time series that are

consistent with all paleo-proxy and proxy calibration data (gray-filled boxes). (b) Example showing a subset from a single member of the site

690 posterior distribution. Error term values (ǫBWT) dictate the simulated paleoenvironmental time series trend (in this case BWT) modeled

at a base frequency (white fill) and all proxy sample levels (gray fill). The environmental state and proxy model parameter values from the

posterior sample are used to model the predicted proxy signal (here Mg/Caf; means as gray filled circles and probability density functions as

curves). The likelihood of the posterior sample is evaluated based on the probability of the observed proxy data (here foraminiferal Mg/Ca,

red circles) given the modeled values.

2 Methods

3 Data

Proxy and proxy model calibration datasets were compiled

from published work (Fig. 1). Estimates from fluid inclu-

sions, calcite veins, large foraminifera, and echinoderm fos-

sils (Dickson, 2002; Coggon et al., 2010; Lowenstein et

al., 2001; Evans et al., 2018; Horita et al., 2002) were com-

bined with information on modern seawater Mg/Ca (de Vil-

liers and Nelson, 1999) to represent variation in seawater

Mg/Ca since 80 Ma. For simplicity, and because of the rel-

atively low sensitivity of the other paleoenvironmental vari-

ables to seawater Mg/Ca estimates, we use interpreted sea-

water Mg/Ca estimates given by these authors instead of de-

veloping formal models for each Mg/Ca proxy system. Be-

cause uncertainty exists in the form of the partitioning func-

tion between seawater and echinoderm carbonate, our dataset

includes both the original estimates from Dickson (2002)

and the reinterpreted estimates of Hasiuk and Lohmann

(2010). The uncertainty associated with each estimate was

approximated from the primary publication, and ranged from

0.03 mol mol−1 for modern seawater to ∼ 0.5 mol mol−1 for

some of the proxy estimates (1σ ; see data and code available

in Bowen, 2019).

Foraminiferal Mg/Ca and δ18O data were compiled from

three Ocean Drilling Program (ODP) sites: site 806, Ontong

Java Plateau (Lear et al., 2015, 2003; Bickert et al., 1993);

site 1123, Chatham Rise (Elderfield et al., 2012); and

site U1385, Iberian Margin (Birner et al., 2016). All Mg/Ca

data are all derived from infaunal foraminifera, which ex-

hibit little to no Mg/Ca sensitivity to changing bottom water

saturation state (Elderfield et al., 2010). Data from site 806

constitute a low-resolution record from ∼ 18 Ma to present,

with an average sampling resolution of 1 sample per 240 and

180 kyr for Mg/Ca and δ18O, respectively, prior to 800 ka

(sampling for δ18O, in particular, increases several fold there-

after). Mg/Ca measurements were made on Oridorsalis um-

bonatus, and δ18O data represent the benthic genus Cibi-

cidoides. For the other two sites, data were extracted for

the overlapping period (1.32–1.23 Ma) and comprise a set

of higher-resolution records (sampling resolution between 1

per 110 and 1 per 1700 years across both proxies) spanning

two glacial–interglacial cycles. Mg/Ca measurements were

made on tests of Uvigerina spp. at both sites, and δ18O data

are from either Uvigerina spp. (site 1123) or Cibicidoides

wuellerstorfi (site U1385). Variance in the foraminiferal data,

e.g., due to analytical effects and sample heterogeneity, was

not estimated independently but rather treated as a model pa-

rameter and conditioned on the calibration and proxy data.

Calibration datasets were compiled to constrain the

Mg/Ca and δ18O proxy system models. Mg/Ca calibration

data for O. umbonatus are from the compilation of Lear et

al. (2015) and include both modern core-top samples and

samples from Paleocene and Eocene sediments of ODP site

690B. Data from site 690B include an adjustment for differ-

ences in cleaning procedures used for those samples (Lear et

al., 2015). For Uvigerina spp. our reconstructions are based

on core-top calibration samples compiled by Elderfield et

al. (2010). We also evaluated the now widely used down-

core calibration proposed by Elderfield et al. (2010), which

www.clim-past.net/16/65/2020/ Clim. Past, 16, 65–78, 2020



68 G. J. Bowen et al.: Joint proxy inversion

optimizes the foraminiferal Mg/Ca temperature sensitivity

to match Holocene to Last Glacial Maximum temperature

change inferred from foraminiferal δ18O values and indepen-

dent constraints on seawater δ18O change. We found that this

approach provided relatively weak constraints on the Mg/Ca

proxy model parameters and posterior parameter estimates

that were entirely consistent with the stronger constraints ob-

tained from core-top calibration (Fig. S1 in the Supplement).

Including both calibration datasets in JPI produced results

similar to the core-top-only approach; as a result, we exclude

the down-core calibration for simplicity but note that multi-

ple calibration approaches can be integrated and/or evaluated

within JPI. Each Mg/Ca datum is accompanied by a bottom

water temperature (BWT) estimate based on syntheses of ob-

servational data (modern) or δ18O thermometry (paleo), the

latter assuming ice-free conditions (Lear et al., 2015). We

adopt both sets of estimates directly. Given that systematic

uncertainty estimates for the BWT values are not available,

we approximate these uncertainties as normally distributed

with standard deviations of 0.2 and 1 ◦C for the modern and

paleo data, respectively. These values represent rough esti-

mates of the average uncertainty associated with each data

type, based on the primary data sources.

For δ18O we used the compilation of Marchitto et

al. (2014), including new and published coretop data for the

genera Cibicidoides and Uvigerina (Keigwin, 1998; Gross-

man and Ku, 1986; Shackleton, 1974). Estimates of BWT

and δ18O of seawater from the original authors were adopted

with an estimated uncertainty of 0.2 ◦C (1σ ) for BWT; as for

Mg/Ca we do not attempt to constrain the uncertainty in the

relationship between temperature and δ18O fractionation be-

tween seawater and calcite directly, but treat it as a model

parameter.

The age of each pre-modern datum was taken from the

primary source. Age uncertainties, where known, can be in-

corporated in the JPI analysis framework by treating ages as

random variables rather than as fixed values and/or including

proxy model components representing processes governing

the time integration of observations. For simplicity, we do

not include such a treatment here. In the discussion we note

examples where including age uncertainty would produce a

more robust analysis.

3.1 Proxy models

The proxy system models comprise the “data model” layer of

the hierarchical model, representing how environmental sig-

nals are embedded in the paleo-proxy and proxy calibration

data. The models used here are comprised of simple trans-

fer functions relating proxy data to contemporaneous envi-

ronmental variables and as such can be considered “sensor

models” in the terminology of Evans et al. (2013), with as-

pects of proxy signal integration and sampling treated in the

“archive” and “observation” models of those authors being

swept into the error terms of our data model Eqs. (1)–(3).

The simplest model is that for seawater Mg/Ca proxy data,

where, as noted above, we consider the interpreted data di-

rectly, giving

MgCaswp(i) ∼ N
[

MgCasw

(

tswp[i]
)

,σswp(i)
]

. (1)

Here MgCaswp(i) is the ith proxy estimate, N represents the

normal distribution, MgCasw is the paleo-seawater Mg/Ca

value, and tswp and σswp are the estimated age and MgCaswp

uncertainty, respectively, associated with each observation.

We model foraminiferal Mg/Ca (MgCaf, including both

calibration and proxy data) as a function of seawater chem-

istry and bottom water temperature, using the widely ap-

plied linear form for temperature sensitivity (Elderfield et

al., 2010; Bryan and Marchitto, 2008; Lear et al., 2015):

MgCaf(i) ∼ N
[{

α1 + α2 × BWT
(

tMgCaf
[i]

)}

× MgCasw(tMgCaf
[i])α3 ,τMgCaf

]

, (2)

where α1−3 and τMgCaf
are the parameters and precision

(1/σ 2) associated with the transfer function, respectively,

and other parameters are analogous to Eq. (1). Experiments

conducted using the also-common exponential form pro-

duced similar results. In the absence of theoretical con-

straints, we assign normally distributed priors to the α pa-

rameters based on Bayesian regression of the expression for

the mean in Eq. (2) against the calibration datasets. These

independent regression estimates, used only to specify the

prior probability of the model parameters in the full analysis,

require an estimate of Paleocene–Eocene Mg/Ca for the Ori-

dorsalis calibration; we use a value of 1.5 mmol mol−1 (Lear

et al., 2015). This gives values of α1 ∼ N [1.5,σ = 0.1], α2 ∼

N [0.1,σ = 0.01], and α3 ∼ N [−0.02,σ = 0.03] for Ori-

dorsalis, and α1 ∼ N [1.02,σ = 0.1] and α2 ∼ N [0.07,σ =

0.01] for Uvigerina. We apply the α3 prior estimated from

the Oridorsalis data set to Uvigerina because no calibra-

tion data were available representing non-modern MgCasw.

For both genera, the prior estimate on the precision of the

foraminiferal Mg/Ca model, τMgCaf
, is the gamma distribu-

tion Ŵ[shape = 2, rate = 1/30], which approximates the pre-

cision of the independent regressions.

Foraminiferal calibration and proxy δ18O values (δ18Of)

are modeled similarly, using the standard 2nd order tempera-

ture sensitivity equation (Marchitto et al., 2014; Shackleton,

1974) applied in most paleoceanographic work:

δ18Of(i) ∼ N
[

δ18Osw

(

tδ18Of
[i]

)

+ β1 + β2BWT
(

tδ18Of
[i]

)

+ β3BWT
(

tδ18Of
[i]

)2
,τδ18Of

(i)
]

. (3)

Here δ18Osw is the modeled seawater isotope composition,

and β1−3 are the transfer function coefficients. In this analy-

sis we treat the scale conversion factor between the SMOW

(Standard Mean Ocean Water) PDB (Pee Dee Belemnite) ref-

erence scales (Shackleton, 1974) as implicit in the transfer

function intercept term (β1), which is relevant only in com-

paring our posterior parameter estimates to other work. Prior

Clim. Past, 16, 65–78, 2020 www.clim-past.net/16/65/2020/
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estimates of the model parameters were obtained and spec-

ified as for Mg/Ca; these are β1 ∼ N [3.32,σ = 0.02], β2 ∼

N [−0.237,σ = 0.01], β3 ∼ N [0.001,σ = 0.0005] for Cibi-

cidoides, and β1 ∼ N [4.05,σ = 0.06], β2 ∼ N [−0.215,σ =

0.02], β3 ∼ N [−0.001,σ = 0.001] for Uvigerina. Because

our analysis focuses on Myr-scale trends and the amplitude

of high-frequency (i.e., below the resolution of our model)

δ18Osw variance in the record from site 806 increased sub-

stantially with the onset of modern, 100 kyr glacial cycles,

we modeled τδ18Of
(i) separately for proxy data younger than

800 ka (prior on τδ18Of
∼ Ŵ[6,1]) and for all other proxy and

calibration data (Ŵ[3,1/30]). The former estimate is based

on the observed proxy variance since 800 ka, whereas the

latter approximates the precision of the calibration relation-

ships. Alternatively, if reconstruction of sub-Myr variability

in this part of the record was a target, the change in proper-

ties of the δ18Osw record could be represented by addition of

a periodic model component in the environmental time series

model.

3.2 Environmental models

Although not treated as such in most reconstructions, pale-

oenvironmental conditions are autocorrelated in time, mean-

ing that each proxy observation provides information about

conditions not just at a single point in time but across a

segment of time. To reflect this, we model paleoenviron-

mental variables as time series using a correlated random

walk model. This parameterization is desirable in that it is

minimally prescriptive (i.e., no preferred state or pattern of

change is proscribed) but allows incorporation of constraints

on (and extraction of inference about) two basic character-

istics of the paleoenvironmental system – namely its rate

and directedness of change. The environmental models rep-

resent the “process model” layer of the Bayesian hierarchical

model.

The correlated random walk for variable Y (where Y is

MgCasw, δ18Osw, or BWT) is expressed as

Y (t) = Y (t − 1) + ǫY (t), (4)

where the error term ǫY is a continuous-time autoregressive

process with temporal autocorrelation of φY :

ǫY (t) = N

[

ǫY (t − 1) × φ1t
Y ,τY

(

1 − φ2
Y

)

(

1 − φ21t
Y

)

]

(5)

(e.g., Johnson et al., 2008). Here τY gives the error preci-

sion for a step size (1t) of 1, and error precision saturates

at τY (1 − φ2
Y ) for an infinitely large step size, exactly repro-

ducing the behavior of discrete-time, 1st-order autoregres-

sive processes. In short, Y follows a random walk in time in

which the next value is a function only of the current value

and ǫY . This gives three independent parameters, φY , τY , and

an initial value of Y at the beginning of the time series. Each

variable is modeled on a time series composed of a regu-

larly spaced base series appropriate to the record duration

and resolution plus all proxy sample ages, with 1t represent-

ing the time shift between all adjacent base and proxy ages.

We do not explicitly model the covariance among environ-

mental variables but let this emerge from the data.

For seawater Mg/Ca, which is thought to evolve gradually

(the oceanic residence times of Mg and Ca are 13 and 1 Myr,

respectively) in response to long-term tectonic and biogeo-

chemical forcing (Wilkinson and Algeo, 1989), we use a

base series of 1 Myr steps from 80 Ma to present. Although

the foraminiferal proxy data used here span only the inter-

val from ∼ 18 Ma to present, extending the seawater model

over this longer temporal domain was necessary in order to

generate a stable time series, conditioned on sparse seawater

Mg/Ca proxy data that spanned both the proxy records and

the Paleogene-aged Mg/Ca proxy calibration data. Given

that the modeled quantity is a ratio, we treat the error term in

this time series model as a proportion, such that the change in

MgCasw between two time steps is MgCasw(t −1)×ǫMgCasw
.

We adopt priors that imply relatively slow change and strong

temporal trends (φMgCasw
is given by a uniform distribution,

U [0.9,1]; τMgCasw
∼ Ŵ[100,0.01]). We use a weak prior on

the initial state of MgCasw at 80 Ma, U [1,3], consistent with

independent interpretations of Cretaceous proxy data (Cog-

gon et al., 2010).

We select the bounds, base resolution, and prior distri-

butions for the bottom water temperature and δ18O time

series models based on the properties of each record. For

site 806 we use a base series of 50 kyr steps from 18 Ma

to present, adequate to allow the time series model to adapt

across the range of supra-orbital timescales represented in

the sample distribution. Prior estimates of the error term

parameters were chosen to allow sampling across all pos-

sible autocorrelation states and a range of error variances

that were consistent with 1st-order interpretations of the

proxy data (φ ∼ U [0,1] for both proxies; τBWT ∼ Ŵ[20,0.1];

τδ18Osw
∼ Ŵ[30,0.01]). We use weakly informative uniform

priors for initial values at 18 Ma (BWT(−18) ∼ U [3,8],

δ18Osw(−18) ∼ U [−1,1]). For the higher-resolution Pleis-

tocene records, we run the models between 1.32 and

1.235 Ma and adopt a base series of 1 kyr steps, accommo-

dating orbital timescale changes in the paleoenvironmental

variables, and adopt the same prior distributions for τ and φ

as in the site 806 model.

3.3 Model inversion

The model structure described above was coded in the BUGS

(Bayesian inference Using Gibbs Sampling) language (Lunn

et al., 2012), and Markov Chain Monte Carlo was used to

generate samples from the posterior distribution of all model

parameters conditioned on the proxy and calibration datasets.

The analysis was implemented in R version 3.5.1 (R Core

Team, 2019) using the rjags (Plummer, 2018) and R2jags
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(Su and Yajima, 2015) packages. Three to nine chains were

run in parallel. Convergence was assessed visually via trace

plots and with reference to the Gelman and Rubin conver-

gence factor (Rhat; Gelman and Rubin, 1992) and effective

sample sizes reported by rjags.

For the site 806 analysis, nine chains were run to a length

of 5 × 105 samples with a burn-in period of 1 × 104 samples

and thinning to retain 1500 posterior samples per chain. All

parameters showed strong convergence (Rhat ≪ 1.05, effec-

tive sample size > 3500) with the exception of some parts of

the seawater Mg/Ca time series, which was characterized by

very strong autocorrelation and weak data constraints. Quali-

tative assessment showed no perceptible covariance between

seawater Mg/Ca and other parameters in the posterior sam-

ples nor was the posterior distribution obtained from this in-

version substantially different from one produced by invert-

ing the Mg/Ca proxy model alone (which was run to an ef-

fective sample size > 4000); as a result, we do not believe

the weaker sampling from the MgCasw posterior has a sig-

nificant impact on our results or interpretations. The analysis

took approximately 36 h running on nine cores of a Windows

desktop computer.

For the Pleistocene data we conducted three different anal-

yses, the first two inverting data from each site independently

and the third inverting both records together. For the joint in-

version of both records, we treated each paleoenvironmental

time series as independent, i.e., no correlation structure was

imposed on or fit to the conditions simulated at the two sites,

and the model consists of four time series process models

(one each for BWT and δ18Osw at each site) and a single set

of data models for the foraminiferal Mg/Ca and δ18O proxy

systems. The use of these common data models constitutes

the primary difference relative to the single-site analyses, in

that individual posterior samples from the joint analysis in-

clude paleoenvironmental time series at both sites that are

consistent with a single set of data model parameters. The

implicit assumption behind this approach is that the proxy

calibration is imperfectly known, but that the “correct” cal-

ibration, if known, would be the same at the two sites. A

more comprehensive analysis could include cross-site pale-

oenvironmental correlation, e.g., as in Tingley and Huybers

(2010), but here we opt for a minimal model form, allow-

ing any evidence for correlation emerges from the proxy

data directly. Because of the short time interval covered by

these analyses we did not model the seawater Mg/Ca explic-

itly, but we estimated paleo-seawater Mg/Ca values, where

needed, from the posterior distributions of an independent

inversion of the seawater Mg/Ca proxy data. Three chains

were run to 5 × 105 samples for the single-site analyses and

nine chains to 2.5 × 105 samples for the multi-site, using a

burn in period of 1×104 samples and thinning to retain 5000

posterior samples per chain. All parameters showed strong

convergence (Rhat ≪ 1.05) and effective samples sizes were

> 4000 for most parameters and > 2000 for all parameters

excluding the initialization period of the time series (i.e.,

prior to the first observation). Total analysis time ranged from

< 1 h (site 1123) to ∼ 4 d (multi-site).

Run times for all analyses can be substantially reduced by

adopting a smaller number of time steps (e.g., only the base

series) and using interpolation to estimate environmental pa-

rameter values at the proxy observation time points. Results

from experiments using this approach (not shown) were not

detectably different from those shown here.

4 Results and discussion

4.1 JPI paleoenvironmental reconstructions

The paleoenvironmental reconstructions obtained by apply-

ing JPI to the site 806 data are similar, to 1st order, to the re-

constructions from Lear et al. (2015; hereafter L15) on which

our analysis was modeled (Figs. 2 and 3). Our estimates of

seawater Mg/Ca match those obtained by L15 using polyno-

mial curve fitting throughout most of the common period of

analysis (Fig. 2). Prior to 40 Ma our estimates diverge some-

what, reflecting the additional data used in our analysis, but

this difference does not impact other interpretations given

that L15 did not use the curve-fit estimates from this part

of the record in their work. Our reconstruction shows strong

support for ∼ 2 ◦C of bottom water warming at site 806 dur-

ing the mid-Miocene Climatic Optimum (centered here on

∼ 15.5 Ma), and although abrupt cooling followed this event,

water temperatures warmed again by ∼ 1 ◦C into the late

Miocene (Fig. 3). A strong and sustained multi-Myr cool-

ing trend began at the site just prior to 5 Ma and persisted

throughout the remainder of the record. Our median temper-

ature estimates are most similar to those obtained by L15 us-

ing their “NBB” calibrations, which was based on the same

compilation of calibration data used here. The 95 % credible

intervals (CIs) estimated from JPI average 2.4 ◦C and 0.6 ‰,

which is similar to the uncertainty bounds provided by L15

based on iterative estimation using different calibration func-

tions. The width of the JPI CIs varies subtly across the time

series, with somewhat narrower intervals during periods of

dense sampling, e.g., in the late Pleistocene.

JPI paleoenvironmental time series for the single- and

multi-site analyses of the Pleistocene data were nearly iden-

tical, with slightly broader credible intervals for both param-

eters (BWT and δ18Osw) and sites in the single-site analyses

(Figs. S2 and S3). The multi-site analysis showed coherent

and slightly phase-shifted patterns of BWT variation across

glacial–interglacial cycles at the two sites, with the ampli-

tude of variation being approximately twice as high and me-

dian BWT estimates 2 to 5 ◦C warmer at U1385 (Fig. 4a).

Reconstructed δ18Osw values show greater glacial-scale vari-

ability at site 1123, with abrupt decreases of ∼ 0.5 ‰ ac-

companying both glacial terminations (Fig. 4b). In contrast,

the seawater δ18O time series reconstructed for site U1385

shows little response to the termination at ∼ 1.295 Ma and

exhibits high-frequency variability not seen at 1123. The re-
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Figure 2. Reconstructed seawater Mg/Ca from 80 Ma to present.

Black lines show individual draws from the posterior distribu-

tion for each time series; red lines show the median (solid) and

95 % credible intervals (dotted). White-filled circles show individ-

ual proxy estimates (Dickson, 2002; Coggon et al., 2010; Lowen-

stein et al., 2001; Evans et al., 2018; Horita et al., 2002; de Vil-

liers and Nelson, 1999), black and gray symbols at the bottom of

the panel show the distribution of the foraminiferal Mg/Ca proxy

data and Paleogene proxy calibration data, respectively, in time.

The blue line is the curve-fit estimate of seawater Mg/Ca of Lear et

al. (2015).

Figure 3. Reconstructed bottom water temperature (a) and seawa-

ter δ18O values since 18 Ma (b). Lines as in Fig. 2. Circles show

the distribution of foraminiferal Mg/Ca (a) and δ18O (b) data in

time. Blue lines are the best estimate (solid) and uncertainty en-

velope (dashed) of the original Lear et al. (2015) interpretation

of these data, using their linear “NS-LBB” calibration data set.

Q = Quaternary.

Figure 4. Reconstructed bottom water temperature (a) and δ18O

values (b) for sites 1123 (blue) and U1385 (red) based on simul-

taneous JPI of proxy data from both sites. Symbols as in Fig. 2.

Solid red and blue lines show the interpretation of these records as

by the original authors (Birner et al., 2016; Elderfield et al., 2012)

recalculated using the foraminiferal Mg/Ca temperature sensitivity

inferred here. Uncertainty estimates from the original authors (2σ )

are shown as error bars.

constructions are similar in nature to those by Elderfield et

al. (2012) and Birner et al. (2016). Absolute temperatures and

δ18Osw values match well if the published reconstructions

are adjusted using the Mg/Ca proxy sensitivity inferred here

(0.068 mmol mol−1 ◦C−1; Fig. 4); the Elderfield et al. (2010)

calibration used by the original authors offsets the warmer

site U1385 temperatures from JPI results by as much as ca.

−2 ◦C (Figs. S2 and S3). Neither of these studies presents

quantitative uncertainty bounds on individual paleotempera-

ture or δ18Osw estimates, but both provide estimates of aver-

age uncertainty based on propagation of errors. The average

width of our 95 % CIs is actually somewhat narrower than the

2σ values from the original papers, and the JPI CIs are no-

tably narrower for the U1385 record (2.7 ◦C, 0.6 ‰) than for

1123 (3.3◦C, 0.8 ‰; all estimates from the multi-site analy-

sis).

4.2 Time series properties

We will now examine several characteristics of the paleoen-

vironmental time series obtained in the JPI posterior sam-

ple and contrast them with reconstructions obtained through

traditional proxy interpretation methods. One visually strik-

ing difference between the JPI and L15 reconstructions is the

higher BWT and δ18Osw variability implied by L15 (Fig. 3).
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As is common in traditional proxy interpretations, the L15

paleoenvironmental record treats each individual proxy ob-

servation as an estimate of an independent environmental

state, giving a reconstruction centered on “best estimates”

derived from each data point. In reality, however, the envi-

ronmental states giving rise to the proxy data are not inde-

pendent if autocorrelation exists at the resolution at which

the time series is sampled. For BWT and δ18Osw this is

true over a broad spectrum of temporal resolutions includ-

ing those considered here, e.g., values of these variables are

known to vary systematically over millions of years due to

long-term fluctuations in Neogene climate and ice volume

(Zachos et al., 2001; Raymo and Ruddiman, 1992) and over

tens to hundreds of thousands of years due to orbital forcing

(Imbrie et al., 1984; Shackleton, 2000). This is often implic-

itly acknowledged in the presentation of traditional proxy re-

constructions by including a smoothed representation of the

record, obtained using a (usually somewhat arbitrary) filter

(e.g., Elderfield et al., 2012).

JPI, in contrast, explicitly considers temporal autocorrela-

tion of the underlying environmental variables, treating each

proxy observation as a sample arising from one or more

underlying, autocorrelated environmental time series. The

properties of the time series themselves, rather than being

assumed, are estimated using the proxy models and the data,

meaning that the smoothed reconstruction reflects the in-

formation content of the data. For very certain proxy mod-

els or densely distributed data that record high-frequency

variability, the reconstructed time series will express short-

term changes in the environment. In contrast, reconstructions

based on uncertain models or sparsely sampled data will tend

toward greater smoothing and reflect the longer-term evo-

lution of the mean state of the system. This is nicely illus-

trated by comparison of JPI δ18Osw reconstructions for sites

1123 and U1385: the sample density of the U1385 proxy

record is approximately 15 times greater, and the resultant

time series reconstruction expresses stronger variability at

millennial timescales (Fig. 4b). Again, similar results can

be achieved using other post hoc smoothing approaches, but

the integration of smoothing, informed by the proxy sys-

tem model and data properties, within the core data analysis

framework is an advantage of JPI.

Another advantage of embedding time series models in

JPI is that it offers an explicit framework for integration of

differently sampled proxy records. In most of the studies

reviewed here foraminiferal δ18O values are more densely

sampled than Mg/Ca. In a traditional, piece-wise interpre-

tation of these proxy data, δ18Osw can only be estimated if

paired oxygen and Mg/Ca data are available for a given core

level. Thus, if Mg/Ca data are missing at a level either this

value must be estimated, usually through linear interpolation,

or the foraminiferal δ18O data excluded from the analysis.

JPI eliminates the need to exclude or selectively interpolate

data by linking all proxy measurements to a common set of

continuous time series. The temporal interpolation required

to integrate data sampled at different times is conducted for

each environmental variable (which are in reality the quanti-

ties that are related in time), rather than for the proxy values

themselves, as an explicit component of the analysis. One

note of caution is warranted here: potential for artefacts to

emerge from the integration of datasets with very different

sampling densities remains. For example, the high-frequency

variability in estimated seawater δ18O at site U1385 (Fig. 4b)

stems from high-frequency variance in the densely sampled

δ18Of record at this site, but without MgCaf at similar res-

olution it is impossible to determine whether the isotopic

proxy record variance truly reflects millennial-scale changes

in seawater δ18O or instead is driven by undocumented, high-

frequency BWT variation.

A final outgrowth of the integration of proxy system and

paleoenvironmental time series models via JPI is that the

method provides quantitative uncertainty bounds that are

linked to and reflect the stratigraphic distribution and den-

sity of proxy information. Because environmental parame-

ters are modeled as continuous time series, estimates of cen-

tral tendency and dispersion (e.g., credible intervals) are ob-

tained throughout the reconstruction period. For time steps

in which no observational data are available, the dispersion

of posterior estimates increases consistent with the properties

of the time series model (e.g., between ∼ 55 and 75 Ma or 5

and 15 Ma in the seawater Mg/Ca model; Fig. 2), providing

quantitative estimates of the constraints provided by the data

within these intervals. Moreover, because the paleoenviron-

mental time series are temporally autocorrelated, each proxy

observation helps constrain the environmental state not just

at the time associated with its stratigraphic depth but also

earlier and later in the record (with the decay of that infor-

mation with time being a function of the process model pa-

rameters). As a result, credible intervals in the posterior dis-

tribution adjust with the density of the proxy observations,

and stratigraphic intervals with higher sampling density have

lower CIs reflecting the cumulative constraints provided by

multiple observations. This can be seen, for example, in the

broader 95 % CIs for the sparsely sampled portion of the site

806 record between ∼ 7 and 10 Ma (Fig. 3) or in the contrast-

ing width of the CIs for the two Pleistocene sites (Fig. 4).

4.3 Model properties

In addition to estimating the paleoenvironmental record, JPI

provides posterior estimates of parameters in the underly-

ing paleoenvironmental time series models and proxy (cal-

ibration) models, and these themselves can be informative.

Bayesian inversion has previously been used to estimate

proxy model parameter values in situations where these are

poorly constrained (Tolwinski-Ward et al., 2013), and the

joint inversion of proxy and environmental time series mod-

els performed in JPI can similarly be used to provide con-

straints on parameter values for all model components (e.g.,

Fig. S4). Because the proxy system models used here are
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simple, and the calibration data themselves are used to gen-

erate prior estimates on model parameters, the posterior es-

timates are generally quite similar to the priors (Fig. 5). The

only notable exception is β3, the 2nd-order parameter in the

δ18Of model, for which the posterior mean is shifted sub-

tly toward zero (Fig. 5g). Our prior estimates of parame-

ter variance were slightly inflated to ensure that we did not

over-constrain these values, and the posteriors show sharp-

ening of the distributions for most parameters. Posterior esti-

mates for proxy model precision (or variance), however, are

much more strongly constrained than those obtained from

independent estimation using calibration data only (Fig. 5d

and h). We note that our results suggest limited sensitivity

of the proxies to some model parameters (e.g., α3 and β3;

Fig. 5c and g). Although this suggests that more parsimo-

nious models omitting these parameters could be used, we

retain the “canonical” forms to support comparison with pre-

vious work.

These refinements reflect a combination of the constraints

offered by the calibration and down-core proxy data. Al-

though at first consideration the relevance of the latter to cal-

ibrating proxy model parameters might not be apparent, in

fact the proxy model must not only be consistent with the cal-

ibration data but also explain the observed proxy data given

the “true” environmental conditions. As a result, for a given

set of proxy data and environmental time series model prop-

erties only a subset of proxy model parameter values will

be plausible. Consider, for example, the proxy model preci-

sion parameter. In our model construction, this value explains

the “noise” both within the model calibration dataset and the

proxy record, each of which can arise from a similar ensem-

ble of factors (e.g., temporal variation in the environment at

timescales below the time series model time step, biological

or random variation in the environment–proxy relationship).

Our analysis suggests that before the mid-Pleistocene tran-

sition, the proxy model variance implied by the full JPI in-

version is similar to that estimated from the calibration data

alone (solid curves in Fig. 5d and h), with slightly higher

δ18O and lower Mg/Ca variance implied by the full analysis.

The site 806 δ18Of record, however, is much more densely

sampled after 800 ka, and the combination of higher δ18Osw

variability and dense sampling that more strongly records

this variability requires a much higher proxy model variance

(dashed lines in Fig. 5h). The proxy calibration data offer no

constraints on this value, rather the JPI posterior estimates

the parameter value to reconcile the environmental time se-

ries (representing the longer-term evolution of the mean sys-

tem state) with the variance expressed in the proxy observa-

tions.

Because the JPI analysis involves sampling of all model

parameters simultaneously, it also can identify and account

for correlation among parameters. The proxy model param-

eter estimates for site 806 provide a clear example (Fig. 6).

The posterior distributions show strong correlation between

the seawater Mg/Ca sensitivity term (α3) and both the inter-

cept and sensitivity terms (α1 and α2) in the MgCaf model

and between the 1st- and 2nd-order terms (β2 and β3) in

the δ18Of model. This is not at all surprising: in all cases

these terms are interactive and for a given estimate of the

model calibration a change in one will generally be offset by

a change in the other. Accounting for this covariance is im-

portant in assessing the uncertainty of proxy reconstructions,

however, and may in part account for the more optimistic un-

certainty estimates obtained here relative to those based on

propagation of errors assuming independence of parameters,

in that the latter approach will inflate uncertainty associated

with correlated parameters.

JPI also provides posterior estimates on the environmen-

tal time series model parameters, and these distributions

can provide information complementary to the reconstructed

time series themselves. Comparing prior and posterior es-

timates at all three study sites (Fig. 7), the analysis pro-

vides strong posterior constraints on the error autocorrelation

(i.e., directedness of change). Posterior estimates of the error

variance (i.e., magnitude of change between time steps) for

δ18Osw and BWT are more similar to the priors, but addi-

tional experiments using alternative priors (not shown) sug-

gest that this reflects the appropriateness of the prior esti-

mates rather than a lack of constraints from the data (i.e., pos-

terior distributions were substantially different from the alter-

native priors). Interestingly, the error variance estimates are

quite similar for both environmental variables at all sites de-

spite the ∼ 2 orders of magnitude difference in the resolution

and length of the records, suggesting scale-independence of

short-term rates of change in these systems.

In contrast, the error autocorrelation term, which re-

flects the directedness of environmental change across model

time steps, shows substantial variation among the data sets

(Fig. 7, left column). The highest posterior values (mean val-

ues of 0.77 and 0.92 for BWT and δ18Osw, respectively)

were obtained for the long record at site 806, which ex-

presses long-term (multi-Myr), high-amplitude transitions in

paleoenvironmental states. Among the Pleistocene analyses,

the strongest error autocorrelation is inferred for BWT at

site U1385 (mean = 0.12). There, the data suggest coher-

ent cyclic variation in BWT across two glacial cycles, con-

sistent with stronger error autocorrelation, but several more

abrupt, short-term shifts are also implied (e.g., at ∼ 1.31 Ma)

and likely reduce the posterior estimate of autocorrelation

across the record as a whole. In contrast, δ18Osw variation

estimated at this site is only weakly directional and fea-

tures strong, chaotic, millennial-scale variability reflected in

a low posterior estimate (mean = 0.02) for error autocorrela-

tion (Fig. 7d).

4.4 Derivative analyses

In this final section, we explore additional examples of how

JPI results might be used to support inference or hypothe-

sis testing in paleoenvironmental reconstruction. The multi-
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Figure 5. Prior (black) and posterior (red) distributions for Oridorsalis umbonatus Mg/Ca (a–d) and Cibicidoides sp. δ18O (e–h) proxy

model parameters (ref. Eqs. 2 and 3, respectively) in the site 806 analysis. Solid and dashed lines in panel (h) show standard deviations of

the calibration relationship prior to and following the 800 ka transition, respectively.

Figure 6. Bivariate density plots of the posterior distributions for

Oridorsalis umbonatus Mg/Ca (a–c) and Cibicidoides sp. δ18O (d–

f) proxy model parameters from the site 806 analysis.

variate posterior samples produced by JPI provide a sound

basis for testing hypotheses of change within or between

proxy records. Consider the case where we want to assess

the magnitude of change in site 806 bottom water tempera-

ture relative to the modern (core top) value. Unlike the raw

proxy data or traditional interpretations thereof, the JPI sam-

ples provide distributions for the environmental variables that

support testing at any point in time represented in the pale-

oenvironmental time series. Other interpolation or smoothing

methods can and have been used to conduct such tests, for

example of change in global temperature relative to modern

(Marcott et al., 2013), but an advantage of JPI, again, is that

correlation among model parameters and temporal autocor-

relation are included and optimized in the analysis, reducing

the need to independently and subjectively specify these.

Figure 7. Prior (black) and posterior (red) parameter distributions

for bottom water temperature (BWT, solid) and seawater δ18O

(δ18Osw, dashed) time series models. (a–c) Site 806. (d–f) Site

U1385. (g–i) Site 1123. (a, d, g) Error autocorrelation (models for

both variables used the same prior in a given analysis, shown here

in solid black), (b, e, h) standard deviation of BWT error term, and

(c, f, i) standard deviation of δ18Osw error term.

The effect of parameter correlation can be seen in com-

paring change relative to modern within individual poste-

rior samples (within sample) versus change between each

posterior sample and the 0 Ma median value (between sam-

ple; Fig. 8a); the latter being equivalent to a traditional test

for non-zero difference that assumes independence. At short

time lags (less than ∼ 400 kyr) the within-sample compar-

ison actually implies slightly higher (∼ 4 %) probability of
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significant change for the time steps with largest BWT differ-

ences relative to modern. This reflects the influence of error

autocorrelation in the time series model: within an individ-

ual posterior sample, directional change is likely to persist

over multiple time steps, meaning that the “signal to noise ra-

tio” over short periods is higher if estimated based on within-

sample vs. between-sample change. Beyond this time frame,

however, the relationship between methods inverts, and the

method assuming independence gives exaggerated estimates

of the significance of change. Beyond the scale of significant

time series error autocorrelation, the variance of change es-

timated from the within-sample comparison is substantially

greater than that estimated between samples, reflecting the

fact that some possible BWT trajectories within the poste-

rior “wander” across the distribution of possible values over

time, increasing the dispersion of the change estimates. The

net result is that in this case, using a one-sided 95 % credible

interval threshold (equivalent to p = 0.05), one would esti-

mate that site 806 bottom water temperatures diverged from

modern some 1 Myr earlier without accounting for parameter

and time series correlation.

Another example involves cross-site comparison. Here, we

similarly ask whether seawater δ18O values were different at

sites 1123 and U1385 throughout the period of study based

on comparisons of the posteriors from the multi-site analy-

sis or the two single-site JPI analyses (Fig. 8b). The assess-

ment that assumes independence of estimates at the two sites

(the latter one) consistently underestimates the significance

of the difference between the sites. This can be explained in-

tuitively in terms of the impact of other model parameters

on posterior estimates of δ18Osw values at both sites. In a

given sample from the posterior of the multi-site analysis,

if one of the δ18Of proxy system model parameters deviates

from the central estimate, for example, it will similarly im-

pact the seawater isotope reconstructions at both sites. As a

result, the variance of the between-site differences is reduced

in the comparison based on the multi-site analysis, producing

stronger results in the post hoc tests of difference. In this ex-

ample the choice of approach would have little impact on in-

ferences drawn based on the 95 % credible interval, but at the

99 % level several parts of the time series would be consid-

ered different using the multi-site comparison and not differ-

ent with the traditional approach (Fig. 8b). Including factors

contributing to age model uncertainty for individual records

would further improve JPI-based interpretations of this type.

Finally, because JPI results provide integrated, self-

consistent estimates of multiple environmental variables, it

can be used to identify and characterize multivariate modes

of environmental change in Earth’s past. Results from the

site 806 analysis, for example, demonstrate non-linear cou-

pling between changes in BWT and δ18Osw since the mid-

Miocene (Fig. 9). These patterns, including limited cou-

pling between δ18Osw and BWT change prior to ∼ 5 Ma

and strong bottom water cooling accompanied by a mod-

est δ18Osw decrease into the Pleistocene, were previously

Figure 8. Evaluating changes within and between environmental

reconstructions using JPI output. (a) Site 806 bottom water tem-

perature reconstruction from ∼ 2 Ma to present and probability of

no significant change in temperature relative to modern. Gray and

red lines show the BWT record. The blue solid line shows the JPI-

estimated probability of no change relative to modern, calculated

as the probability of a zero change value at each time step t given

the posterior distribution BWT(t) − BWT(0) values. The blue dot-

ted line shows an equivalent estimate based on comparisons across

posterior samples, calculated as the probability of the modern me-

dian value given the posterior distribution of BWT values at time t .

(b) Difference between site U1385 and 1123 seawater δ18O values

within individual posterior samples (gray lines; red lines show mean

and 95 % credible intervals for the posterior), and probabilities of no

significant difference between sites. Blue solid line shows the prob-

ability of a zero difference value given the posterior distribution of

differences between the two sites within individual posterior sam-

ples. The blue dotted line shows an equivalent estimate based on

differences between the two sites calculated from random samples

of the single-site analyses. Blue dashed lines in both panels show

5 % and 1 % probability thresholds. See text for details.

noted by L15. What is apparent here, however, is the sug-

gestion that the system transitioned between at least three

semi-stable states during this time. Jumps between a mid-

Miocene warm, low-δ18Osw state, late Miocene warm, high-

δ18Osw state, and Plio–Pleistocene cool state were in each

case relatively abrupt, with the system spending the major-

ity of the reconstruction period within, rather than between,

states.
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Figure 9. Bivariate density plot of posterior values from the site 806

environmental time series models (base 50 kyr time steps only). All

values are plotted as change relative to 18 Ma within an individual

posterior sample. Dots show the median values from the posterior

time series.

5 Conclusion

Traditional approaches to proxy interpretation suffer from

broad and poorly characterized uncertainty and potential bi-

ases related to the sensitivity of proxies to multiple environ-

mental factors (Sweeney et al., 2018). Proxy system model-

ing and multi-proxy reconstruction provide partial solutions

to these issues, but a robust accessible framework for inte-

grating these two approaches in the development of paleoen-

vironmental reconstructions is also needed. We suggest that

Bayesian hierarchical models that leverage simple time series

representations of paleoenvironmental conditions offer such

a framework. This approach is broadly generalizable to any

set of proxies for which appropriate forward models can be

written. It confers many of the advantages of more complex

data assimilation methods that leverage Earth system models

(Evans et al., 2013), while remaining independent of the as-

sumptions embedded in these models and flexible enough to

be applied over a wide range of systems and timescales. As

with any statistically based analysis, JPI results are model-

dependent: they provide a basis for interpreting data in the

context of a specific model and its assumptions, and this de-

pendence should be acknowledged and considered in the pre-

sentation and interpretation of results.

Our illustration of the method based on the coupled

Mg/Ca and δ18O systems in benthic foraminifera demon-

strates the flexibility of JPI through applications to two con-

trasting timescales and both single- and multi-site proxy

records. Despite the simplicity of this system and the proxy

models used, the example illustrates how JPI can be applied

to widely used proxy systems to give improved characteri-

zation of uncertainty, explicit estimates of the properties of

paleoenvironmental systems, and refined proxy model cali-

brations. Implementations similar to those demonstrated here

could easily and immediately become standard practice in

the interpretation of many paleoenvironmental proxy data.

As the underlying proxy system models mature, JPI-based

interpretations can be revised and refined to incorporate new

understanding and/or leverage additional proxy types, mini-

mizing, but also accurately representing, bias and uncertainty

in our paleoenvironmental reconstructions.
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