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Abstract: 

Introduction:  Several studies have highlighted differences in the facial features in a White 

European population. Genetics appears to have a major influence on normal facial variation 

and environmental factors are likely to have minor influences on face shape directly or 

through epigenetic mechanisms. 

Aim: The aim of this longitudinal cohort study is to determine the rate of change in midline 

facial landmarks in 3 distinct homogenous population groups (Finnish, Latvian and Welsh) 

from 12.8 to 15.3 years of age. This age range covers the pubertal growth period for the 

majority of boys and girls. 

Methods: A cohort of children aged 12 were monitored for facial growth in 3 countries 

(Finland (n=60), Latvia (n=107) and Wales (n=96)).  3D facial surface images were acquired 

(using either laser or photogrammetric methods) at regular intervals (6 to 12 months) for 4 

years.  Ethical approval was granted in each country. 9 midline landmarks were identified 

and the relative spatial position of these surface landmarks were measured relative to the 

mid-endocanthion (men) over a 4-year period. 

Results: This study reports the children who attended 95% of all scanning sessions (Finland 

48 out of 60; Latvia 104 out of 107; Wales 50 out of 96). Considerable facial variation is seen 

for all countries and sexes.  There are clear patterns of growth that show different 

magnitudes at different age groups for the different country groups, sexes and facial 

parameters. The greatest single yearly growth rate (5.4mm) was seen for Welsh males for 

men-pg distance at 13.6 years of age. Males exhibit greater rates of growth compared to 

females. These variations in magnitude and timings are likely to be influenced by genetic 

ancestry as a result of population migration. 

Conclusion: The midline points are a simple and valid method to assess the relative spatial 

positions of facial surface landmarks.  This study confirms previous reports on the subtle 

differences in facial shapes and sizes of male and female children in different populations 

and also highlights the magnitudes and timings of growth for various midline landmark 

distances to mid-endocanthion point. 

 

 

  



 3 

Introduction 

 

For many years there has been lack of clarity in detailing the influences of genetics and 

environment on face shape.  Recent Genome Wide Association Studies (GWAS) have 

identified over 50 genes associated with distinct facial surface features occurring in normal 

facial variation (1-8) and there has been an improved understanding of biological pathways 

affecting facial shape and size (9, 10); heritability (11), arguably cardio-metabolic risk factors 

(12), sex hormones such as testosterone (13) and childhood illnesses (14). These studies 

highlight the dominance of the genetic influences on face shape, although face shape can be 

significantly altered by trauma and surgery (2, 3). Reports on the influence of maternal 

alcohol intake on normal variation has been conflicting at one year of age and 15 years of 

age (15-17).  The possible shared genetic influences of breathing disorders (and 

environmental pollutants) on facial shape currently suggest minor facial shape differences 

compared to control groups in a growing population (2, 3, 18, 19).  

 

Several studies have highlighted the close relationship between the surface soft tissues and 

underlying skeletal structures (20-23), which supports the assessment of facial surface to 

evaluate growth changes.  Normal facial variation in a White European population can be 

explained by face height (28.8%), face width (10.4%) and nose prominence (6.7%) and 

relative prominence of the maxilla to the mandible (5.3%) (24). Facial features differ slightly 

across the European population due to ancestry (25-27).  

 

Over 10 facial growth cohort studies have been reported (mainly in the USA and Europe) 

with varying cohort designs, sample sizes and ethnicities, using mostly photographs and 

radiography (28-38). More recently three-dimensional facial surface scanning has been 

employed to evaluate longitudinal changes in population groups (39-42). These studies use 

non-invasive 3D scanning devices to capture the facial surface on repeated occasions to 

map growth trajectories and determine the rate of growth in the overall face and/or facial 

features. 
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The challenge for longitudinal cohort growth studies is retaining as much of the original 

sample as possible throughout the period of study so that the findings are not influenced by 

fluctuating sample sizes or the application of inappropriate missing data modelling.  

 

It is contentious where to superimpose serial radiographs or facial scans. For example, 

placing serial radiographs anchored on Sella, Nasion, mid-endocanthi or centroids of 

Procrustes analyses will yield very different growth projections (6, 43-45).  Arguably, more 

importantly than superimpositions/registrations and complex analyses of sequential 

radiographs is to simply identify the differing rates of growth between various facial midline 

parameters (independent of face position) in both sexes in different population cohorts as 

these are common, easily recognisable facial landmarks that are routinely used in 

orthodontic practice. In addition, recent 3D studies have shown significant antero-posterior 

and vertical changes in facial shape in the midline in relation to glabella, nasion, nose upper 

and lower lips and chin (21, 39, 46, 47). 

 

It has been reported that different facial shapes are present within the White European 

population. Different population migration patterns will inevitably result in different genetic 

structures arguably associated with different pubertal timings and patterns in facial growth 

leading to differences in face shape (26, 27, 48-53)  

 

The aim of this longitudinal cohort study is to determine the rate of change in midline facial 

landmarks in 3 distinct population groups (Finnish, Latvian and Welsh) from 12.8 to 15.3 

years of age. This age range covers the pubertal growth period for the majority of boys and 

girls (39, 43, 46, 54, 55). 

Type of study: Longitudinal cohort. 

Subjects 

Children between 12.8 and 15.3 years of age.  This age group allowed the maximum 

numbers of individuals to be assessed in 3 growth cohorts. 

 

Finland:  Children were White European from the Oulu area (n=48; 23 males and 25 

females).  Ethical approval was granted by the City of Oulu (reference 7728/2006). 
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Latvia: Children were recruited from the Riga area (n= 104; 56 males and 48 females). 

Ethical approval was granted by the Ethics Committee of Riga Stradiņš University (reference 

14; 28.06.2012). 

 

Wales: Children were White European selected from the year-7 cohort in 2 large 

comprehensive schools in the South Wales Valleys area within Rhondda Cynon Taf (n=50; 27 

males and 23 females). Ethical approval was obtained from the director of education, head 

teachers, school committees, and the relevant ethics committees of Bro Taf and Cardiff 

University (reference 04/WSE/109). Written informed consent was obtained before 

obtaining the 3D facial surface scans.  

 
Exclusion criteria: non-White European and individuals with a history of previous 

craniofacial trauma, craniofacial anomalies, facial disfigurement and clinically evident facial 

asymmetry.  

 

Facial surface acquisition and image processing 

The facial surfaces of the Finnish and Welsh children (in natural head posture) were 

acquired by two high resolution laser scanners (Konica Minolta® Vivid 900/910 (Konica 

Minolta is a registered trademark of Konica Minolta INC). The capture and image processing 

have been reported extensively and has been shown to be reliable (56-60). All the Latvian 

children faces were captured using the 3dMDface system scanner (3dMDFace is a registered 

trademark of 3DMD LIMITED). The facial scans were planned for every 6 months to monitor 

facial growth. The facial landmarks were recorded by 2 calibrated examiners (Examiner 1, 

Welsh and Finnish; Examiner 2, Latvian cohort). 

 

Identifying soft tissue landmarks 

Nine facial landmarks described by (61) (Figure 1) were identified and recorded by zooming 

and rotating the images to locate each specific landmark. The mid-endocanthion point 

(men) was constructed from the left and right inner canthi. The mid-endocanthion point is 

regarded as a relatively stable landmark with the inner canthi only increasing by 1.6mm and 

1.9mm for males and females respectively (between ages 9 to 16 years of age) (6, 62, 63).  
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Statistical analyses 

The intra-operator reliability test was conducted using 80 facial images which were 

randomly selected across all years and populations. All the facial scans were re-landmarked 

seven days apart. Agreement of landmark positioning was categorized according to 3 levels 

(≤ 0.5mm, ≤ 1.0mm, > 1.0mm) (64). Inter-examiner reliability was also conducted and the 

mean error between two landmarks and the percentage variance due to landmarking errors 

as a proportion of total mean variance will be reported. 

 

Some of the subjects did not attend all scanning sessions. The missing data were linearly 

interpolated by the algorithm (see supplemental information). The data points for the rate-

of-growth curves were calculated with an increment of one month (𝛿 = 1 month = 0.083 

year) for all ages involved in the study.  The rate-of-growth curves were plotted using spline 

smoothing. 

 

Results 

This study reports the children who attended the majority of the scanning sessions (Finland 

48 out of 60; Latvia 104 out of 111; Wales 50 out of 96 – Table 1). Not all the children were 

able to attend on each occasion due to illness, examinations, school trips and school related 

activities. There were no significant facial asymmetries in the sample all, facial asymmetries 

were less than 0.5mm. 

 

Landmark reliability ranged from 0.053 mm to 1.593 mm for Examiner 1 (Table 2). Out of 27 

coordinates, 20 were classified as highly reliable, 13 coordinates were moderately reliable, 

and 3 coordinates were poorly reliable. 91.7% of landmarks were found to be reproducible 

to at least 1.0 mm, indicating a moderate-to-high level of reliability. The reliability of z-

coordinates appeared to be much higher than that of the x- and y-coordinates, with the 

most coordinates in the z-axis reliable to less than 1.0 mm. The y-coordinates showed the 

poorest reproducibility for gY, nY, and pgY which agrees with a previous study (64). For 

Examiner 2 the intra-examiner error was generally less than 0.5mm except for the following 

coordinates (gY, 0.61; nY, 0.52; alLZ, 0.51; cphRX, 0.51 and pgY, 0.69). The inter-examiner 
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mean error on the distances were less than 2mm (men-g, 0.59; men-n, -0.56; men-prn, 0.25; 

men-sn, 0.04; men-ls, -0.29; men-li, 1.12; men-pg, 1.90). 

 

Country specific growth rates 

The country growth rates for both sexes are shown (Figure 2). The age range 12.8 to 15.3 

years includes matched data for all 3 cohorts. 

 

Males  

There are clearly different patterns of growth for the individuals in each country.  There are 

2 peaks of growth for Welsh children 12.8 and 13.6 years of age for all measures (except 

men-g and men-n). After the 2nd peak, growth essentially stabilises for all parameters until 

15.3 years of age. The maximum peak 5.4mm/year occurs for the Welsh at 13.6 years of 

age. The Welsh males are distinctly different from both Finnish and Latvian males the latter 

2 populations reveal similarity both showing 2 peaks in growth at similar age ranges with 

the Latvians showing a longer sustained growth for men-pg (13.4 to 14.8 years), men-g and 

men-n show the smallest growth rates. 

 

Females 

In contrast to the males, females show greater similarity in growth of the landmarks and the 

growth rates are significantly less than shown in the males.  There are 2 significant peaks in 

the Finnish and Welsh females (12.8 to 14 years of age). Again men-g and men-n show the 

smallest growth rates. 

 

Combining all data (Figure 3) 

Males 

When the data is combined, the graphs demonstrate the averaging of growth peaks for the 

3 countries with essentially a smoother and flatter curve with a maximum/minimum of 

3.3/1.4mm per year at 12.8 and 14.9 years of age respectively for men-pg. 

Females 

The peak growth rate for men-li occurs at 13.4 years of age. The decline in growth rate is 

seen earlier than males at 13.6 years of age. The maximum growth rate occurs for men-li 

(2mm) at 13.4 years of age compared with males (2.3mm). 
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Discussion 

Reliability 

The placement of landmarks was generally reliable in respect to intra and inter-examiner 

error.  The variance due to landmarking errors as a proportion of total mean variation was 

less than 3.4% (men-n, 3.42%; men-prn, 1.60%; men-sn, 3.57%; men-ls, 2.93%; men-li, 

2.15%; men-pg, 3.35%). Therefore, the changes in growth velocity and patterns of growth in 

the 3 populations are valid. 

 

Sampling 

With the Bhatia and Leighton study (20), 202 individuals were recruited at birth and 159 

were recalled at 16 years of age (80% retained although the number may be considerably 

lower as 736 individuals were recruited at birth and the samples between 12 and 16 years 

of age may reflect a cross sectional rather than a true cohort sample). This compares to 80% 

Finnish; 94% Latvian and 52% Welsh retention rates for all scheduled image acquisitions 

12.8 to 15.3 years of age. However, the findings of this study reflect a strict cohort with all 

individuals attending the majority (95%) of the acquisition sessions. The samples for the 3 

countries are relatively small but compares favourably to other cohort and cross-sectional 

studies (15, 25, 27). For this study it was important to keep the integrity of the cohorts with 

modelling for missing data for each session (where appropriate) to reflect the facial growth 

that is seen in children.  

 

Missing data 

Missing data is inevitable and are a challenge to manage in cohort studies. Data can be 

categorised as missing completely at random (MCAR), missing at random (MAR) and missing 

not at random (MNAR) (65, 66). The data in this study can be classified as MCAR and will 

yield asymptomatic unbiased estimates. In a systematic review of 84 reported 

epidemiological studies 26% missing data was reported (67). In this present study the 

overall missing data are considerably lower at 5.5% (Finnish 14.3%, Latvian 4.2% and Welsh 

0%).  

There are many techniques to model missing data and each method can have a significant 

effect on the outcome especially when a high percentage of missing data occurs at specific 
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time points (68),(69). In this study the missing data were relatively small across the common 

age interval and a simple extrapolation was undertaken.  The difference in curves produced 

by the current study and that reported by Bhatia and Leighton (20) with only 10 and 15 

complete data sets for individuals between the ages of 12 and 15 highlight over averaging 

when data is missing essentially producing gentle curves as opposed to fluctuating changes 

identified with the present study.   

 

Facial landmarking 

Facial anatomical landmarks are not finite structures and are subject to developmental 

changes. Most cephalometric landmark definitions relate to the deepest/most prominent 

concavity/convexity and therefore subject to developmental  changes as a direct result from 

deposition and resorption (70), genetic influences (1), hormonal changes (13) and 

mandibular rotation (36). These developmental changes may alter the relative spatial 

position of landmarks resulting in small negative increments during the growth period 

(which also may be influenced by the error in landmarking particularly in the y-axis). 

However, the negative increments follow patterns. For instance, there were negative 

changes (0.8 to 1mm) in sn-pg for both Finnish and Welsh males (13 and 13.6 years of age 

respectively) and can be explained by a forward mandibular growth rotation in these 2 

populations (36) (Figure 3). 

 

Use of mid-endocanthion point 

The mid-endocanthion point is regarded as a relatively stable landmark with the inner 

canthi only increasing by 1.6mm and 1.9mm for males and females respectively (age 9 to 16 

years of age) (6, 55, 61-63, 71-73). 

The mid-endocanthion constructed landmark and distance to soft tissue nasion has been 

used repeatedly in Genome Wide Association studies (GWAS) and is associated with the 

PAX3 gene (1, 6-8). It is known that the nasion moves forward and upwards during growth 

and if there was substantial movement of the mid-endocanthion it would be highly unlikely 

that a genetic association would be found.   

 

Validation (comparison with Bhatia and Leighton study (20)) 
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There are very few studies that provide the rate of facial growth in children. The growth 

rates for the 3 country groups pooled data are compared with those provided by Bhatia and 

Leighton (20) (Figure 4). The distances used by Bhatia and Leighton were soft tissue nasion 

to subnasale (n-sn), soft tissue nasion to pronasale (n-prn) and subnasale to soft tissue 

menton (sn-me).  The Bhatia and Leighton sample can be considered as a cross-sectional 

longitudinal sample with the rate of growth curves averaged and smoothed compared to a 

distinct cohort followed 12 to 16 years of age.  

n-sn:  Males: The patterns of growth for the 3 country groups were similar with greater 

rates of growth between 13 and 14 years of age and the Bhatia and Leighton sample shows 

essentially a steady growth rate.  Females: There is considerable variation with the Wales 

sample showing several surges of growth at 12.8, 13.6 and 14.2 years of age. The Latvian 

and Finnish children also show different peaks of growth at different ages but less dramatic 

compared to the Welsh. 

 

n-prn: Males: The patterns of growth for all groups are similar for all groups although there 

appears to be a late marginal surge in the Latvian children at 15.2 years of age. Females: The 

rate of growth is less than in the males with considerable variability in peaks and timings 

across the 3 populations. 

 

sn-pg: This parameter was recorded for the facial surface capture systems but Bhatia and 

Leighton used soft tissue menton instead.  There is considerable variation in all country 

groups. Males: The Finnish cohort show 3 periods of rapid growth and this differs in timing 

compared to Welsh and Latvian children. The greatest growth rate was shown by the Welsh 

cohort at 13.6 years of age (3.8mm/year) although there was an earlier period at 12.8 years 

of age. The Latvian children also showed 2 sustained peaks at 13 years, from 13.8 to 14.8 

and also a late surge at 15 years of age.  Females: 2 peaks of growth are seen for the Finnish 

and Welsh children and 3 peaks for the Latvian children. The average pattern for the 3 

countries is similar to the Bhatia and Leighton study (20) for both males and females, 

although the latter rate is on average slightly higher due to the difference in the landmarks 

measured (pg and men).  
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For males, the men to glabella distance also follows a different growth pattern compared to 

other parameters with an increased rate of growth 13.1 to 13.7 years with an increase again 

from 15 years of age. The men-pg distance is greatest at 12.8 years of age (3.3mm/yr) and 2 

additional peaks at 13.8 and 14.2 years of age.  As with the females the men-nasion distance 

shows relatively steady growth throughout, with an average of 0.4mm/yr for females and 

0.7mm/yr for males. This is a relatively small rate of growth compared to other nasion 

measures. 

 

Looking at the growth rates for all females (n=95), generally there appears to be 2 definite 

periods of rapid growth 12.8 to 14 and 14.4 to 14.9 years of age. However, mid-

endocanthion to glabella tends to follow a slightly different pattern with periods of growth 

12.8 to 13.5 and 13.6 to 13.9 years of age. 

 

Differences in growth variation 

The differences in growth variation between the countries are likely to be due to the 

different genetic ancestries which will influence subtle differences in timings in puberty and 

patterns of facial shape (48, 49, 74, 75).  Shared genetics has also been reported in respect 

to tooth eruption, height and craniofacial distances (5). To explore the differences between 

the 3 population groups the centroid size was calculated with 95% confidence limits (Figure 

5). The Welsh males shows a different rate of growth pattern compared to the Finnish and 

Latvian males which may emphasise the differing genetic ancestry. There is little difference 

between the female population groups in terms of centroid size. The male growth rate is 

substantially higher compared to females. 

 

Orthodontic treatment 

Orthodontic treatment was undertaken in a proportion of the cohorts (Finland 30%; Latvia 

15%; Wales 20%).  The majority of treatment was undertaken using fixed and less than 5% 

functional appliances. The lip morphologies of Finnish and Welsh children tend to be 

different (47, 76). However, the strength of association between men-pg and men-ls/li for 

males were similarly high (R2=0.72) and marginally higher for females (men-pg and men-ls, 

R2=0.82 and men-pg and men-li, R2=0.94). The rate of growth in men-pg is 3.6 times greater 

in males compared to females, with men-ls 1.89 and men-li 1.72 and these growth 
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variations are reflected in the various strengths of association.  The effects of the treatment 

on midline points used in this study are likely to be minimal due to the inherited nature of 

facial features such as face height, inter-ocular distance and relative prominence of the lips 

(h2=0.8) (2, 3, 11, 77, 78) and the distinct pubertal growth patterns shown in the 3 cohorts.  

 

Strengths and limitations of the study 

The strength of this study is it maps simple midline facial landmarks in 3 cohorts in 3 

countries (Finland, Latvia and Wales) over the same time period. The number of individuals 

followed in each cohort are similar to those reported in other longitudinal growth studies 

(20, 79). Repeated measures of simple midline points have enabled sequential facial 

assessment in 3 cohorts.  Comparisons over the same time period has highlighted 

similarities and differences between the cohorts. The greatest differences were observed in 

males, with the Welsh males exhibiting different growth patterns compared to the Finnish 

and Latvian children. 

 

Although the samples studied are similar to previous cohorts the sample size is insufficient 

to explore the influence of different orthodontic treatment modalities on the midline 

points.  This study follows rate of growth from 12.8 to 15.3 years of age.  There appears to 

be significant growth before the study period judged by the rate of reduction in mm/year 

(12.8 years) and there may be a suggestion of minor later growth surges after 15 years of 

age. Future studies should capture growth from at least 10 to 18 years of age at 6 monthly 

intervals. 

 

When making comparisons in terms of growth and possible treatment changes, researchers 

should be aware that the patterns of growth may be altered in different population cohorts. 

With the recent advances in facial genetics, the genes associated with distinct facial features 

and shared genetics should also be taken into account when considering facial growth (1, 5, 

53, 80). 

 

Conclusion 

The midline points are a simple and valid method to assess the relative spatial positions of 

facial surface landmarks.  This study confirms previous reports on the subtle differences in 
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facial shapes and sizes of male and female children in different populations and also 

highlights the magnitudes and timings of growth rates for various midline landmark distance 

to mid-endocanthion point.  These variations of magnitude and timings are likely to be 

influenced by genetic ancestry as a result of initial population migration and the biological 

basis of facial shape and growth will need to be validated in larger scale population studies. 
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Supplemental information 
 
Evaluating errors due to landmarking 

 

Let 𝑛 denote the sample size and let 𝑥𝑖  denote the measurement of a quantity 𝜉 (e.g., the 

distance between two landmarks) in the 𝑖th subject, 𝑖 = 1, … , 𝑛. Let 𝜉𝑖 be the true value of 

the quantity in subject 𝑖 and let 𝜖𝑖 be the error of measurement due to different reasons (e.g., 

error of landmarking). Then 

𝑥𝑖 = 𝜉𝑖 + 𝜖𝑖 

Let 𝑦𝑖 denote another measurement of the same quantity and let 𝜀𝑖 be the error of 

measurement. Then  

𝑦𝑖 = 𝜉𝑖 + 𝜀𝑖 

Assuming that the true measurements and the errors are independent (uncorrelated), we can 

estimate the variances of 𝑥, 𝑦 and 𝑥 − 𝑦 as 

𝜎𝑥
2 = 𝜎𝜉

2 + 𝜎𝜖
2,      𝜎𝑦

2 = 𝜎𝜉
2 + 𝜎𝜀

2,      𝜎𝑥−𝑦
2 = 𝜎𝜖

2 + 𝜎𝜀
2 

The variances 𝜎𝑥
2, 𝜎𝑦

2 and 𝜎𝑥−𝑦
2  are all known, since they can be calculate them from the 

measurements 𝑥𝑖  and 𝑦𝑖 (𝑖 = 1, … , 𝑛). The other three variances are unknown.  

 

By solving the above three equations, we find that 

𝜎𝜉
2 =

𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥−𝑦
2

2
,      𝜎𝜖

2 =
𝜎𝑥

2 − 𝜎𝑦
2 + 𝜎𝑥−𝑦

2

2
,      𝜎𝜀

2 =
𝜎𝑦

2 − 𝜎𝑥
2 + 𝜎𝑥−𝑦

2

2
 

These formulas can be used to estimate the variation of the quantity 𝜉 across the population 

as well as the contributions due to errors. 

 

To make the calculations more accurate, we look at the mean measurement 

𝜇𝑖 =
𝑥𝑖 + 𝑦𝑖

2
= 𝜉𝑖 +

𝜖𝑖 + 𝜀𝑖

2
 

The variance is evaluated as 

𝜎𝜇
2 = 𝜎𝜉

2 +
𝜎𝜖

2 + 𝜎𝜀
2

2
 

It follows that 

𝜎𝜉
2 = 𝜎𝜇

2 −
𝜎𝜖

2 + 𝜎𝜀
2

2
= 𝜎𝜇

2 −
𝜎𝑥−𝑦

2

2
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The variance of the mean error is equal to 𝜎err
2 = 𝜎𝑥−𝑦

2 /2. 

 

We use this approach to estimate the contribution of landmarking errors based on the intra-

examiner reliability study of 40 randomly selected facial images. The faces were landmarked 

twice with an interval of seven days. The table below shows the following variances for the 

seven distances involved in the study:  𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝜇
2, 𝜎𝑥−𝑦

2 , 𝜎𝜉
2, and 𝜎err

2 . 

 

 men-g men-n men-prn men-sn men-ls men-li men-pg 

Total variance of measurement 1 7.10 4.94 15.73 10.79 16.66 19.77 29.35 

Total variance of measurement 2 7.13 5.15 16.40 10.77 16.96 20.39 30.76 

Variance of mean measurement 7.05 4.98 16.02 10.74 16.76 20.03 30.00 

Variance of difference between measurements 1 & 2 0.26 0.25 0.17 0.18 0.20 0.21 0.24 

Total subject variance 6.99 4.92 15.98 10.69 16.71 19.97 29.94 

Variance due to landmarking errors 0.13 0.12 0.08 0.09 0.10 0.11 0.12 

Variance due to landmarking errors, percentage 1.82% 2.48% 0.53% 0.85% 0.59% 0.53% 0.40% 

 

As one can see, the contribution of the landmarking errors is quite small (0.4% to 2.5%). 

Other sources of error such as those due to scanning, image processing and landmarking 

bias are also quite small. The contribution from all sources error can be estimated as only a 

few percent, which is unlikely to affect the main results of the study. 

 
 

Methodology to obtain the rate-of-growth curves 

 

Suppose that a sample consists of 𝑀 subjects scanned at 𝑁 sessions. Let 𝑎𝑖𝑗 denote the age 

of subject 𝑖  (𝑖 = 1, … , 𝑀) at scanning session 𝑗  (𝑗 = 1, … , 𝑁) and let 𝑑𝑖𝑗 denote a 

measurement 𝑑 (in this study, distance between two landmarks) taken at 𝑎𝑖𝑗, for subject 𝑖 

from the image acquired at session 𝑗. We intend to plot the average change in the 

measurement 𝑑 over an age interval [𝑎min, 𝑎max] as well as the average rate of change of 

this measurement, 𝑑′, over the same age interval. The former will be referred to as a 

growth curve and the latter as a rate-of-growth (or growth velocity) curve. 

 

The age interval [𝑎min, 𝑎max] will be defined as the common age range among all subjects, 

which suggests that 
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𝑎min =  max
𝑖=1,…,𝑀

𝑎𝑖1 ,      𝑎max = min
𝑖=1,…,𝑀

𝑎𝑖𝑁 

This ensures that the measurements from all subjects are involved in the calculation of the 

average quantities, 𝑑 and 𝑑′, between 𝑎min and 𝑎max.  

 

The age interval will be divided into 𝐾 equal subinterval of length 𝛿 and 𝐾 + 1 age points, 

𝑎0 to 𝑎𝐾, will be used to calculate the average quantities, so that 

𝑎min = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝐾−1 < 𝑎𝐾 = 𝑎max,      𝑎𝑘 = 𝑎min + 𝑘𝛿,      𝛿 =
𝑎max − 𝑎min

𝐾
 

The age points at which the actual measurements 𝑑𝑖𝑗 were taken do not generally coincide 

with 𝑎𝑘 (𝑘 denotes a would-be visit to a scanning session as though all subjects were 

scanned at the same ages from 𝑎0 to 𝑎𝐾). Therefore, we have to interpolate the data. Let 

𝐷𝑖𝑘 (𝑖 = 1, … , 𝑀 and 𝑘 = 0, … , 𝐾) denote the data points obtained from 𝑑𝑖𝑗 using linear 

interpolation. This can be symbolically written as 

𝐷𝑖𝑘 = interpolate(𝑑𝑖𝑗, 𝑎𝑖𝑗, 𝑎𝑘),      𝑖 = 1, … , 𝑀,      𝑗 = 1, … , 𝑁,      𝑘 = 0, … , 𝐾 

Specifically, this means that 

𝐷𝑖𝑘 = 𝑑𝑖𝑗0
+ (𝑎𝑘 − 𝑎𝑖𝑗0

)
𝑑𝑖𝑗1

− 𝑑𝑖𝑗0

𝑎𝑖𝑗1
− 𝑎𝑖𝑗0

 

where 𝑗0 and 𝑗1 indicate two consecutive scanning sessions, such that 1 ≤ 𝑗0 < 𝑗1 ≤ 𝑁 and 

𝑎𝑖𝑗0
≤ 𝑎𝑘 < 𝑎𝑖𝑗1

, which subject 𝑖 attended. The interpolation formula for 𝐷𝑖𝑘 suggests that 

all data 𝑑𝑖𝑗 and 𝑎𝑖𝑗 is used for each 𝑖, with 𝑗 running from 1 to 𝑁. The session numbers 𝑗0 

and 𝑗1 are calculated (using logical operators) from all ages 𝑎𝑗 (𝑗 = 1, … , 𝑁) and selected age 

𝑎𝑘 considering possible missed visits. So this approach covers the situation when the 

subject missed a scanning session. 

We choose the simplest method of linear interpolation (81) to be consistent with other 

cited studies. For example, the article by Bhatia & Leighton (20) uses this method to 

evaluate rates of growth. Potentially, there are a number of suitable methods to choose 

from, such as polynomial, spline, trigonometric, inverse distance weighting, moving least 

squares and many other interpolation methods (82-84). As there are relatively few missing 

data across the course of the study, it makes little sense to employ advanced methods, as 

they would not provide much improvement in accuracy. This is especially true because 

there are other sources of error (due to scanning, image processing and landmarking), 

which are greater than interpolation errors.   
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To plot the average measurement 𝑑 against age 𝑎, we need to determine the values 𝑑𝑘 and 

at the age points 𝑎𝑘, which are calculated as 

𝑑𝑘 = mean𝑖 𝐷𝑖𝑘 =
𝐷1𝑘 + ⋯ + 𝐷𝑀𝑘

𝑀
,      𝑘 = 0, … , 𝐾 

To plot the average rate of change of 𝑑 against age 𝑎, we calculate the values 𝑑𝑘+1/2
′  and at 

the age points 𝑎𝑘+1/2 = 𝑎min + (𝑘 + 1

2
)𝛿 with 𝑘 = 0, … , 𝐾 − 1. First, we approximate the 

rates using the difference quotient (a common way of approximating derivatives 

numerically): 

𝐷𝑖,𝑘+1/2
′ =

𝐷𝑖,𝑘+1 − 𝐷𝑖𝑘

𝛿
,      𝑖 = 1, … , 𝑀,     𝑘 = 0, … , 𝐾 − 1 

Then, we calculate the average rates as 

𝑑𝑘+1/2
′ = mean𝑖 𝐷𝑖,𝑘+1/2

′ ,      𝑘 = 0, … , 𝐾 − 1 

The averaging is done across all subjects in the sample, 𝑖 = 1, … , 𝑀. 

 

The growth and rate-of-growth curves for measurement 𝑑 will be plotted using the 

evaluated data sets: 

𝑑0, 𝑑1, … , 𝑑𝐾   versus   𝑎0, 𝑎1, … , 𝑎𝐾      (growth data) 

𝑑1/2
′ , 𝑑3/2

′ , … , 𝑑𝐾−1/2
′    versus   𝑎1/2, 𝑎3/2, … , 𝑎𝐾−1/2      (rate‐of‐growth data) 

 

Apart from the average data, 95% confidence intervals are calculated at each age point. To 

this end, resampling techniques (bootstrapping) are used with 10,000 permutations. The 

resulting points produce upper and lower 95% confidence curves.  

 

The algorithm outlined above was implemented as a set of in-house subroutines in the R 

language (85-87). The input data was prepared as a set of Excel® CSV files (Excel is a 

Registered trademark of Microsoft Corporation). The output data was saved in the same 

format. 

 


