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ABSTRACT 

In this project some of the challenges of novel InSb based semiconducting material 

are investigated.  Various features of electron transport in low dimensional 

semiconductors were studied for AlInSb/InSb quantum well (QW) two-dimensional 

electron gas (2DEG) heterostructures with an emphasis placed on realising one-

dimensional systems (which exhibit quantum phenomena where the conductance takes 

on a discrete ‘step-like’ nature). 

This material allows us to take advantage of very extreme material parameters such as 

light effective mass, the lowest binary material band gap, the highest electron mobility 

at room temperature, and an extremely large effective g-factor (with associated spin 

orbit coupling).  However, this material still has significant challenges due to the large 

mismatch between the substrate GaAs and the QW, which produces threading 

dislocations that lead to limitations in mobility. 

Surface roughness has been investigated as a result of shallow etching for Ohmic 

contact deposition on the AlInSb/InSb wafer.  Both dry and wet techniques have been 

investigated, and their effect on the electron transport as a function of roughness, 

primarily using Transmission Length Measurement (TLM).  In addition, the Ohmic 

contact resistivity was investigated as a function of depth over a wide range of 

temperatures to extract an effective contact barrier.  The contact potential barrier was 

found to have a strong effect at low temperatures, which leads to a non-linear I-V 

characteristic. 

Finally, this thesis studied different designs of nanoscale split gate structures that were 

fabricated on this state of the art InSb QW 2DEG material.  This material was grown 

by collaborators at Sheffield University at the National Centre for III-V technologies. 

The devices were fabricated at Cardiff using photo-lithography and nanoscale electron 

beam lithography (EBL) using recipes tailored to this material. 
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Chapter 1  

 

Introduction 

 

1.1 Motivation 

The semiconducting properties of indium antimonide (InSb) first became known in 

the early 1950s [1]–[4]. Numerous scientific investigations have since been performed 

on this material. However, even after 60 years of research, the growth of InSb crystals 

and their characterisation continues to evoke keen interest due to their innovative 

properties and their novel technological applications in areas such as thermal imaging 

and more recently nanoscale electronic devices [5]–[7]. 

Nanoscale quantum devices have attracted attention over recent years, and they have 

yielded some landmark fundamental studies of electronic states in matter, as well as 

potential applications in metrology and single electron sensing in quantum computing 

qubit implementations. A high-quality InSb quantum well (QW) two-dimensional 

electron gas (2DEG) is highly desired because of its unique and extreme properties 

compared to all other binary III-V compound semiconductors, having the narrowest 

band gap, lightest electron effective mass, largest Landé g-factor and highest intrinsic 

electron mobility amongst the currently known binary III-V compounds. These novel 

properties allow for a wide range of potential applications in nanoscale electronics and 

optoelectronics. This means that InSb QWs are an interesting material for fabricating 

high-speed and low power devices, spintronic devices, magnetic field sensors, middle-

to-long wavelength photon detectors, and so on [8]–[13]. Table 1.1 shows some of the 

fundamental properties of the intrinsic semiconductors Si and Ge, as well as III-V 

compound semiconductor materials. InSb is a direct bandgap semiconductor with 

energy band gap (Eg)=0.235 eV at low temperature because of its conventional 

negative temperature coefficient. The energy gap decreases to about 0.22 eV and 0.18 

eV at 77K and room temperature, respectively [14]–[16].  
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InSb’s mobility (μe =78000 cm2V-1s-1) is the highest reported electron mobility at room 

temperature in comparison to any compound semiconductor. It has been reported to 

have mobilities in excess of (200000 cm2V-1s-1) at 1.8K in two-dimensional electron 

gas (2DEG) channels [17]–[20], which is respectable, but still low in comparison to 

other materials, such as GaAs. This is due primarily to threading dislocations coming 

from lattice mismatch of the 2DEG and the substrate. 

InSb exhibits the lightest electron effective mass (m*=0.014me) at room temperature. 

The corresponding high-mobility possible allows for low power consumption devices 

to be realized [21]. Moreover, it can exhibit effects of quantisation phenomenon at 

higher temperatures than other materials, (following the Landauer equation [22]). 

Furthermore, the large g-factor makes its electron spin interaction extremely strong. 

This makes it an ideal material to study spin phenomenon and also facilitates potential 

exploitation in spintronics and quantum information control [23]–[25].   One of the 

aspects of potential qubit structures is the successful implementation of flexible 

surface gated split gate structures for charge sensing (in any spin to charge conversion 

scheme).  Consequently, there is high potential in studying quantized conductance in 

this material system, and further investigation into the well-known 0.7 conductance 

anomaly in such a rich spin system may well yield interesting physics. Additionally, 

the realisation of a superconducting top gate offers the possibility of investigating 

Majorana physics [26] [27], as a result of the high g-factor. 

Despite the apparent advantages of this materials system, significant challenges exist 

with the basic technology.  In particular, ohmic contact technology is frequently 

inconsistent and with poor contact resistance.  It is not well understood what causes 

this.  Standard III-V NiGe:Ni:Au alloyed contacts will not work with this material due 

to thermal budgets (typical crystal growth temperatures are lower than traditional 

385C contact anneal temperatures.  As a result of the variety of applications, there is 

a high-demand for accurate measurements to evaluate and optimize the contact 

resistance and specific contact resistance of metal/semiconductor contacts that limit 

device performance [28]. 
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Table 1.1: Fundamental properties of some semiconductor materials, including direct 

energy band gap Eg, electron effective mass m*, electron g-factor and electron 

mobility at 300K [11][15][17][29]. 

System Material Eg(Г) (eV) m*(mo) g-Factor μe (cm2V-1s-1) 

IV Si 1.2 0.190 1.9 1450 

 Ge 0.80 0.081 1.6 3900 

III-V GaAs 1.42 0.064 -0.4 8000 

 InAs 0.35 0.023 -15.6 33000 

 InSb 0.18 0.014 -50.6 78000 

 

Despite these impressive features of InSb, many challenges remain. InSb QW growth 

on GaAs substrates with a large mismatch is an engineering challenge due to the 

significant strain in the crystal layers. This leads to the inevitable creation of high 

densities of dislocations, which adversely impact the mobility of the material and 

significantly degrade the performance of the device (such as gate leakage). This issue 

has led to a significant effort to eliminate the density of defects using for example 

super lattice layers, buffer layers, dislocations filtering, and decreasing the surface 

roughness to release the strain between the layers and improve the material’s mobility 

[26][30]–[37]. Whilst not entirely solving the problems of mismatch, these 

improvements of the InSb material mobility have encouraged further investigations 

and applications, such as in high sensitivity magnetic field sensors, high frequency 

electronics and quantum computer technology [38]. Therefore, quantum devices that 

utilize the ballistic transport of the carriers will be very attractive for this purpose [39]. 

1.2 Thesis Outline 

This research was performed at Cardiff University and it focused on characterising 

InSb QW 2DEG material, developing metal-semiconductor gate and Ohmic contact 

technology, and studying electron transport mechanisms and ballistic electron 

transport in InSb QW 2DEG split gate structures. This thesis is structured as follows. 

Chapter 2 describes the physical concepts of the QW and low-dimensional electronic 

confinement in semiconductor heterostructure systems, specifically for aluminium 

indium antimonide/indium antimonide (AlInSb/InSb). The ballistic transport 

mechanism in 2DEG leading to quantisation conductance by using surface split gate 
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structures is then described. The electron transport mechanisms through metal-

semiconductor (Ohmic) contacts are discussed using the “Transmission Line Model” 

(TLM) measurement technique. 

Chapter 3 gives an overview of the structure of an InSb crystal, and in the case of the 

samples studied here, the epitaxial layers and its bandgap engineering, along with a 

description of the wafer fabrication and characterisation techniques. The split gate and 

TLM devices designs are described in detail, together with the techniques that were 

used in the fabrication process. Moreover, the sample packaging, wiring, electrical 

measurement techniques and variable low temperature set up are also described. 

Chapter 4 describes the experimental study of the wafer surface roughness of 

AlInSb/InSb for a pristine sample and for a variety of surface etched samples. Wet and 

dry etching techniques are used to etch the Ohmic contact area over a range of depths 

into the QW layer and comparisons are made. An atomic force microscope (AFM) is 

used to create surface topography images of etched areas, which were then analysed 

mathematically using Python code. 

Chapter 5 investigates metal-semiconductor contact resistance, sheet resistance and 

contact resistivity as a function of etching depth, with variable temperatures related to 

electron transport mechanisms, using the TLM technique. 

Chapter 6 looks at different designs of surface metal gates and studies the transport 

that results in quantum conductance. The quantisation conductance is achieved by 

applying a source-drain voltage via Ohmic contacts and DC voltage on the top gate to 

increase the resistance, resulting in conductance steps. The results for a range of device 

designs at low temperature (2.7K) are given here. 

Chapter 7 summarises the results from the research undertaken in this thesis, and it 

briefly discusses future possible research areas. 

Appendix is included at the end of the thesis in which relevant addition details are 

provided for the simulations that were performed.  Appendix A includes the theory 

concepts of an additional kind of TLM, which is a “circular” or “bullseye” CTLM. 
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Chapter 2  

 

Theory and Background 

 

2.1 Introduction 

Semiconductor materials that consist of two or more elements from the periodic table 

are known as compound semiconductors and they include binary compounds such as 

indium antimonide (InSb) and ternary alloys such as aluminium indium antimonide 

(AlInSb). Compound semiconductors that are derived of elements from group three 

and five of the periodic table are generally known as III–V semiconductors. Whilst it 

is not used widely, InSb has attractive semiconducting properties and this has led to 

interest in its uses in many electronic, optoelectronic and electromagnetic devices. 

This material can be grown by the molecular beam epitaxy (MBE) technique that can 

achieve high-quality semiconductor crystal growth and enables the growth of, for 

example, heterostructures and quantum wells (QWs) to be engineered.  These 

dimensions possible for growth enables carrier quantisation effects to be achieved in 

real semiconductor devices. 

InSb nanostructures may allow us to more easily study ballistic transport in QWs due 

to the large mean free path of electrons (as a result of the light electron effective mass).  

For devices this can result in electrons flow from the filled states one side of a device 

to flow to empty states without scattering. Consequently, this material should exhibit 

clear one-dimensional conductance quantization, an important mesoscopic 

phenomenon. However, in practice, the immature technology of things like the metal–

semiconductor contact (Ohmic contact) plays a vital role in overall device 

performance and can dominate any observable effects. 

This chapter begins with an overview of the basic principles of Ohmic contact 

formation, and the transmission line model technique will then be used to introduce 

the determination of specific contact resistance, which is the most important property 
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of Ohmic contacts, as well as the sheet resistance of the InSb QW samples used.  

Finally, electron scattering mechanisms will be introduced that have influence on the 

electron mobility, ballistic transport and ultimately observable conductance 

quantization. 

 

2.2 Quantum Well 

A QW is a series of semiconductor layers grown with a sandwich-like structure with 

a large difference in energy between the conduction bands of the bottom and top layers 

and the sandwiched intermediate layer. The electronic properties of InSb and AlInSb 

materials are well-suited to QW architecture [1]. Hence, the QW cladding layers 

(AlInSb layers (top and bottom) are thick or the conduction bands potential on both 

sides are sufficiently high, such that the electron tunnelling out can be considered 

negligible and the electrons will be confined in the growth direction (conventionally 

the z direction) and are free to move in the x and y plane of the QW [2]. The electronic 

states under this confinement are then quantised to a discrete number of energy levels, 

which are given by solutions of Schrödinger’s equation. 

The confining potentials in QW heterostructure devices are due to the band offsets 

(which will be discussed in more detail in Chapter 3) at the interfaces in double-

junction QWs [2]. 

 

2.2.1 The Finite Quantum Well 

The finite QW is sketched in Figure 2. 1, which explains the band diagram of an ideal 

QW with a finite potential barrier of height 𝑉𝑜 at each interface such that.  

 

𝑉𝑜 =

{
 
 

 
 

  

  𝑉𝑜                𝑧 < −
𝐿

2

0         −
𝐿

2
≤ 𝑧 ≤

𝐿

2

𝑉𝑜                    𝑧 >
𝐿

2

   (2-1) 

The states are described by the time-independent Schrödinger equation: [3][4] 
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−

ℏ2

2𝑚∗

𝑑2Ѱ(𝑧)

𝑑𝑧2
= 𝐸 Ѱ(𝑧)        (within the QW)   (2-2) 

−
ℏ2

2𝑚∗

𝑑2Ѱ(𝑧)

𝑑𝑧2
+ 𝑉𝑜Ѱ(𝑧) = 𝐸 Ѱ(𝑧)      (within the barrier regions)   (2-3) 

A finite number of states are confined in this region, which are labelled with a quantum 

number n:  𝑚∗ is the particle effective mass, 𝐸 is the energy and Ѱ(𝑧) is the particle 

wavefunction. 

 

Figure 2. 1: A schematic energy-band diagram of a QW as a function of confinement 

direction, when E1, E2, E3 are the bound states in the finite quantum well as a function 

of the wave vector. 

 

According to quantum theory, the wavefunction is non-zero at the barrier interface, 

which has to be considered with the solution of the following equation. Therefore, the 

wavefunctions within the QW can be written: 

 
Ѱ𝑤(𝑧) = 𝐴𝑠𝑖𝑛𝑘𝑛𝑧 (2-4) 

 
Ѱ𝑤(𝑧) = 𝐵𝑐𝑜𝑠𝑘𝑛𝑧 (2-5) 
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for even and odd values of n. The wavefunction in the barrier region can be written 

in the form 

 
Ѱ𝑏(𝑧) = 𝐶𝑒

∓𝑘𝑧 (2-6) 

where, A, B and C are constants. The states of the system can be described by two 

parameters: a quantum number n to indicate the energy level for the z-direction, and a 

wave vector k to specify the free motion in the x, y plane. The wavevector is 

 

𝑘𝑛 = [
2𝑚𝑤

∗ 𝐸

ℏ2
]

1
2⁄

 
(2-7) 

Whereas, the wave vector value in the barrier region is 

 

𝑘𝑧 = [
2𝑚𝑏

∗ (𝑉𝑜 − 𝐸)

ℏ2
]

1
2⁄

 
(2-8) 

where 𝑚𝑤
∗  and 𝑚𝑏

∗  denote the effective mass of the QW and the barrier material, 

respectively [5][6].  

Using boundary conditions, by equating Ѱ in the well and the barrier, considering 𝑧 =

+𝐿/2 at the interface: 

 
𝐵𝑐𝑜𝑠 (

𝑘𝑛𝐿

2
) = 𝐶𝑒(− 

𝑘𝐿
2
)
 (2-9) 

and equating the derivatives gives:  

 
−𝑘𝐴𝑠𝑖𝑛 (

𝑘𝑛𝐿

2
) = −𝑘𝐶𝑒(−

𝑘𝐿
2
)
 (2-10) 

By dividing equation (2-9) equation (2-10) then gives: 

 
−
1

𝑘𝑛
𝐶𝑜𝑡 (

𝑘𝑛𝐿

2
) =  −

1

𝑘
 (2-11) 

 
∴ 𝑘𝑛 𝑡𝑎𝑛 (

𝑘𝑛𝐿

2
) − 𝑘 = 0 (2-12) 

Following through the same analysis as above gives the equation to be solved for the 

odd parity eigen energies also (but odd parity states would require the choice of wave 

function in the well region as a sine wave).  This results in: 

 
𝑘𝑛 𝑐𝑜𝑡 (

𝑘𝑛𝐿

2
) + 𝑘 = 0 (2-13) 

Since both 𝑘𝑛  and 𝑘 are functions of the energy 𝐸, then equations (2-12) and (2-13) 

are also functions of 𝐸. These two equations can be solved numerically or graphically 

[6]. 
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The wave vectors and decay constants in equations (2-12) and (2-13) normalized to 

obtain dimensionless values, 𝜐 = 𝑘𝑛𝐿/2 and 𝑢 = 𝑘𝐿/2 yielding 

 
𝑢 = 𝜐 {

  𝑡𝑎𝑛 𝜐        (𝑒𝑣𝑒𝑛 𝑝𝑎𝑟𝑖𝑡𝑦)

− 𝑐𝑜𝑡 𝜐    (𝑜𝑑𝑑 𝑝𝑎𝑟𝑖𝑡𝑦)
 (2-14) 

This expression can be written in terms of the variable 𝜐 by making further substitution 

𝑢0
2 = 𝜐2 + 𝑢2 such that: 

 
√𝑢0

2 − 𝜐2 = 𝜐 { 
  𝑡𝑎𝑛 𝜐        (𝑒𝑣𝑒𝑛 𝑝𝑎𝑟𝑖𝑡𝑦)

− 𝑐𝑜𝑡 𝜐    (𝑜𝑑𝑑 𝑝𝑎𝑟𝑖𝑡𝑦)
 (2-15) 

So, 𝑢0 value can be found by substituting in the definitions of 𝑢, 𝜐, 𝑘𝑛 𝑎𝑛𝑑 𝑘: 

 
𝑢0
2 = 𝜐2 + 𝑢2 =

𝐿2

4
 (𝐾𝑛

2 + 𝑘2) (2-16) 

 
=
2𝑚∗𝐿2

4ℏ2
 (𝐸 + 𝑉 − 𝐸) (2-17) 

 
=
𝑚∗𝐿2𝑉

2ℏ2
 (2-18) 

Therefore, the 𝑢0 value contains all the structural information including effective 

mass, barrier height and well width for the finite well system.  

Plotting barrier wave vector 𝑢 as a function of well wave vector υ and the intersections 

(drawn as open circles) show the wave vectors of the bound states and the maximum 

possible wave vector in the well is denoted as 𝜐𝑚𝑎𝑥. 
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Figure 2. 2: Barrier wave vector as a function of well wave vector, when the left-

hand side of equation (2-15) is plotted as a solid line and the right-hand side is 

plotted as a set of dashed lines. 

Thus, each crossing point is a unique solution of  𝑘𝑛 value and therefore unique value 

of energy as plotted in Figure 2. 1. 

 
𝐸𝑛 =

ℏ2𝑘𝑛
2

2𝑚∗
 

  (2-19) 

 

2.2.2 Density of States 

The density of states is defined as the density of allowed energy states per unit 

volume/area/length depending on dimensionality. Electron states in structures are 

obtained by solving the wave equation for the potential distribution in the structure by 

using the bulk physical constants and by applying the so-called effective mass 

approximation, under which the electron energy can be written as follows: 

 
𝐸 =

ℏ2𝑘2

2𝑚∗
=
ℏ2𝑘𝑥,𝑦,𝑧

2

2𝑚∗
 

(2-20) 

and the solution of the electron wavefunction satisfies Schrödinger’s equation and is 

of the form: 
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𝜓𝑘(𝑟) = 𝑈𝑘(𝑟)𝑒

𝑖𝑘.𝑟 (2-21) 

where r = (x, y, z), Uk(r) is a periodic function (Bloch function) and exp(ik.r) is a plane 

wave. 

Due to the periodicity of the lattice, the probability of finding an electron in one 

position is also periodic and, therefore, the wavevector will be: 

 
𝑘𝑥 =

2𝜋𝑛𝑥,𝑦,𝑧

𝐿
 (2-22) 

where 𝑛𝑥,𝑦,𝑧 are integers. Figure 2. 3 shows that an allowed state in the lattice exists 

in a k-space volume (2π/L)3, so the total number of states up to the wavevector k is 

given by: 

 
𝑁𝑘 =

4

3
𝜋 (
𝑘𝐿

2𝜋
)
3

 
(2-23) 

  

(a) (b) 

Figure 2. 3: Reciprocal lattice of a cubic lattice in 3D (a) and 2D (b). 

 

Therefore, the density of states considering the spin degeneracy (spin up and spin 

down), such that: 

 
𝑔3𝐷(𝐸) = 2𝑑𝑁𝑘 = 

𝐿3𝑘2

𝜋2
 𝑑𝑘 

(2-74) 

By differentiating Equation 2-11, the density of states within an energy range E+dE, 

is then given by: 
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𝑔3𝐷(𝐸)𝑑𝐸 =  

1

2𝜋2ℏ3
(2𝑚∗)

3
2⁄ 𝐸

1
2⁄  𝑑𝐸 (2-25) 

The density of states of a two-dimensional (2D) system is a similar calculation in 

method as for three dimensions. However, the electrons are now confined in the z-

direction and the volume (2π/L)2 of the single energy state is considered in two-

dimensional k-space (a circle), which results in: 

 
𝑔2𝐷(𝐸)𝑑𝐸 =  

𝑚∗

𝜋ℏ2
 𝑑𝐸 (2-26) 

This shows that the density of states in two-dimensions does not depend on the energy. 

Consequently, a considerable number of states are available at the lowest energy, 

unlike the 3D case which builds parabolically. The total density of states has to be 

modified by taking into account the confinement energies in the QW and can be 

written as 

 
𝑔2𝐷(𝐸)𝑑𝐸 =  

𝑚∗

𝜋ℏ2
 ∑Ɵ(𝐸 − 𝐸𝑖)

𝑖

𝑑𝐸   (2-27) 

where Ɵ(𝐸 − 𝐸𝑖) is the Heaviside step function centred on the sub-band edge 𝐸𝑖 , (this 

takes the value of zero if 𝐸 < 𝐸𝑖  and one if 𝐸 ≥ 𝐸𝑖 , where 𝐸𝑖 is the energy of the ith 

level within the QW [2][7]–[11]). 

 

  

Figure 2. 4: InSb density of states (DOS) in 3D (a) using equation (2-25) and 2D 

QW (b) using equation (2-27) with quantised energy levels. 

 

Figure 2. 4 compares the density of states (DOS) of InSb as a function of energy in 

2D and 3D. The number of available states in 3D is dependent on E1/2, whereas the 

quantization of the electron states in the 2D QW cause the DOS to become invariant 

with energy and increases in a step-wise way with the increasing number of sub-bands. 
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2.3 Electron Transport 

2.3.1 Two-dimensional Electron Gas 

Electron transport studies in narrow-gap semiconductors have recently attracted 

considerable attention because the confinement in a DEG provides a tool to create 

system with high-electronic mobility. It also permits electrons with a large mean free 

path to travel up to micrometres before scattering. Control of the mobility has 

important applications, such as in a magnetic sensor and ballistic transport [12][13]. 

One of the most significant developments in semiconductors from the point of view 

of physics and device development is the realisation of 2D structures, which means 

that electrons are trapped in a narrow potential well that restricts their motion in one 

dimension and modifies their available states to discrete energy levels. If the 

separation between these energy levels is large enough, then an electron will appear 

to be confined in the ground state of this potential well. The result for many electrons 

is a 2D electron gas (2DEG) [14]. The energy of an electron in a 2DEG according to 

solutions of Schrödinger’s equation is 

 
𝐸 =

ℏ2𝑘2

2𝑚∗
=
ℏ2(𝑘𝑥

2 + 𝑘𝑦
2)

2𝑚∗
 

  (2-28) 

 

2.3.2 Ballistic Transport 

Semiconductor nanostructures are unique in offering the possibility to study quantum 

transport in an artificial potential landscape. Ballistic conduction is the transport of 

charge carriers in the active region of a ‘device’, which has negligible electrical 

resistance caused by scattering. Transport is described purely by Newton’s second law 

in this scenario. Transport is confined to the conduction band above the Fermi energy 

where the energy states are not fully occupied. The transport properties can be tailored 

by geometric variations in the same way as tailoring the transmission properties of 

light in a waveguide [15]–[17]. 

If there is no barrier to transport, the current flows through the active region as a 

number of electrons (per unit time) from the source contact. If a barrier is present 

however a proportion of the injected electrons are reflected back into the source 
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contact and a fraction are transmitted across the barrier (which can take place by 

quantum tunnelling or by thermal activation say). Note that the charge fluctuations 

near the barriers may substantially affect the potential near the barriers and so modify 

the band structure. The transmission is then controlled by the quantization of 

conductance (for instance in split gates and quantum point contact devices that result 

from the discreteness of the number of electron wave energies [15][16][18]. The 

ballistic transport of an electron can be determined by the mean free path equation 

[19]: 

 
𝜆 =

ℏ√2𝜋

𝑒
. √𝑛. 𝜇    (2-29) 

where µ is the electron mobility. The ballistic transport for an InSb QW can be 

calculated as a function of temperature, from electron concentration (n) and mobility 

(µ) of a two-dimensional electron gas (2DEG). An example measurement of mean free 

path (deduced from Hall measurement) for a typical InSb 2DEG is shown in Figure 

2. 5. 
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Figure 2. 5: Temperature dependence of the mean free path of InSb wafer (SF1258) 

as measured by the Hall effect. 
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2.3.3 Quantized Conductance 

The one-dimensional conductance quantization phenomenon is probably one of the 

most important phenomena exhibited by mesoscopic conductors [18]. This 

phenomenon depends on the significance of the Landauer formula, which plays a 

central role in the study of ballistic transport because it expresses the conductance in 

terms of a Fermi level property of a system, such as a mesoscopic size system. 

Quantum tunnelling across a potential well produces a quantization of the 

conductance, as given by the Landauer formula [15][16]: 

 
𝐺 = (

𝑒2

ℎ
)𝑇   (2-30) 

where T is the electron transmission probability, e is electron charge and h is Planck’s 

constant. This phenomenon was independently discovered by Van Wees et al. [20] 

and Wharam et al. [21] in the form of a sequence of steps in the conductance of a point 

contact using a GaAs 2DEG. These steps are nearly integer multiples of 2e2/h (≈ 13 

KΩ−1). The principle of this effect relies on the fact that each 1D sub-band in the 

constriction contributes 2e2/h to the conductance. Therefore, the conductance G is 

quantized and can be written in the form of [15]: 

 
𝐺 = (

2𝑒2

ℎ
)𝑁   (2-31) 

where N is the number of modes or channels participating in the conduction process. 

These elegant set of experiments and results were revealed by using very-high-

mobility 2DEGs that formed at the interface between GaAs QW and the doped top cap 

(AlGaAs) layer. The conductance was measured between two reservoirs (Ohmic 

contacts) where electrons may travel ballistically between at low temperatures. A pair 

of surface metal gate electrodes are imposed on the top of the heterostructure material 

to create a nanoscale constriction between the two parts of the 2DEG by applying a 

negative potential on these electrodes, which repels the electrons and subsequently 

changes the current flow in the QW. These electrodes are electrically isolated from the 

2DEG and form a short one-dimensional channel with allowed modes of propagation 

between the two parts of the broad-area electron gas depending on constriction size. 

The transmission coefficient is either 0 or 1, depending on whether the sub-band 

(mode channel) energy lies above or below the Fermi energy. The arrangement of sub-

bands, Fermi energy and the bandgap of InSb structure are depicted in chapter 3. 
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Essentially, the gate bias is varied and the number of channels below the Fermi level 

is changed as the saddle potential between the gates is raised or lowered. Thus, in the 

case of a sufficiently large negative gate bias, all of the channels are pinched off and 

the conductance drops to zero. A simulation of the quantization conductance steps for 

InSb at a variety of temperatures are displayed in chapter 6. These results represent a 

very dramatic verification of the Landauer formula and ballistic transport in 

mesoscopic systems [16][18][22]. 

The degree of the plateaus ‘flatness’ and ‘sharpness’ varies among devices of identical 

design, indicating that the detailed shape of the electrostatic potential defining the 

constriction is significant. Whereas, there are many uncontrolled factors that affect 

this shape, such as changes in the gate geometry, variations in the Fermi level pinning 

at the QW, surface or at the interface with the gate metal, doping homogeneity in the 

heterostructure material and trapping of charge in deep levels in the top cap layer [15]. 

To model the quantization conductance electron energies in 2DEG of InSb 

heterostructure, the energy that corresponds to the nth level is given by: 

 

𝐸𝑛 =
ℏ2𝑘𝑛

2

2𝑚∗
=

ℏ2

2𝑚∗
(
𝑛𝜋

𝑑
)
2

   (2-32) 

where m* is effective mass and d is the electron path confined with QW [3]. While, 

the Fermi energy is giving by: 

 
𝐸𝐹 =

ℏ2𝜋 𝑛2𝐷
𝑚∗

 
 (2-33) 

where n2D is the carrier density. Therefore, the quantized conductance of electrons in 

the case of many (n) channels is given by the Landauer equation [23]–[25]: 

 

𝐺 =
2𝑒2

ℎ
𝑇∑(

1

𝐸𝑋𝑃 [
−(𝐸𝐹−𝐸𝑛)

𝐾𝑇 ] + 1
)

∞

𝑛

 (2-34) 

where T denotes the transmission probability of a single electron in the QW. 
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2.4 Metal–Semiconductor Contact  

2.4.1 Ohmic Contacts 

The metal–semiconductor contact system can either be rectifying such as a Schottky 

barrier or of broadly linear resistance which is known as an Ohmic contact. This in 

general depends on the material properties, preparation and characterisation of the 

contact which have major efforts in device fabrication. Therefore, the metal–

semiconductor contact system can be defined as an Ohmic contact if has an 

insignificant junction resistance comparative to the entire resistance of the 

semiconductor device when the charge carriers flow in either direction without 

presenting any resistance at the interface. Low Ohmic contact resistance and the 

quality of Ohmic contacts are important and play a vital role in determining the 

performance limitations and reliability of many semiconductor devices [26], in 

particular devices like split gate structures.  It is essential to understand the physical 

nature of Ohmic contacts and pave a way to determine some important basic 

quantities, such as specific contact resistance, the electron transmission length and the 

corresponding sheet resistance for the active material. 

Essentially, a good Ohmic contact current-voltage characteristic displays a linear 

relationship and is symmetric with respect to the origin (if a potential barrier does not 

exist in between the semiconductor and the metal). Consequently, the contact 

resistance depends on parameters such as the contact size and geometry, the interface 

between the metal and the semiconductor, the regions immediately below and above 

the interface, and the uniformity of current within the contacted area [26]–[28]. 

Fabrication of Ohmic contacts relies on several theoretical and experimental concepts. 

The metal–semiconductor system is presented in Figure 2. 6, in two cases: Schottky 

and Ohmic cases, which depend upon the work functions for the metal and the 

semiconductor [28]. 

After the metal and semiconductor are brought into contact the charge carriers flow 

through the metal–semiconductor contact in either direction without any resistance (in 

theory). However, in practice, a potential barrier is formed at the interface. 

Fundamentally, the barrier arises from the difference in the metal and semiconductor 
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work functions. If the work function of the semiconductor is lower than that of the 

metal and Em > Es, then electrons will flow from the semiconductor to the metal until 

the Fermi levels in both materials reach equilibrium. The barrier height is then given 

by the band bending at the semiconductor surface EBn, which is reported by the 

Schottky–Mott equation in the theory of barrier formation: 

 𝐸𝐵𝑛 = 𝐸𝑚 − 𝜒𝑠𝑐   (2-35) 

where χsc is the electron affinity of the semiconductor and Wm describes the barrier for 

electron flow from the metal to the semiconductor. For the reverse flow of electrons, 

from the semiconductor into the metal, the barrier will be 

 𝑒𝑉𝑏𝑖 = 𝐸𝐵𝑛 − (𝐸𝐶 − 𝐸𝐹)   (2-36) 

where the quantity Vbi denotes the diffusion potential, and EC and EF are the lower 

conduction band and the Fermi level, respectively [26].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6: Schematic band structure of a metal–semiconductor junction before and 

after contact for Schottky and Ohmic cases. 
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WD and WAC denote the width of the depletion and accumulation layers, respectively, 

EBn denotes the Schottky barrier height, and Vbi denotes the built-in voltage (here Vbi> 

0). Whereas, in the case where the work function of the semiconductor is higher in 

energy than that of the metal, Em < Es electrons will flow from the metal to the 

semiconductor until the Fermi levels in both materials equilibrate. This results in band 

bending at the semiconductor surface.  This is an Ohmic contact. However, 

experimentally fabricating Ohmic contacts can be more of an art than a science, and 

every laboratory has its own tailored recipe using particular metals or alloy systems, 

deposition methods, and heat treatments. All of these recipes depend on one or more 

of the following three principles [29]: 

1. Depending on the Schottky–Mott (2-35), the contact behaves as an Ohmic with 

negative barrier height if the work function of the metal is less than that of the 

n-type semiconductor or greater than the work function of the p-type 

semiconductor, which allow carriers to transfer from the metal to the 

semiconductor.  

2. A very heavy doping with a thin layer into the semiconductor immediately 

adjacent to the metal to obtain a very thin depletion region that allows electron 

transportation to take place with very low resistance contact at zero bias 

(transparent Schottky). Figure 2. 7 explains the tunnelling electron transport 

through a thin barrier and both tunnelling electron and thermionic emission 

through a medium, whereas it is only thermionic in the case of a wide barrier, 

depending on the electron energy for both mechanisms.  

3. Damaging the semiconductor surface by, for instance using ion beam milling 

technique, which forms crystal defects that act as efficient recombination 

centres. Consequently, the high density of these centres, means that the 

recombination in the depilation region will become the dominant conduction 

mechanism, causing an essential drop of contact resistance. 

 

The current transport in a metal–semiconductor contact system has been studied by 

Schottky and Mott, who proposed models known as the diffusion theory and the 

thermionic transport theory [26]. Current transport in metal–semiconductor contact 

results from majority carriers, in contrast to p-n junctions, where the minority carriers 

are responsible. The mechanisms of current transport are [29][30]: 
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1. Emission of electrons from the semiconductor over the top of the barrier into the 

metal which depends on the barrier height and the thermal energy of an electron which 

must have a sufficiently high energy to overcome the potential barrier. The barrier 

width should also be significantly less than the mean free path of the electron in the 

semiconductor;  

2. Quantum mechanical tunnelling of electrons from the semiconductor through the 

barrier into available states in the metal; 

3. Recombination of electrons and holes in the depletion region; and 

4. Recombination of electrons and holes in the neutral region ("hole injection"). 

These mechanisms are depicted in Figure 2. 7: 
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Figure 2. 7: Schematic diagram of the conduction mechanisms for different barrier 

widths: (a) wide barrier, (b) intermediate barrier width, and (c) thin barrier.  The case 

of thermal activation and then subsequent tunnelling is sometimes referred to as a 

field emission mechanism. 
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2.4.2 Transmission Line Model 

The Transmission Line Model (TLM) is one of the most common methods for 

quantitatively determining the performance of Ohmic contacts and assessing the 

intrinsic sheet resistance of the semiconductor material. This model has been widely 

used to extract the metal–semiconductor barrier resistance, in a form known as the 

specific contact resistance ρc (ohm-cm-2), which is the most important property of 

Ohmic contacts [31]. The specific contact resistance is due to the potential barrier at 

the metal–semiconductor interface [32]. 

A TLM was originally proposed by Shockley [33] and it offered a convenient method 

for determining ρc for planar Ohmic contacts and experimentally by measuring the 

total resistance RT between two contacts (of length d and width W separated by a space 

L). The total resistance can be plotted as a function of L and several other useful 

quantities can be obtained, including contact resistance Rc, transmission length of the 

electrons (LT) and sheet resistance (Rsh) [34]–[38]. Figure 2. 8 shows a schematic 

diagram of a typical TLM device, depicting the Ohmic contacts on the surface, 

distances (L1, L2, L3), to a first approximation the contact resistances and the sheet 

resistances in the material. 

TLM measurements can be carried out using a four-point probe technique or the Van 

der Pauw method. This technique uses two outer probes to pass the current (I) flow 

under and through the interface and two inner probes to measure the potential 

difference (V) determining the sheet resistance of the semiconductor. 

 
Figure 2. 8: A Schematic 3D representation of a typical transmission line model 

(TLM) device configuration showing the contributing contact resistance (RC) and the 

effect of sheet resistance (Rs). 
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Therefore, this measures the resistance that is given by Ohm’s law: 

 
𝑅 =

𝑉

𝐼
   (2-37) 

where R is the resistance. But this resistance is the total resistance, so RT should be 

included, as in the following equation: 

 𝑅𝑇 = 2𝑅𝑚 + 2𝑅𝐶 + 𝑅𝑠𝑒𝑚𝑖   (2-38) 

where Rm is the resistance due to the contact metal, Rc is the metal–semiconductor 

interface of the single contact and Rsemi is the usual semiconductor material resistance. 

However, in most situations, the resistivity of Rm is low compared to the others and, 

therefore, can be neglected. In addition, Rsemi in a homogeneous material is given by: 

 
𝑅𝑠𝑒𝑚𝑖 = 𝑅𝑠ℎ (

𝐿

𝑊
)   (2-39) 

where Rsh is the semiconductor sheet resistance, L is the nominal length between 

contacts and W is the width of the contact, resulting in: 

 
𝑅𝑇 = 2𝑅𝐶 + 𝑅𝑠ℎ (

𝐿

𝑊
)   (2-40) 

 

2.4.2.1 Linear Structure (LTLM) 

The simplest and most used configuration of TLM is a linear array of Ohmic contacts, 

all of which are the same size but placed on the semiconductor surface at a variety of 

distances (L1 < L2 <L3<…< Ln). This configuration is often referred to as the linear 

transmission line method (LTLM) due to the linear arrangement of the Ohmic 

contacts. Figure 2. 8 gives a schematic depiction of the LTLM configuration, which 

is in general isolated by mesa etching to restrict the current to flow only across the 

distances Ln and to prevent current spreading. 

The LTLM configuration can be described by the following equations, when the 

total resistances RT1 and RT2 correspond to the contact separations L1 and L2, 

respectively: 

 
𝑅𝑇1 = 2𝑅𝐶 + 𝑅𝑠ℎ (

𝐿1
𝑊
)   (2-41) 
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𝑅𝑇2 = 2𝑅𝐶 + 𝑅𝑠ℎ (

𝐿2
𝑊
)   (2-42) 

The contact resistance Rc can be calculated by measuring the total resistances RT1 and 

RT2, and can be obtained by: 

 
𝑅𝐶 =

(𝑅𝑇2𝐿1 − 𝑅𝑇1𝐿2)

2(𝐿1 − 𝐿2)
   (2-43) 

By plotting the total resistance as a function of the distance between several pairs of 

the planar contacts, Rc is determined by a linear extrapolation of the experimental 

points to L=0, which is shown in Figure 2. 9. Note that the probe metal’s resistance is 

assumed to be negligible in this case of a four-point probe measurement technique. 

Whereas, the Rsh value can be calculated by the following formula: 

 ∆𝑅𝑇
∆𝐿

=
𝑅𝑠ℎ
𝑤

   (2-44) 

The transmission length can be extrapolated on the x-axis when RT is at zero from the 

RT-L trend. 

 

Figure 2. 9: A sketch of a typical plot of total resistance as a function of gap spacing 

between the planar Ohmic contacts in a TLM measurement. 
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2.5 Scattering 

Electron transport in a heterostructure semiconductor in the QW scatters by interaction 

with the following excitations: polar phonons, acoustic phonons, background 

impurities, remote ionised impurities in the doping layer and QW interface roughness. 

The average of these mechanisms decreases the electron mobility by scattering events. 

The total electron mobility and the average mobility can be found by using 

Matthinessen’s rule, which can be written as [12][13];  

 
𝜇 =

𝑒 < 𝜏 >

𝑚 ∗
   (2-45) 

 1

𝜇
=

1

𝜇𝑎𝑐
+

1

𝜇𝑝𝑜
+

1

𝜇𝑏𝑔
+

1

𝜇𝑟𝑖𝑖
+

1

𝜇𝑖𝑛𝑡
   (2-46) 

where μ is the total mobility, e is the electron charge, m* is electron effective mass, μ 

is average mobility, μac is the acoustic mobility, μpo is the polar phonon mobility, μbg 

is the background mobility, μrii is the remote ionised impurities mobility and μint is the 

interface roughness mobility. 

Electrons can be scattered in an inelastic or elastic process, depending upon the 

collision transfer kinetic energy between the particles. For inelastic processes, there 

are acoustic and optical phonon scattering. The former plays a more effective role than 

the latter as temperature decreases. Therefore, at low temperatures, the optical phonon 

population in the crystal starts to vanish. Only at temperatures above 50 K do the 

effects of phonon scattering start to play a role. At temperatures approaching 300 K, 

the mobility is dominated by polar optical phonon scattering [39]. Figure 2. 10 shows 

these types of scattering contributions and electron mobility in InSb QW as a function 

of temperature. 

Whereas, for elastic processes, electrons can be scattered by ionised impurities or 

scattering from interface roughness. Both of these scattering events can even be 

effective and dominant at low temperatures, which is found to be independent of 

temperature in this regime. In addition, crystal dislocations can contain charge centres 

and thus act as scattering centres [17]. Nevertheless, even with a large spacer between 

dopant and QW in modulation-doped QWs, a heavy doping will raise the scattering 

rate [14][40]. The primary reason for the decrease of mobility with increasing doping 

level is the increasing role of remote ionised impurity scattering. At high-doping 
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levels, this can become more important at room temperature than phonon scattering 

[17][41]. 

The background density of neutral impurities is usually very small when compared 

with ionised impurities with a thin spacer layer thickness. However, when the 

thickness of the spacer layer is relatively large, the effect of remote ionised impurities 

is reduced and the background neutral impurity scattering becomes more important 

[42]. The net mobility in the AlInSb/InSb system increases with decreasing 

temperature due to impurities scattering. 

Where surface roughness is one of the major scattering mechanisms, the low 

temperature mobility of 2D electrons in these layers is limited by the surface roughness 

scattering [43]. The effect of interface roughness on electron transport in 

semiconducting materials depends on the quality of the interfaces, which limits the 

electron mobility [44]. Interface roughness scattering has a very strong effect on 

electron mobility with the quantum width and becomes significant when L < 25nm in 

InSb QW [14][40][42]. Thus, the interface roughness scattering (IFRS) rate in narrow 

QW is high. Whereas, in wide QW width, the large mobility values indicate that 

scattering only comes from background impurities, which is small compared to the 

effect of (IFRS) in narrower wells. There are also some limitations for relative very 

wide thicknesses. For instance, nucleation of misfit dislocations in the QW layer due 

to the partial strain relaxation coming from lattice mismatch between QW and bottom 

layer. Moreover, the onset of intersub-band scattering is likely to come into play as 

the wells become wider. Therefore, there is a strong dependence on the well width and 

the optimum thickness of the QW, which should be checked for a particular material 

[45][46]. Therefore, roughness at the QW edge interfaces causes the energy of the 

confined states to change as the width of the confinement changes [39]. Furthermore, 

due to the narrow bandgap of InSb, the nonparabolicity effect with scattering can be 

strong. 
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Figure 2. 10: A typical transport model of mobility (lines) using the relaxation time 

approximation, and measured data (symbols) versus temperature from [47].  

 

Furthermore, structural defects, micro-twins and threading dislocations contribute to 

carrier scattering and decrease the mobility in the QWs, which is related to the defects 

density that arises from lattice mismatch with the substrate and growth process [47]–

[50]. Figure 2. 10 explains the electron mobility versus temperature for InSb and the 

scattering types. 
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Chapter 3  

 

 

AlInSb/InSb Heterostructure Wafers: Devices, 

Design and Fabrication 

 

Fundamental studies of electronic transport, such as in heterostructure semiconductor 

devices, require high-quality fabrication and a clean environment for both material 

growth and device fabrication. A successful device requires fabrication in a clean room 

environment of class 1000 and 100 (or better), depending upon the stage of the 

process. However, the procedure steps that are required to fabricate a sample can affect 

the quality and definition of the device, such as the alignment of process steps and the 

quality of for example wet etching. In particular, the cleaning procedure is shown to 

be a very significant step during sample fabrication, which must clean and remove any 

resist remains from previous steps.  

This chapter introduces the device structures and experimental techniques used in this 

work. It begins with a description of how the wafers were grown and it explains the 

materials that were used, along with the samples that were fabricated and prepared for 

measurement. This chapter also presents the experimental techniques and equipment 

that was used to characterize the material and collect data, including an outline of 

molecular beam epitaxy (MBE), X-ray photoelectron spectroscopy (XPS) energy 

dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and so on. The 

sample fabrication steps are illustrated in detail in this chapter, from lithography 

(photo and electron beam lithography (EBL)), to sample cleaving. Finally, this chapter 

introduces the sample characterisation, including scanning electron microscopy 

(SEM), electrical probe station, packaging and wire bonding, the low-tempoerature 

cryostat system and electric field measurement equipment. 
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3.1 Indium Antimonide Semiconductor Heterostructure 

3.1.1 Crystal Structure 

Nearly all III–V compound semiconductors, including InSb, crystallize with the zinc 

blende structure, which is a diamond-like structure that consists of two 

interpenetrating face-centred cubic (FCC) Bravais lattices with a lattice parameter of 

6.47 Å at a temperature of 300K [1][2]. Each indium atom is tetrahedrally bonded in 

the solid to four antimony atoms, and vice versa. Figure 3.1 shows the structure of 

InSb. Indium and antimony are located on the (0,0,0) and (1/4,1/4,1/4) sites of the 

FCC structure, respectively. Therefore, the cation and anion sublattices are shifted 

with respect to each other by a quarter of the body diagonal of the FCC lattice [3][4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Zincblende structure (blue and green spheres denote the antimony and 

indium, respectively). 

 

Impurities or vacancies can be included in the crystal, which can affect the crystal’s 

band structure and states energies depending on the density. 
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3.1.2 Band Structure of an InSb QW 2DEG 

The semiconductor heterostructures grown by MBE, which are structurally pure, 

although of varying composition and consequently of varying bandgaps. Structural 

purity is achieved by selecting different III–V semiconductors that have nearly the 

same lattice constant, which avoids or minimises defects due to any lattice mismatch 

with the accommodating growth surface. This is typically difficult for AlInSb basic 

materials because there is no common lattice matched III–V binary substrate material.  

The energy gap of the semiconductor band structure is defined as the energy between 

the valence and conduction band states, while the relative positions of the conduction 

band edges of the two-materials constitutes the band offset of any heterojunction. This 

depends not only on the properties of the bulk materials but also on the microscopic 

properties of the interface. In addition to any band offset, there may also be band 

bending as a result of free charge (e.g. from doping). At equilibrium, the Fermi levels 

of any two substances must ‘line up’. The Fermi level concept refers to the energy 

difference between the highest and lowest occupied states in a quantum system at 

absolute zero, where no electrons will have enough energy to rise above this level. In 

heterostructures, electron states are only altered from the bulk states by any confining 

potential profile, which results from the variation in the bandgap. Free charge 

redistribution takes place at interfaces by the net movement of charge from high to 

low energy states as a result of diffusion, which continues until the electrostatic field 

prevents further transfer and the Fermi level is at a constant value throughout the 

system. In the samples studied here, band bending depends on the modulation doping 

and width of the quantum well [5]. Therefore, the curvatures of the band bending are 

determined by the density of the fixed charges in the grown layers [5]–[7]. The 

conduction band potential profile of the typical InSb heterostructure that is studied in 

this thesis is shown in Figure 3.2. Good quality crystalline heterostructures can be 

grown with non-lattice matched compounds but only for very limited thicknesses. 

Although this is only possible for limited dimensions, it normally produces strain due 

to the lattice mismatch. The bandgap of III–V semiconductors is a function of the 

lattice parameter and so strain also naturally introduces a perturbation to the electronic 

states, and ultimately to the band structure. A plot of the relationship between bandgap 

and lattice constant is shown in Figure 3.2. The empirical lines reflect the 

heterostructures’ bandgap, depending on the combination of different III–V 
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semiconductors. For instance, InSb QWs grown on a GaAs substrate have a mismatch 

of about 0.8 Å, as shown in Figure 3.3. A mismatch in the lattice can affect the 

semiconductor through the heterostructure interface quality. The mismatched system 

for these grown semiconductors with strain energy is stored either in the epilayers or 

relaxed through a network of dislocations. These defects will modify the bandgaps and 

the characteristics of the electronic structure due to charge states, which lead to new 

physical effects that result from the band line-ups [8]. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.2: Typical description of an InSb QW heterostructure layers sequence and 

the conduction band profile with number of states, where the number of states and 

their positions are calculated using 1D Schrodinger-Poisson equations. The model 

has been coded by Christopher Mcindo using python. 

InSb has an interesting and narrow bandgap value compared to other semiconductors 

of 0.17 eV and 0.235 eV at 300K and 1K, respectively. In fact, InSb has the smallest 
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bandgap among the III–V binary semiconductors, which is also a direct bandgap [2] 

[3]. This has made it a useful material for high-speed electronics and infrared imaging 

applications [9]–[11]. The temperature dependence of the bandgap in general comes 

from the change in interatomic spacing of the lattice with temperature, giving rise to 

a modified Bloch function associated with the lattice periodicity. The temperature 

dependence of the bandgap is governed by the electron energy in the atom related to 

the proton relation force and distance which lead to the thermal expansion of the lattice 

plays a minor role.  

 

Figure 3.3: Lattice constants and bandgaps of some cubic semiconductors at 300K. 

Full lines indicate direct-gap materials; dashed lines indicate indirect-gap materials 

[6]. 

 

Among the empirical models, the widely quoted Varshni relation is given by [2][3]: 

 
𝐸𝑔(𝑇) = 𝐸𝑔(0) − 

𝛼𝐸𝑇
2

𝑇 + 𝛽𝐸
   (3-1) 

where 𝐸𝑔(0) is the extrapolated bandgap energy at absolute zero on a Kelvin scale for 

the material, and 𝛼𝐸 and 𝛽𝐸 are material specific constants (the volume coefficient of 

thermal expansion and the volume compressibility, respectively). 
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3.1.3 Molecular Beam Epitaxy 

The InSb based heterostructures in this thesis were all grown by solid source molecular 

beam epitaxy (MBE) at the National Epitaxy Facility (Sheffield), or legacy samples 

grown similarly by solid source MBE at QinetiQ (Malvern) pre-2010.  MBE is a 

versatile technique for epitaxial growth via the interaction of one or several molecular 

or atomic thermal beams. This technology is used for the deposition of thin film 

compound semiconductors, metals or insulators. MBE allows a precise control of 

compositional profiles by using a process far from the thermodynamic equilibrium 

with single thickness, which is as low as ~ 10 Å [8][12]. 

Advances in solid state device technology have established the III–V groups as a new 

class of semiconductors for highly efficient optical and high-speed microwave 

devices. These compound semiconductors usually consist of the group III elements, 

such as gallium (Ga) or indium (In), and the group V elements, such as arsenic (As) 

or antimony (Sb). These devices require precise layer thickness control in the growth 

process [12]. Theoretically, although MBE is a very simple crystal growth technique, 

it requires highly controlled evaporation in an ultra-high-vacuum (UHV) apparatus to 

grow semiconductor layers for electronic devices. Consequently, MBE uses only high-

purity elemental sources to get the highest purity, growth process in a (10-11 Torr) 

chamber. In addition, the crystal structure, substrate surface quality, composition and 

growth process need to be monitored and controlled using analytical equipment, such 

as reflection high-energy electron diffraction (RHEED). Moreover, MBE needs 

extreme control of growth rate and composition or doping level to avoid any structural 

changes [13].  

The MBE technique fabricates compound semiconductors by growing layers on the 

substrate surface in a desired stoichiometric composition that uses solid source 

effusion cells as a source of compositional atoms. These elementally pure material 

sources are heated for evaporation and controlled by temperature and by a mechanical 

shuttering system, which physically impedes the beam of atoms. This technique grows 

at very low rates and high-temperatures 550 oC, with a thickness control on the order 

of 5 Å, an interface width of <5Å and a dopant range of 1014–1019 cm-3[14][15]. The 

materials investigated in this thesis were grown either at QinetiQ (name Dalehead and 

Blencathra) or collaborators at the National Centre for III–V technologies at Sheffield 
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University (now the National Epitaxy Facility).  The latter samples are denoted with 

numbers as opposed to names for the QinetiQ samples.  

3.2 Device Design 

3.2.1 Split Gate Devices 

The split gate device consists of Ohmic metals, gates, and FEED pads with arms and 

MESA isolation designs. The gate structure and their taps need to be designed and 

tailored using EBL. The mask designs in general consist of 12 repeat fields that can 

be exposed on the wafer’s surface. Each field consists of 30 devices, designed as five 

rows and six columns. There is then flexibility within these fields so they can be 

designed differently with a split gate design using EBL.  Mesa isolation ranges from 

straight mesa’s through to bulge, and even air bridge supporting islands (depicted 

later). The device consists of two pads of Ohmic metals, which are deposited in the 

first step of fabrication using optical lithography. Starting with a rectangular shape of 

3×24μm2, with a 2µm gap in between the pads. Then the Ohmic design was updated 

to 9, 12 and 14 µm width, and 2, 4, 6, 8 µm gap. The octagon shape was designed by 

EBL. The reason for the new design was to decrease the Ohmic resistance and avoid 

PMGI SF6 use. Figure 3.4 shows the Ohmic contacts in rectangular (a) and octagon 

(b) shapes, and their dimensions and gap distances are given. 

(a) 

 

 

(b) 

 

 

 

 

 

 

Figure 3.4: Ohmic contacts shape and dimensions: (a) rectangle shape produced by 

optical lithography, (b) octagon shape produced by E-line software. 

2 µm 

24 µm 

3 µm 
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The second step of fabrication was writing the gate structure by the EBL system using 

PMMA as a resist, followed by deposition a metals or oxide/metals. The first gates 

were written as three pairs of lines, of approximately 40–50 nm width. The width in 

general here depends on the beam dose and spot size quality. Between these lines, the 

gate separations (distance between lines) ranged from 150, 225, and 300 nm. These 

lines are connected to a bigger structure as taps and then arms, which are connected to 

FEED patterns. Later, two main gates were designed using EBL software. These gates 

are designed as a layer each and are then added to the main structure chip level file. 

The two main gate designs used are loop and solid structures (the former being a novel 

geometry to attempt to minimise current leakage), over a range of width/length ratios 

for gate designs. The gate length range is 100–600 nm, while the widths are 100nm 

and 200nm. Loops are designed as connected corner lines and non-connected corners 

with same length of lines in terms of overdose in critical places in gates area avoiding 

touching each other or making curved corners rather than normal square corners. The 

end of the written lines in the latter case is 30nm from the corner to achieve a square 

corner (due to proximity effects). Therefore, the real distance is 42.4nm, but is 

expected to be connected at the corner. According to the EBL images, the design has 

been enhanced to be only 10nm away from the corner for only one line. Since the 

length/width ratio of gate is influencing the quantization plateau shape, these variety 

dimensions have been used in order to find the best ratio. Whilst, the line and loop 

gate structures decrease the leakage current that applied on the gate in Figure 3.5: (a), 

(b) and (c). Where, solid gates have been used as successfully studied in literature 

studies considering the leakage current. Figure 3.5 presents the design of the gates and 

their dimensions, where: (a) shows a three pairs of line gate structure; (b) shows a loop 

gate structure (connected and non-connected corners); (c) shows another kind of loop 

and solid gate structures; (d) (e) and (f) are solid gate structures with different 

dimensions. Triangle structure helping the current to be directed by source-drain with (f) 

design; The three pairs of taps are connecting the gate structures and the FEED structure 

enabling for electric connection in (g) which shows the gate and its arms structures; and 

(h) is shows the gate length and width [16]. 
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(a)  

(b) 
 

(c) 
 

(d) 

 
(e) 

 
(f) 

 
(g) 

 

 

 

 

 

 

 

 
(h) 

Figure 3.5: GDS file inputs for the active split gate structures designed using the E-

beam software tool and the close proximity feed metal pattern (designed to contact to 

the larger photolithography feed metal and bond pad: (a) shows three pairs of thin (e-

beam single pixel) line gate structures commonly used in chapter 6, (b) shows a pair 

of loop gate structures using e-beam single pixel line exposure but designed to 

minimise gate contact area , (c) shows one loop gate and one solid gate (exposed using 

both single pixel and solid raster write exposure, (d) shows a single solid gate, (e) 

shows a design with two pairs of solid gates, (f) shows wedge/triangle gate for electron 

focusing, (g) shows a more widely spaced gate feed metal pattern whilst  (h) labels the  

dimensions of the gate. 

 

 

Length 

Width 
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Table 3.1 shows the length and width of the loop split gates, their ratio and type 

of corner and its gap, corresponding to Figure 5. 3 (b, c).Table 3.2 records the 

length and width of the line and solid split gates, and their ratio complementary 

to Figure 5. 3 (a) for the line split gates and  Figure 5. 3 (c, d, e) for the solid split 

gates.  

Table 3.3 records the triangle solid gate dimensions complementary to  Figure 5. 3 (f). 

 

Table 3.1: Loop split gates dimensions. 

Length (nm) Width (nm) Corner type Gap (nm) Ratio 

100 100 connected - 1:1 

200 100 connected - 2:1 

300 100 connected - 3:1 

200 200 connected - 1:1 

200 200 Non-connected 10 1:1 

400 200 connected - 2:1 

400 200 Non-connected 10 2:1 

600 200 connected - 3:1 

600 200 Non-connected 10 3:1 

Table 3.2:  Line and solid split gate dimensions. 

Gate Type Length (nm) Width (nm) Ratio 

Line 40 150 1 : 3.75 

40 225 1 : 5.625 

40 300 1 : 7.5 

Solid 100 100 1 : 1 

150 150 1 : 1 

300 150 2 : 1 

200 200 1 : 1 

400 200 2 : 1 

600 200 3 : 1 

200 100 2 : 1 

300 100 3 : 1 

300 200 1.5 : 1 
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Table 3.3:  Triangle solid gate dimensions. 

Length Width Hypotenuse Angle 

300 300 460 40o 

 

The FEED pattern is made using optical lithography and bilayer photoresists. Then, 

50/300 nm of Ni/Au metals are deposited. These FEED pads are connected to the 

Ohmic contact pads and split gates structures by arms and then wire bonded with fine 

wire gold (17µm) to the ceramic package contacts for electric measurements. Figure 

3.6 shows the full device design, including Ohmic contact (pink colour), gate arms 

(orange), E-beam alignment marks (green) and FEED structure (purple) and its 

dimensions.  
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(a) 

(b)       

Figure 3.6: (a) The full design of the split gate device from the EBL GDSII software 

editor showing the active region and the feed metal leading to larger bond pads.  These 

are sufficiently large to enable fine wire bonding using 17µm gold wire , (b) A 3D 

schematic representation of the active region of the device showing the Ohmic 

contacts and the gate structure with the free suspended air-bridge.  Typically, the mesa 

depth is 3μm to allow for device isolation. 

 

 

Figure 3. 7 presents the circuit used for the quantised conductance measurement. In 

this measurement both gates and Ohmics are connected to SMU channels, and both 

circuits are connected to one common earth. 
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Figure 3. 7: Circuit of split gate device measurement.  The source-drain for two 

Ohmic contacts and one channel for both gates is shown, with a common earth 

contact. 

 

3.2.2 TLM Device Design 

The Transmission Length Method or Transmission Line Measurement (TLM) 

structure designs include rectangular Ohmic pads with four rows for the devices in 

each field which mimic those which are suitable for quantum devices (in size and 

geometry). The length is 24 μm, with the range of widths for each row listed in Table 

3.4. Each Ohmic pad is connected to two FEED connections as in Figure 3.8. The 

FEED pad dimensions are 80×120 μm2. The Ohmic contacts are separated by 2, 4, 8, 

16, 32, and 64 μm from left to right, as depicted in Figure 3.8 and Figure 3.9. 

 

Ohmic 

contact 
Ohmic contact 

Gate structure 

Gate structure 
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Figure 3.8: Whole TLM device design containing Ohmic pads in the middle connected 

to feed metal and bond pads.  This also shows the active MESA area in the centre. 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic diagram of the TLM Ohmic pads design connected to two 

FEED pads each and their gaps.  This feed arrangement enables four-point 

measurement for each contact ‘gap’ if required. 

 

 

Table 3.4: The variety of width and length for the Ohmic contact pad TLM design. 

Arrow number in field Width (μm) Length (μm) 

1 3 24 

2 9 24 

3 27 24 

4 81 24 

4μm 8μm 2μm 
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3.3 Device Fabrication 

Devices were fabricated in the Class 1000 clean room at Cardiff University, using 

photo lithography and nanoscale EBL and recipes tailored to this material. The process 

to make electrodes on the sample consists of six steps to get Ohmic contacts and split 

gates, with an air-bridge for electric measurements to avoid surface leakage. Surface 

cleaning is a very substantial step before spinning photoresist.  A combination of 

PMGI-SF6/S1805 photoresists are spun as a bilayer on the sample surface to get an 

overall thickness of approximately 650nm. Then, the photolithography technique was 

used to expose for 5 seconds. A Suss Microtec MJB3 mask aligner was used to expose 

the photoresist with UV radiation, which was then developed with Rohm & Haas 

MF319 (Metal Free developer) to get the Ohmic pattern. This process was followed 

by evaporation to metallize zinc/gold with 10nm and 90nm, respectively, producing 

Ohmic contacts. 

The second step started with spinning PMMA on the sample. The EBL technique was 

then used. The sample was loaded into a Raith E-line, using 10KV, with a 10µm 

aperture size, 100µm write field and 10mm working distance to expose the resist with 

a beam of electrons. Split gates and arms (taps) were written on the resist using some 

alignment marks on the sample for registration. A metallization process then deposited 

nickel/gold or titanium/gold with 10nm and 90nm thickness, respectively. 

In the FEED step, a PMGI-SF6/S1813 bilayer of photoresist is spun onto the sample, 

followed with optical lithography and nickel/gold deposited with 50nm and 300nm 

thicknesses, respectively. In the MESA step, the semiconductor wafer layers are 

etched, except the substrate and pattern under Ohmic and FEED metal. The area under 

the gates is etched to make the air-bridges by spinning the sample with a resist and 

exposing it with UV using a suitable MESA mask for 8 seconds. Wet etching involves 

using lactic and nitric acids (50ml and 10ml ratios, respectively) etches down from the 

surface by approximately 2.5 µm to isolate the device electrically and form the air-

bridge. 

The MESA mask design produces a copy of the etching pattern of the active area bar, 

as in Figure 3.10: (a) bar area, (b) with two islands sporting tall gate arms, and island 

area in (c) without supporting island, considering leakage from gate arms to the active 

area. 
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(a) 

 
(b) 

 
                 (c) 

Figure 3.10: SEM images of the active region of the mesa.  This highlights three kinds 

of non-etching areas; (a) only area between Ohmic contacts as a bar, (b) two small 

islands on the sides of Ohmic area, and (c) the area between Ohmic contacts as a big 

island.  
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3.4 Techniques 

3.4.1 Lithography (Photo and EBL) 

3.4.1.1 Photolithography 

Photolithography uses ultra-violet (UV) light to interact with a light sensitive polymer, 

called photoresist, to produce a microstructure. This is the standard technique for the 

large-scale industrial production of these devices. Due to the light wavelength 

limitation in the research environment, a resolution of only around 1μm can be 

achieved [17]. The advantages of using photolithography at the research level include 

low price compared to EBL, which requires a high- vacuum, charged particles source, 

and a variety of lenses to focus and controlling the beam. [18] 

Principally, optical lithography is photography of an original image to be copied using 

a photomask, which corresponds to a negative in photography, to get an image the 

same size as the original print on the mask. The photomask is aligned to the 

photoresist-coated wafer and exposed to UV radiation. UV exposure changes the 

photoresist’s solubility, which enables selective removal of resist in the development 

step. In positive resists, the exposed areas become more soluble in the developer, and 

in negative resists the exposed parts become insoluble [17]. 

There are three elements in an optical lithography process. The first is the optics part, 

including radiation generation, propagation of radiation, light diffraction and 

interference at the resist layer. The chemistry part includes photochemical reactions in 

the resist and the development of the exposed photoresist. Finally, the mechanics part 

includes setting the mask to wafer alignment, and parallelism and focusing using lens 

settings. Image resolution is essentially determined by the pattern dimensions on the 

mask, although small patterns can in theory be made by pressing the mask into high 

contact with the resist surface, which is called vacuum contact. However, this will 

produce defects from the resist debris adhesion to the mask [19] and is a drawback of 

contact photolithography. The common subtractive patterning process shown in 

Figure 3.11 involves three steps: first, deposition of a uniform film of photoresist on 

the wafer; second, lithography to create a positive image of the pattern that is desired 

in the film; and finally, develop to transfer that pattern into the wafer [20].  
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A Karl Suss MJB3 Contact Mask Aligner model MJB3 is used with a mercury 

discharge lamp UV radiation (~365nm), which is filtered and distributed uniformly 

over the wafer. The lithography system, which is inside a class 100 Nano-both within 

the main cleanroom, has a yellow light filter because the photoresist is only sensitive 

below 450 nm [19]. 

 

 

Figure 3.11: A schematic diagram showing typical photo lithography process steps 

(positive resist process). 

 

3.4.1.2 Electron Beam Lithography 

EBL is a fundamental technique of nanofabrication, which allows not only the direct 

writing of structures down to sub-10 nm dimension but can enable high-volume 

nanoscale patterning (unlike some other direct write techniques like FIB). In general 

EBL is necessary at the research level to define semiconductor structures with feature 
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sizes less than 1μm. The resolution of EBL is generally limited by scattering processes 

at the resist and substrate, although can be limited by the quality of column optics for 

most research systems. The lithographic process is essentially analogous and 

complementary to that of photolithography, whereas only the resist is sensitive to an 

electron beam, such as Poly (methyl methacrylate) (PMMA). The desired patterns are 

designed using specific computer software (generally GDSII) and written into the 

resist by a collimated beam of high-energy electrons, which are accelerated towards 

the sample.  Typically, 10 keV has been used in this work in order to retain good beam 

resolution at the surface  whilst providing a desirable exposure profile through the e-

beam resist which is slightly undercut due to electron scattering.  This greatly aids the 

lift off of the gate metal using a single resist layer, and avoids the use of a bilayer resist 

process and the therefore inevitable charge dispersal layer necessary to overcome 

sample charging.  The beam position is controlled by magnetic fields (field coils) in 

the SEM column. Once developed, the exposed pattern is transferred onto the resist 

layer and can be used as a mask for subsequent metal deposition of small features, or 

for example etching (albeit with typically prohibitive erosion rates for EBL resists - 

Cross-linked PMMA is very often used as a high-resolution negative resist for EBL 

and physics applications for low-dimensional structures however with slower write 

times due to longer exposure). 

A Raith E_line system with a minimum dimension demonstrated of ~20nm, was used 

to pattern the fine metal structures that define the split gate with a variety of designs 

that connects out to the features of the FEED metals. The gates and their arms are 

drawn using a GDSII editor within the E-line software. Overall, the dose used ranges 

from 0.7–1 with 0.1 steps for resist sensitivity was 165, to get best gate line quality 

and avoid over-exposure, which would produce a non-uniform shape (especially at the 

corners). The electron gun’s aperture size is around 10μm. Whereas, the brightness 

and contrast ratios for indium antimonide topped with PMMA were 10% and 60% 

respectively. Whilst not critical, some samples have had the Ohmic patterns written 

by the E-line with new designs that have a wider contact.  
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3.5 Sample Cleaning 

The normal procedure to clean the semiconductor wafer sample before starting sample 

processing is to soak the sample in NMP 1165 (mixture of organic compounds: 1-

methyl-2-pyrrolidinone and Pyrrolidinone Compound) for 5 minutes in an ultrasonic 

bath and then soak it in acetone for 5 minutes in an ultrasonic bath. Finally, it is rinsed 

with Isopropanol.  However, for some critical processes this has been shown to be 

insufficient, and for this material longer clean times or UV regimes have been used. It 

is essential to clean the sample after Ohmic deposition to remove the bilayer of 

photoresists. Two processes have been used: exposing the sample with UV for 30 

seconds and then developing it with MF 319 for one minute, which is achievable and 

effective. A sample has been imaged with SEM in Figure 3.12: (a) before cleaning 

and (b) after cleaning. 

  
(a) (b) 

Figure 3.12: SEM images demonstrating the newly developed process of cleaning 

using UV exposure and development: (a) before cleaning, (b) after cleaning. 

 

The second method is to soak the sample in hot NMP 1165 at 80 oC for 20 minutes, 

which is able to remove PMGI SF6 beyond detectable levels. The use of acetone in 

the left off process is unable to remove the SF6 photoresist, especially for PMGI-SF6 

that has become solid and is difficult to remove after elevated temperature under high-

vacuum from the deposition process for a relatively long time. A non-clean surface 

can lead to major problems in the device, even a thin layer of unremoved PMGI SF6 

can result in high-Ohmic resistance, the lifting off metal pattern problem and can break 

the air-bridge gates due to non-even MESA etching.  This residue is in general not a 

problem for conventional GaAs annealed contacts, and so these problems are specific 
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to narrow gap materials. This cleaning method enhances the etching process, even 

etching through the top layers down to the substrate. The SEM images in Figure 

3.13(a) and (b) show how the new cleaning method enhances the etching process using 

the NMP 1165 hot remover. 

  
(a) (b) 

Figure 3.13:  SEM images of device has been cleaned by the new process of the etching 

using NMP 1165 hot remover: (a) before cleaning, (b) after cleaning. 

 

3.6 Wet Chemical Etching 

The wet chemical etching technique can be used to remove material, depending on the 

material and the etchant. This technique is usually used in semiconductor device 

fabrication processes to remove undesirable material layers, such as electrical isolation 

or oxide removal. To remove an oxide layer for Ohmic contact pattern that has been 

pre-defined by photolithography, citric acid etchant is used to interact with the material 

and etch down at a rate of 2nm/min [21]–[24]. 

The last step of the sample fabrication is the MESA etching process. The MESA step 

is very important because it etches the semiconductor layers down to the substrate, 

except the area under the device, as an electron channel and produce an air-bridge 

under the gates to stop any current leakage from the arms or between the FEED pads. 

The MESA process spins the sample with a photoresist (S1813), which is not affected 

by acids, and then exposes the sample with UV using a MESA mask. The InSb wafer 

was etched with lactic and nitric acids with volume ratio 50ml to 10ml, respectively. 

The plan was to etch approximately 2.5 µm, approaching good isolation and air-bridge 
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formation. Comparatively, wet etching is an easy technique to apply but is hard to 

control, due to factors such as etchant PH, passivation, and the consistency of method 

of application by spin immersion and agitation [25]. Figure 3.14 shows the spinning 

and etching process steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: A schematic of the wet etching process steps with initial spin and bake, 

photolithography and wet chemical etching. 

 

3.7 Plasma Ashing Technique 

Plasma ashing causes degradation of the polymer surface and/or undesired creation of 

defects in the deposited films by ion bombardment with enough excessive kinetic 

energy to break the chemical bonds in the polymers [26]. The resist removal process 

has various demands. For instance, removal of any photoresist residual in the open 

windows and decreasing the thickness of photoresist on the top of pattern, which is a 

critical step to clean sample surface before metallization and avoids the lifting off of 

the metal pattern problem. Device performance and electric resistance is strongly 

dependent on the quality of the metal-semiconductor contact interface [27]. 
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The ashing power that was used was 10 watts under 6×10-1 mbar of vacuum in an 

oxygen environment for 3 minutes with a rate of 10 nm/min for S1813 photoresist, 

before chemical etching and Ohmic metallization and longer for MESA etching [28] 

in terms of the PMGI-SF6 issue. Oxygen gas is used to avoid any contamination [29].  

 

3.8 Wafer Surface Characterisation Techniques 

3.8.1 Energy Dispersive X-ray Spectroscopy (EDX) 

Energy dispersive X-ray spectroscopy (EDX) is a standard technique to identify and 

quantify elemental compositions in a very small area on the sample’s surface, such as 

a few micrometres. The EDX technique detects and analyses surface elements by 

characterising a chemical composition of surface bonding and trace impurities using 

an electron beam to excite surface atoms and emit a specific wavelength of X-ray that 

is characteristic of the atomic structure of the elements [30]. 

Essentially, to successfully process and even before any metallization or chemical 

etching, the sample’s surface is cleaned from any dirt or resist residue, even a very 

thin layer of dirt (few nanometres). The PMGI (SF6) usually sticks on the sample 

surface due to recycling of heating through post-baking and deposition, especially 

IBM deposition. The PMGI (SF6) layer cees or postpone the citric acid etching (The 

PMGI (SF6) residue impedes uniform the citric acid etching), which produce high-

Ohmic contact resistance as well as destroying the device gate bridges through the 

MESA etching process. (PMGI resists consist of polydimethylglutarimide polymer 

with proprietary solvent blends). Contamination on the InSb surface can be observed 

in Figure 3.15. Image (a) shows a clean rectangle after E-beam exposure by the EDX 

technique on AlInSb/InSb surface (outside device), which clearly shows a thin layer 

of photoresist. Images (b) and (c) show a measurement on a surface between the device 

structure and the top of the FEED pad metal (Au), respectively. Both show a 

photoresist residue by characterising carbon and oxygen elements. Image (d) shows 

the etchant breaking through the thin layer of the photoresist and removal of some 

material and, interestingly, shows a circular broken portion of the photoresist residue 

(white colour). The characterised elements of (AlInSb/InSb) [31] image (d) were 
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O=6.49, C=3.15, In=8.52, Sb= 20.96, Al=2.15, Ga=31.38, As=27.35, as presented in 

Figure 3.16. The measurements were carried out at Cardiff University in the clean 

room using a Hitachi Regulus SU8230 ultra high-resolution SEM. 

 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 3.15: SEM images of a spilt gate device: (a) on AlInSb/InSb QW surface 

(outside device metal) exposed a rectangular area by e-beam and flake of photoresist 

as white colour, (b) measures area on AlInSb/InSb QW surface between a device metal 

structure, (c) measures on the top of FEED metal and (d) measuring an uneven etched 

area present the wafer layers. 
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Figure 3.16: EDX spectrum and elemental quantitative data representative of 

AlInSb/InSb QW device for the etched area shown in Figure 3.15(d).  This shows the 

constituents of the wafer and any contaminating elements (carbon and oxygen for 

example). 

 

3.8.2 Atomic Force Microscopy 

The atomic force microscope (AFM) is an effective tool for probing and investigating 

the ultra-small topographic features on the surface of solids using a specific tip. AFMs 

can be used to measure surfaces that may be either electrically conducting or 

insulating. The small forces can be scanned by a very flexible cantilever tip that has 

an ultra-small mass and sharp taper at the end (the tip). The scan moves the sample 

with a piezoelectric scanner on an X, Y, Z movement stage. Since the AFM operates 

in several modes—including contact, non-contact and tapping modes—in the initial 

contact, the atoms at the end of the tip experience a very weak repulsive force due to 

electronic orbital overlap with the atoms in the sample’s surface. The force acting on 

the tip causes a lever deflection, which is measured by an optical detection technique 

such as laser interferometry. AFM has become a popular surface profiling technique 

for microscale and nanoscale topography and is capable of producing very high-

resolution in three-dimensional imaging of a sample’s surface up to atomic resolution 

[32]. This technique also gives an understanding of the fundamental nature of bonding 
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and interactions in materials, combined with advances in computer-based modelling 

and simulation methods that enable prediction of the nature of interfacial layers [33]–

[36]. 

An AFM model Digital Instruments Veeco Metrology Group, DimensionTM 3100 has 

been used in tapping mode to determine the surface roughness and topography of the 

AlInSb/InSb heterostructures reported, both before and after etching of samples using 

wet and dry etching techniques.  These form the basis of results in presented in Chapter 

4. A schematic diagram of a typical AFM set-up is shown in Figure 3.17. 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Principle of operation of the atomic force microscope, including 

cantilever moving up and down, photodetector with red spot and laser source. 

 

3.9 Device Characterisation 

3.9.1 Scanning Electron Microscope 

The scanning electron microscope (SEM) is one of the most versatile instruments 

available for the examination and analysis of the material microstructure morphology 

and chemical composition characterizations. It is necessary to know the basic 

principles and fundamentals of electron microscopy. This microscope is consisting of 

 



 

 
62 

 

column and specimen chamber that can be under vacuum. At top of the column the 

electron gun has been located that produce the electron beam [38]. 

The electron, as a ‘particle’, can be accelerated, focused, and detected. As a ‘wave’ it 

has a shorter wavelength than visible light and can illuminate a specimen surface to 

higher resolutions than in an optical microscope. In principle, an electron beam can be 

produced by a scanning electron microscope (SEM) gun which is focused to a small 

spot and scanned in parallel linear scans over a specimen’s surface. Electrons re-

emitted or reflected from the surface can be detected simultaneously with an electron 

detector inside the specimen chamber [37] [39]. 

A SEM produces electrons typically with a thermionic, Schottky or field-emission 

cathode. These electrons are accelerated through a voltage difference between the 

cathode and an anode, that may be as high as 50KeV. The SEM can image and analyse 

a material’s surface as a bulk specimen. These kinds of SEM systems operate with 

different beam cross-sections, which are produced by the gun with a diameter of 

around 1nm to 50 µm, depending on the design and the magnetic lenses system 

forming at the specimen surface, with currents of 10-9–10-12 A [40]. 

With backscattered (reflected) and secondary electrons (essentially absorbed and re-

emitted), a large variety of electron-specimen interactions can be exploited to form the 

image and to furnish qualitative and quantitative information. The magnification can 

be simply increased by decreasing the scan-coil current and keeping the image size 

[40]. 

SEM images reveal the physical quality of the devices though the fabrication process, 

helping to characterise the surface residue via EDX, metallization quality, distances 

between device structures, monitor etching depth and evaluation of the air-bridging by 

angled imaging. A Phillips Model XL-30 SEM is used for the majority of routine 

imaging in the clean room of the Physics and Astronomy School, Cardiff University, 

with high resolution and EDX being done using a Hitachi Regulus SU8230.   

 

3.9.2 Room Temperature I-V Measurements 

Local cleanroom measurement was done using a (gold tipped) needle probe station 

which gave an idea and initial characterisation of the Ohmic resistance of up to 30 

devices at a time.  This helped to choose some good (not broken) or low device 
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resistance devices for wiring. The tip arrangement consisted of four probes, but only 

two terminals are generally enough to get source and drain to apply voltage and 

measure the current. Whereas, four terminals are required for TLM devices. A 

Keithley model 2400 series meter was used to apply low DC voltage sweep of about -

0.5 to +0.5 V and to measure the current in terms of heating and melting possibility of 

gates. The 2400 Keithley is interfaced with a computer to set the voltage and plot its 

current using in house software. 

 

3.10 Packaging and Wire Bonding 

Packaging and wire bonding are the final steps after cleaving.  In general, the chip is 

cleaved into 12 fields before packaging, binding and measuring. Each good field can 

be mounted into a ceramic package (3.5×3.5 mm2 inside) using GE varnish as a glue, 

which is left overnight to air dry before bonding. The sample is packaged in 20 pin 

dielectric and non-magnetic ceramic leadless chip carriers (LCC). An ultrasonic West-

Bond 7400A Wedge wire bonder was used with 12.5 μm diameter Au wire to connect 

the device pads to the chip pins. A heated sample chuck (to around 100° C) was used 

in the wire bonding process.  This is combined with manual pressure applied to the 

thermocompression process that provides a strong mechanical and electrical 

connection for the pad metal and the Au wire [30]. 

 

3.11 Low Temperature Measurement 

Samples were cooled to a low temperature, which is necessary to achieve electric 

measurements whilst minimising scattering effects by phonon. Low temperature 

measurements were carried out using a liquid cryogen free cryostat system for 

AlInSb/InSb QW of TLM and split gate devices, (results presented in Chapters 5 and 

6, respectively). The samples were mounted into 20 contact ceramic packages and 

mounted into a package holder on the cold-finger of an Oxford Instruments Optistat 

AC-V12 pulse tube system. The system consists of a Cryomech, Inc PT403 cold head, 

Cryomech, Inc CP830 helium gas compressor, which is cooled by a chiller using 
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water, and an Oxford Instruments Mercury iTC temperature controller. This system 

cools samples to a base temperature of 2.7K within approximately 90 minutes. The 

sample chamber of the PT403 cold head is held in a vacuum, discharged by an aerlikon 

leybold vacuum turbolab 80 basic turbomolecular pumping system with a dry 

compressing backing pump. These pumps work to get 5×10-5 mbar within 

approximately 15 minutes. The cryostat system is connected to an Agilent 

Technologies model (E5270B) precision current voltage analyser and an Agilent 

Technologies E5281B Medium Power Source Monitor Unit (MPSMU). The voltage, 

current and variable temperatures measurements are controlled via IEEE by in house 

written Python software. The software controls the voltage values, steps, time of 

measurement at a sweep of temperature after thermal stability with a typical time delay 

of 10min. Figure 3.18 shows a schematic diagram of the main components of the 

cryostat system. 

 

 

 

 

 

Figure 3.18: Schematic diagram of the main components of the low temperature 

measurement system by positioning the sample in the cold finger which connected to 

temperature controller and the sample to two Agilents. 
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3.12 Conclusion 

This chapter presents the physics of the InSb crystal structure (zinc blende) and the 

growth onto GaAs substrates (considering lattice mismatch). InSb heterostructures 

studied here were grown by solid source MBE machine at the National Epitaxy 

Facility (Sheffield) and QinetiQ (Malvern). This heterostructure design which 

includes top cap layer doping results in band bending in the top cap and the embedded 

QW layer. 

These InSb heterostructures have been used to fabricate split gate devices and TLM 

devices at Cardiff. Both designs are presented in this chapter with their typical active 

dimensions and some issues of device layout have been considered. There are many 

techniques required to fabricate devices, such as spinning, photolithography, electron 

beam lithography, plasma ashing and sample cleaning techniques. Ohmic contacts 

have been etched using dry and wet techniques aimed at investigating low contact 

resistance. Wafer characterization has been performed using EDX which has 

demonstrated surface photoresist residue and using the AFM technique to measure the 

surface roughness of the pristine surface and Ohmic contact after etching. 

 

 

3.13 Bibliography 

[1] Mermin and Ashcroft, Solid State Physics. 1976. 

[2] S. Adachi, Properties of Semiconductor Alloys : Group-IV , III – V and II – VI 

Semiconductors. 2009. 

[3] M. Grundmann, The Physics of Semiconductors An Introduction Including 

Nanophysics and Applications, Second Edi. Springer, 2010. 

[4] N. Ashcroft and N. D. Mermin, “Solid State Physics.” 1976. 

[5] B. R. Nag, Physics of quantum well devices. 2002. 

[6] C. Jacoboni, Theory of Electron Transport in Semiconductors. Springer Series, 

2010. 

[7] T. Ihn, Semiconductor Nanostructures Quantum States and Electronic 

Transport. OXFORD University Press, 2010. 



 

 
66 

 

[8] D. V. Keith Barnham, Low-Dimensional semiconductor structures 

Fundamentals and device applications. Cambridge University Press, 2001. 

[9] D. G. Hayes et al., “Electron transport lifetimes in InSb/Al1- xInxSb quantum 

well 2DEGs,” Semicond. Sci. Technol., vol. 32, pp. 1–8, 2017. 

[10] S. R. Jost, V. F. Meikleham, and T. H. Myers, “InSb: A key material for IR 

detector applications,” Mater. Res. Soc., vol. 90, pp. 429–435, 1987. 

[11] A. A. Richards, “Applications for high-speed infrared imaging,” 26th Int. 

Congr. High-Speed Photogr. Photonics, vol. 5580, pp. 137–145, 2005. 

[12] P. J. Treado, I. W. Levin, and E. Neil Lewis, “Indium antimonide (InSb) focal 

plane array (FPA) detection for near-infrared imaging microscopy,” Appl. 

Spectrosc., vol. 48, no. 5, pp. 607–615, 1994. 

[13] L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures. 

1984. 

[14] G. B. Stringfellow, “Epitaxy,” Reports Prog. Phys., vol. 45, no. 5, p. 469, 1982. 

[15] K. Seshan, Handbook of thin film deposition. William Andrew, 2012. 

[16] S. Thainoi et al., “Molecular beam epitaxy growth of InSb/GaAs quantum 

nanostructures,” J. Cryst. Growth, vol. 477, no. January, pp. 30–33, 2017. 

[17] M. Buttiker, “Quantized transmission of a saddle-point constriction,” Phys. 

Rev. B, vol. 41, no. 11, pp. 7906–7909, 1990. 

[18] S. Franssila, Introduction Microfabrication. 2004. 

[19] L. R. Harriott, “SCALPEL: projection electron beam lithography,” Proc. 1999 

Part. Accel. Conf. (Cat. No.99CH36366), vol. 1, pp. 595–599, 1999. 

[20] S. Franssila, Introduction to Microfabrication Second Edition. 2010. 

[21] C. Mack, Fundamental Principles of Optical Lithography: The Science of 

Microfabrication. John Wiley & Sons, 2007. 

[22] A. E. D. Aureaua, R. Chaghia, I. Gerarda, H. Sik, J. Fleury, “Wet etching of 

InSb surfaces in aqueous solutions: Controlled oxide formation,” Appl. Surf. 

Sci., vol. 276, pp. 182–189, 2013. 

[23] F. L. Lie, W. Rachmady, and A. J. Muscat, “Oxide removal and selective 

etching of in from InSb(100) with TiCl 4,” J. Phys. Chem. C, vol. 115, no. 40, 

pp. 19733–19740, 2011. 

[24] H. Simchi, S. Bahreani, and M. H. Saani, “Cleaning InSb wafers for 

manufacturing InSb detectors,” Eur. Phys. J. Appl. Phys., vol. 4, pp. 1–4, 2006. 

[25] T. V Lvova, M. S. Dunaevskii, M. V Lebedev, A. L. Shakhmin, I. V Sedova, 

and S. V Ivanov, “Chemical Passivation of InSb (100) Substrates in Aqueous 



 

 
67 

 

Solutions of Sodium Sulfide,” Semiconductors, vol. 47, no. 5, pp. 721–727, 

2013. 

[26] K. A. Jackson, Compound Semiconductor Devices, Structures and Processing. 

[27] D. D. Jafari, M., “Surface modification of PMMA polymer in the interaction 

with oxygen-argon RF plasma,” J. Theor. Appl. Phys., vol. 66, no. 23, pp. 59–

66, 2011. 

[28] D. S. Macintyre, O. Ignatova, S. Thoms, and I. G. Thayne, “Resist residues and 

transistor gate fabrication,” J. Vac. Sci. Technol. B Microelectron. Nanom. 

Struct., vol. 27, no. 6, p. 2597, 2009. 

[29] J. R. Sendra, J. Anguita, J. J. P. Camacho, F. Briones, and F. Briones, “Reactive 

ion beam etching of aluminum indium antimonide, gallium indium antimonide 

heterostructures in electron cyclotron resonance methane / hydrogen / nitrogen 

/ silicon tetrachloride discharges at room temperature Reactive ion beam 

etching of aluminum ,” vol. 3289, pp. 16–19, 1995. 

[30] G. N. Taylor and T. M. Wolf, “Oxygen plasma removal of thin polymer films,” 

Polym. Eng. Sci., vol. 20, no. 16, pp. 1087–1092, 1980. 

[31] S. Ebnesajjad, Surface Treatment of Materials for Adhesive Bonding Surface 

Treatment of Materials for Adhesive Bonding, Second Edi. Elsevier, 2014. 

[32] Y. J. Jin, X. H. Tang, H. F. Liu, C. Ke, S. J. Wang, and D. H. Zhang, “Growth 

of one-dimensional InSb nanostructures with controlled orientations on InSb 

substrates by MOCVD,” J. Alloys Compd., vol. 721, pp. 628–632, 2017. 

[33] G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning 

Tunneling Microscopy,” Phys. Rev. Lett., vol. 49, no. 1, pp. 57–61, 1982. 

[34] B. Bhushan, Principles and Applications of Tribology, Second edi., vol. 98, no. 

4. John Wiley & Sons, Inc., New York, 2013. 

[35] S. V. Kalinin and A. Gruverman, Scanning Probe Microscopy of Functional 

Materials. Springer New York Dordrecht Heidelberg London, 2010. 

[36] T. L. Alford, L. C. Feldman, and James W. Mayer, Fundamentals of Nanoscale 

Film Analysis. Springer Science Business Media, Inc., 2007. 

[37] K. S. Birdi, Scanning Probe Applications in Science. 2003. 

[38] W. Zhou and Z. L. Wang, Scanning microscopy for nanotechnology: 

Techniques and applications. 2006. 

[39] C. D. Joy and B. J. Pawley, “High-resolution scanning transmission electron 

microscopy,” Ultramicroscopy, vol. 52, no. I 992, pp. 335–346, 1993. 

[40] L. Reimer, Scanning Electron Microscopy Physics of Image Formation and 

Microanalysis. 1998. 



 

 
68 

 

 

 

  



 

 
69 

 

 

 

Chapter 4  

 

 

 

InSb Heterostructure Surface Characterization 

 

 

4.1 Introduction 

It is essential to understand the wafer surface when addressing the challenges of 

electrical contacting that would enable the optimum functioning of quantum devices 

such as split gates for charge sensing.  The study in this chapter is important in 

characterising two possible contacting techniques for this narrow gap material that are 

not based on annealing and investigates the sample roughness as a figure of merit for 

the controlled etch techniques.  A solid surface has a complex structure. Its properties 

depend on the nature of the solid, method of surface preparation, and the interaction 

between the surface and the environment. Surface interaction is extremely dependent 

on the properties of the surfaces.  Properties that affect the real area of contact cause 

the effects of friction, wear and also lubrication. Moreover, surface properties can 

determine for instance optical and metallization properties, as well as for a lot of 

materials electrical and thermal performance. 

The surface structure (oxide), morphology and roughness of an Ohmic contact is a 

major concern. This is because oxide and ‘rough’ surfaces can cause problems in later 

processing steps, primarily coating steps and electrical performance, potentially 

reducing device yield. There are many investigations on surface oxide and very few 

on the surface roughness of alloyed Ohmic contacts even though this is the common 

way of forming Ohmic contact to III-V materials.  Good contacts without oxide by dry 
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and wet etching techniques with smooth surface morphology can be developed 

concerning any rough surface. But without  annealing process, with  concern that can 

be  affected the InSb QW material in various ways by heating [1][2]. 

This chapter describes the surface oxide of AlInSb/InSb wafers fabricated at the III-

IV Semiconductor Centre in Sheffield as pristine samples.  The XPS technique has 

been used to investigate the surface oxide of the wafer (details of which can be found 

in chapter 3). The wafer surface oxide produces a high resistance (metal-

semiconductor) contact that detriments device performance considerably to such an 

extent that only limited observation of quantised conductance could be observed. For 

this reason, the oxide needs to be controlled and/or removed. The chapter investigates 

the surface roughness of pristine wafers and etched AlInSb/InSb wafers using citric 

acid wet etching and Ion Beam Milling, two techniques that have been used in the 

formation of Ohmic contacts etching the top cap of the wafer.  

Surface roughness data are analysed statistically for both the pristine and etched 

samples using AFM and considering the effects of image distortion by the 

measurement technique (such a scan direction and effective roughness length scale). 

Details of the XPS, AFM and IBM measurement techniques, and fabrication are 

explained in Chapter 3. 

 

4.2 Surface Oxide Characterisation 

The chemical nature of semiconductor surfaces can have an essential effect on the 

electrical performance of devices. So, the III-V semiconductor oxide layer can be 

unstable related to density of state in the band gap formed by the oxide capping which 

relevant to the interface of the compound. As well as, the spatial homogeneity of the 

interface (between the surface oxide and the unoxidized semiconductor) is also be 

subjected of electric variation. Therefore, the oxide property (chemical composition, 

texture, morphology, etc.) strongly influencing the kinetic energy of electron transfer 

through the interface. In the case of InSb Ohmic contacts, the carrier concentration of 

the material used, that its electron transport can be adversely affected by the presence 

of surface state of top cap layer. Therefore, the electron concentration reduces in the 

oxide and increases the interface barrier which lead to increase directly the contact 
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resistivity [3][4]. Therefore, to control the surface state is required a surface etching 

[5][6]. 

Moreover, oxide formation on the semiconductor surface material after exposing to 

air with an element, but with  another free element will generate a conductive layer 

that lead to leakage current in the top cap and decreasing the resistance of the device, 

which effectively limit the device performance [7]. Consequently, it is necessary to 

remove the native oxide from the semiconductor surface before deposition process. 

Webb and his colleagues have cleaned the InAs/Insb nanowires using Atomic 

Hydrogen technique and characterised with XPS showing Sb2O3 before but not after 

cleaning process. This process has modified and increased the conductivity of 2 orders 

of magnitude but using 380oC temperature [8], which is not applicable for InSb QW. 

InSb wafer surface oxide has been examined and characterized its elements using X-

Ray Photoluminescence Spectroscopy (XPS) technique [9][10] for sample dimensions 

(approximately 1×1 cm2). Figure 4. 1 shows the XPS result of sample covered with a 

photoresist. Figure 4. 1 (a) shows that an obvious exist of carbon (red line) and oxygen 

(turquoise line) elements that belong to the photoresist layer. Then start with 

semiconductor layer consist of indium (green line) and antimony (grey line) elements 

layer. Moreover, in Figure 4. 1 (b) shows obviously in between photoresist layer and 

semiconductor layer an Antimony oxide layer (black line) which calculated of 

approximately 3nm thickness or about five atomic layers which is with same thickness 

reported by Van in the room temperature [11]. 

 

 

 

 

 

 

 



 

 
72 

 

(a)  

 

 

(b) 

Figure 4. 1: shows the XPS analysis of AlInSb/InSb wafer; (a) for the wafer and the 

covered resist. The carbon 1s (red line) and oxygen 1s elements represent the resist 

layer up until the end of the semiconductor surface.  This then continues with the 

observation of In 3d (green line) and Sb 3d (grey line). whereas, (b) the semiconductor 

surface start with oxide (black line), In (green line) and Sb 3d in (pink line). Note: the 

x-axis is representing time of etching with depth. 
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Figure 4. 3 shows that a typical diagram of InSb wafer layers covered by a resist and 

the first ~3 nm layer of the top cap has been oxidised that measurement by XPS and 

plotted in Figure 4. 2. 

 

 

 

 

 

 

Figure 4. 3: Schematic diagram of InSb wafer presenting resist layer (yellow) on the 

top, surface oxide layer (grey) and InSb heterostructure layers (blue). 

 

Figure 4. 4 shows XPS of the clean surface (without photoresist). Carbon element 

(green line) seems very thin layer which is a contamination layer. Whereas, the 

antimony oxide (black line) is clear in the semiconductor layer. XPS analysis shows 

aluminium element (red line) obviously in the top cap layer and stopped by the QW 

layer. 

 

Figure 4. 4: shows the XPS analysis of AlInSb/InSb wafer of cleaned sample surface 

(without photoresist), starting with Al 2p (red line), Sb 3d (torques line) and (black 

line) and In 3d (blue line). At 150 second, the Al has stopped (top cap) and only In 

and Sb keep in high percentage in the QW. 

Resist (1 μm) 

InAlSb (50 nm) 

InSb QW (30 nm) 

InAlSb 

Oxide 
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The binding energy in the III-V crystal is much greater than that of many alloys. This 

high-binding energy causes the breaking of the crystal bonds to be a limiting step in 

the oxidation process [6]. Resulting less oxidization than other semiconductor 

materials, for instance GaSb [12]. 

 

4.3 Surface Roughness Characterization 

Surface roughness commonly refers to the variations in the height of a surface relative 

to a reference plane. It is measured either along a single profile or along a set of parallel 

line profiles that form a three-dimensional topography of the surface. The 

measurement of the surface roughness is one of the most critical steps concerning the 

analysis of the contact between two surfaces. It is crucial for the quality control of the 

surfaces. Various alternatives in relation to the techniques for measuring surface 

roughness exist today, however Atomic Force Microscope is a good choice for surface 

analysis that can pick-up high-resolution topology in the order of nanometres. The 

solid surface comprises irregularities of various orders, ranging from shape deviations 

to irregularities of the order of interatomic distances. Any growth technique cannot 

produce a perfect atomically flat surface of a conventional material. Even the 

smoothest surfaces, such as those obtained by cleaving along a crystal plane comprise 

irregularities, the heights of which easily exceed interatomic distances.  

 

Figure 4. 5 is a schematic diagram of a typical sample, showing an etch trench across 

the middle of the sample (typically 40microns wide) and the left and right sides which 

are typically 10microns wide.  Furthermore, typical scan directions slicing in the 

horizontal and vertical axis of each part are shown.  In each case, the line profile is 

measured and the RMS roughness for each slice in both directions is extracted. 
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Figure 4. 5: A schematic diagram of the sample for the trench, and the left and the 

right surfaces.  The stripes are a schematic representation of the horizontal and 

vertical scan directions (slices) dividing the surface.  This is effectively the AFM tip 

direction in the x and y plane. 

 

 

The RMS is the geometric average height of roughness irregularities over the sampling 

length, which is be given by 

 𝑅𝑀𝑆 =  √
𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2…… . . +𝑧𝑛2

𝑛
   ….. (4-1) 

These height data (𝑧1, 𝑧2, 𝑧3) can usually be plotted as a Gaussian distribution, given 

that the roughness of the surface is often highly random.  

The characterisation of surface roughness via a homogeneous and isotropic Gaussian 

distribution can be relatively straight forward but provides a good approximation and 

has become one of the mainstays of surface classification. The Gaussian probability 

distribution is given by 

 𝑃(𝑥) =
𝑒
−
(𝑧−𝜇)2

2𝜎2

𝜎 √2𝜋 
       ….. (4-2) 

where 𝜇 is the mean of the distribution, σ is the standard deviation and x is a continuous 

variable (-∞ ≤ x ≤ ∞).  The position of the peak represents the value of the mean. 
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Figure 4. 6 represents a schematic diagram of surface roughness and its typical 

Gaussian distribution, as well as the mean and RMS roughness values.  

 

 

 

 

 

 

 

Figure 4. 6: Schematic diagram of surface roughness matching the height (Gaussian) 

distribution diagram with mean level and resulting in RMS roughness. 

 

Where the median is a number of statistics that represents the middle of a dataset, the 

median formula is {(n+1)/2}th, where n is the number of items in the set and th is the 

(n)th number. The Full width at half maximum (FWHM) is the width of a line shape at 

half of its maximum amplitude, as shown in Figure 4. 7. The technical term FWHM 

is used to describe the extent of the surface profile that can indicate the degree of the 

dispersion of the surface roughness height, which is an effective assessment 

parameter. The FWHM can cover most of the data of that extent, which is more than 

68% of the most frequencies of roughnesses. Moreover, the FWHM can be calculated 

from the Gaussian distribution graph directly, as shown in Figure 4. 7, and is directly 

related to the standard deviation, which is given by the following expression [13]; 

 𝐹𝑊𝐻𝑊 = 2.355 ×  𝜎  ….. (4-3) 
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Figure 4. 7: Relationship between the standard deviation 𝝈 and the full width at half-

maximum (FWHM) of Gaussian distribution (frequencies of roughnesses). 

 

Since the surface texture is periodically, or random deviation from the nominal surface 

that forms the three-dimensional topography of the surface, the surface texture 

includes nano- and microroughness and waviness (macroroughness). The surface 

texture (roughness of area) derived from a typical AFM scan is displayed in Figure 4. 

8 for a real trench of an arbitrary sample surface and shows waviness (black surface 

roughness related to the red line along with different scales) and roughness (in local 

or short distance) in the profile. That is mean the roughness value is a relativity value 

which will be shown in Figure 4. 11 and discussed in detail. 

Sample surface roughness and etching depth, derived from sample images data 

analysis has been processed using Python code [(written by Chris McIndo) which 

checked by comparing with AFM Veeco software, Gwyddion, WSxM], Gwyddion, 

WSxM 4.0_Beta 8.5 (Windows Scanning × Microscopy where × if Force in AFM 

measurements) [14] and AFM Veeco software.   
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Figure 4. 8: Schematic diagram of the surface texture of types of roughness on a 

random InSb surface (captured from Gwyddion software), the ‘waviness’ shown by 

the undulations of the surface compared to the red line as a reference level. 

 

4.3.1 Pristine wafer Roughness at zero and 90o degree 

Figure 4. 9 (a) shows the three-dimensional topography of the pristine wafer of an 

AlInSb/InSb sample over a 40×40μm2
 area in an arbitrary direction approximately 

along a crystal axis. However, Figure 4. 9 (b) illustrates the three-dimensional 

topography of the same area of the wafer, although in the 90-degree orientation (tip 

movement) of the AFM tip. The AFM tip movement can be set horizontally (X-

direction) or vertically (Y-direction) in forward (trace) and backward (retrace) 

directions to obtain double measurements on the same line, with the aim of obtaining 

a precise profile of the ‘mountains’ and ‘valleys’ of the surface. I.e line scans along 

the x-direction and Y-direction result the same result, which is the aligned to 

lithography X/Y. Furthermore, the AFM software can set the tip velocity and set point 

value of the taping mode to determine the image resolution. Additionally, the AFM 

image size can be controlled by a span of a few micrometres, up to tens of micrometres.  
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Figure 4. 9: AFM images of AlInSb/InSb wafer in three-dimensional profile; (a) at 

zero degrees on the wafer, and (b) at 90-degrees, the AFM tip measurement of the 

same area. 

 

The reason for horizontal and vertical measurements is to check two points; 

specifically, the tip movement along the cantilever, and if there is a difference with 

regards to the laser spot reflection on the detector. This provides a good calibration of 

the measurements. Thus, the data analysis is plotted in the histogram in Figure 4. 10, 

as a Gaussian distribution, where the images are sliced in the horizontal and vertical 

(a) 

(b) 
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(b) (a) 

aspect and the ‘Root Mean Square’ roughness for each slice is measured depending 

on the data resolution. 

The images in Figure 4. 10 (a) and (b), reveal the maximum roughness and Gaussian 

distribution fit of the histograms which have been calculated by using equation 4.2 

data that can be found in the range of 5nm for both zero and 90-degree angles. 

Moreover, the vertical slice data for the zero-degree angle reaches a frequency value 

of approximately 100, which agrees well with the horizontal data at 90-degrees.  This 

represents the same values of surface roughness. Furthermore, both the horizontal data 

for the zero-degree angle and vertical data 90-degree angle is lower than the others 

with a different small value, seeing as the bars values and spreading away more than 

the others. 

    

Figure 4. 10: Histogram of the pristine sample in vertical and horizontal slices with; 

(a) zero degrees and, (b) 90-degrees AFM tip direction measuring. 

 

As a further investigation Figure 4. 11 shows the RMS roughness of the surface for 

zero and 90-degree angles, as a function of the area size scanned. The zero-degree 

angle roughness as the solid curve, starting with ~ 1nm roughness and increases 

sharply. It begins to plateaux at ~ 4.5-5.0nm roughness and ends with a relatively 

steady value of ~6nm for a 30μm2. 

The 90-degree roughness presents behaviour that is comparable to that of zero-

degrees, except for a slight dip at 25μm2 scan size, which could be as a consequence 

of a change in the position of the small local ‘mountain’ observed between the two 

images, as can be seen in the AFM images in Figure 4. 11. These increasing trends 

suggest that the RMS roughness increases with the scale of the size of the scan area, 
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saturating in both cases above a scan size of 10-15μm2. This mean the roughness can 

be in different value depend on the measurement scale, i.e roughness value is a 

relativity value which can enable to compare samples roughnesses with different 

scales, as well as, showing no difference between vertical and horizontal direction 

measurements. 
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Figure 4. 11: RMS Roughness with square size for the pristine sample, a solid line 

for the zero-degree angle and dashed line for the 90-degree angle measurement. 

 

Figure 4. 12 displays the mean and median of the horizontal and vertical slices of the 

image data for the zero and 90-degree angles. The mean values for vertical and 

horizontal slices are reasonably similar in the range of 5nm for both the zero and 90-

degree angles, which is consistent with the histograms. However, the median value for 

zero-degrees for the vertical slice is just above 4nm and almost 5nm for the horizontal 

slice. The median values for 90-degrees are in reverse to the horizontal and vertical to 

zero-degree values, which is corresponds to the actual values of the surface roughness. 

The error bars indicate the standard deviation of the mean value and so from Figure 

4. 12 there is a high-degree of confidence that the mean and median are the same. 
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(b) 
(a) 

  

Figure 4. 12: Data analysis of the pristine sample in vertical and horizontal slices 

for; (a) zero angle measurement and (b) 90-degree angle AFM tip measuring. The 

error bar is the standard deviation. 

 

These results of the pristine sample explain the wafer surface profile and the range of 

roughness in zero and 90-degrees of measurement for the same area, showing that 

RMS roughness for the square area, mean, median values and Gaussian distribution 

are virtually consistent with each other and establishes a well characterised benchmark 

for comparison. Additionally, the RMS roughness for the square area graph explains 

the saturation value of RMS roughness against the square size. 

Measuring pristine sample as reference and give an idea before surface etching and 

comparing with surface roughness after using citric and IBM etching techniques. As 

well as, the AFM technique and its tip calibration is an important step by using it in 

different ways using horizontal and vertical direction measurements. 

 

4.3.2 Citric Acid Etching for the AlInSb/InSb wafer 

Citric acid (C6H8O7) etching is a chemical interaction with the material surface of the 

wafer starting with the top cap, etching toward the quantum well (as outlined in 

Section 3.6) that is suitable for controlling the uniformity of array structure and proven 

the feasibility to bring superior etching process [15], which is reported also by Chang 

and his colleagues [16] and Aureau and his colleagues [17]. The used citric acid 

concentration is 1:2 ratio of granular citric (solid) and DI water. Furthermore, the 

surface roughness resultant by chemical etchant especially by citric acid is very 
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smooth [15]. An Ohmic pattern and standard photolithography was used to open 

windows in photoresist to allow the citric acid interaction and the etching of material. 

Oxygen plasma is used to ash these samples to remove any residue of the photoresist 

before etching, before samples are finally immersed in citric acid at a stable and 

controlled temperature (approximately 29ᵒC) for a specific time and washed with 

deionized water. 

Figure 4. 13 shows an example of the three-dimensional topography of the 

AlInSb/InSb wafer after Citric acid etching of a sample. Five samples were etched in 

the range of 5 - 25 minutes with 5-minutes steps. This is one of samples has been 

measured using AFM technique result in 3D image shows the trench depth (Ohmic 

contact etched area (black and red colour)) and non-etched area (yellow colour) on the 

left and right sides at a scale of 60×30μm2 in the X (horizontal) and Y-axes (vertical) 

and depth in Z-axis for all studied samples.  

 

Figure 4. 13: An example AFM image in three-dimensional profile of the etched 

AlInSb/InSb wafer using citric acid. 

 

The z-axis is the height range and is represented by the colour scale shown in the 

legend, for instance dark colours for valley as a trench that etched to a shiny colour on 

the top which is the non-etched area. 

Figure 4. 14 confirms the relationship between the citric acid etching depth against 

etching time for different samples. Trench depth is measured by calculating the 
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difference between the mean value of the non-etched surface and the etched surface 

(trench). The graph shows there is clear increase in the experimental depth values 

against etching time with little of no induction phase at the start of the etch.  The 

gradient of the linear fit to the data is calculated to be approximately 2.2 nm/min, 

which represent a good consistent etch rate for Citric acid etching of the AlInSb/InSb 

wafer. 

 

Figure 4. 14: Citric acid etching depth as a function of time. 

 

The surface roughness data is analysed for the left, and right side of the trench top, 

and the trench bottom for all samples using both parallel and lateral slices to the trench 

geometry to investigate any symmetry bias. With respect to all samples, the results of 

the non-etched area (left and right sides) exhibit slightly more roughness than the 

previous pristine sample measured. A histogram of the non-etched (as a reference) 

sample and etched samples of 5min, 10min, 15min, 20min and 25min for trenches 

measured as vertical slices is shown in Figure 4. 15. Gaussian distributions of etched 

samples using citric acid are roughly identical in relation to the range of the RMS 

roughness values, with the exception of the 0 and 5 minute etched samples. Regarding 

the range of these samples investigated here, the measured RMS roughness varies 

between 1nm and 7nm and is approximately located in 3.5nm. However, the first 

sample (etched for 5 minutes) has greater roughness distribution and a wider range 

than the others. This is speculated to be due to some induction phase of the etch, and 

the origin of which is derived from a combination of the oxide on the surface and 
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possible residue of the resist after the developing process. This sample has a range of 

roughness between 3.5–10.5nm and a centroid that is approximately 7nm. 

Furthermore, the non-etched sample has significantly higher roughness than preceding 

samples with a 3.5-9.5nm range and centroid of virtually 7nm. An interesting 

indication which can be revealed, is that the citric acid etching process is generating 

minimal roughness and delivers decreased surface roughness. 

 

Figure 4. 15: Histogram for citric acid etched samples as a function of RMS 

Roughness in the vertical axis. 

 

In terms of the horizontal axis slices for the trench areas, Figure 4. 16 shows fitted 

Gaussian peaks to the distributions that are in general coincident to a first 

approximation in the location and peak range, except for those that fit the non-etched 

and 10- and 15-minute etched samples. The RMS roughness distribution range 

investigated in relation to the etched samples in 5, 20, 25 minutes, vary between only 

1-6nm and the centroids are at approximately 3.8nm. The 15min etched sample has a 

marked narrower peak and also slightly shifted in the range of 3.7-6.5nm, whilst the 

peak centroid is very nearly 4.7nm. Additionally, the 10min etched sample has a wider 

range than previous samples, varying between 1.4-6.4nm and is located at 4.2nm. 

However, the non-etched sample reveals the widest distribution range which varies 

between 2-11.2nm, with the centroid at ~4.6nm. 
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The Gaussian distribution in Figure 4. 16 indicates that the etched samples surfaces 

would appear to have RMS roughnesses which are lower in magnitude, and with a 

narrower range than the non-etched sample. 

 

Figure 4. 16: Histogram for citric acid etched samples as a function of RMS 

Roughness in horizontal axis. 

 

However, the RMS roughness can be seen to be rougher in the case of the vertical 

aligned slices, in contrast to the horizontal slices, due to the longer scale of roughness 

data which can be strongly dependent on the macro scale ‘waviness’ of the roughness. 

It should be noted that the frequency of the vertical slices is less than the horizontal 

slices, and so the absolute number of slices is fewer.  

Given that the mean value represents the centroid of the Gaussian peak, Figure 4. 17 

explains the mean values of RMS roughness data in the vertical axis for etched 

samples using the citric acid. The error bars indicate the standard deviation of these 

data. Mean values of most of these samples are in the range of 3.5-4.5nm which is a 

difference of only 1nm, which is not significant compared to the magnitude of the 

uncertainty.  However, this is not the case with regards to the non-etched and first 

etched samples (10nm depth), that have rougher surfaces for reasons speculated 

previously, related to the surface oxide and photoresist residue. Similarly, the citric 
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acid etching process provides considerable RMS roughness mean values which are 

less than the pristine surface. 

 

Figure 4. 17: Mean and standard deviation bars for Citric acid etched samples in the 

vertical axis as a function of etching depth. 

 

 

Figure 4. 18: Mean and standard deviation bars for Citric acid etched samples in the 

horizontal axis as a function of etching depth. 
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The mean values of the RMS roughness in the horizontal slices presented in Figure 4. 

18 display a range of 3.8-4.7nm, which is only a narrow difference of 0.9nm for all of  

the samples. These show low mean values and it appears that the etched samples mean 

values are less than the non-etched sample. Furthermore, the short (horizontally) slices 

of roughness reduce the difference value among them in comparison to the long 

(verical) slices. 

The FWHM can be deduced from the data and is related to the sample standard 

deviation values as outlined in Equation (4 - 3). The FWHM values of the RMS 

roughness in the vertical slices is shown in Figure 4. 19, as a function of depth of 

trench which is explain the symmetry of Gaussian distributions of peaks. The graph 

shows that there is a narrowing in FWHM as a function of etch depth, starting from 

4.2nm for the non-etched surface and drops steadily over the studied depth range, with 

the etching time reaching its lowest value at 2nm. Furthermore, the least squares linear 

fit shown in Figure 4. 19 indicates the gradient of the FWHM values as a function of 

etching depth (which is similar to time). This therefore suggests that the Gaussian 

peaks will be thinner, and physically, the majority of RMS roughness ranges is 

modified into a smaller range. Specifically, this is an indication that the etching 

process is uniform and induces a smoother surface with time and depth. 

 

Figure 4. 19: Full Width at Half maximum value for citric acid etched samples in the 

vertical axis as a function of etching depth. 
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The FWHM values of RMS roughness shown in Figure 4. 20, presenting a fluctuation 

of values in the horizontal slices, comes predominantly from the effect of the 

‘waviness’ of the surface, as shown in Figure 4. 13 and explained in Figure 4. 8. 

Samples; 5 and 15 minutes etching that have less waviness induce a narrow range in 

relation to RMS roughness and therefore low value of FWHM for these two samples. 

However, the FWHM values and the linear fit show a gradient against the etching 

depth and time similar to the trend in the vertical case. 

 

Figure 4. 20: Full Width at Half maximum value for citric acid etched samples in the 

horizontal axis as a function of etching depth. 

 

The RMS roughness can be calculated and studied not only as slices, but also as areas. 

The RMS roughness of the surface area represents the combined roughness of the 

vertical and horizontal slices in the square area. Figure 4. 21 shows the relationship 

between the RMS roughness in a square area and the area size. The RMS roughness 

has been analysed by taking a 1μm2 square which is then shifted a small distance and 

the roughness recalculated repeatedly for the entire area. This process was repeated 

for 2 to 10μm2 similarly to induce a trend of roughness as a function of template square 

area size. The RMS roughness is seen to increase proportionally with the area size due 

to the increasing scale of measurement on the surface which is related to the waviness 

of the surface roughness can be physically a valley and/or mountain. Likewise, the 

RMS roughness for all sample trenches using a small area of approximately 1μm2 is 

roughly equal at just over 1nm.  
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The roughness values of different samples start to diverge against the area size when 

increasing the sample area size. For instance, the 5- and 10-minute etched samples 

start emerging in 7.5μm2 size to the end. Whereas, the 15-minute etched sample 

exhibits much greater roughness in contrast to the etched samples. The 25-minute 

etched sample displays less roughness than the previous ones (0-15 minute samples). 

The most interesting roughness profiles are the 20-minute etched sample which 

exhibits the lowest roughness, whereas, the highest roughness is for the non-etched 

sample surface. These results correspond well to the mean values observed in the 

horizontal and vertical slice analysis. 
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Figure 4. 21: RMS Roughness as a function of square size for the citric acid etched 

samples. 

 

The full roughness of the trench samples can be analysed to cover the entire area with 

an equal area size of 700μm2 for all the samples. Figure 4. 22 depicts RMS roughness 

values of the entire area of the trench samples that are clearly decreasing with regards 

to time and depth of etching.  
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Figure 4. 22: RMS roughness for full trench area by Citric acid versus depth. 

 

These results interestingly correspond to the mean and FWHM in the analysis of the 

vertical slice trends. The Citric acid etching technique results in less roughness than 

the pristine surface which is helping the Ohmic contact by removing the oxide layer 

and optimizing the metal-semiconductor contact, that leads to less contact resistance 

and modifies the device performance. 

 

4.3.3 Ion Beam Milling for the AlInSb/InSb wafer 

Dry etching technique is widely employed in III-V compound semiconductor 

technology for Ohmic contact [18], device isolation and several publications for InSb 

have been reported [19]–[21]. Eroding the semiconductor surface by argon ion beam 

bombardment has many advantages; remove defects and minimising surface damage, 

as well as, electrically, produce In-rich that create n-type layer [22]–[24] as reported 

by Jones and his group. IBM process has been used to prepare (etch) the top cap 

surface of the wafer by argon bombardment toward the quantum well.  This has been 

done under high-vacuum (which is about 7.0×10-7 mbar approximately) with a 

discharge voltage of 200 V and discharge current of 1.0 A. The IBM technique 

removes oxidised surface before the deposition of metal that described in Section 

3.3.2. By using the similar sample fabrication process as in the citric acid etching; 
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using S1805 photoresist, the Ohmic mask and photolithography technique to open 

windows for ion interaction. The etched sample can be presented as a three-

dimensional topography of the AlInSb/InSb wafer surface after the IBM etching 

process.  This is shown for 1, 2, 3 and 4 minute etches, in Figure 4. 23. This 3D image 

shows the trench depth and non-etched area to a scale of 60×30μm2 in x and y for all 

of the samples studied.  The size is kept the same in order to ensure consistent analysis, 

similarly the z axes scale.  

Trench depth is calculated for the IBM samples using the same as method used to 

calculate the citric acid etch depth. 

 

Figure 4. 23: AFM image in three-dimensional profile for the etched AlInSb/InSb 

wafer by means of IBM technique. 

 

Figure 4. 24 illustrates that there has been a gradual increase in the trench depth as a 

function of etching time due to the increasing ion interaction (removal) with the 

surface material of the wafer with time. The experimental data related to trench depth 

is shown in Figure 4. 23 demonstrating a linear fit for these samples. The gradient 

enables the rate of etching to be deduced which is approximately 7.7nm/min. 
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Figure 4. 24: Ion Beam Etching depth as a function of time. 

 

 

The surface roughness of the etched area using IBM can be measured in the vertical 

and horizontal slices and presented statistically by Gaussian histograms as before.  

Non-etched (0 minute) and etched samples (0, 1, 2, 3 and 4 minutes) are presented in 

Figure 4. 25. Gaussian distributions for these samples are roughly identical in relation 

to the range of RMS roughnesses and locations, except the non-etched sample and the 

sample etched for 4 minutes. The range of RMS roughness of the etched samples 

varies between 1 and 7nm. The centroid is approximately 3.5 to 4nm. Moreover, the 

4-minute etched sample has a slightly rougher and wider range in contrast to the etched 

samples, which has a range between 3–8.5nm and a peak centroid of 4.5nm. The non-

etched sample has a roughness range of 2-6.5nm and a centroid value of 4.5nm.  
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Figure 4. 25: Histogram for IBM etched samples as a function of RMS roughness in 

the vertical axis. 

 

Gaussian distribution peaks in the horizontal slice axis can be presented for the trench 

areas in Figure 4. 26. Both samples (1 and 3 minutes) peak roughness are relatively 

similar in the centroid position and range of roughness. Regarding the range of 

samples investigated here, the measured RMS roughness varies between 2 and 5.5nm 

and is located at approximately 3.7nm. Additionally, the 2-minute etched sample has 

a slightly shifted distribution range which is approximately 2 to 7.2nm and has a 

centroid about 4.2nm. The non-etched and 4-minute etched samples have wider peaks 

roughness, mostly identical distribution ranges which is approximately 2 to 9.5nm and 

5nm centroid. However, the maximum centroid difference is only roughly 1.3nm. 
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Figure 4. 26: Histogram for IBM etched samples as a function of RMS roughness in 

the horizontal axis. 

 

Both the vertical and horizontal cases indicate that the IBM etching process seems to 

provide a lesser and more consistent surface roughness for most of the samples 

presented. The mean values of the RMS roughness in the vertical axis slices can be 

illustrated as a function of the depth of etching to study the effect of the wafer 

structure, surface oxide and/or dopant. Figure 4. 27 illustrates the mean values for 0-

4 minutes and does not exhibit a clear trend when considering the standard deviation 

values (The error bars represent the standard deviation value). However, the lowest 

values are for the etched samples of 1,2 and 3 minutes that have depths ranging from  

14.8-23.5nm compared to the pristine and 4-minutes etching samples. Therefore, 

surface roughness of these samples mean values are less than the pristine surface (with 

the exception of the 4-minute sample (34.3nm depth)). The maximum difference in 

mean value is in the range of 1.1nm meaning that these results are extremely 

consistent. 
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Figure 4. 27: Mean and standard deviation bars for IBM etched samples in the 

vertical axis as a function of etching depth. 

 

In terms of the horizontal axis, the mean values of RMS roughness are illustrated as a 

function of the depth of the wafer etching in Figure 4. 28. Once again, the error bars 

represent the standard deviation. The graph reveals that there is no clear trend 

regarding the mean values against the depth, which is a similar conclusion to the 

vertical case. The mean values range between 3.6 and 5.2nm with a maximum 

difference in means of about 1.6nm. It should be noted that once again the mean values 

for the 1, 2 and 3 minute etches have an etch depth range of 14.8-23.5 nm and are 

lower than the pristine and 4-minute etched sample.  This is consistent with the vertical 

slice case. 

Both the vertical and horizontal slice analysis indicates that the IBM etching process 

provides roughly consistent surface roughness, which is actually lower than the 

pristine sample for the majority of samples studied. 
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Figure 4. 28: Mean and standard deviation bars for IBM etched samples in the 

horizontal axis as a function of etching depth. 

 

The FWHM values related to the RMS roughness in the vertical axis slices are 

presented in Figure 4. 29, as a function of trench depth. The graph shows that there 

has been a slight rise in FWHM over the studied depth range and etching time. 

However, the maximum variation between the zero and 35nm depth (4 minutes 

etching) is only 1.1nm on the scale of range.  

 

Figure 4. 29: Full Width at Half maximum value for IBM etched samples in the 

vertical axis as a function of etching depth. 
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Furthermore, the linear fit of the gradient of the FWHM value as a function of etching 

depth reveals the inverse trend compared to the citric acid in the vertical case. This 

suggests that the Gaussian peaks will be slightly wider, which was not expected as 

was the case with the citric acid case. However, this is only evident in sample (4-

minute etching) via a depth of 34.3nm. 

Conversely, the FWHM values of roughness in the horizontal slices are shown in 

Figure 4. 30. The graph illustrates that there is a relatively high-fluctuation as a 

function of depth and time etching. This can be as a result of the waviness effect of 

the surface as shown in Figure 4. 13, especially for the non-etched and etched sample 

for 4-minutes, that high-waviness induces a wide range of RMS roughness and 

therefore, FWHM of high-value for these samples.  

 

Figure 4. 30: Full Width at Half maximum value for IBM etched samples in the 

horizontal axis as a function of etching depth. 

 

However, the FWHM values demonstrate an unclear relationship concerning the depth 

and etching. Nevertheless, the interesting point is that the FWHM values for the etched 

samples are less than the non-etched sample, (with the exception of the 4-minute 

etched sample). 
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The RMS roughness using a square area of all the IBM sample trenches has been 

calculated to be the same as in the citric acid case. Figure 4. 31 reveals the relationship 

between the RMS roughness values and the square size. The RMS roughness values 

of 1μm2 square areas are roughly equal, which is also virtually equal to the citric acid 

samples. However, the roughness values start to diverge with increasing area size 

(beyond 4μm2, towards the end of the area size (9.5μm2)). The non-etched sample 

exhibits the highest values of roughness, approximately 4.8nm for analysis on a square 

size of 9.5μm2. The samples that are 1 and 3 minutes etched reveal the lowest 

roughness and are practically similar, (at approximately 3.2 and 3.3nm respectively 

using analysis from the maximum square size). The maximum difference in roughness 

(at maximum analysis size) is of the order of 1.6nm. 

 

Figure 4. 31: Square area average RMS roughness for only IBM etched areas. 

 

The RMS roughness of the samples trench can be measured for the entire area that has 

been analysed with normalised area size for all samples, which is roughly 700μm2 and 

illustrated in Figure 4. 32. This graph reveals that there is a remarkable narrow in RMS 

roughness values as a function of etch depth/time, which is indicated by the linear fit 

applied to the graph. These results interestingly have a similar trend to the mean 

values. 
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Figure 4. 32: RMS roughness for full trench area by IBM versus depth. 

 

4.4 Conclusion 

This chapter has presented a detailed surface oxide of pristine AlInSb/InSb wafer 

surface and roughness analyses for pristine wafer surfaces and etched surfaces by 

means of citric acid wet etching and argon beam milling. The XPS proves the existence 

of surface oxide with thin thickness that need to remove to improve dive performance. 

These two techniques have removed the oxide and modified the Ohmic contact in 

terms of resistivity which studied and substantiation in chapter five. Etch depths 

characterised are critical for Ohmic contact and gate technologies in this material. The 

RMS surface roughness analysis has been described with respect to two different 

orientations of zero and 90o degree AFM tip scan directions which proof of systematic 

in Gaussian distributions of RMS roughness. Furthermore, from this study it has been 

observed that the RMS roughness values vary with square area starting from 

approximately 1nm to less than 6nm, with a saturation value analysed to be with an 

approximately 30μm2 square area. There is high-consistency for the trends in RMS 

roughness analysis against square size and furthermore, mean and median values are 

a substantiation of directions consistency for RMS roughness. Therefore, it can be 

concluded that the effect of AFM tip orientation or the crystal structure on the surface 

roughness measurements is negligible. 
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The most significant results were demonstrated by the citric acid etching, finding that 

the etching depth (proportion with time) has a rate of approximately 2.2 nm/min. 

Whereas, IBM etch in rate of approximately 7.7nm/min. This rapid etching is as a 

result of the high energetic ion that interacts with material. Therefore, wet chemical 

etching is less invasive compared to the dry etching [25]. The etched samples by both 

techniques that were studied here in general showed less RMS roughness than the 

pristine wafer surface. This implies that the etching process interacts reasonably 

uniformly with this material. This is also confirmed by the RMS roughness peak 

FWHM, mean, square size and full area roughness values.  It is important to state that 

the effect of the surface oxide and residue of resist on the first etched sample depth 

value and surface roughness is clear, that slows down the etching acting as a barrier 

layer [17]. 

It should be noted that there are some fluctuations in values in the case of the IBM 

samples that are different to the citric acid results. This can be attributed to the nature 

of interaction of the applied ion and acid, as well as, the velocity of etching. 

Consequently, the high ion energy can generate unpredicted or slightly rougher 

roughness. Furthermore, it is shown that using citric acid and IBM techniques are 

modifying the roughness which not affecting the Ohmic contacts resistance and 

therefore, does not affect the performance of the quantum device. 
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Chapter 5  

 

AlInSb/InSb QW: Contact Improvement Using 

the Transmission Line Model (TLM) 

measurement technique 

 

 

5.1 Introduction 

A common challenge in developing technology in new materials is how to modify the 

surface or interface layer properties in a controlled manner to achieve successful 

Ohmic or desirable rectifying behaviour. As the device size is reduced, the surface 

properties of InSb increasingly affect the performance of the device. One of the major 

challenges with InSb surface bonds, and in general semiconductor surfaces, is their 

uncontrolled reaction with the environment. In particular, InSb surfaces can become 

oxidised spontaneously, which is often driven by humidity. It is therefore difficult to 

avoid the formation of surface native oxides on InSb based material, particularly 

surfaces based around the alloy AlInSb. Consequently, the presence of this interfacial 

oxide layer as well as electronic defects at the interface alters the energy band diagram. 

These two factors can effectively influence the performance of the device by 

obstructing the electron transport [1]. Modification of the InSb crystal surface has been 

investigated here to try to enhance the operation of future devices.  In particular 

developing a low resistance Ohmic contact is an essential part in the development of 

any high-performance electronic device and reliably measuring the contact resistivity 

is a high-priority [2][3]. 

The AlInSb/InSb wafers studied here have been characterised by XPS and EDX 

techniques, (presented in Chapters 3 and 4 respectively).  To avoid AlInSb–oxide 
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interface structures, this chapter presents an approach where the AlInSb surface is 

etched/treated using two techniques: wet etch (citric acid (C6H8O7)) and dry (Argon 

ion beam milling), prior to for metal deposition [4]–[9]. The transmission line model 

(TLM) that was proposed by Shockley is the most commonly used technique to 

investigate Ohmic contact performance [10]. 

In this study, TLM devices are fabricated by photolithography using a Cardiff TLM 

mask design (for further details, see Chapter 3). Ohmic contacts are etched and 

deposited with Ti/Au, with thicknesses 10 and 90 nm, respectively. 

 

5.2 Total Resistance 

The total resistance has been measured for linear TLM devices over a range of 

distances between the contact pads. Citric acid sample etching time and subsequent 

depths are depicted in  Figure 5. 1, and listed in Table 5.1.  Ion beam milling times 

and subsequent depths are depicted in Figure 5. 2 and listed in Table 5.2.  These 

depictions are shown with the QW (blue layer) and the δ-doping layer (green dots) 

position relative to the etched surface. Figure 5. 3 shows a SEM image of a linear 

TLM (LTLM) device design after MESA etching and fine wire bonding. 

 

 
Figure 5. 1: AlInSb/ InSb wafer etching depth using citric acid for samples A–F. 
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Table 5.1: Citric acid samples with etching time and etching depth. 

Sample number Etching time (minute) Etching depth (nm) 

A 0 0 

B 5 10 

C 10 20 

D 15 30 

E 20 40 

F 25 50 

 

 

Figure 5. 2: AlInSb/ InSb wafer etching depth using IBM for samples A–F. 

 

Table 5.2: Ion beam milling samples with etching time and etching depth 

Sample number Etching time (minute) Etching depth (nm) 

A 0 0 

B 1 15 

C 2 20 

D 3 25 

E 4 35 

F 5 39 
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Figure 5. 3: LTLM device with gold wires connected to FEED pads measuring 

resistance for 2–64 μm distances. 

 

Four terminal I-V measurements are taken over a range of temperatures. An example 

of raw I-V-T data from a ⁓2.5μm etch (MESA) depth  LTLM is presented in Figure 

5. 4. Both types of etched samples are measured at room and low temperatures by 

applying voltage and measuring current. The linear I–V characteristic indicates that 

both contacts form good Ohmics (metal/semiconductor).  
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Figure 5. 4: I–V characteristics of LTLM contacts for InSb 2DEG over a range of 

temperatures. 
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The total resistances are deduced from linear fits to the I-V curves at low voltage for 

the citric and IBM samples, which are extracted as a function of the distance between 

contacts, as shown in Figure 5. 5 and Figure 5. 6, respectively. It is reasonably clear 

that the etching process decreases the total resistance significantly when compared to 

unetched contacts in Sample A (zero depth) in both cases (i.e. citric and IBM). 

Interestingly, the lowest resistance has been achieved for Sample B (relatively shallow 

10nm depth), which decreased 86% on average for all contact separations in the case 

of citric acid when compared to the untreated Sample A. Similarly, in the case of IBM, 

Sample B’s (relatively shallow 15nm depth) resistance decreased about 89% on 

average for all contact separations when compared to Sample A. This most likely 

happens because, as mentioned earlier, native oxides are formed on the AlInSb/InSb 

surface even during very short exposure to air, within 80 seconds for the first 

monolayer and ~20 minutes for 3nm [11].  This tends to inhibit the formation of good 

Ohmic contacts [12] in the case of the untreated samples. 

The sequence of citric acid and IBM samples resistances is essentially identical 

because Sample B has lower resistance for all contacts separations—in the range of 

3–9KΩ and 3.9–10.4 KΩ, respectively—then sample C, which has higher resistance. 

Whereas, Samples E and F are almost in the same range of resistances and higher than 

Sample C.  Sample D has the highest resistance among the etched samples. Finally, 

Sample A (non-etched sample) has the highest resistance in both cases (citric and 

IBM), in the range of 30–53KΩ and 45.6–70.5 KΩ, respectively. 
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Figure 5. 5: Total resistance of contacts of LTLM device versus distance with different 

citric etching depths at room temperature using SF1258 wafer. 

 

 

Figure 5. 6: Total resistance of contacts of LTLM device versus distance with different 

IBM etching depths at room temperature using SF1251 wafer. 
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A bending of total resistance curves occurs at short contact separations which comes 

from essentially lower resistances than the fit line. This phenomenon is attributed to 

the leakage current at the top cap layer, which contributes to the current flow and 

results in lower resistance. This is confirmed by Hall bar measurements, which show 

that there are two carriers within the top cap (the QW and some other unidentified 

carrier which is either attributed to the second sub-band of the QW or charge 

remaining within the delta doped layer – this is dependent on design).  This is shown 

in Figure 5. 7. The current flow in two conducting layers has been investigated 

intensively by Look et al using the TLM technique [13][14] and by Ando et al [15]. 

Furthermore, there is potential for leakage current on the top of the surface when Sb 

is oxidised and then leaves the In, which can behave as a (albeit thin) metal conductor 

[16]. However, at low temperatures, the resistance for the top cap layer is much higher 

than the QW. This happens because the electron scattering on the top cap AlInSb and 

at the doping layer can dominate at low temperatures, and also because of the low 

electron activation energy [17]. 

 

 

Figure 5. 7: Carrier concentration in the top cap layer and QW of AlInSb/InSb 

wafer, measured by the Hall technique using bar device in ratio 1/5 dimension. 
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5.3 Temperature Dependence of the Contact Resistivity 

The metal-semiconductor contact can be deduced by assuming that both contacts are 

identical, and both have linear I-V characteristics. The contact resistance for each 

sample can extrapolated from the total resistance curve intercept with the Y axis; as 

shown theoretically in Figure 5. 8 and measured experimentally by Figure 5. 5 and 

Figure 5. 6. Similarly, the value of the contact resistance for each temperature for citric 

and IBM are extracted and calculated. The contact resistivity [18] is then given by  

 𝜌𝑐 = 𝑅𝑐 × 𝐿 ×𝑊 5-1 

where L is the contact pad length and W is the contact pad width. The contact resistivity 

for citric and IBM are presented in Figure 5. 8 and Figure 5. 9, respectively. These 

figures show that the etching process drops the contact resistivity significantly when 

compared with the unetched contacts in Sample A (zero depth) in both cases (i.e. citric 

and IBM) and for all temperatures. At room temperature, Sample A’s (not etched) and 

Sample B’s (10nm depth) contact resistivity are 13.06 mΩ.cm2 and 1.46 mΩ.cm2, 

respectively, which is decreased about 9 times in the case of citric acid. In the same 

way for IBM, Sample A’s (not etched) and Sample B’s (15nm depth) contact 

resistivity are 19.55 mΩ.cm2 and 1.52 mΩ.cm2, respectively, which is decreased about 

13 times. It is worth noting at this point that the trends for citric acid etching and 

etching via IBM are remarkably similar.  Sample C, E and F in both cases (i.e. citric 

and IBM) have relativity low contact resistivity compared to Sample A. Only Sample 

D in both cases (i.e. citric and IBM) has relativity high-contact resistivity compared to 

the etched samples. This may be due to the scattering at the interfacial layer and dopant 

layer for example, but it is not conclusive. 

These figures also show that the contact resistivity increases exponentially as 

temperature goes down in both cases (i.e. citric and IBM). Hence, some form of 

thermionic emission is the dominant current mechanism at room temperature, while 

quantum mechanical tunnelling most likely dominates at low temperatures. 

Furthermore, the presence of an interface barrier between the metal and the 

semiconductor increases insulation as temperature decreases, which reduces the 

carrier transmission and increases the barrier height concomitantly. In addition, the 

barrier height can be increased with decreasing temperature due to the increasing the 
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band gap of the material, depending on Varishni’s equation [19]–[21].  The typical 

barrier height value of a sample is approximately 150 meV, as calculated by the 

Arrhinias method. 

 

Figure 5. 8: A semilog contact resistivity versus temperature for contacts etched by 

citric acid over a range of depth. 

 

 

Figure 5. 9: A semi-log contact resistivity versus temperature for contacts etched by 

IBM over a range of depth. 
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The charge trapping effect is a significant factor that can affect the MS contact by 

obstructing the carrier transition. Trapping charge can influence electron tunnelling 

through the barrier and has been intensively investigated in the case of metal-oxide-

semiconductor (MOS) structures with an ultra-thin oxide layer [22][23]. Essentially, 

the oxide layer has a different bonding state, which disrupts the symmetry and 

increases the energy level that may lie within the semiconductor’s bandgap at the 

interface [3][24] where a positive surface state charge is exhibited [25]. In addition, 

structural defects can behave as a ‘hole’ that enhances the charge trapping [26][27], 

which has been investigated in this type of material by Shi and Christopher [28][29]. 

It is worth mentioning that trapping of the charge inside the barrier can cause non-

linearity of the I-V characteristics by shifting the forward bias away from the backward 

bias [30]–[32], as shown in Figure 5. 10 for example citric and IBM samples at room 

temperature. These figures show that the differential resistance at low voltage can 

greater than at higher voltages. However, the shift in the citric sample is larger than 

that in the IBM sample case, probably because the etching by IBM occurs under 

vacuum inhibiting oxide formation compared to citric acid etch, which is dried and 

exposed to air before metal deposition. 
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Figure 5. 10: I-V characteristics shifting at room temperature in forward and 

backward of (a) citric acid (using SF1258 wafer) and (b) IBM samples (using SF1251 

wafer). 
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Figure 5. 11 displays the measurements in the range of (2) - (-2) volts and 

demonstrates that the barrier is maintained at low temperatures [21][33]. These results 

indicate that the barrier effect may have a more significant influence at low 

temperatures.  

 

Figure 5. 11: I-V characteristics shifting forward and backward in a range of 

temperatures for IBM sample. 

 

5.4 Temperature Dependence of the Sheet Resistivity 
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represented in a semilogarithmic plot for citric acid and IBM samples and is shown in 
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device on any of these samples. It is noticeable from Figure 5. 14 that the carrier 

concentrations of citric and IBM samples (red dots) are lower than the normal, more 

common wafers studied (blue dots) and they decrease sharply at temperatures ~<120K 

rather than gradually for temperatures >77K for a typical wafer. The main reasons for 

the low carrier concentration are affective carrier trapping inside the barrier and 

structural defects, especially at low temperatures. In addition, the wafer doping may 

have been low through fabrication process by MBE, or the dopant atoms may have 

defused away from the middle of the top cap layer or trapped in the structural defects. 

Furthermore, structural defects, micro-twins and threading dislocation in InSb QW 

have fundamental effects on electron mobility at room temperature [28][34] and low 

temperatures, and it is not clear that these aren’t the same as the more commonly 

studied samples (compared to sample studied for example by Hayes et al, and Orr et 

al [35][36]. 

 

 

 

Figure 5. 12:  A semilog plot of the sheet resistivity for AlInSb/InSb QW 2DEG of 

citric samples. 
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Figure 5. 13:  A semilog plot of the sheet resistivity for AlInSb/InSb QW 2DEG of IBM 

samples. 

 

 

Figure 5. 14: A semilog plot of the carrier concentration as a function of temperature 

for typical AlInSb/InSb QW (blue dots) and one of the samples (red dots) conducted 

by hall bar devices.  Low carrier density data beyond 70K is unreliable due to 

inconsistent Hall data (high resistivity). 
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5.5 Etching Depth Dependence Contact Resistivity 

Due to the importance of contact resistivity, it is interesting to present and discuss it 

as a function of etching depth into the top cap layer of the wafer. As previously 

described, there are two significant aspects: the oxide layer on the semiconductor 

surface and δ-doping layer nominally in the middle of the top cap layer. As shown in 

Figure 5. 15, the MS contact resistivity was achieved at 300K as a function of etching 

depth displaying the contact position. For example, Sample A’s contact is directly set 

on the oxide, which results in the highest resistivity among the etched samples in both 

cases (i.e. citric and IBM). This can be attributed to the insulating effect, which 

influences current transportation at the interface. Whereas, the MS contact at 10–20nm 

depth has a significant decrease in resistivity, due to the removal of the oxide layer. 

However, at the δ-doping layer, the resistivity value has increased slightly. This can 

be attributed to a combination of electron scattering directly by the MS interface 

barrier and the δ-doping layer simultaneously [37][38]. 

The roughness behaviour as a function of depth in Chapter 4 for citric and IBM 

etching—as shown in Figure 4.21 and Figure 4.31, respectively—has almost the same 

behaviour as contact resistivity at 300K. This may indicate that the wafer surface 

roughness before and after etching is related to the carrier transmission, even at a few 

nanometres. 
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Figure 5. 15: Contact resistivity as a function of citric acid and IBM etching depth 

into top cap layer (AlInSb) at 300K.  This curve shape is important and shows a 

significant improvement within the region just short of the delta doping plane.  This is 

effectively the first rigorous confirmation of what has been done through anecdotal 

speculation previously. 

 

 

Contact resistivity has been measured over a wide range of temperatures and can be 

translated to a function of depth.  This is shown in Figure 5. 16 and Figure 5. 17 for 

citric and IBM, respectively, as semilogarithmic plots. The contact resistivity behaves 

the same as temperature falls, except that the contacts for 20nm etch depth starts 

increasing comparatively more than the others in the citric acid case at temperatures ≤ 

220K. This can be attributed to the vicinity of the contact interface to the δ-dopant 

layer. Meanwhile, in the case of IBM, this phenomenon can be realized for contacts at 

20nm and 35nm depths with temperatures ≤ 280K, which similarly is likely due to the 

effect of the δ-dopant layer. 
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Figure 5. 16: A semilog of the contact resistivity as a function of citric acid etching 

depth into top cap layer (AlInSb) over a range of temperatures, once again showing 

clear enhancement of contact conductivity over the region of the delta doped layer. 

 

 

Figure 5. 17: A semilog of the contact resistivity as a function of IBM etching depth 

into top cap layer (AlInSb) over a range of temperatures. 
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5.6 Conclusion 

In conclusion, a systematic study of etch depth for commonly used contacting 

techniques for InSb/AlInSb QW heterostructures has been performed.  The MS 

contacts have been described before and after wet and dry etching using the TLM 

technique.  This has been used to investigate the contact resistivity as a function of the 

temperature and etching depth, and sheet resistivity as a function of temperature. 

The results show a drastic decrease of the contact resistivity as a function of the depth 

compared to the non-etched sample in both cases (i.e. citric acid and IBM), which is 

mainly due to the removal of the oxide layer. In addition, the contact resistivity is 

increased exponentially as temperature decreases in both cases (i.e. citric acid and 

IBM), which is attributed to electron activation energy and the presence of a barrier in 

the conduction band of the material. The doping layer and surface roughness play a 

role in affecting the electron transport through the contact position at the dopant layer, 

which can come from scattering. In these samples cases the sheet resistivity increases 

as temperature decreases due to a very low carrier concentration and very low doping 

concentration. Consequently, there may be a charge trapping effect between the 

barrier, and the presence of significant structural defects. 

Finally, these results contribute toward the use of crystalline oxide passivation to 

develop electron transportation and enhance device performance. Moreover, surface 

roughness is related to the carrier transmission, even at a few nanometres and at low 

temperatures. 
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Chapter 6  

 

 

Quantum Transport in InSb Nanoscale Split-Gate 

Structure 

 

 

6.1 Introduction 

It has been shown that perfectly good two-dimensional electron gases can be formed 

in narrow gap InSb QWs (Chapter 5).  They are assessed as a promising candidate for 

conductance quantization (nanowires), nanosails and quantum point contact device 

investigations [1]–[8].  However, InSb QWs have substantial challenges because of 

the crystal structure defects, and also from the ambient environment and device 

fabrication which limits contact resistance.  As a result, to date, there is only one rather 

unconvincing conference proceedings report of surface gated InSb split gate operation 

in the literature [9]. 

Surface gating is essential if a truly scalable quantum technology based on planar 

semiconductor qubits is to be realised (either charge or spin based).  Whilst in plane 

gates have successfully demonstrated the potential for this material [7], surface gating 

remains elusive in part due to the thermal budgets for processing which inhibit truly 

leak free dielectrics.  However, it is not just qubit and entanglement-based quantum 

computation that is the driver for this work, but the rich spin-based physics that can 

be investigated in extremely high g-factor material. 

Electron transport behaviour in these materials dramatically changes when the 

conduction is restricted to two-dimensions, as discussed in Chapter 2.  The 
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conductance cannot be described on a macroscopic scale when the length scales are of 

the order of the Fermi wavevector because these dimensions are often smaller than the 

ballistic mean free path.  Consequently, scattering in the QW cannot play a role in the 

transport process and, generally, transport equations for the microscopic must be 

derived. Semiconductor materials are an effective tools to characterize the electron 

transport in this aspect because the energy separation between transverse modes in a 

low-dimensional semiconductor device are always inversely proportional to the 

effective mass, in the same way as for sub-bands in a parabolic potential [10]. 

In this chapter, a range of device geometries are fabricated to investigate ballistic 

transport of electrons in low-dimensional InSb structures using surface gated devices 

to restrict the degrees of freedom (dimensionality) of the active conducting channel. 

In the devices reported here, the source-drain contact design is relatively small at 

3x24μm with two different etching techniques over a range of depths.  Different 

designs of gates (line, loop and solid discussed later) have been used over a range of 

gate dimensions.  Consistent measurement of quantised conductance would be 

promising for both low power electronics and low temperature transport physics where 

split gates are typically used for charge sensing.  

This chapter presents the best experimental results of quantization conductance 

obtained for the different geometries of gate, and some model consideration of the 

implications of the material choice.  Interestingly a possible 0.7 anomaly was observed 

with a loop gate structure, the study of which was the initial aim of this project.  

Section 6.3 will describe the influence of various scattering mechanisms and main 

physical limitations on conductance quantization in the 2DEG. 

The wafers used in this research are grown in Qinatiq including Dealhead and 

Blencathra and SF wafers in Sheffield III-V centre with their mobility and carrier 

density. These wafers have been fabricated and tested at Cardiff university using Hall 

bar measurement. These wafers information is reported in Table 6.1. 
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Table 6.1: The used wafer including names, carrier density and electron mobility at 

3K measurements. 

Wafer name Carrier density n2D 

(cm-2) 

Mobility μ 

(cm2/Vs) 

Daelhead 3.96×1011 130300 

Blencathra  4.86×1011 126200 

Sheffield (SF0900) 4.11×1011 223000 

 Sheffield (SF0901) 4.44×1011 203791 

Sheffield (SF0965) 3.04×1011 203945 

Sheffield (SF0968) 2.2×1011 147000 

Sheffield (SF1054) 3.75×1011 244465 

Sheffield (SF1055) 3.06×1011 234666 

Sheffield (SF1056) 2.14×1011 195320 

Sheffield (SF1057) 4.24×1011 231192 

Sheffield (SF1258) (TLM-citric) 4.87×1011 201903 

Sheffield (SF1251) (TLM-IBM) 7.56×1010 147708 
 

Because of the PMGI residue on the sample surface and uneven MESA etching, the 

number of nonbroken sample is few and less for good ones but increased with 

developing the sample process fabrication. So, the nonbroken or measurable are only 

0.38% device compare to fabricated devices. Whereas, the good devices are only 10% 

from the measured which is only 0.038% from the fabricated devices. Figure 6. 1 

shows the evaluation way and random distribution of broken and non-broken devices 

using SEM for all devices in different magnifications, checking the FEED pads, arms, 

gate structure, gate bridges and isolation in between the device structures after MESA 

etching. 
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Figure 6. 1: Schematic diagram of one field of 12 fields as one sample. So, each sample 

contents 360 device. 

 

6.2 InSb 2DEG Quantized Conductance 

The quantized conductance of an AlInSb/InSb QW 2DEG was measured using split 

gates devices at a temperature of 2.7K. The distance between the Ohmic contacts for 

all devices was ~2μm, while the gates were a range of designs and dimensions as 

reported in Chapter 3. Figure 6. 2 shows the used gates and the novel loop gate. The 

SEM images in Figure 6. 3 show the top view of the whole device structure.  Image 

(a) shows the FEED pads for wiring and their arms, which are fanned out from the 

central island.  This island is the effective active area of the 2DEG.  Image (b) shows 

the air bridge arms of the gate structures.  This airbridge technique is designed to 

inhibit the leakage current coming from the gate arms by minimising the area of 

contact. Finally, image (c) shows three pairs of line structures, where each gate has 

approximately 100nm length (line width) and 250nm width (gap) (see chapter 3 Figure 

3.5) on the island surface. The MESA etching is problematic and inconsistent, as can 

be observed in Figure 6. 3 (a).  In general, this is believed to be due to issues with 
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residue from the PMGI (SF6) photoresist process; however, etching is well defined 

around the island in some devices. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. 2: Schematic diagram from the e-beam GDSII files of some of the gate 

structures including; 3 pairs of straight forward (e-beam single pixel) line gates, novel 

loop gates that minimize contact area, and solid gates including funnel gates that 

minimize back scattering within the emitter contact. 
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(a) 

 
(b) 

 
(c) 

Figure 6. 3: SEM images of a split-gate device: (a) the whole device including bond 

pads, (b) small Ohmic contacts, three pairs of air bridge structures and the middle 

island, and (c) high-magnification of the three-line gate structure. 

 

Measurement proceeds by applying AC voltage on the source-drain contacts (in order 

to measure conductance) and DC voltage on the surface gate, in order to increase the 

potential above the Fermi level and form a constriction in the 2DEG between the 

source-drain contacts, which will increase the resistance. Figure 6. 4 shows a 
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simulation of the potential of a typical surface split-gate structure and the applied 

voltage modulated as a function of the dimensions.  The constriction is formed in the 

2DEG at its maximum gap width, which is approximately equal to the e-lithographic 

width of the opening in the gate. Lowering the gate voltage Vg, the constriction width 

is reducing until it fully pinches off. This phenomenon can be observed through 

measurement of the I-V characteristic gradient change over the gate voltage in Figure 

6. 5. This figure shows the gate leakage current with a maximum value of (2.90×10-

4) mA at zero bias which corresponds to the maximum applied gate voltage and 

maximum resistance. 

 

 

Figure 6. 4: Split-gate structure on the 2DEG Surface with applied voltage scale as 

a function of lithography dimensions. 
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Figure 6. 5: Source-drain I-V characteristic over a range of gate voltages of split-

gate device for AlInSb/InSb QW 2DEG, with shifting towards negative voltage of 

current value at zero bias as a leakage current. 

 

Figure 6.6 (a) shows a theoretical plot of the energy of three sub-bands as a function 

of wave vector (k), while Figure 6.6 (b) explains the theoretical modulation of 

conductance quantization plateaus of an InSb QW 2DEG (using equation 2-25) at four 

different temperatures.  This model has considered a temperature dependence of the 

bandgap according to the Varshni’s equation (2-1), tending toward more accurate 

results.  Increased temperature causes thermal activation, which leads to smearing out 

of the plateaus, which disappear completely at elevated temperatures.  However, this 

is extreme for InSb due to the light mass particle which results in large energy sub-

band separation (In fact smearing happens when the thermal energy becomes 

comparable to the sub-band splitting). This can be also, understood by the Fermi-Dirac 

distribution [11],  

 𝑓(𝐸 − 𝐸𝐹) = [1 + 𝑒(𝐸−𝐸𝐹)/𝐾𝐵𝑇]
−1

 (6-9) 

where E is the band energy, EF is the Fermi energy, KB is Boltzmann constant and T 

is the temperature. 
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(b) 

Figure 6.6: Theoretical conductance quantization in InSb QW 2DEG: (a) the energy 

of three energy sub-bands as a function of wave vector (k) and, (b) quantization 

plateaus corresponding to these energy sub-bands as a function of the gate voltage at 

four different temperatures. 

 

Conductance can be calculated from the measured resistance as a function of gate 

voltage. Figure 6.7 shows the quantized conductance plateaus of two steps in units of 

2e2/h measured as a function of the voltage applied to one set of the line-gate structure 

shown in the previous SEM image (Figure 6. 3). These results are produced by using 

an applied source-drain voltage range of -20 to +20 mV and a gate voltage (on a single 

pair in the range of 0 to -3 V). The device was made from a ‘Blencathra’ wafer 2DEG 

with 30nm QW layer thickness. The device contact resistance is about 10kΩ, at 2.7K 

and without applying gate voltage. As the gate voltage increases further, the 

conductance reduces until the channel is completely pinched off at -3 V. The quantized 

conductance is pinched off whenever the Fermi level is at the band bottom of the (n 

+1)th transverse sub-band G = n (2e2/h) [12]. 
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Figure 6.7: Quantized conductance of a simple split-gate device for an AlInSb / InSb 

2DEG with island mesa design. 

 

In this figure it can be seen that the gate structure pinches off the quantized 

conductance. This even happens with the presence of leakage current in the top cap 

layer that contributes to current, the effect of which has been previously investigated 

in heterostructure materials by Feuer [13]. 

The second device is a split line gate device with Ohmic contacts of the same design 

but with a (smaller area) bar active region and two small isolated islands mechanically 

supporting the air bridges, as presented in the SEM images in Figure 6.8. 

 
(a) 

 
(b) 

Figure 6.8: SEM images of the split-gate device: (a) Ohmic contacts, three pairs of 

air bridge structures; and (b) three-line gates structure. 
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The applied voltage on the source-drain contacts range from -4 to +4 mV and the gate 

voltage from 0 to -0.8 V, which is less than the previous island mesa case. This can be 

attributed to the gate structure quality, which could depend on the Schottky barrier 

magnitude or on the PMGI photoresist residue issue under the gate. This device has a 

resistance of about 35kΩ, at 2.7K without applying gate voltage.  Figure 6.9 shows a 

set of four albeit poor quality steps of N (2e2/h), with one step smeared out or 

disappearing at 3N. The smearing of this step is likely due to scattering as a result of 

the high-resistance of the contacts, which produces scattering near the channel and can 

exhibit an oscillation [14]. 
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Figure 6.9: Quantized conductance of split-gate device for AlInSb / InSb 2DEG for 

bar design with island supported bridges measured at 2.7K. 

 

The third device studied here is a split solid and loop gate device, whose gate is 100nm 

in length and 100nm in width for the solid, and 300nm in length and 100nm in width 

for the loop structure. In this instance, the gate structure has been deposited with a 

30nm silicon dioxide (SiO2) layer as an insulator beneath the Ni/Au to reduce the 

leakage current. The device structure is shown in the SEM images in Figure 6.10.  
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(a) 

 
(b) 

 
(c) 

Figure 6.10: Progressive magnification of SEM images of split-gate device: (a) the 

whole device, (b) Ohmic contacts, three pairs of air bridge structures and the middle 

island, and (c) high-magnification, two (solid and loop) gate structures. 

 

Due to the oxide layer of the gate structures, the applied effective gate voltage is much 

greater than without an oxide layer; as shown in  Figure 6.11, which exhibit a low 

leakage current. However, some samples exhibit a leakage current through their gates 

when a high- voltage is applied. The gate used in this particular measurement is the 

solid line structure. The resistance is approximately 3 kΩ, at 2.7K without applying a 

gate voltage. This happens because the etching of the Ohmic contact with IBM for 30 

sec decreases the contact resistance. Figure 6.11 just shows the results of two 
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quantized conductance steps, with a pinch off at 6.5V gate voltage, which is relatively 

high due to the oxide layer under the gate metal. 

 

 

Figure 6.11: Quantized conductance of split-gate device for AlInSb/InSb 2DEG, 

after series resistance subtraction. 

 

The fourth device design studied is a split loop gate device with a ratio (length/width) 

of two (for 600nm and 200nm loop structure).  They are also deposited with a silicon 

dioxide layer (SiO2) under the gate metal (Ni/Au). (n.b. This gate design allows the 

use of any pair of six connections to apply the gate voltages in case of any breaking 

issue with some of the air bridges). The successful gate structure fabrication and 

definition using E-beam lithography and deposition of the device is presented in 

Figure 6.12 using SEM. 
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(a) 

 
(b) 

Figure 6.12: SEM images of split-gate device: (a) Ohmic contacts, three pairs of air 

bridge structures and the middle small island, and (b) loop gate structure. 

 

This gate structure needs a high- voltage to constrict the current in the QW, due to the 

oxide layer of the gate as shown in Figure 6.13 and Figure 6.14. Meanwhile, Figure 

6.13 shows results of two clear quantized conductance steps. Interestingly, the first 

after series resistance correction is at 0.7 (2e2/h) conductance.  This could be attributed 

to a commonly observed transport anomaly [15][16]. The main plateau after correction 

is at (2e2/h), with pinching off with nearly zero conductance at ⁓5.5 volts by the gate. 

Non-zero conductance in this case could be due to a leakage current transport from the 

gate structure. The conductance is correlated to the split-gate length/width ratio [17] 

whereas, 0.7 anomaly reduces as the curvature of the potential barrier becomes 

shallower. When the confinement becomes shallower, the sub-band spacing becomes 

closer [18]. In addition, the 0.7 anomaly can disappear below at a specific temperature 

but can be enhanced by an external magnetic field, considering the g-factor of  material 

[19]. Furthermore, the plateau’s flatness depends on the gate length and width of the 

1D channel [20]. 
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Figure 6.13: Quantized conductance of split-gate device for AlInSb / InSb 2DEG for 

island design at 2.7K. 

 

Figure 6.14 shows two obvious quantized conductance steps at one and two (2e2/h) 

and an unclear 0.7 conductance anomaly (at ~ -4.6V), after subtraction of series 

resistance with a pinch off at ⁓ -5.3 volts [21]. 

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5
0.0

0.5

1.0

1.5

2.0
Experimental data

 Smoothing data

 After subtraction

 10 pts SG smooth of "G"

G
 (

2
e

2
/h

)

Vg (V)

0.7 anomaly

 

Figure 6.14: Quantized conductance of split-gate device for AlInSb/InSb 2DEG, after 

series resistance subtraction at 2.7K. 
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The oscillations on the conductance plateaus in Figure 6.9, Figure 6.13 and Figure 

6.14 are due to a transmission probability that is associated with reflections at the 

entrance and exit of the channel constriction [11]. In addition, the shape and strength 

vary from device-to-device, depending on the uncontrolled variations in the confining 

potential, such as a quantum interference effect associated with electron 

backscattering that is caused by impurities or defects near the constriction [11]. A MS 

contact barrier will result in additional backscattering events, which exhibits a further 

smearing out of the quantized conductance plateaus. 

 

6.3 Limitations of Conductance Quantization 

Many factors can affect the quantized conductance plateaus. In fact, threading 

dislocations (TDs) can significantly affect these by carrying an electrical potential due 

to accumulation of dopant or the presence of charged traps [22]. The leakage by TDs 

and carrier hopping between these traps can also significantly degrade the device’s 

performance [23][24]. In particular, TDs enhance the conduction on the surface [25], 

which exhibits device-to-device variability due to formation of multiple parallel paths 

of current with different conductivity [26]. Furthermore, the TDs severely reduce the 

carrier mobility in QW due to the scattering process, which affects the conductance 

plateaus [27]–[30].   

The quantized conductance plateaus can be smeared out and disappear due to 

scattering by impurity and/or TDs, either inside or near the constriction [12][31]. Also, 

the presence of a contact barrier near the ballistic channel, distorts the plateau’s 

structure at interface scattering [14][32][33]. Electron scattering formed at the 

interface of AlInSb/InSb heterojunctions layer has been investigated by Nash [1][34]. 

The source-drain contacts interface barrier and it’s high-resistance increase 

exponentially as temperature decreases, which has been discussed in detail in Chapter 

5. Furthermore, surface roughness and dopant scattering (discussed in Chapter 5) can 

affect the mobility and the conductance plateau’s structure, especially due to the 

roughness of the etched side walls [35][36]. 

The presence of dangling bonds at the semiconductor surface is responsible for the 

main leakage current on [37] the top cap, especially in short distance between the 
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source-drain contacts (as discussed in Chapter 5). This contributes to the drain current 

and affects the plateau structure. 

These AlInSb/InSb QW 2DEG devices remain challenging because of the high-

density of dislocations within the AlxIn1-xSb buffer layer, starting from the substrate 

to the wafer surface, as measured by Transmission Electron Microscope (TEM).  

Figure 6.15 shows a cross-sectional micrograph of AlInSb/InSb wafer with 4.2x109 

cm-2 defect density for AlSb layer on the substrate (GaAs), 6.0x109 cm-2 for buffer 

layer and 1.0x109 cm-2 for cap layer that positioned on top of the QW layer. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Cross-sectional TEM image of an AlInSb/InSb wafer explaining why a 

high- density of TDs are propagating through the structure with the growth direction. 

Courtesy of Dr Richard Beanland – Warwick University.  

 

Figure 6.16 shows a schematic diagram the main scattering processes can be presented 

in AlInSb/InSb split-gate devices, including scattering at: source-drain contacts, 

dopant scattering, threading dislocations in the QW, reflections at the entrance and 

exit of the channel constriction and presence of charged traps. In addition to the 

leakage by TDs and dangling bonds on the surface. 
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Figure 6.16: A schematic diagram main scattering process elements can be presented 

in AlInSb/InSb split-gate devises. These scattering elements; Ohmic contacts in both 

sides with electron reflection, doping layer and TDs scattering in the QW and top cap.  

 

6.4 Conclusion 

In conclusion, conductance quantization has been observed and investigated in 

AlInSb/InSb 2DEG QW heterostructures using electrostatic confinement by different 

designs of split-gate structures. Measurements of quantized conductance in the split-

gate device are direct evidence of ballistic transport and controlled mode occupation. 

A split-gate device fabrication process has been developed. However, even when 

using chemical cleaning and ashing techniques resists residue has proved to be 

problematic resulting in low device yield, increasing the number of broken devices. 

By etching the AlInSb/InSb contacts using wet and dry techniques, the source-drain 

contact resistance is significantly decreased, and this enhances the device’s 

performance enough to observe conductance quantization. At the commencement of 

this thesis work it was impossible to see conductance quantization steps due to 

prohibitively large ohmic contact resistance (which was greater than the quantised unit 

of conductance for these devices). Development of the contact resistance has enabled 

rudimentary observation. In some cases, it is still necessary to subtract the contact 

resistance to see these plateaus which loses definition (and effectively data). 

Furthermore, using a cold deposited oxide layer deposition for the gate structure has 

been shown to reduce leakage current. In addition to the variety of gate structure 

designs, the airbridge technology helps to decrease the leakage current by decreasing 

the active contact area. These results show that the AlInSb/InSb QW 2DEG wafers 
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with 30nm QW can be used to investigate conductance quantization further, although 

with some fundamental physical limitations related to structural defects and the 

fabrication process. 

Furthermore, the 0.7 conductance anomaly has been observed using a split-gate device 

with a novel loop structure in the ratio of 2 for length/width with (600nm and 200nm) 

deposited with a silicon dioxide layer (SiO2). This emphasis that the 0.7 anomaly 

conductance is correlated to gate’s dimensions. 

Finally, these results need further investigation depending on the characterizations and 

developments in Chapters three, four and five, which will enhance the device’s 

performance and the electron population in the QW. 
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Chapter 7  

 

 

Conclusion and Future Investigation 

 

The potential for this material is in spin-based physics and the possibility of 

developing all electrical spin-based qubit systems for quantum information. However, 

the technology is immature in the extreme, and basic knowledge of issues such as 

ohmic contacting and gate technology hold progress back. This thesis has been 

concerned with material characterisation, device component design, fabrication, 

measurement, and basic modelling of InSb/AlInSb 2DEG heterostructures for use in 

such quantum systems. A number of electronic transport phenomena have been 

studied over a wide range of temperatures using 30nm InSb quantum wells that are 

modulation doped, with the aim of extracting material parameters pertinent to electron 

transport mechanisms in metal/semiconductor contacts and ballistic transport in 

conducting 1D channels. The main fields of investigation and outcomes discussed in 

the previous chapters can be summarised as follows: 

i. Wafer Characterisation 

Material characterisation was performed of the active layers of AlInSb/InSb 

QW 2DEG wafers, including electrical assessment, AFM, EDX, and basic 

XPS. The wafer and active device surfaces have been characterised using 

EDX, observing the surface elements and contamination layers coming 

through various processing steps. In addition, the surface roughness of the 

wafer has been characterised and analysed using AFM to evaluate any effect 

of roughness on the Ohmic contact stack and its resistivity before and after two 

key etching techniques (Dry and wet etch). 

ii. Cleaning and etching 



 

 
149 

 

A cleaning process was developed as a result of EDX outcomes, while the wet 

and dry etching techniques that have been used resulted from XPS outcomes.  

The etching area was characterised in terms of surface roughness that effected 

directly the contact resistivity. The surface roughness along with recess depth 

into QW layer has been investigated in relation to the dopant layer and the QW. 

iii. Metal-semiconductor contact resistivity evaluation 

TLM measurement has been shown to be a good technique which offers a good 

understanding of the electron transport mechanisms of the MS interface and 

for evaluating the contact resistivity. Ohmic contact resistivity has been 

investigated as a function of etching depth over a wide range of temperatures 

in order to understand and optimize the resistivity. 

iv. Quantization of conductance in InSb QW 2DEG with a variety of gate designs. 

InSb QWs were used to study the quantization of conductance by electron 

ballistic transport.  This was done with limiting Ohmic contact resistivity and 

in some cases significant gate leakage, however conductance quantisation was 

observed regardless of crystal structural defects. Several surface metal split 

gate devices were designed to attempt to minimise leakage currents including 

novel loop gate structures. Many trials were performed using different 

fabrication processes to develop the fabrication process and produce good 

devices with low contact resistance, good lift off, and non-broken air-bridges 

gates.  

Broadly, the investigations in Sections i, ii, iii and iv are described in detail in Chapters 

3, 4, 5 and 6, respectively. This chapter briefly summaries the main results of these 

studies and it makes some recommendations for further investigations. 

 

7.1 Conclusions 

There are three areas of significant advancement in this work.  Firstly, hard fought 

process development for nonstandard processing.  This includes new cleaning and dry 

ashing techniques which were used to remove photoresist residue on surfaces, 

previously plaguing device realisation, which come from the sample fabrication 

processing steps and has been observed on the wafer and samples previously limiting 
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for example MESA isolation and gate operation. The development of more successful 

cleaning routines has resulted in modified (and more consistent) contact resistance, 

increases the number of non-broken air-bridge gates, and produces more uniform 

MESA etching. Wet and dry etching techniques were used to remove the 3nm thick 

observed oxide layer on the AlInSb/InSb wafer surface (Chapter 4). The etching was 

achieved for different depths towards the QW, while observing any change in RMS 

roughness affecting the contact roughness and resistivity. The RMS surface roughness 

analysis was described for both techniques that were studied in Chapter 4 (dry and wet 

etch) and showed less RMS roughness than the pristine wafer surface. This indicates 

that the etching process interacts reasonably and uniformly with this material which is 

also confirmed by the RMS roughness peak FWHM, mean roughness and full 

normalised area roughness values.  In addition, it is important to state that the effects 

of the surface oxide and resist residue on sample etch depth and surface roughness are 

clear. The resist residue obstructs the etching, which acts as a barrier layer. 

Furthermore, both etching techniques modified the roughness, which decreased the 

Ohmic contacts resistance and ultimately enhanced the performance of the quantum 

device. 

The metal-semiconductor contact resistance, resistivity and the InSb QW sheet 

resistance were evaluated using the TLM technique after removing the oxide layer and 

using new cleaning techniques. The source-drain (I-V) characteristic of the Ohmic 

contact showed an interfacial barrier that increases the resistivity at both room 

temperature and low temperature for all etched samples and which was more obvious 

for non-etched samples. The TLM technique evaluated and showed a drastic decrease 

of the contact resistivity as a function of the recess depth compared to the non-etched 

sample in both cases (i.e. citric acid and IBM), which is mainly due to the removal of 

the oxide layer and new cleaning techniques. In addition, the contact resistivity is 

increased exponentially as temperature decreases in both cases, which is attributed to 

some electron activation energy and the presence of a barrier. The doping layer and 

surface roughness play a role in affecting the electron transport through the contact 

position at the dopant layer, which can come from scattering. Furthermore, the 

roughness has an indirect effect, the low roughness decreases the density of defects 

created through wafer growth. Meanwhile, the sheet resistivity increases as 

temperature decreases, due to a very low carrier concentration and very low doping 
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concentration. Consequently, there may be a charge trapping effect in the barrier and 

structural defects. These results contribute toward developing electron transportation 

and enhance device performance. 

Many trials were performed using different fabrication processes in order to develop 

new fabrication processes for this material and produce good devices with low contact 

resistance (using the results in Chapter 5), good lift off, non-broken air-bridges gates, 

eliminate leakage current through the gates, and even MESA isolation. Chemical 

cleaning and ashing techniques were substantial steps to develop for the fabrication 

process however using an oxide layer deposition for the gate structure significantly 

reduced the gate leakage current. 

Several thousand split gate devices have been fabricated, but only ⁓0.038% devices 

can be measured in low temperature at (2.7K) to obtain the quantization conductance. 

Quantisation conductance steps have been observed in InSb-based heterostructures 

with electrostatic confinement by surface metal split gates.  This has only been 

reported once in the literature, with very poor form for the I-V.  The low temperature 

ballistic transport length has been shown elsewhere (Chapter 4) to be sufficiently large 

for the gate dimensions used, and this has been confirmed by the presence of transport 

effects consistent with discrete quantised states. Therefore, quantized conductance 

measurements in the split-gate device are direct evidence of ballistic transport and 

controlled mode occupation. The 0.7 conductance anomaly has possibly been 

observed using a novel loop split-gate device in the ratio of 2 for length/width which 

was deposited with an insulator layer.  These gate devices show great promise for 

maximising channel length but holding gate leakage to a minimum as a result of 

reduced surface area contact with the active layer. 

 

7.2 Future work 

All the results of characterizations and developments presented in Chapters 3, 4, 5 and 

6, would benefit from further study to enhance the device’s performance, contact 

resistivity, electron mobility, ballistic transport and the electron population in the QW.  

It is imperative for InSb technology that routine processes must be as reliable or better 
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than standard GaAs material.  These further investigations would likely focus on 

several key areas: 

1. Development of AlInSb wafer growth by using interlayers or superlattice 

buffers, decreasing the surface roughness, or using a different substrate that 

has less mismatch with the  AlInSb material to eliminate or prevent the 

production of threading dislocations that decrease scattering mechanisms, 

enhance ballistic transport and yield improving electron mobility in this more 

promising material than GaAs. 

2. Development of the Ohmic contact resistivity by rapid thermal annealing 

(RTA) technique or heating up the sample to less than 180oC for long time can 

help to diffuse Ohmic contact metals down towards the first semiconductor 

layer (AlInSb/InSb), which can eliminate the interfacial layer and remove the 

potential barrier and enhance the linearity of the I-V characteristic [1].  So far 

rapid thermal annealed contacts for this material have eluded the community. 

3. A low IBM etching rate can be used by decreasing the etching power 

(discharge voltage and current), which might be able to remove surface 

defects, minimising the RMS surface roughness. This may reduce and modify 

the contact resistivity [1]. 

4. Split gate devices can be fabricated without using bilayer (containing PMGI 

(SF6)), especially with Ohmic contacts fabrication by using alternative 

photoresist or spin thick layer of (S1805) photoresist, because of the 

difficulties of cleaning after heat has been applied through the fabrication 

process steps. 

5. The quantization conductance should be measured using a range of space 

between Ohmic contacts and at a wider range of sample temperatures to 

observe step fluctuations or smearing, which can be enhanced by applying a 

magnetic field [2][3]. 

6. It would be beneficial for these devices to be measured with a vertical magnetic 

field, which should allow the investigation of the large Zeeman spin-splitting 

of confined states predicted using the large g-factor of InSb. The 0.7 

conductance anomaly requires further investigation using split gate devices 

that have a range of gate sizes, temperatures and magnetic fields. 
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Appendix 

 

A.1 Circular Structure (CTLM) 

Study of Ohmic contacts can be achieved by alternative geometry of TLM in circular 

structure, which is abbreviated to CTLM. This geometry only requires one lithography 

step without a mesa etching step. Thus, excluding them could simplify the fabrication 

process. Consequently, the use of a CTLM structure can reduce the errors that are 

introduced by the lateral current crowding and this can achieve a more symmetrical 

current flow pattern by eliminating the edge effects that are always present in linear 

TLM structures [1]–[4]. 

This structure is important in enabling a quick experiment with III-V heterostructure 

material [5]. A typical planar structure is shown in Figure A. 1, which describes a 

geometry with one disc and one ring. 

 

 

 

R1 

R2 
d 

Figure A. 1: Top view of typical CTLM structure explaining the radii of the inner 

disk, outer ring and the gap in between them. 
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This geometry involves a current flow under and through the interface of the contacts. 

The resistance R between contacts for the circular configuration follows the equation 

[3][6]: 

 
𝑅 =

𝑅𝑠ℎ
2𝜋

[ln
𝑅2

𝑅2 − 𝑑
+ 𝐿𝑇 (

1

𝑅2 − 𝑑
+
1

𝑅2
)]   (A-1) 

where Rsh is the sheet resistance of the material, R2 is the radius of the outer circular 

contact, d is the gap spacing and LT is the transfer length. 

The nonlinear relationship between resistance and the gap distance is apparent with 

CTLM because of the geometry. When the ring radius to gap ratio is large, the ring 

contact geometry reduces to the standard TLM structure that has a linear relationship 

by normalising the data with a correction factor for each gap spacing [7]. These 

correction factors are essential to compensate for the difference between the TLM and 

ring layouts to get a linear fit to the data. Without the correction factors, the specific 

contact resistance would be underestimated [8]. The equation describing these 

correction factors is described by [9]: 

 
𝐶 =

𝑅1
𝑑
ln
[𝑅1 + 𝑑]

𝑅1
   (A-2) 

where R1 and d are the disk radius and the gap spacing, respectively. The experimental 

CTLM data is divided by the calculated correction factors to arrive at values that can 

be used to compare to a linear fit. Figure A.2 shows a typical measured resistance as 

a function of the gap spacing, with nonlinear curve (red squares), which can be 

transformed into a linear relationship using the correction factors (blue circles). 

Therefore, from this linear fit, the specific contact, sheet resistance and so on can be 

calculated properly [9]. 

The results of the CLTM structure not very good and need more analysis or fabrication 

new devices to be considered. 
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Figure A. 2: The resistance for circular structure versus gap spacing before and 

after applying the correction factors. 
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