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Summary of thesis

In this thesis we will see two targeted searches for gravitational waves (GWs) as-
sociated with gamma-ray bursts (GRBs) and how to make them faster and more
sensitive. The first of these is PyGRB, a matched filter search that follows up short
GRB detections. The second is X-pipeline, a burst search for both long and short
GRBs.

We will begin with a chapter on GW background, where we will show that GWs
are a consequence of general relativity, discuss sources of GWs, and look into the
basics of GW detectors.

In chpater 3, we summarise the current state of GRB science before looking at
multi-messenger astronomy and what it can teach us about the universe.

Chapter 4 is on PyGRB. This chapter begins by looking at the theory behind
how the pipeline works, and then looks at how PyGRB works in practice. This
chapter ends with a summary of the results from the PyGRB search of the latest
observing run O2.

We then look at PyGRB development work. The code used in O2 is now dated
and needs to be rewritten to use modern software tools. We will look at the work
that has already been done to update PyGRB and the speed improvements it brings,
learn why it is scientifically important that the code runs quickly, and see some of
the new tools that we have made available.

We end by looking at X-pipeline. We will start with the theory behind how
X-pipeline works and looking at the results from the X-pipeline analysis of GRBs
in O2. Then we will look at how machine learning can be used to improve the
sensitivity and speed of X-pipeline. We end this chapter with a discussion of how
to improve the search and the issues that arise from using machine learning.
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2.1 Plus and Cross Polarisation. The effect of a GW traveling into/out
of the page on an initially circular ring of test particles floating in
empty space. Starting on the left, the effect of the plus polarisation
is shown on top and the cross polarisation on the bottom. [76] . . . 8

2.2 The First Direct Detection of a Gravitational Wave. The top
panel shows the a theoretical model of the first detected GW with an
inset cartoon of the state of the binary at four different phases of the
binary inspiral. The bottom panel shows the Keplerian seperation
distance in units of Schwarzschild radii (Rs = 2GM

c2
where M is the

total mass of the system). Also shown is the relative velocity of the
black holes. [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 A schematic of a Michelson interferometer. The end test masses of the
X and Y arms (ETMX and ETMY) are the mirrors at the end of the
interferometer arms. The laser light enters the interferometer from
the symmetric port on the left, and the photodetector that measures
the differential arm length (LY − LX) is in the anti-symmetric port.
[20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Electric Fields in a Michelson Interferometer. This figure
shows our labeling convention the electric fields in the different parts
of the interferometer. The input laser light is labeled E0. At the
beam splitter, half of this light E1 is reflected into the Y arm and the
other half E2 is transmitted into the X arm. The light then travels
down each arm and is reflected off of the test mass mirrors. The light
accumulates a phase shift in the arms, and we call this phase shifted
light E3 and E4 for the Y and X arms respectively. The light in both
arms then reaches the beam splitter again, when it will either be
reflected/transmitted into the symmetric port or the anti-symmetric
port. The light in the symmetric port is labeled E5 and in the anti-
symmetric port is labeled E6. [20] . . . . . . . . . . . . . . . . . . . 16

2.5 Interferometer Antenna Pattern. Here we see the sensitivity to
an unpolarised GW, given by the distance from the origin, of an inter-
ferometer with arms aligned with the x and y axes. This is calculated
as the root-sum-square of the plus and cross antenna patterns. We
can see that the detector is sensitive to most of the sky, and most
sensitive to GWs coming from perpendicular to the detector plane.
However, GWs approaching from within the detector plane and at an
angle off-set from the arms by π/4 radians will be in a null of the
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.6 ASD for LIGO Livingston Observatory. Plotted in blue is the
ASD of the background noise for the LIGO Livingston observatory
as it was on the 1st August 2019. This plot is taken from the LIGO
summary pages, which are used to monitor the detectors. In grey
we see the gravitational wave interferometer noise curve (GWINC),
a theoretical model of all the noise in the detector, and in orange we
see the ASD from 13th May as a reference. . . . . . . . . . . . . . . 23

2.7 Noise Budget for LIGO Livingston Observatory. Here we have
the noise budget for the LIGO Livingston observatory on 20th Au-
gust 2017. A noise budget shows many different noise sources and how
they affect the ASD for the detector. Some of these are determined
theoretically, such as the quantum noise. Others are determined via
sensors. The sum of all the known noise sources is shown with the
dotted black line. Where the black line is close to the measured
differential arm length (DARM, shown in blue), the noise is well un-
derstood. This is the case at high frequency, where the detector is
dominated by quantum noise, and low frequency, where it is dom-
inated by seismic and control system noise. From about 20-80 Hz,
we can see that the sum of noises is far below DARM. This indicates
that there is a noise source in this frequency range that we do not
know about yet. The noise sources in LIGO detectors are described
in detail in [74] and [7]. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 BATSE gamma-ray light curves. Here we see the light curves
of a selection of GRBs. The duration and flux varies significantly
between GRBs. [94] . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 BATSE GRB Fluence. This plot shows the fluence (given by the
colour of each point) and the sky position of each GRB detected by
the BATSE mission. [83] . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 LogN-logP for BATSE PVO. Here we plot the log of the number
of GRBs against the log of the peak flux. The sample includes GRBs
detected by BATSE and by PVO. The energy range for BATSE was
50-300 keV, and the energy range for PVO was 100-2000 keV. For
uniformly distributed GRBs, we expect this plot to have a gradient
of −3/2. The expected gradient is observed for high energy GRBs
but not at lower energies. This suggests a limited distance to which
GRBs can be observed. [37, 66] . . . . . . . . . . . . . . . . . . . . 33

3.4 T90 vs the Spectral Hardness Ratio. Here we plot the T90 values
and the spectral hardness ratio for the BATSE GRBs. The top panel
shows a histogram of the T90 data, which clearly has two populations
of GRBs, short and long. The main plot shows T90 against spectral
hardness, which makes the two populations even more clear and shows
that short GRBs have harder spectra than long GRBs. Those GRBs
with the greatest ratio of energy in the X-ray to gamma ray band,
generally those with a peak energy of less than 15 keV, are called X-
ray flashes (XRF). Those with comparable energy in the gamma-ray
and X-ray band are called X-ray rich (XRR) GRBs. All other GRBs
are simply called GRBs. These different classes of GRBs are marked
on the plot. Also shown is the 2 second dividing line between short
and long GRBs.[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.5 Break in spectrum due to jetting. Here we see the optical light
curves for the afterglow GRB 990510. A break in the spectrum is
visible after approximately one day.[51] . . . . . . . . . . . . . . . . 39

3.6 GRB170817A and GW170817. Here we see the a coherent com-
bination of the Hanford and Livingston strain data from GW 170817
in the bottom panel. The top two panels shows the Fermi GRM
curve in the 10-50keV and the 50-300 keV range respectively. The
INTEGRAL/SPI-ACS data is shown in the third plot. The back-
ground estimate for each GRB detector is indicated by the red line.
Note that the GRB was detected 1.7 seconds after the GW signal
was detected. We can also see that Fermi detected a longer, softer
signal in the 10-50 keV range, that lasted for a few seconds after the
triggering pulse. [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Glitch in the LIGO Livingston Observatory. The top panel
shows a time frequency map for the whitened Livingston observatory
data at the detection time of GW 170817. A glitch is clearly visible
approximately 1.1 seconds before the end of the signal. Despite this
the signal is still clearly visible. The bottom plot shows the raw
strain data from the Livingston observatory. This data is bandpassed
between 30 Hz and 2 kHz to emphasise the sensitive range of the
detector. The grey curve (and right axis) shows the inverse Tukey
window used to smoothly zero out the data around the glitch before
the rapid reanalysis of the data. The blue curve shows the waveform
model used to subtract the glitch from the data before measurements
of the source’s properties were made. [8] . . . . . . . . . . . . . . . 45

3.8 GW 170817 Detection. Here we see time frequency maps of the
LIGO Hanford and Livingston observatories, and the Virgo obser-
vatory at the detection time of GW 170817. This data has been
whitened and independently observable noise sources have been sub-
tracted, including a glitch in the Livingston data. The non-detection
by Virgo significantly reduced the amount of the sky that the signal
could have originated from.[8] . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Sky map for GW 170817/GRB 170817A. Here we see the 28
deg2 90% confidence sky localisation for the LIGO and Virgo collab-
orations in green, the ∼ 1100 deg2 [29] 90% localisation obtained by
GBM in purple, and the annulus formed by Fermi and INTEGRAL
timing information in grey. [30] . . . . . . . . . . . . . . . . . . . . 47

3.10 NGC 4993. Image of NGC 4993 taken in 1992 by the Anglo-
Australian Observatory (left) and August 18th 2017 by the Las Cum-
bres Observatory (right). Note the appearance of a bright new object
to the North East of the galactic center. [15] . . . . . . . . . . . . . 48
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3.11 Brightness/Luminosity against redshift. Here we see the dis-
tribution of the isotropic equivalent energy Eiso and luminosity Liso

against redshift for every GBM-detected GRB with a measured red-
shift. For GRBs with power law spectra, marked with a downward
pointing arrow, this is taken to be an upper limit. This is because
the spectra must have curvature, and so extrapolating a power law
leads to an overestimation. The green dashed line shows the approx-
imate detection threshold for the GBM. These plots show that GRB
170817A was more than two orders of magnitude dimmer than any
other GRB in the sample.[30] . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Jet Structure Scenarios. Three different scenarios that could ex-
plain the low luminosity of GRB 170817A. The first scenario is that
a top-hat jet was viewed off-axis. The second is that the jet is struc-
tured, with photons emitted further from the axis being lower energy
and fewer in number, and viewed relatively far from the axis. The
third scenario is that a uniform jet has a surrounding cocoon that
emits lower energy photons, and it was these lower energy photons
that were detected.[30] . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Jet Model Comparison. Here we see a comparison of the best fit
for the structured jet, top-hat jet seen off-axis, and isotropic models.
The afterglow’s measured flux density at 3 GHz is shown by the blue
symbols (though the fits were performed with multi-wavelength data).
The inset shows the best fit isotropic energy and Lorentz factor for
each model as a function of viewing angle. The arrows show the
position of the observer for the structured and top-hat jet models.[69] 51

3.14 Structured Jet. Left panel: A pseudocolour density image of the
simulation used to compute the afterglow curves. The low density core
of the jet is the blue region near the middle. The orange and green
regions around the core are the slow moving wings. Top right panel:
Here we see the 3 GHz flux detected by an observer at 33◦ from the
jet axis from different parts of the structured jet as time progresses.
The angle is relative to the jet axis, so the blue curve is the core of the
jet, the orange curve is the fast wings of the jet, the orange curve is
the material moving along the line of sight (an angle of about 33◦ in
this case), and the pink and brown curves correspond to large angles,
that do not contribute much to the observed flux. Bottom right panel:
The distribution of energy as a function of angular separation from
the jet.[69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Bank χ2. Here we plot the bank χ2 values for a single template
on real data from the O2 observing run. We can see that the bank
χ2 values approximate a χ2 distribution with 40 degrees of freedom,
plotted in red. We can also see a long tail of triggers with a high bank
χ2. These are glitches that can be cut. . . . . . . . . . . . . . . . . 74
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4.2 Autocorrelation χ2. Here we plot the autocorrelation χ2 values for
a single template on real data from the O2 observing run. The au-
tocorrelation χ2 test was calculated with 40 time slides, which would
follow a χ2 distribution with 160 degrees of freedom if the different
time slides were not correlated. This is not the case, as can be seen
from the χ2 distribution in red. There is also a long tail of triggers
with a high bank χ2 (the plot has been truncated to not include the
highest values). These are glitches that can be cut. . . . . . . . . . 75

4.3 Coherent χ2. Here we plot the coherent χ2 values for a single tem-
plate on real data from the O2 observing run. The test used 16
frequency bins, which would follow a χ2 distribution with 60 degrees
of freedom if the different frequency bins are not correlated. This is
the case, as can be seen from how closely the distribution follow the
χ2 distribution, shown in red. . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Null Statistic Cut. Here we plot the coherent SNR against the
null SNR. The blue crosses are background triggers. The red pluses
are signal injections. The black line is the veto line, with all triggers
in the shaded region above the line being discarded. The green line
indicates the expected SNR for optimally oriented injections. The
magenta line shows the one sigma error on the green line. . . . . . . 78

4.5 PyGRB Sky Grid. Here we see an example of a full search grid used
by PyGRB, indicated by the blue dots, and a reduced sky grid parsed
by PyGRB in the case of a two detector search using the Hanford and
Livingston detectors, the empty circles labeled ’parsed’. The parsed
circles do not form a line due to the parsing routine, but this has no
effect the on analysis. [122] . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 PyGRB Workflow. The workflow starts in two parallel branches,
one that runs the injections jobs, and one that analyses the back-
ground and onsource. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 P-value for each GRB. This is the p-value distribution for the
41 GRBs other than GRB 170817A. The GRBs with no trigger in
the onsource window have upper and lower limits on the p-value.
The upper limit is a p-value of 1. The lower limit is the fraction of
offsource trials that also had no trigger. The distribution lays within
the 2σ range, shown by the upper and lower dotted lines. . . . . . . 87

4.8 Cumulative exclusion distance. This is the cumulative 90% exclu-
sion distance for every GRB analysed by PyGRB except GRB170817A.
The 90% exclusion distance is the distance at which 90% of injected
simulated signals are recovered with a greater coherent SNR than the
loudest trigger in the onsource. . . . . . . . . . . . . . . . . . . . . . 88
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4.9 Cumulative Rate of BNS and short GRB Events. The magenta
lines show the 90% confidence bounds for joint GRB/GW events as a
function of redshift. This was calculated using the 41 non-detections
and single detection by PyGRB during O2. The black line and the
grey region shows the estimated BNS merger rate 1210+3230

−1040. In green
is shown the estimated Fermi detection rate and its 90% confidence
region. [56] The measured redshifts of every short GRB apart from
GRB 170817A are shown in brown. The gold sample refers to those
GRBs that were localised to near a host galaxy, making the redshift
measurement more reliable that short GRBs measured more distant
from a host galaxy. Our results are compatible with both the Fermi-
GBM observed rate and the predicted BNS merger rate. [24] . . . . 90

5.1 Coherent and Reweighted SNR Time Series for GRB 170817A.
The top panel shows the coherent SNR vs time for GRB 170817A.
The GW is clearly visible, as are some smaller peaks that are due
to noise. The bottom panel shows the reweighted SNR time series.
The background noise has been downweighted but the GW is still
very prominent. It is noteworthy that the peaks in coherent SNR
that were due to noise have mostly been downweighted to be less
significant than the median background trigger. . . . . . . . . . . . . 98

5.2 Coherent and Reweighted SNR Time Series for GRB 170112A.
The top panel shows the coherent SNR vs time for GRB 170112A.
There is no GW, but several glitches are clearly visible. The bottom
panel shows the reweighted SNR. We can see that the gltiches have
been downweighted to be less significant than the median background
trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Null SNR vs Reweighted SNR for GRB 170817A. Here we
plot the null SNR against the coherent SNR (left) and the reweighted
SNR (right) for GRB 170817A. Only triggers with a null SNR above
4.25 are reweighted by the null SNR (with the other triggers being
reweighted only by their χ2 values). We can see that these triggers
have been downweighted more than the triggers with a low null SNR.
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it was that the Creator said when He made the uni-
verse... There were certain problems caused by the fact
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to learn to recognise all the other noises. This called
for a certain talent, and a novice was only accepted for
training if he could distinguish by sound alone, at a dis-
tance of a thousand yards, which side a dropped coin
landed. He wasn’t actually accepted into the order until
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Terry Pratchett

– xvi –



For my parents,
who taught me all the important things

– xvii –



– xviii –



Acknowledgments

Everyone who knows me knows that I am not a sentimental person. As a general
rule, I don’t do small talk and I don’t do emotional displays. But I am making an
exception here,1 in order to give my heartfelt appreciation to just some of the people
who helped make this thesis possible.

First of all, I would like to thank my supervisors, Patrick Sutton and Steve
Fairhurst. Thank you for your patience, for never making me feel stupid,2 and
for being good scientists and good people. It was a privilege to have supervisors
I honestly look up to. Your mentorship has made me a wiser, humbler, and more
confident person.

Thank you also to my examiners: Badri Krishnan and Bernard Schutz. Your
feedback has made this thesis much better and more complete.

Next I would like to thank all the people whose work I have built on. In partic-
ular, I would like to thank the giants of PyGRB upon whose shoulders I stand: Ian
Harry, Duncan Macleod, Andrew Williamson, and Francesco Pannerale. Thank you
for your work, and for helping me build upon what you accomplished.

I would also like to thank Cameron and Tessa, for agreeing/being told to finish
my work for me. I hope my code is readable and not too buggy, and that you use it
to detect many gravitational waves (and then share the credit with me!).

Thanks also go to Dave, Charlie, Rhys, Vasilis, Ed, Eleanor, Chinmay, Virginia,
Ali, the other Ali, Ronaldas, Aldo, Vaibhav, Hong, Paul, Alex, Lionel, Seb, Max,
Laura, Soichiro, Jonathon, and all the other students and post docs who I have
had the privilege to share an office with these last few years.3 Without you, I would
probably have finished my PhD six months earlier, but it would not have been nearly
as much fun.

I would also like to thank Davide Proment, for helping me move from mathe-
matics into physics, and Johannes Siemons, for teaching me how to write clearly
and eloquently. If this thesis is even remotely comprehensible, it is thanks to you.

Thank you to Tarak, Anuja, and Nikita, for giving me a home when I needed to
escape far away from my thesis.

Thank you to Anna, Laura, Neil, and Emily for putting up with me for 27 years.
I am lucky to have such a kind and supportive family, who all share a childish sense
of humour.

Obviously I must thank my Mum and Dad, to whom this thesis is dedicated.
Thank you for giving me love and support and all the things that really matter.

And Preshita, the love of my life. Of all the people and all the places in the
world, I am eternally grateful that I happen to sit next to you in Spanish class.

1To the emotional displays, not the small talk.
2Even though I frequently was.
3Really sorry if I forgot anyone! There’s a lot of people to thank!

– xix –



Your determination is a constant source of inspiration. Your friendship has made
me a stronger person. And your love has made these last few years the happiest of
my life. Whatever the future has in store for us, and no matter how far apart we
may be, I am always yours.

– xx –



Collaborative Work

The following sections of this thesis contain work that has been co-authored with
others, or builds upon work started by others:

• Chapter 4 discusses the PyGRB search pipeline. Previous publications de-
scribing developments to this pipeline and search results can be found in
[52, 122, 40].

• Chapter 4 ends with a discussion of the PyGRB search results from the most
recent observing run. These results can be found in [24]. I contributed
to this paper compiling the required information on the Gamma-ray bursts
(GRBs), analysing eight of the 42 GRBs in the PyGRB analysis sample, and
co-authoring the results paper.

• Chapter 5 discusses development work on PyGRB. I led this work, but with the
input of many collaborators, especially from members of the Cardiff University
Gravitational Wave group and the GRB working group of the LIGO-Virgo
collaboration. My main contribution to the development of PyGRB was to
rewrite the coherent matched filtering executable of PyGRB to use faster and
more efficient code written for the PyCBC software package. To achieve this,
I also had to remake many PyCBC functions so that they could handle data
from multiple detectors at once.

• Chapter 6 discusses development work on X-pipeline. In particular, I worked
on a multivariate analysis (MVA) classifier to speed up and improve the sensi-
tivity of X-pipeline. X-pipeline has been previously written about in [105, 118].

• The X-pipeline search results from the most recent observing run, used in
chapter 6, were previously published in [24], which I co-authored.

• The MVA search for GWs described in chapter 6 has been previously described
in [10] and the software used is described in [55].

– xxi –



– xxii –



Chapter 1

Introduction

In 1915, Albert Einstein published a new theory of gravity: the general theory of

relativity [101]. This new theory was indistinguishable from Newtonian gravity in

most situations, but in the presence of strong gravitational fields the two theories

made different predictions. For example, Einstein predicted that the sun would grav-

itationally lens light by twice the amount predicted using Newtonian arguments. An

experiment was soon performed by Arthur Eddington and collaborators to measure

the amount of gravitational lensing by the sun. To do this, they measured the posi-

tions of stars whose light passed near the sun during the 1919 solar eclipse [27]. The

amount of lensing they measured matched the prediction of general relativity. The

results of this experiment and others meant general relativity was quickly accepted

by the scientific community. However, there was one prediction of general relativity

would remain elusive for decades to come: gravitational waves (GWs).

General relativity was a field theory of gravity, and bore a strong resemblance to

Maxwell’s theory of electromagnetism. [75] It was reasoned by some that this meant

there must be GWs produced by accelerating mass just as there are electromagnetic

waves produced by accelerating charge. Others thought this was stretching the anal-

ogy to electromagnetism too far, and pointed to key differences between gravitation

and electromagnetism [61]. For example, there is no negative mass to act as an

analog to the negative charge of electromagnetism.1 After much controversy, the

consensus built that GWs do exist and experiments were conceived that had the

potential to detect GWs. After yet more controversy, with the false claim of a de-

tection by Joseph Weber [119], the first experimental evidence for the existence of

GWs came in 1975 from observations of a binary star system. According to general

relativity, a binary star system should slowly inspiral due to energy lost through

GW emission. Hulse and Taylor observed a neutron star binary with precisely the

orbital decay predicted by general relativity. [57]

A few years prior to this, Rainer Weiss set out a new vision for GW astronomy.

1It can be shown that this is one of the reasons why GWs are much more difficult to detect
than electromagnetic waves.

– 1 –



Weiss proposed building a Michelson interferometer to detect GWs directly. [120]

This led to the founding of the Laser Interferometer Gravitational-wave Observatory

(LIGO) in the early 1980s, which set out to build a pair of 4 km laser interferometers.

The new detector network would be able to detect GWs emitted by compact binary

systems, such as black hole and neutron star inspirals, and potentially also from

nearby supernovas.

Around the same time that GW astronomy was just starting to get off the

ground, another kind of transient astronomy was hitting its stride. Gamma-ray

bursts (GRBs) are bright flashes of gamma rays that originate at extra-galactic

distances. First detected in the 1960s, the cause of GRBs remained a mystery

for decades. With the 1991 launch of the Burst and Transient Source Experiment

(BATSE), a space based GRB detector, there was for the first time a large sample of

GRB light curves. Looking at the durations of these GRBs confirmed that there were

two populations, called long and short GRBs. Theoretical work done in the early

1990s showed that GRBs could be produced by compact objects such as neutron

stars and black holes, possibly via the supernova that created them. By the end

of the decade, astronomical observations confirmed that long GRBs were linked to

supernova explosions. Then, in the early 2000s, observations strongly suggested that

short GRBs were produced by binary neutron star mergers.

The fact that GRB and GW astronomy were both now targeting the same ex-

treme events made collaboration natural. There are several strategies used to search

for coincident GRB/GW signals. The first approach is to look for coincident detec-

tions between GW and GRB triggers. The second approach uses the fact that GW

detectors are sensitive to most of the sky by making followup observations of GW

triggers with electromagnetic (EM) telescopes. The final method is to use advanced

data analysis techniques to followup GRB detections with a GW search, which is

the focus of this thesis.

The LIGO detectors first came online in 2002 until 2010, but did not detect any

GWs. From 2010 until 2015 the detectors were shut down for upgrades. Then, on

the 14th of September 2015, the first GW detection was made and the signal was a

binary inspiral [9]. The component masses of this binary were ∼ 30M�, making this

a binary black hole merger. Several more binary black hole detections were made

over the next couple of years, [4] but nothing that could produce a GRB. Then, on

the 17th of August 2017, a short GRB was detected in coincidence with a low mass

binary GW signal. [8] This was the first joint GW/GRB detection, and confirmed

that at least some some short GRBs are produced by binary neutron star mergers.

This detection led to many discoveries about GRB astrophysics, constrained the

rates of binary neutron star mergers, gave a new method to measure the Hubble

constant, and many other discoveries.2

It is important to emphasise that these discoveries could not have happened

2See section 3.2 for more details.
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Chapter 1. Introduction

without GW astronomy. The GRB detection was unremarkable, and would not have

warranted followup observations had it not been coincident with a GW detection.

The GW information was then used to constrain the sky position and distance of the

GRB, which made it possible to find the afterglow. It is also worth noting that this

GRB was unusually close, which made the GW detectable with low latency all-sky

searches. In general, it is expected that GW detections associated with GRBs will

be much quieter, requiring more sensitive searches that are specifically designed to

find GWs associated with GRBs, in order to make a confident detection.

It is in this context that this thesis looks at improved methods for GW followup

of GRB observations. We will see two search pipelines. The first is looks for a binary

inspiral signal associated with short GRBs, while the second is an unmodelled search,

meaning it is sensitive to a wide range of waveform morphologies, and looks for GWs

associated with both long and short GRBs. We will also look at the results of the

most recent searches for GWs associated with GRBs. We begin with an introduction

to GW astronomy, followed by a more detailed overview of GRB astronomy than

was given above.
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Chapter 2

Introduction to Gravitational

Wave Astronomy

In this chapter we will run through the basics of gravitational wave (GW) astronomy.

We will start by showing that GWs are a natural consequence of general relativity

and show that binary star systems emit GWs. We will then look at GW detectors,

focusing on the noise in the detector and how the sensitivity changes over the sky,

as these factors are important for the searches described in chapters 4, 5, and 6.

2.1 Gravitational Waves

General relativity shows that spacetime can curve and move. From this, it may

seem obvious that waves can travel though spacetime, but this is not a trivial fact.

In this section, we will show that gravitational waves do exist. We will do this by

considering a perturbation of the flat Minkowski metric. We will then calculate the

Ricci tensor and Ricci scalar for the perturbed metric and, with a clever choice of

gauge transformation, see that these yield a wave solution to Einstein’s equations.

This section is based mostly on the derivations in [123] and [25]. In what follows,

we will use standard results from general relativity, summarised in appendix A.

2.1.1 Linearised Gravity

The infinitesimal spacetime interval ds between two points is given by

ds2 = gµνdx
µdxν (2.1)

where gµν is the metric tensor. Let the metric be the sum of a small perturbation

hµν to the Minkowski metric ηµν = diag(−1, 1, 1, 1). We write this metric as

gµν = ηµν + hµν , |hµν | � 1 . (2.2)
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Chapter 2. Introduction to Gravitational Wave Astronomy

The Ricci tensor (given by equation (A.3)) to first order in h is given by

Rµν = ηαβRαµβν =
1

2

(
∂µ∂

αhαν + ∂ν∂αh
α
µ −�hµν − ∂µ∂νh

)
(2.3)

where � = ∂µ∂
µ is the d’Alembertian operator and h = hµµ is the trace of h. From

this, we can show the Ricci scalar (see equation (A.4)) is given by

R = ηµνRµν = ∂µ∂αh
µα −�h . (2.4)

From these, we find the resulting Einstein tensor (equation A.5) is also linear in h

Gµν ≡ Rµν −
1

2
Rηµν

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµ− ηµν∂ρ∂λhρλ + ηµν�h) .

(2.5)

Using this in the Einstein equations

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (2.6)

gives us the linearised Einstein equations.

2.1.2 Gauge Transformation

The metric given in equation (2.2) does not uniquely define a coordinate system,

as there are many coordinates where the metric is given by the Minkowski metric

plus some small perturbation. This gives us the freedom to choose coordinates that

make the linear Einstein equations simpler. To find these coordinates, we start with

the following gauge transformation

xµ
′

= xµ + χµ(x), ∂µχ
ν � 1 . (2.7)

This gives us
∂xµ

∂xα′
= δµα − ∂αχµ +O(|∂χ|2) . (2.8)

Applying these results to the metric (2.2) we find

gα′β′ =
∂xµ

∂xα′
∂xν

∂xβ′
gµν = gαβ − ∂αχβ − ∂βχα . (2.9)

Subtracting the Minkowski metric from each side, we find 1

hα′β′ = hαβ − ∂αχβ − ∂βχα . (2.10)

1Note that the condition in (2.7) means that hα′β′ is still small.
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2.1. Gravitational Waves

We have some freedom in choosing our χ, so we impose the harmonic gauge condition

∂µh
µ
ν =

1

2
∂νh, (2.11)

where h = hλλ. We can always choose a χ such that this is true. To see this, first

note that ∂′µ = ∂µ − (∂µχ
λ)∂λ. From this we find

(∂′µh
′µ
ν −

1

2
∂′νh

′) ≈ (∂µh
µ
ν −

1

2
∂νh)−�χν . (2.12)

Thus, if we are given an h such that equation (2.11) is not true, we can choose a χ

such that

�χν = (∂µh
µ
ν −

1

2
∂νh) . (2.13)

Using (2.11), we can simplify the Ricci tensor and scalar

Rµν = −1

2
�hµν (2.14)

R = −1

2
�h . (2.15)

Using these in the linearised Einstein equations (2.5) gives us

�hµν −
1

2
ηµν∂

2h = −16πG

c4
Tµν . (2.16)

Alternatively, we can use equation (A.6) to write this as

�hµν = −16πG

(
Tµν −

1

2
ηµνT

)
. (2.17)

In a vacuum, the right hand side of this equation becomes zero, and we can recognise

it as the relativistic wave equation

�hµν = 0 . (2.18)

2.1.3 Physical Effects of Gravitational Waves

The plane wave solution for the vacuum wave equation is

hµν(x) = εµνe
ikαxα (2.19)

where the polarisation tensor for the gravitational wave εµν is symmetric and con-

stant, and kα is the wave 4-vector given by kα = (ω,~k). Substituting this into the

vacuum wave equation, we find

kαk
α = −ω2 + |~k|2 = 0 . (2.20)
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Chapter 2. Introduction to Gravitational Wave Astronomy

Hence, gravitational waves travel at the speed of light.

Putting the wave solution (2.19) into the harmonic gauge condition (2.11), we

have the condition

kµε
µ
ν =

1

2
∂νε (2.21)

where ε = ελλ. We can impose further gauge conditions as long as the harmonic

gauge (and hence (2.21)) is not violated. As any transformation with �χ = 0 will

satisfy (2.13), and hence harmonic gauge condition, we express χ as

χν = Xνe
ikx . (2.22)

Using (2.22) and (2.19) in the transformation equation (2.10), we find the transfor-

mation equation for the polarisation tensor

ε′µν = εµν − ikµXν − ikνXµ . (2.23)

Taking the trace of this, we find

ε′µµ = εµµ − 2ikµXµ . (2.24)

Thus, we can impose the further gauge condition that the polarisation matrix be

traceless by choosing coordinates such that 2ik0X0 = εµµ − 2ikiXi. Using this in

(2.21), we find

kµεµν = 0 . (2.25)

We can fix the other elements of Xµ by setting εi0 = 0 for i = 1, 2, 3. We do this

using (2.23) to find

ε′i0 = εi0 − ikiX0 − ik0Xi . (2.26)

Now we see that by choosing the Xi such that ik0Xi = ikiX0 − εi0, we have

ε′i0 = 0 . (2.27)

The gauge defined by equations (2.25) and (2.27) is called the transverse-traceless

(TT) gauge.

To make things even simpler, assume the wave is traveling in the z-direction,

that is ~k = (0, 0, ω). The transverse condition (2.25) gives us ε0ν = ε3ν . This gives

us ε00 = 0 and ε3i = 0, as we already have ε30 = 0. The traceless condition then

becomes ε11 + ε22 = 0. Using the symmetry of the polarisation matrix to fill in the

– 7 –



2.1. Gravitational Waves

rest of the matrix, we find the following solution to (2.19)

hµν(x) =


0 0 0 0

0 ε+ ε× 0

0 ε× −ε+ 0

0 0 0 0

 eiω(z−t) . (2.28)

We can see that the polarisation matrix is fully described by two real numbers ε+

and ε×. We call these the plus and cross polarisation of the gravitational wave.

To understand what these two polarisations mean physically, consider two par-

ticles separated by ϕµ = xµ1 − x
µ
2 = (0, ~ϕ). The proper distance between these two

points is given by

∆L =
√
gµνdxµdxν =

√
|~ϕ|2 + hijϕiϕj = |~ϕ|(1 +

1

2
hijϕ

iϕj/|~ϕ|2 +O(h2)) . (2.29)

From this we see that the fractional change in distance between the two particles is

1

2
hijϕ̂

iϕ̂j =
1

2

(
ε+
[
(ϕ̂1)2 − (ϕ̂2)2

]
+ 2ε×ϕ̂

1ϕ̂2
)
eiω(z−t) (2.30)

where ϕ̂i = ϕi/|~ϕ|. From this formula, it becomes clear (with some thought) that

the plus polarisation causes the x-axis and y-axis separation of particles to increase

and then decrease 180◦ out of phase with each other. The cross polarisation has the

same effect, but offset by 45◦. This is shown more clearly in figure 2.1.

Figure 2.1: Plus and Cross Polarisation. The effect of a GW traveling into/out
of the page on an initially circular ring of test particles floating in empty space.
Starting on the left, the effect of the plus polarisation is shown on top and the cross
polarisation on the bottom. [76]
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2.2 Gravitational Wave Generation

We will now show how GWs are emitted by a source. We start by defining the trace

reversed perturbation

h̄µν = hµν −
1

2
ηµνh . (2.31)

Using this, we can simplify the linearised Einstein equation (2.16) to

�h̄µν = −16πGTµν (2.32)

where we have now set c = 1. We can solve this equation by defining a Green’s

function G such that

�G(x) = δ(4)(x) . (2.33)

The physical interpretation of this solution is that G(x) is a wave originating from

a point source at the origin. The solution to the linearised Einstein equations can

then be written as

h̄µν(x) = −16πG

∫
dyyG(x− y)Tµν(y) . (2.34)

This Green’s function is the same as used to model electromagnetic waves, which

means we can get the form of G for free

G(t, ~x) = −θ(t)δ(t− r)
4πr

(2.35)

where r = |~x| is the distance from the source, and θ(t) = 1 for t > 0 and is zero

otherwise. The interpretation of this solution is fairly simple, θ ensures that the

wave travels forwards in time, δ(t− r) ensures the wave travels at the speed of light,

and the final factor −1
4πr ensures that the second derivative of the Green’s function is

a delta function at the origin as ∇2
( −1

4πr

)
= δ(3)(~x). Plugging (2.35) into (2.34), we

obtain

h̄µν(t, ~x) = 4G

∫
d4y

θ(t− y0)δ(t− y0 − |~x− ~y|)Tµν(y)

|~x− ~y|
. (2.36)

Using the delta function to integrate over y0 we obtain

h̄µν(t, ~x) = 4G

∫
d3y

Tµν(t− |~x− ~y|, ~y)

|~x− ~y|
. (2.37)

Let us consider the case of an isolated source of GWs that is far away, so we can

approximate |~x− ~y| = r with r the distance to the source. Then we have

h̄µν(t, ~x) =
4G

r

∫
d3yTµν(t− r, ~y) . (2.38)

This formula is not very helpful for determining what a GW signal will look like,
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2.2. Gravitational Wave Generation

as it is difficult to determine the stress-energy tensor for a generic source. To make

thinks simpler, we will now show how to write this solution in terms of just the

energy density term of the stress energy tensor T00, which is easy to determine. To

do this, first note that the harmonic gauge condition gives us ∂µh̄µν = 0, from which

we get

∂0h̄
0ν = −∂ih̄iν (2.39)

which can be used to determine the timelike components of h̄ from the spacelike

components. We therefore restrict our attention to finding h̄ij . Next, we insert a

term ∂ky
i = δik into the above integrand, and then use integration by parts to obtain∫

d3yT ij =

∫
∂k(y

iT kj)d3y −
∫
yi(∂kT

kj)d3y . (2.40)

The first term vanishes as it is a surface term and we have an isolated source. For

the second term, we start by using the conservation law ∂µT
µν = 0 to obtain

∂0T
0ν = −∂kT kν . (2.41)

With ν = j we find ∫
d3yT ij =

∫
yi∂0T

0jd3y . (2.42)

The next step2 is to use the symmetry of the stress-energy tensor to write∫
d3yT ij =

1

2

∫
[yi∂0T

0j + yj∂0T
0i]d3y . (2.43)

We can then repeat the trick used to obtain (2.40), i.e. multiply both terms in the

integrand by ∂ky
i = δlk and use integration by parts. After some algebra, everything

should cancel nicely to leave us with∫
d3yTµν =

1

2

∫
[∂k(y

iyj∂0T
0k)− yiyj∂0∂kT

0k]d3y . (2.44)

The first term vanishes as it is a surface term. The second term can again be

simplified using (2.41) to give∫
d3yTµν =

1

2

∫
yiyj(∂0)2T 00d3y (2.45)

which is purely in terms of the energy-density term of the stress-energy tensor, as

we set out to show. Using this result in equation (2.38) gives us the formula for a

GW signal

h̄ =
2G

r

∫
yiyj(∂0)2T 00d3y . (2.46)

2This step seems arbitrary now but is necessary.

– 10 –



Chapter 2. Introduction to Gravitational Wave Astronomy

We then define the quadrupole moment tensor as

Iij(t) =

∫
yiyjT 00d3y (2.47)

to obtain

h̄(t, ~x) =
2G

r

d2Iij

dt2
(tr) (2.48)

where tr = t− r is the retarded time.

2.3 Gravitational Wave Sources

We will now see how to use the quadrupole formula to calculate the morphology of

a GW produced by a binary star system. We will assume the stars are orbiting in

the x1 − x2 plane at a distance R from the center of mass of the system, and that

both stars are of mass M . To simplify our calculations, we will use the Newtonian

approximation of the orbits. In this case we have

GM2

(2R)2
=
Mv2

R
(2.49)

from which we find

v =

(
GM

4R

) 1
2

. (2.50)

The orbital period of this system is

T =
2πR

v
(2.51)

which gives us the angular frequency

Ω =
2π

T
=

(
GM

4R3

) 1
2

. (2.52)

The path of the stars, which we label a and b, can then be written

x1
a = −x1

b = −R cos Ωt , x2
a = −x2

b = −R sin Ωt (2.53)

where t = 0 is defined as the time when star b crosses the positive x1-axis and star

a crosses the negative x1-axis. The energy density of the system is then given by

T 00(t, ~x) = Mδ(x3)[δ(x1−R cos Ωt)δ(x2−R sin Ωt)+δ(x1+R cos Ωt)δ(x2+R sin Ωt)] .

(2.54)

Using this in the quadrupole moment tensor formula (2.47), we find

I11 = 2MR2 cos2 Ωt = MR2(1 + cos 2Ωt) (2.55)
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2.3. Gravitational Wave Sources

I22 = 2MR2 sin2 Ωt = MR2(1− cos 2Ωt) (2.56)

I12 = I21 = 2MR2(cos Ωt)(sin Ωt) = MR2(sin 2Ωt) (2.57)

Ii3 = 0 . (2.58)

From these, the metric perturbation for an observer on the x3-axis is easily con-

structed from (2.48)

h̄ij(x) =
8GM

r
Ω2R2

− cos 2Ωtr − sin 2Ωtr 0

− sin 2Ωtr cos 2Ωtr 0

0 0 0

 . (2.59)

We can see that GWs from a binary star system would produce a GW with an

oscillating plus and cross polarisation of equal amplitude and 90◦ out of phase. For

a binary seen from an arbitrary inclination angle ι, the GW is described by

h̄ij(x) =
8GM

r
Ω2R2

−
1+cos2(ι)

2 cos 2Ωtr − cos(ι) sin 2Ωtr 0

− cos(ι) sin 2Ωtr
1+cos2(ι)

2 cos 2Ωtr 0

0 0 0

 . (2.60)

Note that this derivation assumes no energy loss due to GWs.

It can be shown [25] that the rate of energy emission due to GWs is given by

dE

dt
= −G

5

〈
d3Jij
dt3

d3Jij
dt3

〉
(2.61)

where J is the reduced quadrupole moment

Jij = Iij −
1

3
δijδ

klIkl (2.62)

and the angle brackets denote a time average. For the binary system described

above, this gives us
dE

dt
= −2

5

G4M5

R5
. (2.63)

Accounting for this energy loss shows that the stars inspiral, a feature not captured

by the Newtonian approximation above. As the stars inspiral, the angular frequency

of the system increases. This causes the frequency of the GW to increase as well

as the amplitude3. This is what creates the characteristic chirp of the GW from

a binary inspiral and merger. Even without taking into account the inspiral, this

simple model illustrates many properties that are useful for GW astronomy. First

is the 1/r dependence on the size of the metric perturbation, which can be used

to estimate the distance to the source. Another is the fact that the GW frequency

3Though the inspiral also causes the separation between the black holes to shrink, which acts
to lower the amplitude. In reality, the increase in orbital frequency wins out and the amplitude
increases near the end of the inspiral, as can be shown using Kepler’s laws.
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is twice the orbital frequency of the system, so the measured GW frequency gives

us the orbital frequency of the system. Also, the metric perturbation is larger for

systems with high mass and high orbital frequency. High mass stars are therefore

good candidates, but they also have a large radius, meaning that the stars in the

binary will begin to merge while the binary still has a low angular frequency. Thus

the best GW emitters are compact object binaries, such as neutron stars and black

holes, as they are high mass but also have a small radius. We call these systems

compact binary coalescence (CBC) systems.

On the 14th of September 2015, the first direct detection of a GW came from

a CBC system [9]. In figure 2.2 we see a theoretical model of the GW that was

detected, with a cartoon of the evolution of the inspiral. The bottom panel also

shows how the velocity and separation of the black holes evolves. The signal is just

as described above, a sinusoidal wave with increasing frequency and amplitude as

the black holes inspiral. Since this initial detection, eleven more CBC GWs have

been detected [4], ten from binary black hole systems and one binary neutron star

system.4 In chapter 4 we will see a search pipeline designed specifically to detect

GWs from these CBC systems.

We end this section by noting that any system with an accelerated quadrupole

moment could potentially be detected using GWs. There are searches ongoing for

GWs from supernovas, short and long gamma-ray bursts, non-axisymmetric pulsars,

and black hole accretion disk instabilities. At the time of writing, the only GWs

that have been detected are from CBC systems.

2.4 Gravitational Wave Detection

As shown in section 2.1.3, a passing GW will change the distance between two points,

and this change in length is proportional to the distance between the two points and

the amplitude of the GW. As astrophysical sources are expected to produce GWs

with amplitudes of ∼ 10−21 at the Earth, we must choose two points that are as far

apart as practical, at least on the order of kilometers, if the effect is to be measur-

able. Even then, the change in distance between the two points will be a fraction of

the wavelength of visible light. To measure this change, we use a Michelson interfer-

ometer [120]. In this section, we will begin with a basic mathematical description of

how a Michelson interferometer works. We will then move on to discuss the aspects

of the GW detectors that are important for data analysis, namely the detector noise

and directional sensitivity.

4Discussed in detail in the next chapter.
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Figure 2.2: The First Direct Detection of a Gravitational Wave. The top
panel shows the a theoretical model of the first detected GW with an inset cartoon
of the state of the binary at four different phases of the binary inspiral. The bottom
panel shows the Keplerian seperation distance in units of Schwarzschild radii (Rs =
2GM
c2

where M is the total mass of the system). Also shown is the relative velocity
of the black holes. [9]

2.4.1 The Michelson Interferometer

We will start with an overview of how the interferometers work before going into

the mathematical details. Figure 2.3 is a schematic of a Michelson interferometer.

There is a laser on the left which is aimed at at the beam splitter in the middle. The

beam splitter is a partially reflective mirror which reflects half the photons into the

Y arm and transmits half into the X arm. Both interferometer arms are the same

length5. The light that is reflected into the Y arm picks up a phase shift such that it

is completely out of phase with the light transmitted into the X arm. At the end of

the X and Y arms are mirrors that reflect the light back to the beam splitter. These

mirrors are also known as the end test masses of the X and Y arms (ETMX and

ETMY). The light is then transmitted/reflected by the beam splitter into either the

5Technically the two light rays just need to have opposite phase in each arm when they return
to the beam splitter, which doesn’t necessarily require the arms to be the same length.
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symmetric or anti-symmetric port. If the X and Y arms are the same length, then

the light from each arm will be in phase in the symmetric port but out of phase in

the anti-symmetric port, also known as the dark port. This means that if the arms

are the same length then all the light goes into the symmetric port. However, if

the arm lengths differ by some small fraction of the wavelength of the laser light

(possibly because of a passing gravitational wave), then some of the light will travel

into the anti-symmetric port and be detected by the photodetector that is placed

there. This is the basic idea behind an interferometer.

Figure 2.3: A schematic of a Michelson interferometer. The end test masses of the
X and Y arms (ETMX and ETMY) are the mirrors at the end of the interferometer
arms. The laser light enters the interferometer from the symmetric port on the left,
and the photodetector that measures the differential arm length (LY −LX) is in the
anti-symmetric port. [20]

The key feature of an interferometer is that the laser light is out of phase at the

dark port. How does this happen? Suppose that the laser light is initially described

by the electric field E0. Each time the light encounters the beam splitter or a mirror,

it will pick up a change in phase. In figure 2.4 we show the naming convention we will

use for the different electric fields in the interferometer. The magnitude of reflection

r and the magnitude of transmission t describe the reflectivity of a mirror. We will

assume the beam splitter and mirrors are lossless, so t2 = 1 − r2. Once the light

reaches the beam splitter it will either be reflected into the Y arm and pick up a

phase shift ϕr, or it will be transmitted into the X arm, in which case it is phase

shifted by ϕt. These electric fields are respectively denoted by

E1 = rE0 exp(iϕr) (2.64)

E2 = tE0 exp(iϕt) . (2.65)

We denote the phase accumulated in the Y and X arms as Φ1 and Φ2 respectively.

Thus the electric fields E3 and E4 are given by

E3 = rE0 exp(i(ϕr + Φ1)) (2.66)

E4 = tE0 exp(i(ϕt + Φ2)) . (2.67)
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After going through the bean splitter one more time the light rays pick up another

phase shift. We will not assume that the phase shift is the same on the front and

back of the mirror, so this time the phase shifts by ϕr′ . Hence the two light rays E5

and E6 are given by

E5 = E0

(
r2 exp

(
i(2ϕr + Φ1)

)
+ t2 exp

(
i(2ϕt + Φ2)

))
(2.68)

E6 = rtE0

(
exp

(
i(ϕr + ϕt + Φ1)

)
+ exp

(
i(ϕr′ + ϕt + Φ2)

))
. (2.69)

These equations give us the phase at every step of the lights path back out of the

Figure 2.4: Electric Fields in a Michelson Interferometer. This figure shows
our labeling convention the electric fields in the different parts of the interferometer.
The input laser light is labeled E0. At the beam splitter, half of this light E1 is
reflected into the Y arm and the other half E2 is transmitted into the X arm. The
light then travels down each arm and is reflected off of the test mass mirrors. The
light accumulates a phase shift in the arms, and we call this phase shifted light E3

and E4 for the Y and X arms respectively. The light in both arms then reaches the
beam splitter again, when it will either be reflected/transmitted into the symmetric
port or the anti-symmetric port. The light in the symmetric port is labeled E5 and
in the anti-symmetric port is labeled E6. [20]

detector, but we can simplify things. First we define

α+ = ϕr + ϕt +
1

2
(Φ1 + Φ2) (2.70)

α− = ϕr − ϕt +
1

2
(Φ1 − Φ2) (2.71)
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which gives us

E5 = E0e
iα+(r2eiα− + t2e−iα−) . (2.72)

Similarly, if we define

β+ = ϕt +
1

2
(ϕr + ϕr′ + Φ1 + Φ2) (2.73)

β− =
1

2
(ϕr − ϕr′ + Φ1 − Φ2) (2.74)

we can write

E6 = rtE0e
iβ+(eiβ− + e−iβ−) . (2.75)

For the case of a 50:50 beam splitter, we have r = t = 1/
√

2. Thus we can write

E5 = E0e
iα+ cos(α−) (2.76)

E6 = E0e
iβ+ cos(β−) . (2.77)

Conservation of energy means we must have |E0|2 = |E5|2 + |E6|2, hence

cos2(α−) + cos2(β−) = 1 . (2.78)

Using the identity 2 cos2(x) = cos(2x) + 1 we can write this condition as

cos(2α−) = − cos(2β−) . (2.79)

Hence we have 2α− = 2β− + π(2N + 1), where N ∈ Z, which we can rearrange to

obtain
1

2
(ϕr + ϕr′)− ϕt = (2N + 1)

π

2
. (2.80)

In most cases we do not know or need to know what the exact phase factors are and

can choose any such that (2.80) is satisfied. We will use ϕr = ϕr′ = 0 and ϕt = π/2,

so that the electric field in the anti-symmetric port, given by (2.69), becomes

E6 = E0
i

2

(
eiΦ1 + eiΦ2

)
= E0

i

2

(
e2ikLY + e2ikLX

)
(2.81)

where k is the wave number of the laser light and we have used the fact that the

phase shift obtained by the light traveling down the interferometer arms and back

again is Φ1 = 2kLY and Φ2 = 2kLX . We can simplify these expressions by writing

them in terms of the average and differential arm lengths

L̄ =
LY + LX

2
, ∆L = LY − LX . (2.82)
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From this we obtain

2LY = 2L̄+ ∆L, 2LX = 2L̄−∆L . (2.83)

Thus, the electric field in the anti-symmetric port is given by

E6 = E0
i

2
e2ikL̄

(
eik∆L + e−ik∆L

)
= iE0e

2ikL̄ cos(ik∆L) . (2.84)

The photodetector in the anti-symmetric port produces a signal proportional to

|E6|2, which gives

S = |E6|2 = P0 cos2(k∆L) = P0 cos2(2π∆L/λ) (2.85)

where P0 = |E0|2. Thus we see that the output power varies with a change in the

differential arm length. Specifically, the output signal varies from zero up to the

input power with a period of ∆L/λ = 0.5. At the point ∆L/λ = 0.25, there is

no light entering the south port. We call this point the Dark Fringe. As long as

∆L/λ < 0.25, i.e. the displacement caused by a GW is sufficiently small, then the

amount of power at the anti-symmetric port is proportional to the differential arm

length, giving us a way to detect a passing GW.

2.4.2 Interferometer Antenna Pattern

The response of an interferometer to a passing GW depends on the direction that

the GW is approaching from, given by (θ, φ), and a polarisation angle between the

detector and radiation frame ψ. In this section we will see how the interferometer

response changes with the sky position and polarisation of the GW. [73] The inter-

ferometer output depends on the phase shift induced by a change in the differential

arm length. If we have an interferometer with arms of length L aligned with the x

and y axes, and a plus polarised GW propagating down the z-axis, then the metric

at time t is given by

0 = ds2 = gµνdx
µdxν

= −c2dt2 + (1 + h+(t))dx2 + (1− h+(t))dy2 .
(2.86)

Using this metric, the distance traveled by a photon traveling down the x-arm is

given by

∆Lx =

∫
cdt =

∫ L

0

√
1 + s

(
t+

x

c

)
dx ≈

∫ L

0

(
1 +

1

2
s
(
t+

x

c

))
dx . (2.87)

For a ground based interferometer, a typical value for L would be about 4 km. In this

case, we have x/c ≤ L/c ≈ 10 µs. The sensitive frequency range of the detectors

is normally from 10 to 1000 Hz, meaning that we can use the long wavelength
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approximation h+(t+ x
c ) ≈ h(t).6 This gives us

∆Lx = L(1 +
1

2
hxx)) +O(h2) (2.89)

to be the change in length of the X arm of the interferometer induced by a passing

GW. Similarly, the change in length of the Y arm is given by

∆Ly = L(1 +
1

2
hyy)) +O(h2) . (2.90)

Dropping the higher order terms, the differential arm length is then given by

∆Lx −∆Ly =
1

2
L(hxx − hyy) . (2.91)

So far we have been working in the detector frame. To understand how the

interferometer responds to GWs coming from different positions in the sky, we need

to understand how hxx and hyy change for GWs coming from different sky positions.

To do this, we consider a GW approaching the detector from an arbitrary direction

and introduce a new frame of reference (x′, y′, z′) such that the incoming GW is

traveling along the z′ axis. We relate the detector frame (x, y, z) to the GW frame

using the polar angles θ and φ and the polarisation angle ψ. The GW polarisation

matrix is defined in the GW frame to be

h′ij =

h+ h× 0

h× −h+ 0

0 0 0

 . (2.92)

To bring the GW frame into the detector frame we rotate through an angle 2ψ about

the z′-axis, then through θ around the y′-axis, then through φ around the z′-axis.

This gives us

R =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 cos 2ψ sin 2ψ 0

− sin 2ψ cos 2ψ 0

0 0 1

 . (2.93)

We can simplify by setting ψ = 0, which corresponds to the x′ and y′ axes of the

6 This approximation is valid for ground based detectors search for GWs with frequencies less
than a few kHz. To see this consider the GW given by h+(t) = h0 cos(ωt). In this case we have

∆Lx = L

(
1 +

1

2
h0

sin(ω(t+ L/c))− sin(ωt)

ωL/c

)
= L

(
1 +

1

2
h0 cos(ω(t+ L/2c)) +O (ωL/c)2

) (2.88)

Thus, the phase difference caused by using the long wavelength approximation is ωL/2c to first
order, which can be ignored for values of ω less than a few thousand Hertz. This approximation
also breaks down for space based detectors as they have much longer arms.
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GW frame being aligned with the arms of the detector when the z and z′ axes are

aligned. We can then calculate hxx and hyy using the formula

hij = RikRjlh′kl (2.94)

to find

hxx = h+(cos2 θ cos2 φ− sin2 φ) + 2h× cos θ sinφ cosφ (2.95)

hyy = h+(cos2 θ sin2 φ− cos2 φ)− 2h× cos θ sinφ cosφ . (2.96)

Plugging these values into (2.91), and setting L = 1 for convenience, gives us

1

2
(hxx − hyy) =

1

2
h+(1 + cos2 θ) cos 2φ+ h× cos θ sin 2φ . (2.97)

Thus, the detector response s to a GW can be written as

s = F+(θ, φ)h+ + F×(θ, φ)h× (2.98)

where F+,× are the antenna response to the plus and cross polarisations of the GW,

given by

F+(θ, φ) =
1

2
(1 + cos2 θ) cos 2φ (2.99)

F×(θ, φ) = cos θ sin 2φ . (2.100)

From these we see that the sensitivity of an interferometer varies depending on the

sky position of the source of the GW. In particular, we can see that interferometers

have blind spots, known as the nulls of the detector. For example, the plus polarisa-

tion of a GW coming from an angle φ = π
4 will not be detected. In figure 2.5, we can

see how the sensitivity of an interferometer with arms aligned with the x and y axes

varies over the sky. In later chapters, we will see how the variation in sensitivity of

each detector to different parts of the sky can be used to our advantage, and make

a more sensitive GW search.

2.4.3 Interferometer Noise

There are many sources of noise for a GW detector, from seismic vibrations to

quantum shot noise, and this noise can be stationary or transient. In this section

we will look at some of the noise sources that effect modern GW detectors. But first

we need to understand how the noise is characterised.

The cross-correlation of the detector data s(t) and a filter K(t) is defined as

s ? K(τ) ≡
∫ ∞
−∞

s(t)K(t+ τ)dt (2.101)

for time offset τ . The cross-correlation is a measure of how similar the filter and

detector output are at a given time offset τ .
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Figure 2.5: Interferometer Antenna Pattern. Here we see the sensitivity to an
unpolarised GW, given by the distance from the origin, of an interferometer with
arms aligned with the x and y axes. This is calculated as the root-sum-square of the
plus and cross antenna patterns. We can see that the detector is sensitive to most
of the sky, and most sensitive to GWs coming from perpendicular to the detector
plane. However, GWs approaching from within the detector plane and at an angle
off-set from the arms by π/4 radians will be in a null of the detector.
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The cross-correlation of a function with itself is the auto-correlation of that

function. The power spectral density (PSD) is defined as the Fourier transform of

the auto-correlation function of the detector output s

1

2
Sn(f) =

〈∫ ∞
−∞

s ? s(τ)ei2πfτdτ

〉
. (2.102)

The factor of 1
2 is a convention. The angle brackets represent that this is an average

of multiple chunks of interferometer data, with the auto-correlation calculated for

each chunk. For more details on how the PSD is estimated, see [13].

Taking the square root of the PSD gives us the amplitude spectral density (ASD).

The PSD and ASD are measures of the amount of time variation at a given frequency

that occurs in the detector output. The PSD is measured in units of Hz−1, which can

be interpreted as the amount of variation in each frequency bin. Similarly, the units

of the ASD are Hz−
1
2 . Frequencies at which the ASD is small indicate frequencies

where the detector is relatively sensitive, while large values indicate a lot of noise

and a lower sensitivity. This can be seen in figure 2.6, which shows the ASD for the

LIGO Livingston observatory7 on 1st August 2019. The ASD is lowest from around

30 Hz to 1000 Hz, and so the detector is most sensitive to GWs in this frequency

range.

In figure 2.7 we plot all the known sources of noise in the Livingston detector.

From this plot you can see that below the sensitive frequency range of the detector,

the noise rapidly rises due to low frequency seismic noise, the alignment and angular

sensing and control systems (ASC), and the thermal noise of the mirror suspensions

(thermal Susp) and coating (thermal coating). Above the sensitive frequency range

it is quantum noise that dominates, where quantum noise is given by the sum of

radiation pressure and shot noise. You can also see that at around 20-80 Hz, the

sum of noises is much lower than the measured differential arm length (DARM).

This indicated that the limiting factor of the detector sensitivity in this frequency

range is unknown. The spikes in the ASD have multiple sources, including mirror

suspension, calibration lines, and interference due to mains electricity. For a more

detailed discussion of LIGO detector noise, see [7, 74].

Interferometer noise is not stationary. Occasionally there will be noise transients

that appear in the data, called glitches. These can be caused by many different

factors. Common causes of glitches include acoustic noise from the environment or

saturation overflows, where too much light shines on a photodetector. [43] Stationary

noise is relatively easy for GW searches to handle, but glitches require more care as

they can easily be mistaken for a GW signal.

7A current generation interferometer, see 2.4.6 for more details.
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2.4.4 Matched Filtering

Now we know how to measure the noise in a GW detector, we will discuss how to

find a GW of known signal morphology. The method we will use to achieve this is

the matched filter. In this section we will derive the formula for the matched filter.

This derivation can be found in [73, 107, 99].

We start by describing the detector output s(t) as the sum of the strain induced

by a GW h(t) and the detector noise n(t)

s(t) = h(t) + n(t) . (2.103)

Using a filter K(t), we search for for GWs using the following formula

m =

∫ ∞
−∞

K(t)s(t)dt =

∫ ∞
−∞

K(t)h(t)dt+

∫ ∞
−∞

K(t)n(t)dt (2.104)

The equivalent frequency domain expression is∫ ∞
−∞

K(t)s(t)dt =

∫ ∞
−∞

K̃∗(f)s̃(f)df (2.105)

The question we must ask now is which filter choice K(t) gives the best separation

of signal from background noise? We choose the filter that maximises the SNR,

given by S/N where S is the value of m when a signal is present and N is the

root-mean-square value of m when no signal is present.

We can calculate N as follows

N2 = 〈m2〉|h=0

=

∫ ∞
−∞

∫ ∞
−∞

K̃∗(f)K̃(f)〈ñ∗(f)ñ(f ′)〉dfdf ′

=

∫ ∞
−∞
|K̃(f)|2Sdn(f)df

(2.106)

where we assumed the noise is stationary and Gaussian, giving us

〈ñ(f)ñ(f ′)〉 = δ(f − f ′)Sdn(f) . (2.107)

To find S, we use that the expected value of n(f) is zero to obtain

S =

∫ ∞
−∞

K(t)h(t)dt =

∫ ∞
−∞

K̃∗(f)h̃(f)df . (2.108)

We can thus express the SNR as

ρ =

∫∞
−∞ K̃

∗(f)h̃(f)df(∫∞
−∞ |K̃(f)|2Sdn(f)df

) 1
2

. (2.109)
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We can simplify this expression by defining the inner product

(a|b) =

∫ ∞
−∞

ã∗(f)b̃(f)

Sdn(f)
df = 4Re

∫ ∞
0

ã∗(f)b̃(f)

Sn(f)
df . (2.110)

The RHS of this equation assumes that a(t) and b(t) are real functions, such that

ã(f) = ã∗(−f), and uses the fact that Sdn(f) = Sdn(−f). We also use the one-sided

PSD Sn(f) in the RHS, which is related to the two-sided PSD by Sn(f) = 2Sdn(f).

Note that for a given a(t), this inner product is maximised when b(t) is proportional

to a(t). Using this inner product, we find

ρ =
(u|h)

(u|u)
1
2

(2.111)

where

ũ(f) =
1

2
K̃(f)Sn(f) . (2.112)

We see that the SNR is maximised when u is proportional to h. Thus the optimal

filter is given by

K̃(f) = A
h̃(f)

Sn(f)
(2.113)

where A is an arbitrary constant. Note the value of the constant does not affect the

SNR, we can therefore set it equal to one without loss of generality. The SNR is

therefore given by

ρ =
(s|h)

(h|h)
1
2

. (2.114)

This is the optimal statistic for searching for a GW of known morphology in sta-

tionary, Gaussian data. We will see in chapter 4 how to extend this statistic to a

network of detectors with noise that is non-stationary and non-Gaussian.

2.4.5 Beyond the Michelson Interferometer

We have learned the basics of Michelson interferometers as GW detectors. We have

seen how they work, how their sensitivity varies with sky position, and how to

measure the detector noise. But modern GW detectors are not simple Michelson

interferometers, as these would not have the sensitivity to detect GWs from any

realistic astrophysical source. For example, the largest interferometers in operation

today have 4 km long arms. A GW with h ≈ 10−21, approximately the amplitude of

the first detected GW, would induce a differential arm length of 1
2hL = 2× 10−18m.

A signal this small would easily be swamped by noise in a standard Michelson

interferometer. Many methods are implemented to increases the sensitivity of GW

detectors, we outline some of these here.

The first thing to note is that the longer light is circulating in the interferometer

arms, the more time there is for the phase to shift and the more sensitive the detector
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will be. There are practical limits on how long the detector arms can be built, so to

increase the sensitivity of the detector, low transmissivity mirrors are used to create

optical cavities, called Fabry-Perot cavities. These cavities keep the light in the arm

for 100 round trips, increasing the differential arm length by a factor of 100.[98]

This increases the sensitivity of the detector to a point where it can theoretically

detect GWs. However, there are many sources of noise that stop the detectors

achieving this theoretical sensitivity and these need to be mitigated. One of the

limiting factors in interferometer sensitivity is seismic noise. To reduce this, the

mirrors are suspended from quadruple pendulums, as pendulums are effective at

filtering out frequencies above their natural frequency. This reduces the seismic

noise by seven orders of magnitude. [7]

Interferometers are limited at high frequencies by quantum shot noise, statistical

fluctuations in the photon arrival time at the interferometer output. This is sup-

pressed by increasing the number of photons in each arm. To achieve this, a power

recycling cavity is used at the symmetric port which reflects laser light back into the

interferometer, increasing the power circulating in the arms. This means the laser

only needs to replace the power lost due to mirror losses. [98]

These are just a couple of the methods used to reduce noise in the interferome-

ters. For a more detailed discussion see [7, 74]. Using these methods, modern GW

detectors can achieve a strain sensitivity 3×10−24/
√

Hz at 100 Hz. At this sensitiv-

ity, a GW detector can detect a binary neutron star merger at an average distance

of 130 Mpc.

2.4.6 The Global Network of Interferometers

In this section we will quickly summarise the current generation of detectors, includ-

ing those that should be part of the global network in the near future.

LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO), cur-

rently has two detectors, one in Hanford, Washington, and the other in Livingston,

Louisiana. The light travel time between the detectors is about 10 ms, reducing the

chance of correlated noise and allowing for some triangulation to determine the sky

position of a source. The LIGO detectors have 4 km long arms. The arms contain

Fabry-Perot cavities, mirrors at each end of the arms that reflect the light back and

forth many times. This effectively increases the length of the arms to Leff ∼ 1120

km. Another LIGO detector is being constructed in India, which should be oper-

ational by 2024. This detector will be identical to the other two detectors, but by

being built far from the other detectors in the network, will significantly increase

the ability of the network to localise GW sources using triangulation.

Virgo Virgo is an interferometer with 3 km long arms. It is similar but not

identical to the LIGO detectors. It is based in Cascina, Italy. Most of the results
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mentioned in this thesis used the LIGO-Virgo network.

GEO600 A 600 m interferometer near Starstedt in Germany. Due to the short

detector arms compared to the LIGO and Virgo interferometers, GEO600 is typically

not used when analysing GW network data, but has been vital for the development

of new technology for the LIGO and Virgo detectors.

KAGRA The Kamioka Gravitational Wave Detector (KAGRA) is a Japanese

interferometer being built entirely underground, with 3 km long arms, and will have

cryogenic mirrors. It is hoped that KAGRA will be operational in early 2020.

2.4.7 Previous LIGO and Virgo Observing Runs

We end this chapter with a quick summary of previous and future observing runs of

advance LIGO and Virgo.

O1 The first LIGO observing run started on September 12 2015 and continued

until January 19 2016. [40] This observing run used only the LIGO Livingston and

LIGO Hanford observatories. This observing run included the first GW detection,

GW 150914, as well as two more GW detections from binary black hole mergers. [4]

O2 The second observing run started on November 30th 2016 and ended on Au-

gust 25th, 2017. This observing run used the LIGO Livingston and LIGO Hanford

detectors, with the Virgo detector joining from August 1st 2017. [24]. This observ-

ing run saw the first detection of a GW associated with a gamma-ray burst, as well

as the detection of seven more binary black hole mergers. [4]

O3 The third observing run started in April 1st 2019 and is expected to last one

year. It uses the LIGO Livingston, LIGO Hanford, and Virgo observatories, with

KAGRA expected to join in early 2020.
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Gamma-Ray Bursts

Gamma-ray Bursts (GRBs) are exceptionally energetic flashes of gamma rays. They

can last from just a few milliseconds up to several hours and have highly variable

luminosity curves (see figure 3.1). They are detected at a rate of about one per

day, are uniformly distributed over the sky, and are the most electromagnetically

energetic objects in the universe. The short duration and huge energy emitted by

GRBs suggests a violent origin, making them strong candidates for gravitational

wave (GW) emission.

In this chapter we discuss GRB astrophysics. We will begin with some histor-

ical perspective, starting with the accidental first detection of a GRB in 1963 and

continuing to the first GW detection associated with a GRB in 2017. We will see

that GRBs can be classified as short-hard or long-soft, depending on their duration

and spectral hardness. We will see the evidence that long GRBs are caused by core

collapse supernova, and that short GRBs are caused by compact binary mergers in-

volving at least one neutron star. We will discuss the physical processes that could

be powering GRBs and what GW astronomy can teach us about these processes. We

end this chapter with a discussion of current GRB detectors and search strategies

for GW emission associated with GRBs.

The book by Bloom [19] and the preprint book by Levan [72] were both very

useful in writing this chapter. For a more detailed discussion, see the book by

Vedrenne and Atteia [111].

3.1 The History of Gamma-ray Burst Astronomy

In this section we will discuss the key discoveries of GRB astronomy in their historical

context. These discoveries were the motivation for GW searches associated with

GRBs, and were used to develop the GW searches discussed in chapters 4, 5, and 6.
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Figure 3.1: BATSE gamma-ray light curves. Here we see the light curves of a
selection of GRBs. The duration and flux varies significantly between GRBs. [94]

– 30 –



Chapter 3. Gamma-Ray Bursts

3.1.1 Cold War Tension and an Unexpected Discovery

The partial nuclear test ban treaty, agreed between the USA and the Soviet Union in

1963, banned atmospheric, underwater, and outer space nuclear weapon tests. This

created a technical challenge: how to enforce the ban? Seismic sensors could be used

for on-Earth tests, but would not work for outer space tests. The solution was to look

for the flash of gamma rays produced in the first milliseconds of a nuclear explosion.

Thus the Vela and Kosmos gamma ray detecting satellites were produced by the USA

and Soviet Union respectively. These satellites contained only rudimentary gamma

ray detectors and each individual satellite was not capable of localisation, though

some localisation was possible using time delay and Earth blocking information.

These satellites started to detect brief bursts of gamma rays, which were first

reported in 1973. These events did not look like those expected from a nuclear test,

and did not seem to be coming from the Earth or any nearby astronomical bodies

such as the moon. It appeared a new, high-energy astronomical phenomenon had

been discovered.

These phenomena, called Gamma-ray Bursts (GRBs), could appear and fade

away in as little as a few milliseconds, and could be brighter than the rest of the

gamma ray sky combined. The brevity of these events placed constraints on the

size of the source, as the crossing time for a region cannot be less than the light

travel time. Thus a 1 ms GRB must have a source smaller than 300 km across. This

limits the potential candidates down to compact objects, such as neutron stars and

black holes, or to small regions of larger objects, such as the cores of massive stars.

Another important feature of GRBs is that the bursts do not repeat. This suggests

a source that is destroyed when the GRB is produced. More measurements were

needed to narrow down the number of possible sources for GRBs.

3.1.2 BATSE and the Galactic/Extra-Galactic Controversy

Most early GRB detectors could not localise well. It was known that GRBs were

not coming from any planets in the solar system or from the Galactic center, but

otherwise the location of GRB sources was a mystery. In particular, it was not

clear whether GRBs were coming from galactic or extra-galactic sources. Answering

this question was an important step towards identifying the origins of GRBs, as an

extra-galactic origin would imply a far more energetic progenitor than a galactic

origin.

Better sky localisation would help to answer this question. If GRBs mostly occur

on the galactic plane, then they are probably of galactic origin. If they are clustered

around nearby galaxies, then GRBs probably come from those galaxies. If, however,

they are distributed isotropically on the sky, then it would be likely that GRBs are

emitted at cosmological distances.1

1It should be noted that there are other ways that GRBs could be isotropically distributed. If
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Figure 3.2: BATSE GRB Fluence. This plot shows the fluence (given by the
colour of each point) and the sky position of each GRB detected by the BATSE
mission. [83]

Improved sky localisation was achieved in 1991, with the launch of the Burst and

Transient Source Experiment (BATSE) on the Compton Gamma-ray Observatory.

With BATSE, it became possible to determine the sky position of a GRB to within

half a degree. During its mission, BATSE detected approximately 2700 GRBs and

determined the sky position of a large number of these. For the first time there was

a statistically significant sample of well localised GRBs. In figure 3.2 we can see the

sky location of every GRB detected by BATSE, together with the fluence2 of that

GRB. This plot shows that GRBs are isotropically distributed over the sky. This

evidence strongly suggests GRBs are of cosmological origin.

The BATSE data also provided evidence that GRBs are uniformly distributed

and that we were seeing a limited horizon, beyond which GRBs became much harder

to detect. This evidence came in the form of a logN − logP distribution, where N

is the number of detected GRBs and P is the peak flux3. If GRBs are uniformly

distributed in space then the number of GRBs out to a given distance increases

as the cube of that distance. However, peak flux from the GRBs would decrease

with the inverse square of the distance. Hence, plotting logN against logP , we

expect to find a gradient of approximately −3/2. Any short fall from this expected

they are only detectable to a few hundred parsecs, they would be entirely within the disc of the
galactic plane and so would also be isotropically distributed. Alternatively, as neutron stars receive
a ‘kick’ during their formation, they could form a corona around the galaxy.

2Fluence is the time integral of the flux, essentially a measure of the total detected energy.
3Sometimes the logN − logS distribution is preferred, with S being the given flux. The essence

of the plots is the same.

– 32 –



Chapter 3. Gamma-Ray Bursts

Figure 3.3: LogN-logP for BATSE PVO. Here we plot the log of the number
of GRBs against the log of the peak flux. The sample includes GRBs detected by
BATSE and by PVO. The energy range for BATSE was 50-300 keV, and the energy
range for PVO was 100-2000 keV. For uniformly distributed GRBs, we expect this
plot to have a gradient of −3/2. The expected gradient is observed for high energy
GRBs but not at lower energies. This suggests a limited distance to which GRBs
can be observed. [37, 66]

distribution suggests that we have reached a horizon for detectable GRBs. In figure

3.3 we see the logN − logP distribution for a combined set of GRBs detected by

BATSE and the Pioneer Venus Orbiter (PVO).4. The gradient for high energy GRBs

is the expected −3/2 but there is a shortfall at low energies, suggesting there is a

limited distance to which GRBs can be viewed. Unfortunately this data does not

inform us of where that horizon is. It could be within our galaxy, or it could be the

horizon of the universe.

3.1.3 The Long and Short of Gamma-ray Bursts

Another important piece of evidence into the origins of GRBs came from their dura-

tion. As every burst has different properties5 the duration of a GRB is not trivially

defined. The measure most commonly used is the T90, the time over which 90% of

the total fluence is recorded.6

4 The PVO was less sensitive than BATSE, but it operated for 10 years and so observed a fairly
large number of GRBs

5For example, some bursts have multiple flares.
6Another common measure is the similarly defined T50.
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The top panel of figure 3.4 shows the number of bursts with a given T90 for the

BATSE data. This plot shows that there are two populations of GRBs, the first

with a T90 value of about 0.5s and the second with a T90 of about 30s. It is also

clear from this data that the longer population of GRBs are detected far more often.

Plotting the spectral hardness of the BATSE GRBs against T90, as has been done in

figure 3.4, we see that the shorter GRBs also have a harder spectrum than the longer

GRBs. This means short GRBs emit more high energy photons than long GRBs.

For this reason, the two populations are known as short-hard and long-soft GRBs.

It is common to use the criteria that short GRBs are those that are less than 2s,

and long GRBs are longer than 4s, with those in-between being called intermediate

or ambiguous GRBs.

It should be mentioned that while T90 is a very useful tool, it is instrument de-

pendent. This is because more sensitive instruments will track GRBs for longer, and

bursts have different durations in different energy bands. Also, the T90 is measured

in the detector frame, and not the rest frame of the burst, which would make a GRB

at a redshift of z appear a factor of (1 + z) longer. For these reasons, using the T90

to classify short/long GRBs should only be considered approximate.

As a final note on GRB durations, it should be mentioned that there is some

evidence that there may be an ultra-long population of GRBs [39]. It is an open

question whether these GRBs represent a new population of GRBs or are part of

the long GRB population. As these are still contentious, we do not consider them

further.

3.1.4 BeppoSAX and the First Afterglows

Important clues had been found into the origin of GRBs, but still no one had found

any trace of a GRB after the prompt emission (the initial flash of gamma-rays).

The search area provided by GRB detectors at the time were too large for ground

based telescopes to have a realistic chance of finding the source of the GRB, though

attempts were made. This changed with the launch of the BeppoSAX satellite in

1996. BeppoSAX was able to localise to within a few arcminutes, much better

than the half a degree BATSE was capable of.7 It also had a Narrow-Field X-ray

Instrument (NFI) to search for X-ray counterparts to GRBs.

On February 28th 1997 a GRB was detected by BeppoSAX that was localised

well enough for the satellite to use the NFI. A new X-ray source was detected that

faded away slowly over the next few days. The lower energy emission detectable in

the days after the prompt emission is called the GRB afterglow, and this was what

BeppoSAX had detected. The localisation was accurate enough to allow ground

7It is true that the InterPlanetary Network, a network of GRB detectors placed on various
spacecraft throughout the solar system (see section 3.4), could localise better than BATSE. The
problem was that it took too long to calculate the sky position of the GRB using this method, and
any trace of the GRB had disappeared before astronomers could find it.

– 34 –



Chapter 3. Gamma-Ray Bursts

Figure 3.4: T90 vs the Spectral Hardness Ratio. Here we plot the T90 values
and the spectral hardness ratio for the BATSE GRBs. The top panel shows a
histogram of the T90 data, which clearly has two populations of GRBs, short and
long. The main plot shows T90 against spectral hardness, which makes the two
populations even more clear and shows that short GRBs have harder spectra than
long GRBs. Those GRBs with the greatest ratio of energy in the X-ray to gamma
ray band, generally those with a peak energy of less than 15 keV, are called X-ray
flashes (XRF). Those with comparable energy in the gamma-ray and X-ray band
are called X-ray rich (XRR) GRBs. All other GRBs are simply called GRBs. These
different classes of GRBs are marked on the plot. Also shown is the 2 second dividing
line between short and long GRBs.[19]
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based telescopes to find the optical counterpart to this GRB as well. The optical

images showed what some argued was a distant galaxy and others argued was a

galactic nebula. On May 8th 1997, a GRB was detected by BeppoSAX and an

optical counterpart quickly found. A spectrum was obtained for the counterpart

which showed iron and magnesium absorption lines that had been significantly red-

shifted. This showed that the GRB must have occurred at a distance greater than

5 Gpc and that the light passed through some gaseous cloud in a distant galaxy on

its way to Earth. With this observation there could be no doubt that GRBs were

originating at cosmological distances.

3.1.5 The Fireball Model

The fireball shock model was developed in the 1990s. It attempted to describe the

physical processes that cause GRBs without making many assumptions about the

source of energy that powers the GRB, the central engine. As it was now known

that GRBs originated at cosmological distances, the inferred energy emitted at the

source is enormous, as much as a solar mass if emitted isotropically. Light-travel

time arguments showed that GRB sources must also be small, at most hundreds of

kilometers across (see section 3.1.1). Realising that all GRBs are small and highly

energetic was the starting point of the fireball shock model.

The next step was to notice that the energy of photons detected from GRBs was

often above the pair production threshold8 (2×mec
2 ≈ 1 MeV), and so should have

created electron-positron pairs rather than gamma rays. This problem is solved by

assuming that the energy released drives a relativistic expansion from the source.

In this case the energy of the photons in the rest frame of the source is inversely

proportional to the bulk Lorentz factor of the outflow, i.e. the photons are much

less energetic in the rest frame of the source. It also causes photons to bunch up

just ahead of the relativistic matter that is emitting the photons, causing it to seem

more energetic to an observer. Accounting for these factors, it can be shown that

the Lorentz factor must be in the hundreds for a typical GRB. This is as compared

to a Lorentz factor of approximately 1.001 for a fast supernovae, and corresponds

to GRB velocities of at least 99.9% of the speed of light.

Combining the evidence for the high speed of the ejected matter with the small

size of the emitting object means that a large amount of energy must be rapidly

dumped into a small volume before the GRB is emitted. Most of the energy is in

the form of photons, so this is called the radiation dominated phase. This soup of

photons with a small amount of matter is called the fireball. The fireball expands

and the Lorentz factor grows with it. As it expands, the energy is absorbed by the

matter (protons and electrons) in the form of kinetic energy. This is the matter

dominated phase. Most of the particles are moving in the same direction now, with

8Although for GRB 170817A, this was not case. See section 3.2 for more details.
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little random motion, i.e. the fireball has become cold.

A mechanism is needed to turn this kinetic energy into a GRB. The simplest

way to do this is to have the matter collide with slower moving matter surrounding

the system. The matter is too sparse for direct collisions to happen enough to form

a GRB. Instead, it is thought that magnetic fields near the edge of the fireball can

cause the matter to slow down and radiate its energy. When the fireball interacts

with the surrounding matter, the rapid change in temperature, pressure, and density

travel through the medium faster than the medium can react. Like the sonic boom

of a supersonic jet, this causes shocks in the surrounding medium. It is these shocks

that are thought to be the source of the GRB. Precisely how these shocks power a

GRB is not known. Fermi acceleration possibly plays a role. This is where charged

electrons enter the shock and are reflected back by magnetic fields, increasing their

kinetic energy. After several iterations of this, the electron can travel even faster than

the shock. The magnetic fields could then cause the electrons path to curve, causing

them to emit energy as synchotron radiation. Alternatively they might interact

with photons, imparting their considerable energy onto the photon to create a high

energy gamma ray. This process is called inverse Compton scattering. There is still

a lot to learn about the processes that power the GRB.

There are also two hypotheses as to what the slow moving matter that the fireball

collides with could be. The first is simply material around the star, the circumburst

medium (CBM). This is called an external shock scenario. The other theory is

that multiple shells of material are emitted, and the shocks are created when faster

moving shells catch up with slower moving shells. This is called the internal shock

scenario. The internal shock method is generally favoured for the prompt emission.

This is because GRB light curves are highly variable, with some showing multiple

peaks (see figure 3.1). This is easily explained by the multiple shocks of the internal

shock scenario, but more difficult to explain for external shocks. External shocks

are thought to be the cause of the GRB afterglow.

3.1.6 Jets

The well-founded assumptions made by the fireball model, that GRB progenitors

are small and dense, naturally lead to the prime suspects for powering GRBs being

compact objects, such as black holes and neutron stars. If we assume that compact

objects do play a role in generating GRBs, then it is not much of a jump to think that

GRBs may be jetted. Jets are ubiquitous with both black holes and neutron stars:

supermassive black holes and solar mass black holes have been observed to have

jets, and highly magnetised, rotating neutron stars, called pulsars, are also known

to produce jets. Assuming that GRBs are jetted substantially lowers the inferred

energy emitted by the source, which has implications for the physical mechanism

that causes GRBs. It is therefore important to determine whether GRBs are jetted
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or not.

What would be the observable effects of GRB jetting? The fireball model sug-

gests that the ejected matter will have a very high Lorentz factor. Special relativity

tells us that objects moving with high Lorentz factor Γ emit most of their energy

within an angle θ ≈ 2/Γ radians of the direction of travel. This is called relativistic

beaming. If the matter is jetted and the beamed angle θ is less than the opening angle

of the jet, then there will be no observable difference between isotropic emission and

jetted emission, as the edge of the jet will not be visible. However, once the matter

reaches the interstellar medium it will begin to slow down, reducing the amount

of beaming and increasing the angle to which the matter can be observed. Once

the beaming angle has increased to a point where the edge of the jet is visible, the

amount of energy being radiated towards the observer will suddenly drop, and this

will happen across the whole electromagnetic spectrum at the same time. This break

in the spectrum is observable in the afterglow of many GRBs. For example, figure

3.5 shows the clearly visible break in the afterglow spectrum of GRB 990510 after

approximately one day. It is now widely accepted that short GRBs have opening

angles of ∼ 30◦[30] and long GRBs have opening angles of ∼ 5◦[48].

3.1.7 The Long GRB-Supernova Connection

As more afterglows were found, trends began to appear. Long GRBs tended to occur

directly on host galaxies, not randomly in space.9 Spectroscopy of these galaxies

often found the presence of emission lines excited by star formation. In fact, no long

GRB has been found in a non-starforming galaxy. The host galaxies also tended to

be relatively faint. Low luminosity (i.e. low stellar mass) suggests galaxies have a

low metallicity [67], and spectographic studies confirmed this. Star forming galaxies

with low metallicity, such as those from which long GRBs originate, are also where

type 1b and 1c supernovae are observed. Type 1b and 1c supernovae result from the

core collapse of massive stars that have shed off their outer layers of hydrogen. [102]

In the case of type 1c supernovae, they have also shed most or all of their helium

as well. That long GRBs originate from star forming galaxies with low metallicity

raises the possibility that long GRBs are connected to the massive stars that can

only exist in these kinds of galaxies. In particular, it is thought that a type 1b or

1c supernova could power a GRB.

The strongest evidence of a supernova connection came with the detection of

GRB 980425. This GRB was exceptionally close; at just z = 0.0085, it is still the

closest GRB ever detected. Followup observations found a rising supernova, SN

1998bw. It was a very bright supernova, about ten times brighter than normal. It

also showed no hydrogen or helium emission lines, making this a type 1c supernova.

It seemed highly unlikely that the coincident GRB and supernova were unrelated.

9We will see in section 3.1.8 that this is unlike short GRBs. which can originate quite far from
any host galaxy.
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Figure 3.5: Break in spectrum due to jetting. Here we see the optical light
curves for the afterglow GRB 990510. A break in the spectrum is visible after
approximately one day.[51]
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Questions remained though, because this GRB was exceptionally faint given its

distance. Was it typical of other long GRBs?

After GRB 980425, searches were undertaken for other bright supernova after-

glows associated with long GRBs. Not only were many found, but they were shown

to have similar spectra to GRB 980425. In particular, GRB 030329 was another

nearby GRB, at redshift z = 0.17, which had very detailed followup. It was 1000

times brighter than GRB 980425, but showed the same spectral features. With this

discovery, the consensus grew that long GRBs were caused by type Ic supernova.

3.1.8 The Short GRB-Compact Binary Connection

Much had been learned about long GRBs by studying their afterglows, but no

afterglow had been found for short GRBs. This was because short GRBs fade

rapidly, reducing the amount of time for follow up observations. Rapid follow up

was needed, and so the Swift satellite (more detail in section 3.4) was launched in

2004. Swift was able to autonomously followup a GRB with X-ray, UV, and optical

measurements within minutes, just what was needed for short GRBs.

The first detected short GRB afterglow was that of GRB 050509B. It was a

faint X-ray afterglow that faded quickly, but it was localised well enough for ground

based telescopes to determine the host galaxy, which had a redshift of z = 0.225.

The afterglow and host galaxy were very different to those of long GRBs:

• The host galaxy was a massive elliptical galaxy which showed no evidence of

star formation.

• The host galaxy was relatively nearby.

• The GRB took place far away from the galactic core.

• There was also no evidence of a supernova.

With more short GRB afterglow detections it became clear that these are all typical

properties of short GRBs. Short GRBs can occur in any type of galaxy, unlike long

GRBs. They show no evidence of being caused by a supernova. On average, short

GRBs occur much closer than long GRBs 10, though this could be partly due to

selection effects.11 Also, short GRBs occur further from the center of their host

galaxy than long GRBs, with an average offset of 4.5kpc and 1.5kpc respectively.

Sometimes they are so far from any galaxy that determining the host is impossible;

these are called hostless GRBs.

The observed properties of short GRBs can be explained naturally if short GRBs

are caused by the merger of a neutron star with either another neutron star or a

10The average redshift of a short GRB is about z = 0.5, while less than 10% of long GRBs have
a redshift less than one.[70]

11Short GRBs tend to be dimmer and so not observable at greater distances. Also, GRBs at
high redshifts will appear longer in the detector frame.
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black hole. In this case the two objects would form in a binary system and slowly

inspiral due to the loss of energy through gravitational wave emission, until they

finally merge and emit the GRB. For neutron star - black hole (NS-BH) mergers,

the black hole must be relatively low mass (less than ∼ 10M�)[18]. This is because if

the black hole has a high mass then the neutron star will be swallowed whole by the

black hole, and there will be no material to produce a GRB. For a low mass black

hole the neutron star will be tidally disrupted before merger, i.e. the black hole

will pull apart the neutron star, providing matter that can then power a GRB. The

merger time for a binary scales with a4, where a is the initial separation. This means

a small change in the initial separation can lead to a very different merger time.12

This explains their presence in elliptical galaxies that have long since stopped star

forming, as well as in younger, star-forming galaxies.

It is also expected that these binary systems would receive a kick in their forma-

tion, which explains why so many short GRBs occur far from the center of their host

galaxy. There appear to be two mechanisms through which the binary could receive

a kick. The first is due to the supernovas that formed each component of the binary.

As the supernova will cause a large amount of matter to become unbounded from

the system at a particular point in the orbit, conservation of momentum forces the

binary system to recoil. This cannot be the only mechanism that causes a kick to

neutron stars though, as pulsar observations show that even lone neutron stars re-

ceive kicks from the supernova that forms them. This must be due to an asymmetric

explosion, though the exact mechanism is not known.

The binary inspiral theory also explains why short GRBs are short. The duration

of a GRB depends on how long it takes the gamma rays to break through any

surrounding material and how long the central engine remains active. For a core

collapse supernova there can be a lot of material around the central engine, and the

amount of time the central engine is active could also be highly variable. This large

amount of variability explains why long GRBs can last from seconds to hours. A

binary inspiral is expected to clear out the surrounding system of any matter long

before merger so that the only source of matter around a binary merger is from the

stars themselves. As the GRB is emitted at or immediately after the merger time

of the compact objects (see section 3.3), the amount of time the central engine is

active is not very variable. Putting this together we conclude that binary mergers

cannot produce long GRBs, as the central engine is not active for very long and

there is not a lot of matter to delay the GRB.

The observation of supernova remnants coincident with long GRBs demonstrated

the long GRB - supernova connection. One might expect to find an analogous

remnant for short GRBs. What would the remnant of a neutron star merger look

like? Would it be observable? It is useful to first consider the circumstances and

processes that cause supernovas, and then contrast them with those of a neutron

12In fact, some galactic binaries have merger times that exceed the age of the universe.
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star merger. Supernova ejecta emits light due to the radioactive decay of s-process

elements. The s-process refers to when an atom captures a neutron, which makes

the atom unstable, and then β-decays13 to a heavier element. This is how the iron

group elements are produced and it is also what makes supernovas radiate light.

The s-process occurs only if the unstable atom decays before it captures another

neutron. This is unlikely in neutron rich, high temperature environments, such as a

neutron star merger. Instead the atoms will capture multiple neutrons before they

β-decay. This is called the r-process and it creates elements with a high atomic

number, such as gold and iodine. The light emitted by the decay of the r-process

elements after a neutron star merger is called a kilonova. The r-process elements

are optically opaque, making kilonovas about 10-100 times fainter than supernovas

and peak in the infrared (IR).

It is difficult to detect IR using ground based telescopes, due to atmospheric dis-

tortion and a bright sky. Despite this difficulty, a kilonova was eventually observed

in conjunction with GRB 130603B, a short GRB. The Hubble space telescope ob-

served the event fade over 10 days until it was undetectable in optical light, but still

clearly visible in IR. The IR light was brighter than would be expected by simply

extrapolating from the afterglow. This additional IR component to the light was

the kilonova. This was the strongest evidence yet that neutron star mergers were

the progenitors of short GRBs.

As discussed in chapter 2, compact binary coalescences (CBCs) are known to

be strong emitters of GWs. This made short GRBs a promising target for GW

astronomy, as a GW signal of a neutron star binary inspiral detected in coincidence

with a short GRB would be the smoking-gun that neutron star mergers can produce

short GRBs.

3.2 Gravitational Waves and GRB 170817A

On the 17th of August 2017, the Fermi Gamma-ray Burst Monitor (see section 3.4)

observed a faint short GRB just two seconds after the LIGO and Virgo observatories

detected a GW signal from a binary neutron star merger with a network SNR of

32.4 (see figure 3.6) [8]. Comparing the sky localisation of the GW detector network

and the Fermi GRB detector, the source of the GRB was localised to a small sky

patch of approximately 28 deg2. Ground based observatories scanned the sky patch

for a remnant, and quickly identified a bright object near the galaxy NGC 4993 [30].

This object had not been there when the same galaxy had been previously observed

(see figure 3.10), and this galaxy was at the right distance as determined from the

GW signal. Further study revealed the new object to be a rapidly evolving kilonova,

confirming the theory that short GRBs are caused by neutron star mergers.

13β-decay is when a neutron decays into a proton, electron, and an electron anti-neutrino.
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In this section we will discuss in detail the coincident detection of GW 170817

with GRB 170817A. We will start by discussing the initial GW detection, focusing

on the data analysis used to determine the sky location and properties of the source.

We will then discuss the results of the EM followup that found the afterglow of

the GRB and showed that it was a kilonova. Then we discuss the late time EM

observations, which showed that GRB 170817A had a structured jet which was seen

off-axis, explaining the relatively faint prompt emission. We will end with a quick

summary of some of the other key scientific results to come from GRB 170817A/GW

170817.

3.2.1 Initial Observation and Followup

The initial detection of GW 170817 was made only by the LIGO Hanford obser-

vatory, despite the fact that both LIGO detectors and the Virgo detector were in

observing mode. A quick investigation found that the Livingston detector data had

not been included by the low-latency search due to a glitch approximately 1.1 sec-

onds before the coalescence time of the signal[8]. Glitches such as this happen at

a rate of once every few hours in the LIGO detectors. These glitches are not tem-

porally correlated between the two LIGO detectors and their source is unknown.

Despite the glitch, the GW signal is clearly visible in the data (see the top panel of

figure 3.7).

Due to the coincidence with GRB 170817A, a rapid reanalysis of the data was

performed, with the glitch removed from the data using an inverse Tukey window

(see the bottom panel of figure 3.7). Removing a glitch like this lowers the reported

signal to noise ratio (SNR) of a matched filter search compared to if there was no

glitch, but allows the trigger to pass signal consistency tests14. The data from the

LIGO and Virgo detectors, with the Livingston glitch and some other noise removed,

is shown in figure 3.8. The GW signal, clearly visible in the LIGO detectors, had

an SNR of 18.8 in Hanford and 26.4 in Livingston, but an SNR of just 2.0 in Virgo.

The high SNR in the LIGO detectors compared to Virgo suggested that the GW

originated from a part of the sky that Virgo was not sensitive to at the time of the

trigger 15. The source of the GW was localised to within 31 deg2 using the time

delay between the LIGO detectors and the fact that the source originated from a

null of the Virgo detector.16 [8] The sky localisation determined using GW data was

consistent with the sky position determined by GRB detectors (see figure 3.9). GW

data also determined the distance to the source was approximately 40 Mpc, close

enough that relatively complete galaxy catalogues exist. Using this information,

ground based observatories began scanning the sky patch for an afterglow. Less

14In fact, some offline analyses automatically gate out glitches, see section 5.1 and [108]
15See section 2.4.2 for more details on how interferometer sensitivity changes with sky position.
16For parameter estimation analysis of the signal, the glitch was modeled and subtracted from

the data (see the bottom panel of figure 3.7), which reduced the sky patch to an area of 28 deg2.
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Figure 3.6: GRB170817A and GW170817. Here we see the a coherent combi-
nation of the Hanford and Livingston strain data from GW 170817 in the bottom
panel. The top two panels shows the Fermi GRM curve in the 10-50keV and the 50-
300 keV range respectively. The INTEGRAL/SPI-ACS data is shown in the third
plot. The background estimate for each GRB detector is indicated by the red line.
Note that the GRB was detected 1.7 seconds after the GW signal was detected. We
can also see that Fermi detected a longer, softer signal in the 10-50 keV range, that
lasted for a few seconds after the triggering pulse. [30]
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Figure 3.7: Glitch in the LIGO Livingston Observatory. The top panel shows
a time frequency map for the whitened Livingston observatory data at the detection
time of GW 170817. A glitch is clearly visible approximately 1.1 seconds before the
end of the signal. Despite this the signal is still clearly visible. The bottom plot
shows the raw strain data from the Livingston observatory. This data is bandpassed
between 30 Hz and 2 kHz to emphasise the sensitive range of the detector. The
grey curve (and right axis) shows the inverse Tukey window used to smoothly zero
out the data around the glitch before the rapid reanalysis of the data. The blue
curve shows the waveform model used to subtract the glitch from the data before
measurements of the source’s properties were made. [8]
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Figure 3.8: GW 170817 Detection. Here we see time frequency maps of the LIGO
Hanford and Livingston observatories, and the Virgo observatory at the detection
time of GW 170817. This data has been whitened and independently observable
noise sources have been subtracted, including a glitch in the Livingston data. The
non-detection by Virgo significantly reduced the amount of the sky that the signal
could have originated from.[8]
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Figure 3.9: Sky map for GW 170817/GRB 170817A. Here we see the 28 deg2

90% confidence sky localisation for the LIGO and Virgo collaborations in green, the
∼ 1100 deg2 [29] 90% localisation obtained by GBM in purple, and the annulus
formed by Fermi and INTEGRAL timing information in grey. [30]

than 11 hours after the initial trigger, the Swope telescope in Chile, followed by five

other observatories, [29] found a new object on the edge of galaxy NGC 4993 (see

figure 3.10).

3.2.2 Kilonova Observation

This new object was studied intensely over the following days. The transient was

initially observed to be a rapidly fading blue transient, which had faded completely

within 48 hours. The spectrum showed no supernova-like absorption lines, ruling

out the possibility that this transient was caused by a supernova. Over the next ∼10

days the spectrum grew redder, and observations by ESO-VLT/X-shooter showed

evidence of the decay of r-process elements. This all strongly indicates that the

transient was a kilonova. X-ray emission was detected 9 days after the merger,

and radio emission after 16 days. This delayed radio emission was predicted from

neutron star merger models as the ejecta interacts with the interstellar medium.

3.2.3 Structured Jets

GRB 170817A was significantly fainter than any other detected GRB (see figure

3.11). In fact, the GRB showed no evidence for photons with energy > 511 keV, i.e.

above the pair production threshold, meaning that the matter ejected from this GRB

need not have been traveling at relativistic velocities17. There are several factors that

affect GRB brightness, such as the angle the GRB is observed at and the intrinsic

17Recall from section 3.1.5 that GRBs were assumed to accelerate matter to relativistic velocities
as this would explain how GRBs could emit photons above the pair production threshold. The fact
these high energy photons were not detected means that material ejected from this GRB need not
travel at relativistic velocity.

– 47 –



3.2. Gravitational Waves and GRB 170817A

Figure 3.10: NGC 4993. Image of NGC 4993 taken in 1992 by the Anglo-Australian
Observatory (left) and August 18th 2017 by the Las Cumbres Observatory (right).
Note the appearance of a bright new object to the North East of the galactic center.
[15]

properties of the jet. The simplest model of the jet is the top-hat jet, which has a

uniform core that terminates sharply at some angle from the GRB axis. It is possible

that GRB 170817A was a top-hat jet viewed off-axis, making it appear dimmer.

Another possibility is that the GRB had a structured jet, meaning that it gradually

becomes less energetic as the angle from the axis increases. It is also possible that

the GRB jet had a cocoon created by the relativistic jet shocking the non-relativistic

matter surrounding the jet. These three possibilities are shown in figure 3.12. It

could also be that GRB 170817A was produced by a new mechanism that is not

observable at greater distances as it is intrinsically dim. Another possibility is that

GRB 170817A is part of a population of subluminous GRBs that can only be detected

if they occur unusually close. Or the GRB might not have been jetted at all, and is

a mildly relativistic, isotropic fireball. In this section we will consider each of these

possibilities and compare each model to the observed spectral evolution of GRB

170817A, from the prompt emission to the late afterglow observations. We will see

that the best explanation for the faint prompt emission of GRB 170817A is that it

had a structured jet seen at a relatively large viewing angle.

We begin by using some simple arguments to show some of these models are

unlikely. The observed gamma-ray properties of GRB 170817A are similar to other

short GRBs, making it unlikely that the prompt emission was caused by a different

mechanism to other short GRBs. It is also unlikely that GRB 170817A represents

the first detected member of a subluminous population as this would mean short

GRB luminosities covers six orders of magnitude, which is difficult to conceive given

the small range of physically possible neutron star masses. Though it should be

noted that a wider range of intrinsic luminosities is possible if we assume that some

short GRBs are produced by NS-BH mergers, or that the magnetic field strength of
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Figure 3.11: Brightness/Luminosity against redshift. Here we see the distri-
bution of the isotropic equivalent energy Eiso and luminosity Liso against redshift
for every GBM-detected GRB with a measured redshift. For GRBs with power law
spectra, marked with a downward pointing arrow, this is taken to be an upper limit.
This is because the spectra must have curvature, and so extrapolating a power law
leads to an overestimation. The green dashed line shows the approximate detection
threshold for the GBM. These plots show that GRB 170817A was more than two
orders of magnitude dimmer than any other GRB in the sample.[30]

Figure 3.12: Jet Structure Scenarios. Three different scenarios that could explain
the low luminosity of GRB 170817A. The first scenario is that a top-hat jet was
viewed off-axis. The second is that the jet is structured, with photons emitted
further from the axis being lower energy and fewer in number, and viewed relatively
far from the axis. The third scenario is that a uniform jet has a surrounding cocoon
that emits lower energy photons, and it was these lower energy photons that were
detected.[30]
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GRB progenitors is highly variable and significantly affects the intrinsic luminosity

[30].

This leaves only those models that focus on the jet structure and viewing angle of

the prompt emission. The authors of [69] compare the late time afterglow observa-

tions of GRB 170817A to the predictions made assuming three different jet models:

A top-hat jet seen off-axis, a structured jet with a cocoon, and a mildly relativistic,

isotropic fireball. The expected afterglow for a structured jet GRB is very different

to the off-axis top-hat and the isotropic fireball. For a structured jet, the initial

afterglow emission will be due to material traveling down the line of sight. After

a few days, this material will interact with the interstellar medium, causing it to

decelerate and emit light. Over the next months, material ejected at an increasing

large angle from the line of sight will become observable due to interactions with

the interstellar medium, causing the afterglow to appear brighter. Eventually, on a

timescale of months or years, the jet will become observable. At this point the after-

glow will have reached peak luminosity and will start to fade. This is qualitatively

different to the top-hat and isotropic fireball case, in which all ejected material has

approximately the same energy and so the afterglow rises more rapidly and fades

more slowly (see figure 3.13), unlike the afterglow of a structured jet GRB which

will rise slowly as material from closer to the jet gradually comes into view (see

top right panel of figure 3.14). Note that if the jet is observed on axis, then the

afterglow of a structured jet would be indistinguishable from a top-hat jet as the

afterglow would peak quickly and then fade in both cases. In [69] the authors use

Markov Chain Monte Carlo to fit the structured jet, top-hat, and isotropic fireball

model to the spectra of GRB 170817A. The 3 GHz light curve for the best fit of each

model is plotted in figure 3.13. We can see that the structured jet model fits the

data much better than either the top-hat or isotropic fireball model. The best fit

model viewing angle is θ = 33+4
−2.5, which is comparable to the LIGO measurement

of ≤ 28◦. If this model of the structured jet is correct,18 then approximately one in

every 20 BNS systems detected with GWs should have a GRB counterpart. [69]

The structured jet model also has the advantage of being a natural consequence

of binary neutron star mergers. As the jet shocks the slow moving material in

the surrounding area, a cocoon of high pressure, subrelativistic matter will form.

This cocoon creates a sheering force on the jet which creates a jet with a highly

relativistic core, surrounded by lighter and slower moving material, with mildly

relativistic wings at larger angles (see left panel of figure 3.14).

3.2.4 Other Scientific Results

We have so far focused on the physics of the jet and the progenitor of the GRB as

these both affect our interpretation of the coincident GRB/GW signal. Now that

18The best fit structured jet model has a χ2 of 69 for 56 degrees of freedom and a probability of
p=11%.
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Figure 3.13: Jet Model Comparison. Here we see a comparison of the best fit for
the structured jet, top-hat jet seen off-axis, and isotropic models. The afterglow’s
measured flux density at 3 GHz is shown by the blue symbols (though the fits were
performed with multi-wavelength data). The inset shows the best fit isotropic energy
and Lorentz factor for each model as a function of viewing angle. The arrows show
the position of the observer for the structured and top-hat jet models.[69]
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Figure 3.14: Structured Jet. Left panel: A pseudocolour density image of the
simulation used to compute the afterglow curves. The low density core of the jet
is the blue region near the middle. The orange and green regions around the core
are the slow moving wings. Top right panel: Here we see the 3 GHz flux detected
by an observer at 33◦ from the jet axis from different parts of the structured jet
as time progresses. The angle is relative to the jet axis, so the blue curve is the
core of the jet, the orange curve is the fast wings of the jet, the orange curve is the
material moving along the line of sight (an angle of about 33◦ in this case), and the
pink and brown curves correspond to large angles, that do not contribute much to
the observed flux. Bottom right panel: The distribution of energy as a function of
angular separation from the jet.[69]
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we are confident that GRB 170817A resulted from a binary neutron star merger, we

can use it as a probe for other physics.

Speed of Gravity

One result that can be derived immediately from the coincident detection is the speed

of gravity νGW. General relativity predicts that GWs will travel at the speed of light

νEM. We can now test this prediction by using the measured time delay between GW

170817 and GRB 170817A. To do this, we will use different assumptions for the time

delay between the merger and GRB emission in order to place bounds on the speed

of gravity. The greater the distance to the GRB, the less the uncertainty in travel

time for both light and gravity. For this reason we will assume the GRB happened

at a distance D = 26 Mpc, the lower bound of the 90% credible distance determined

from the GW signal. The delay between the peak of the GW signal and the start

of the start of the GRB signal is 1.74± 0.05 seconds. We can find an upper limit on

the speed of gravity by assuming that the first photons were emitted at merger time.

This means the entire time delay is due to GWs traveling faster than light. Using

the upper limit for the time delay, this gives us δt = 1.74+0.05 seconds. For a lower

limit we can assume a significant delay between the merger and the first photons

being emitted. It can be shown that the duration of a GRB is approximately the

time delay between the merger and the GRB emission. [30] It is therefore expected

that the time delay between merger and emission is also ∼ 2 seconds. For a lower

bound, we conservatively assume a time delay of ∆t = 10 − 1.74 + 0.05 = 8.31

seconds. As ∆ν/νGW = −νEM∆t/D, where ∆ν = νGW − νEM, we find

− 3× 10−15 ≤ ∆ν

νEM
≤ +7× 10−16 . (3.1)

As this range includes zero, it is in agreement with general relativity. The largest

source of uncertainty in this calculation is the time delay between GW and EM emis-

sion. As this does not depend on the distance to the source, more joint detections

will allow this value to be constrained. This will allow for more accurate measure-

ments of the speed of gravity and rule out more exotic EM emissions mechanisms,

some of which predict time delays much greater than the 10 second bound we used

in the above calculation.

Hubble Constant

Another scientific result to come from GW 170817 is a new measurement of the

Hubble constant. Using the distance inferred from GW data and the redshift mea-

surement of the associated galaxy NGC 4993, it is possible to calculate the Hubble

constant directly, rather than using a cosmic distance ladder.19 Using this method,

19The cosmic distance ladder describes the fact that various different techniques are used to
measure distances depending on the distance scale being measured. Each technique is useful for
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the Hubble constant was measured to be H0 = 70+12
−8 km s−1Mpc−1. This is con-

sistent with measurements made using either Planck data or type 1a supernova as

standard candles.[3]

Rates

This detection can also be used to predict rates of BNS mergers and joint GW/GRB

mergers. We will cover this in more detail in section 4.3, where we consider not only

the detection of GRB 170817A and GW 170817, but also the 41 non-detections for

other GRBs for which there was GW data available. There we will see that the

expected rate of BNS mergers is 1-30 per year, with about 0.07-1.80 joint GRB-GW

detections per year for the 2019-20 observing run.

3.3 GRB Progenitors

In section 3.1 we discussed the evidence for short GRBs being produced by neutron

star mergers and long GRBs being produced by core collapse supernova. In both of

these cases, a large amount of energy is displaced rapidly from a small region. In

section 3.1.5 we discussed the fireball model, which shows that these circumstances

cause shocks which explain the high energy and variability of GRBs. But the fireball

model only assumes that the central engine, the source of energy for the GRB, is

small and highly energetic. There are many phenomena that satisfy this criteria.

In this section we discuss some of these possibilities. We will see under which

circumstances neutron star mergers and core collapse supernovae can power short

and long GRBs respectively.

3.3.1 Compact Binary Coalescence

As mentioned previously, short-hard GRBs are thought to be powered by the merger

of a neutron star with either a neutron star or black hole. With the detection of GW

170817 in conjunction with GRB 170817A, we now know this is the case for at least

some short-hard GRBs. In this section we will discuss the immediate aftermath of

a NS merger and the different GRB and GW signals that could be produced.

Neutron Star - Black Hole Mergers The simplest case is that of a neutron

star - black hole (NSBH) merger where the BH mass is significantly greater than

that of the NS. If the BH to NS mass ratio is greater than 5:1 then the innermost

stable circular orbit (ISCO)20 is greater than the tidal disruption radius21. This

results in the NS being swallowed whole by the BH and leaving no accretion disk.

a certain range of distances, and the different techniques overlap in some distance range, allowing
them to be calibrated to one another.

20The ISCO is the smallest stable circular orbit for a test particle around a BH.
21The radius around a BH where the BH’s tidal forces pull apart an in-falling star.
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The accretion disk is believed to be essential in powering a GRB after a NS merger,

and so this case is not expected to produce a GRB. If the NSBH has a relatively

low mass ratio, then the neutron star will be tidally disrupted before merging with

the black hole. This will create a massive accretion disk and is expected to produce

a GRB.

Binary Neutron Star Mergers For Binary Neutron Star (BNS) mergers we

must consider both the mass ratio and the total mass of the system. This is because it

is possible for the merging neutron stars to either form a black hole or a hypermassive

neutron star depending on the total mass of the binary system. The simplest of these

is for a system with approximately equal mass ratio and a high total mass, such that

a black hole can be produced immediately after merger. This requires the total mass

to be above about 2.9M�[18], but the exact value depends on the equation of state

(EOS) of neutron stars. In this case, no accretion disk will be produced and so no

GRB is expected.

For an unequal mass ratio, the lighter neutron star is tidally disrupted by the

larger neutron star. Matter from the lighter neutron star then accretes onto the

more massive star, causing the more massive star to collapse into a black hole. This

can potentially leave a massive accretion disk which could power a GRB.

If the total mass is less than about 3M� [18] then the merger is not expected to

immediately form a black hole but to instead form a hypermassive neutron star. This

is a neutron star that is supported by differential rotation and thermal pressure. The

merger will produce an accretion disk which could power a GRB. It is also possible

that the rapidly rotating hypermassive neutron star will be ellipsoidal in shape,

making a powerful emitter of GWs. These GWs would be detectable with aLIGO

up to about 20Mpc [18]. Over time, the hypermassive neutron star will lose angular

momentum due to GW emission and magnetic force, its rotation will become more

uniform due to magnetic forces and viscosity, and it will radiate away its heat. These

factors cause the hypermassive neutron star to eventually collapse to a black hole.

This can happen on a timescale of seconds or minutes. [16, 44]

3.3.2 Core Collapse

Long GRBs are known to be caused by core collapse supernova. In this section we

will discuss some of the possible central engines for long GRBs, focusing on those

that could produce a GW signal strong enough to be detected with aLIGO.

Rotational Instabilities of Proto-Neutron Stars The cores of stars with ini-

tial masses in the range 10M� .M . 25M� are expected to collapse to rapidly ro-

tating protoneutron stars; stars which are cooling and contracting to form a neutron

star. [18] These protoneutron stars could exhibit non-axisymmetric deformations

due to, for example, their rapid rotation driving hydrodynamic instabilities. The
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rapid rotation of the star could then drive significant GW emission [103], poten-

tially detectable at greater than 10 Mpc with current detectors and even further if

the protoneutron star accretes supernova material. [18]

Non-axisymmetric Instabilities of Accretion Disks For stars with initial

mass greater than ∼ 30M�, the core collapse of the star will form a central black hole

surrounded by an accretion disk. If the accretion disk has sufficiently high angular

momentum and non-axisymmetric instabilities, then it can produce detectable GWs

with a waveform similar to that of a low mass binary merger. [109, 110] For a

stellar mass black hole with a clump of matter in its accretion disk of approximately

0.1M�, an accretion disk instability can potentially be detected out to 100 Mpc with

aLIGO. [18, 95] An accretion disk instability can be caused by, for example, a high

angular momentum such that the accretion disk is not gravitationally stable.

3.4 GRB Detectors

Most GRB detections have come from the Swift and Fermi space telescopes, or a

network of satellites called the Interplanetary Network. In this chapter we discuss the

characteristics of these three missions, focusing on the aspects that affect a followup

search for gravitational waves: sky coverage, source localisation, and sensitive energy

range.

3.4.1 Swift

The Swift satellite is named for its ability to autonomously repoint itself towards

a GRB within 90 seconds. It has three instruments: The first is the Burst Alert

Telescope (BAT), the primary tool for GRB detection. It has a large field of view of

approximately 2 steradians, and is highly sensitive in the 15-150 keV energy range.

The BAT can localise GRBs to within 1-4 arcminutes. The other two instruments

are the X-ray Telescope (XRT) and the UV/Optical telescope (UVOT). These are

used for followup observations of the GRB afterglow. They can also reduce the sky-

error; XRT can localise to 3-5 arcseconds and UVOT to 0.5 arcseconds [82]. The

UVOT is also used to determine the redshift of the host galaxy from which the GRB

originated. To date, Swift has detected over 1000 GRBs, with approximately 10%

of these having T90 < 2s. [85]

3.4.2 Fermi

The Fermi Satellite [81] has two instruments: the Large Area Telescope (LAT),

and the Gamma-ray Burst Monitor (GBM). The LAT is sensitive to higher energy

photons (in the range 30 MeV - 300 GeV), has sky coverage of 2 steradians, and can

localise to within 1 arcminute of accuracy. The GBM is sensitive to lower energy
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photons (in the range 8 keV - 30 MeV), is sensitive to a greater sky area than LAT

(9.5 steradians), but cannot localise as well (typically 10s or 100s of square degrees).

3.4.3 The InterPlanetary Network

The interplanetary network (IPN) [58] is a network of GRB detectors on spacecraft

that are in low Earth orbit, eccentric Earth orbit, traveling to other planets, or

orbiting other planets already. Many of the spacecraft in the IPN are not dedicated

GRB detectors; most are individually unable to determine the sky position of a GRB

and are not as sensitive as dedicated GRB detectors. But the network as a whole

acts as an all-time all-sky GRB monitor, and as the spacecraft are great distances

apart, the network can triangulate sky position to within several arcminutes. The

accuracy is greatly dependent on the number and position of the satellites that

detect the GRB, with satellites at greater distances significantly improving the sky

location error. A list of past and current IPN satellites can be found here [84].

3.5 GRB Gravitational Wave Search Strategies

In chapters 4, 5, and 6, we discuss in detail search pipelines for both CBC and

burst searches. It is useful before discussing these searches to give an overview of

the general strategy when searching for GWs associated with GRBs. This will give

context to later discussions on the details of the searches, and also to the following

section on the astrophysics that can be learned from detections of GWs from GRBs.

3.5.1 Triggered and Untriggered Searches

We can classify GW searches as being either triggered or untriggered. Untriggered

searches will search all of the sky for all of the time when there is detector data.

These all-sky all-time searches can be further divided into groups depending on the

amount of time they take to run. Some searches are untriggered and low latency

[87, 97, 65]. They aim to find GW triggers and their sky position within minutes,

allowing astronomers to followup the trigger. This is what happened for GW 170817,

which was detected in low latency, in coincidence with a Fermi GRB, and followed

up by ground and space based observatories. High latency untriggered searches

[108, 97] work on much longer timescales, as long as months, but aim to achieve

very high sensitivity with very low false alarm rates.

Triggered searches use sky location and time information from other messengers

[122, 52, 105], such as GRBs. These searches have the advantage of only needing

to analyse a limited amount of data (as the trigger time is known) and being able

to use information gleaned from the other messengers to restrict the search. For

example, both long and short GRBs are thought to be jetted along the axis of
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angular momentum of the source, which can be used to infer that the GRB is

circularly polarised (see section 4.1.5).

Results from both triggered and untriggered searches can be used in Multimes-

senger searches [31, 42]. These searches attempt to combine subthreshold triggers

from multiple different messengers to make a confident detection. For example, a

core collapse supernova could produce a long GRB, a GW signal, and neutrinos, but

be too distant for any search using just one of these messengers to make a confident

detection. Faint but coincident signals with all three messengers could be enough

to make a confident detection.

3.5.2 Modeled and Burst Searches

Searches for GWs can also be classified as either modeled or burst. Modeled searches

have theoretical models of the waveforms they are searching for. For example, CBC

signals can be modeled by numerical relativity and analytic methods [62]. These

waveforms can then be used to build a more sensitive search, such as a matched

filter search. In chapter 4 we will look at PyGRB, a targeted, modeled search for

GWs associated with GRBs.

Burst searches use minimal assumptions about waveform morphology, instead

relying on measures of coherence between detector data streams. This is in general

less sensitive than if a waveform was known and a matched filter search could be

carried out, but there are no such waveform models for supernovas/long GRBs. In

chapter 6 we will discuss a burst search called X-pipeline.

3.6 GRB Astrophysics with Gravitational Waves

We have discussed what GRBs are, what causes GRBs, and seen that they can be

good emitters of GWs. We end this chapter with a discussion of how GW astronomy

will add to our understanding of GRBs.

Short GRB Progenitors With the coincident detection of GRB 170817A and

GW 170817, it is now known that at least some short GRBs are produced by neu-

tron star mergers. As more detections are made it will become easier to determine

whether this is the only source of short GRBs or if other mechanisms exist. Also,

by comparing the electromagnetic counterpart to the knowledge gleaned from the

GW signal about the binary, such as whether the system is an NSBH or a BNS, we

can learn more about the central engine of the GRB.

Long GRB Progenitors There is a lot of evidence that long GRBs are pow-

ered by core collapse supernova. It should therefore be possible to detect GWs in

coincidence with a nearby long GRB. The GW signal would provide clues as to

the evolution of the core collapse. If there is no GW detection, then it is possible
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to constrain the dynamics of the core collapse. Supernovae searches performed by

LIGO at the moment only analyse supernovae that occur at a distance of less than

20 Mpc, and have so far seen no GW signal. This null result has been used to rule

out some of the more extreme GW emission models for supernovae.[28] Some more

optimistic models could be detectable to 100 Mpc by advanced LIGO and Virgo,

[95, 109, 110] though these have not yet been detected.

Populations There are many unknowns about the populations of short GRBs and

compact binary systems. As a network of GW detectors is essentially sensitive to the

whole sky, it will be possible to better understand the population of compact binary

systems within the well defined horizon of the detectors network. As GW signals

also allow the direct inference of distance, it will even be possible to understand

how the population of binary systems changes with distance up to the horizon of

the detector network.22 With the detection of GW 170817, the local BNS merger

rate is measured to be 1210+3230
−1040. [4] This would correspond to a joint GRB/GW

detection rate of between 0.07 and 1.80 events per year for the 2019-20 LIGO/Virgo

observing run. [30]

GRB Distance and Luminosity For CBC GW signals where the inclination

is approximately known, such as those associated with short GRBs, the distance

to the source can be determined directly from the GW signal and without using a

cosmological distance ladder. This allows independent verification of distances, as

was done with GRB 170817A and GW 170817. Once the distance is known, the

luminosity of the GRB can reconstructed. This can also be used to as an alternative

measure of Hubble’s constant, again, as was done for GW 170817. [3]

Jet Structure By comparing the rate of joint GW/GRB detections of BNS and

NSBH mergers to the number detected through GWs alone, it will be possible to

determine the opening angle of short GRBs jets. For the structured jet discussed

in section 3.2, it is estimated that one in twenty BNS GW detections will have a

GRB counterpart [69]. For strong GW signals, it will also be possible to measure the

polarisation of the GW. If the GW is face on, then it will be circularly polarised, but

if it is edge on then it will be elliptically polarised. By measuring the polarisation

of a large number of short GRBs and studying their prompt emission, it will be

possible to fully describe the angular structure of short GRB jets.

Neutron Star Equation of State The equation of state (EoS) of matter at

neutron star densities is poorly constrained. There are many ways that studying

the GW signal of neutron star binaries can be used to determine the EoS. For

22Due to the limited horizon of aLIGO and the low rate of neutron star mergers, this will have
to wait for third generation GW detectors.
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example, a GW signal for a system with a neutron star of mass ∼ 2M� suggests

a stiff EoS as a soft EoS could not support such a massive star. [86] Another way

of constraining the EoS of neutron stars is to look at the orbital frequency of a

neutron star binary when tidal disruption occurs, as this depends on the radius of

the neutron star. In this way, the radius of a 1.36M� neutron star was constrained

to be between 10.4 km and 14.9 km, depending on the EoS of the neutron star,

using measurements of GW 170817. [5] It has also been theorised that the core of

neutron stars may be made of strange quark matter. If this is true, then it will

have a significantly different GW signal for both CBC systems [68] and neutron star

instabilities after a core collapse supernova. Thus, GW astronomy can determine if

neutron stars contain quark matter cores.
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A Targeted Search for

Gravitational Waves associated

with Short GRBs

Compact binary coalescence (CBC) events are strong emitters of gravitational waves

(GWs), and many searches exist to search for signals from these systems [108, 97,

77]. These searches take theoretical waveforms [62] and matched filter them against

the strain data from GW detectors. It is known that the progenitor of at least

some short GRBs are compact binaries, either binary neutron star (BNS) or low

mass ratio neutron star - black hole (NSBH) systems. While the search pipelines

mentioned above can detect the signals associated with short GRBs, they do not

use any information from GRB detectors. By using this data, we can make a more

sensitive search specifically designed to look for CBC signals associated with short

GRBs. This is what PyGRB was developed to do.

There are several ways EM information can improve a GW search. The first is

that the time and sky position of the short GRB are known from GRB detectors.

This speeds up the analysis as we only use data around the GRB trigger time and

only analyse a small patch of the sky. The sky position information can also be

used to make a more powerful, coherent, detection statistic, [121, 64, 53, 49, 45, 92]

which we will see in section 4.1.2. We can also assume that the binary system that

produced the GRB was face on, as GRBs are emitted perpendicular to the orbital

plane. We will see in section 4.1.5 that this can also be used to improve the detection

statistic.

In this chapter we describe PyGRB [52, 122], a targeted matched filter search for

short GRBs. PyGRB is integrated into the PyCBC data analysis software [13, 12,

88, 36], which is primarily an all-time, all-sky, matched filter search for CBC signals.

We will begin by discussing the theory behind the statistics used by PyGRB and

show that it is more sensitive to GRB signals than the all-sky, all-time search. In

section 4.2 we will see how this theory is applied to make a functioning search
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pipeline. We end this chapter with a discussion on the findings of PyGRB in the

second advanced LIGO and advanced Virgo observing run.

4.1 Coherent Matched Filtering

In this section we will discuss the theory behind PyGRB. The detection statistic of

PyGRB is based on the coherent SNR, which uses the sky position and time of the

GRB with the antenna response function and PSD of each detector in the network.

Using these, it is possible to calculate the amount of signal power expected in each

detector and factor this into the detection statistic. For example, if a GRB was

localised to a point in the sky directly above the most sensitive interferometer in

the network, then this detector would be expected to have the highest SNR of all

detectors in the network. If one of the other detectors in the network has a higher

SNR, then it is less likely that this trigger is a GW. The coherent SNR provides a

natural way to use the expected ratio of SNR in each detector into the detection

statistic. The derivation of the coherent SNR presented here is based on the F-

statistic formalism, introduced in [59, 35].

This qualitative description of the coherent SNR is made rigorous in the follow-

ing sections 4.1.1 and 4.1.2. In section 4.1.3, we compare the coherent SNR to the

coincident SNR, detection statistic for the all-sky search. In section 4.1.4 we dis-

cuss the null SNR, another coherent statistic that measures the consistency of the

signal across the detectors in the network. Short GRBs are expected to be emitted

perpendicular to the orbital plane of the neutron star merger and with an opening

angle of up to 30◦ (see sections 3.1.6 and 3.2.3). In section 4.1.5 we will see how

this information can be used to build an even more sensitive detection statistic. We

then end this section by discussing how to reject non-Gaussianities in the data by

checking the consistency of the signal with the template that found the trigger.

4.1.1 Binary Coalescence Waveform

PyGRB searches for GWs from binaries with circular orbits and aligned spin com-

ponents. These waveforms depend on 11 parameters: The two component masses,

the component spins, the sky location (θ, φ), the distance D, the coalescence time

t0, the inclination ι, the polarisation angle ψ, and the coalescence phase φ0. We can

reduce to nine parameters if we assume the sky position is known.1 Of the remain-

ing parameters, the distance, binary inclination, polarisation, and coalescence phase

affect the phase and amplitude of the waveform but not the signal morphology. This

can be seen by writing the waveform in the following form

h+(t) = A1h0(t) +A3hπ/2(t) (4.1)

1We will discuss how to deal with uncertainty in the sky position in section 4.2.4.
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h×(t) = A2h0(t) +A4hπ/2(t) (4.2)

where h0(t) and hπ/2(t) describe the two phases of the waveform, are usually as-

sumed to be orthogonal, and depend only on the component masses and spins. The

amplitudes Ai are given by

A1 =
D0

D

(
(1 + cos2 ι)

2
cos 2φ0 cos 2ψ − cos ι sin 2φ0 sin 2ψ

)
(4.3)

A2 =
D0

D

(
(1 + cos2 ι)

2
cos 2φ0 sin 2ψ + cos ι sin 2φ0 cos 2ψ

)
(4.4)

A3 = −D0

D

(
(1 + cos2 ι)

2
sin 2φ0 cos 2ψ + cos ι cos 2φ0 sin 2ψ

)
(4.5)

A4 =
D0

D

(
−(1 + cos2 ι)

2
sin 2φ0 sin 2ψ + cos ι cos 2φ0 cos 2ψ

)
(4.6)

where D0 is an arbitrary reference distance used to normalise the waveforms [52, 32].

For any Aµ we can invert equations (4.3)-(4.6) to obtain the physical parameters up

to a reflection symmetry of the system.

The response of GW detector X to a GW h+,× is given by

hX(t) = FX+ (θX , φX , χX)h+(tX) + FX× (θX , φX , χX)h×(tX) (4.7)

where FX+,× is the antenna response of detector X to the plus and cross polarisation

of the GW, the angles θX and φX give the sky position of the source relative to the

detector, the polarisation angle between the detector frame to the radiation frame2

is given by χX , the coalescence time at the Earth’s center is t, and the coalescence

time in detector X is given by tX . Combining (4.7) with (4.1) and (4.2) we can

write the detector response in terms of the Aµ as

hX(t) = AµhXµ (t) (4.8)

where the hXµ are given by

hX1 = FX+ h0(tX) (4.9)

hX2 = FX× h0(tX) (4.10)

hX3 = FX+ hπ/2(tX) (4.11)

hX4 = FX× hπ/2(tX) . (4.12)

2Note that we have included a polarisation angle ψ between the source and radiation frames
in (4.3) to (4.6) as well as the polarisation angle χ between the equatorial and radiation frames in
(4.7). We will use this later.
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4.1.2 Coherent SNR

In this section we will derive the coherent SNR, a detection statistic for a multide-

tector matched filter search.3 We begin the derivation by finding the likelihood that

a trigger is a GW in terms of Aµ (assuming the detector noise is Gaussian). We then

maximise the likelihood with respect to Aµ. This reduces the parameter space from

nine dimensions to five, reduces the noise background, and improves the detection

statistic. It also allows us to speed up the analysis by reducing the parameter space

that needs to be searched over, meaning we can use a smaller template bank.

We begin by describing the output sX(t) of detector X. The detector data is

the sum of the detector response to a GW, given by (4.7), with the detector noise

nX(t)

sX(t) = nX(t) + hX(t) . (4.13)

The noise power spectral density (PSD) SXh for detector X is defined by

〈ñX(f)[ñX(f ′)]∗〉 = δ(f − f ′)SXh (f) (4.14)

where the angle brackets denote the time average of the noise and tildes indicate

that the function has been Fourier transformed. The matched filter between the

GW waveform4 h and detector data is given by the inner product

(sX |h) = 4Re

∫ ∞
0

s̃X(f) · [h̃(f)]∗

SXh (f)
e2πiftdf . (4.15)

The probability of obtaining detector data sX given the presence of GW h is

denoted P (sX |h). This is equivalent to the probability of a sample of detector noise

being equal to the measured detector data minus the detector response to h, given

by (4.7). If the detector noise is Gaussian, then the probability is

P (sX |h) =
1

2π
e−(sX−hX |sX−hX)/2 . (4.16)

The likelihood ratio is the probability of obtaining detector data sX when the GW

signal h is present, divided by the probability of obtaining the data sX in the absence

of a GW, which we denote P (sX |0). This gives us

Λ(h) =
P (sX |h)

P (sX |0)
=
e−(sX−hX |sX−hX)/2

e−(sX |sX)/2
. (4.17)

3Note that this is not the final detection statistic for PyGRB, which is a modified version of
the coherent SNR. See sections 4.2.2 and 4.1.5.

4Careful with notation here. The complex GW waveform is denoted h, and the detector response
to the GW is denoted by hX .
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For convenience, we will use the log-likelihood

log Λ = (sX |hX)− 1

2
(hX |hX) . (4.18)

Using (4.8), we can rewrite the log-likelihood in terms of Aµ

log Λ = Aµ(sX |hXµ ) +
1

2
Aµ(hXµ |hXν )Aν . (4.19)

The log-likelihood defined above is a measure of the probability a trigger that

has been found in a single detector is a GW. For a coherent search we need a

likelihood measure that takes into consideration every detector in the network. To

do this, we must first define the multidetector inner product, we can then follow the

same steps as in the single detector case. Assuming that the noise in each detector

is uncorrelated, the probability of obtaining detector data sX in detector X and

sY in detector Y will be the product of the probability of measuring sX and sY

independently. From equation (4.16), we see that this is equivalent to summing

the inner products from each detector. We therefore define the multidetector inner

product to be the sum of individual detector inner products for the d detectors in

the network

(a|b) =
d∑

X=1

(aX |bX) . (4.20)

The multidetector log-likelihood then becomes

log Λ = (s|h)− 1

2
(h|h) (4.21)

where h is the vector of detector responses to the GW h and s is the vector of

detector outputs sX . In terms of Aµ, the multidetector log-likelihood function is

ln Λ =

[
Aµ(s|hµ)− 1

2
AµMµνAν

]
(4.22)

where Mµν is the symmetric matrix given by

Mµν = (hµ|hν) . (4.23)

We want to find the template that maximises the log-likelihood. The values for Aµ

for which the log-likelihood (4.22) is maximal are given by

Âµ =Mµν(s|hν) (4.24)

where Mµν is the inverse of Mµν . The coherent SNR ρcoh is then defined by

ρ2
coh = 2 ln Λ|max = (s|hµ)Mµν(s|hν) . (4.25)
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We can simplify the matrix M, and make it easily invertible, by noting that as

CBC signals spend a large number of cycles in the sensitive frequency range of the

detector, the 0 and π
2 phases of the waveform are approximately orthogonal. The

slow frequency evolution means that the two phases have roughly equal amplitude.

Hence we find

(hX0 |hXπ/2) ≈ 0, (4.26)

(hXπ/2|h
X
π/2) ≈ (hX0 |hX0 ) = (σX)2. (4.27)

Using these, we see that M simplifies to

M =


A C 0 0

C B 0 0

0 0 A C

0 0 C B

 (4.28)

with

A =
∑
X

(σXFX+ )2 (4.29)

B =
∑
X

(σXFX× )2 (4.30)

C =
∑
X

(σXFX+ )(σXFX× ) . (4.31)

With the Aµ terms maximised over, we have reduced the number waveform

parameters from nine to five, leaving only the masses, spins, and coalescence time

to be searched over.

4.1.3 Comparison to Coincident Search

In this section we will put the coherent SNR into a form such that it is more easily

compared to the coincident SNR, the detection statistic currently used by all-sky

matched filter searches. The coincident SNR is defined to be the quadrature sum of

the matched filter of the individual detectors

ρ2
coinc =

∑
X,Y

∑
i=0,π/2

(
sX
∣∣∣∣ hiσX

)
[δXY ]

(
sY
∣∣∣∣ hiσY

)
. (4.32)

We can make (4.25) more easily comparable to (4.32) by making M diagonal.

We do this by rotating the detector frame to the Dominant Polarization Frame.

This frame is tailored to make C = 0 and M diagonal. As we included polarisation

angles between the equatorial and radiation frames χ in (4.7) and the radiation and

source frames ψ in Aµ, we can rotate our network frame without placing further

constraints on the system. In particular, we can rotate through an angle χDP such
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that C = 0. This gives us the following antenna response functions

FDP,X
+ = FX

+ cos 2χDP + FX
× sin 2χDP (4.33)

FDP,X
× = −FX

+ sin 2χDP + FX
× cos 2χDP . (4.34)

Using these antenna response functions in (4.31) and solving for χDP, we find

χDP =
1

4
arctan

(
2
∑

X(σXFX+ )(σXFX× )∑
X

[
(σXFX+ )2 − (σXFX× )2

]) . (4.35)

This does not uniquely define the dominant polarisation frame, so we also require

the network to be more sensitive to the plus polarisation than the cross polarisation

|FDP,X
+ | ≥ |FDP,X

× | . (4.36)

In what follows, we assume we are in the dominant polarisation frame and drop

the DP superscript. Inverting M and using (4.25), we see the coherent SNR in the

dominant polarisation frame is

ρ2
coh =

(s|F+h0)2 + (s|F+hπ/2)2

(F+h0|F+h0)2
+

(s|F×h0)2 + (s|F×hπ/2)2

(F×h0|F×h0)2
. (4.37)

We can rewrite this as

ρ2
coh =

∑
X,Y

∑
i=0,π/2

(
sX
∣∣∣∣ hiσX

)
[fX+ f

Y
+ + fX× f

Y
× ]

(
sY
∣∣∣∣ hiσY

)
(4.38)

where we define the orthonormal vectors

fX+,× =
σXFX+,×√∑
Y (σY F Y+,×)2

. (4.39)

We can now compare the coherent SNR as given in (4.38) to the coincident SNR

given by (4.32). The coincident SNR is the quadrature sum of all the energy in each

detector. In the space spanned by individual detector SNRs, where each trigger is

represented by a point in this space, it is the distance from the origin to the trigger.

It is the total energy of that trigger.

The coherent SNR is a projection of the total energy of a trigger onto the sub-

space spanned by f+ and f×. This subspace is the space consistent with a gravita-

tional wave signal from the given sky location and with the PSD of the detectors

at the given time, so we call it the signal space. Orthogonal to this space is the

space inconsistent with a signal. Noise contributes energy to all components of the

coincident SNR, and so projecting it onto the signal space will reduce its magnitude.

The energy due to a GW signal lays entirely in the signal plane, so in the absence of
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noise the projection will not change the magnitude of that trigger at all. Thus, in the

case of a GW detection, the signal contribution to the coherent SNR and coincident

SNR is the same, but the noise contribution to the coherent SNR is reduced. Thus,

for a GW detection we expect ρcoh . ρcoinc.

It is also interesting think of the coherent and coincident SNR in terms of the

number of degrees of freedom of the noise contribution. The coincident SNR has

noise contributions from the phase and amplitude measurements in each detector,

resulting in 2N degrees of freedom, where N is the number of detectors. From (4.37)

we can see that the coherent SNR has four degrees of freedom: the 0 and π/2 phases

of the plus and cross polarisation amplitudes of the gravitational wave. In the case

where we have a non-degenerate (i.e. sensitive to both plus and cross polarisations)

two detector network, both the coincident and coherent SNR have four degrees of

freedom. In this case, the coherent and coincident SNRs are identical as

fX+ f
Y
+ + fX× f

Y
× = δXY . (4.40)

If we increase the number of detectors in the network, then the number of degrees

of freedom of the coincident SNR will also increase, but remains constant for the

coherent SNR. This gives the coherent analysis a sensitivity advantage.

4.1.4 Null SNR

Gravitational waves have two polarisations. Therefore we can fully describe the

signal with two non-aligned detectors. Adding additional detectors to our network

allows us to construct additional data streams that have the GW signal removed.

We can easily construct such a data stream by subtracting the coherent SNR (the

energy consistent with a GW signal) from the coincident SNR (the total energy

measured by the detectors). Any energy left from this is associated with noise, and

we call this the null SNR5

ρ2
N = ρ2

coinc − ρ2
coh =

∑
X,Y

∑
i=0,π/2

(
sX
∣∣∣∣ hiσX

)
[NXY ]

(
sY
∣∣∣∣ hiσY

)
(4.41)

where

NXY = δXY − fX+ fY+ − fX× fY× . (4.42)

Glitches are typically uncorrelated between detectors and so not confined to the

signal space. For this reason, we expect ρ2
coinc � ρ2

coh for loud glitches and thus the

null SNR is high. For a GW signal, most of the energy will lay in the signal plane.

Therefore ρ2
coinc ' ρ2

coh and the null SNR will be close to zero. Thus, applying a

threshold on the null SNR gives us an additional background noise rejection test.

5The null SNR is similar to the null streams which are used by burst searches (see section 6.1).
The null stream in a burst search is made to remove a GW signal of any morphology, unlike the
null SNR which is template specific.
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4.1.5 Searching for Face on Signals

Short GRB jets are emitted perpendicular to the orbital plane and with an opening

angle up to about 30◦, as discussed in section 3.2. In a similar way to how the

coherent SNR defined in section 4.1.2 accounts for the sky position of the GRB and

the PSD of each detector, we can construct a new coherent SNR that takes into

account that GWs associated with GRBs have an orbital inclination of ι ∼ 0 or

ι ∼ π with respect to the observer.

We can see from equations (4.3) to (4.6) that the GW amplitude terms depend

linearly on cos ι and (1 + cos2 ι)/2. These two terms are equal to within 1% for

0◦ ≤ ι < 30◦. Thus, for ι ∼ 0, we can use the approximation cos ι ≈ (1 + cos2 ι)/2.

For ι ∼ π the two terms are approximately equal in magnitude, but with opposite

signs.

Using the above approximation and defining

D̃ =
D

cos ι
and χl,r = φ0 ± ψ, (4.43)

the GW amplitudes (4.3) to (4.6) with ι ∼ 0 become

A1 ≈ A4 ≈ −D0

D̃
cos 2χl ≡ B1 (4.44)

A2 ≈ −A3 ≈ D0

D̃
sin 2χl ≡ B2 . (4.45)

We see that now there are only two amplitude factors, B1 and B2, and that the GW

is circularly polarised. Similar results can be derived for the ι ∼ π case.

Substituting these into the equation for the log-likelihood (4.22) and working in

the dominant polarisation frame6, we find

ln Λ =B1(s|F+h0 + F×hπ/2) + B2(s|F×h0 − F+hπ/2) (4.46)

− 1

2
[B2

1 + B2
2][(F+h0|F+h0) + (F×h0|F×h0)] . (4.47)

We now want to maximise the log-likelihood, just as we did when deriving the

coherent SNR in section 4.1.2. Defining

α = (s|F+h0 + F×hπ/2) (4.48)

β = (s|F×h0 − F+hπ/2) (4.49)

and maximising the log-likelihood with respect to B1 and B2, we find

ρ2
coh = 2 ln Λmax =

α2 + β2

(F+h0|F+h0) + (F×h0|F×h0)
. (4.50)

6Recall that (hXπ/2|hXπ/2) ≈ (hX0 |hX0 ) for CBC signals, see section 4.1.2.
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In the ι ∼ π case, the coherent SNR takes the same form, but with

α = (s|F+h0 − F×hπ/2) (4.51)

β = (s|F×h0 + F+hπ/2) . (4.52)

The circularly polarised coherent SNR allows for a 3% increase in range for a

given FAP when compared to the generic coherent SNR [122]. This corresponds

to a 10% increase in the detection rate of GWs. Also, as the circularly polarised

coherent SNR only has two degrees of freedom, we can construct an additional null

statistic and further improve background noise rejection. As well as this, we can now

calculate a null SNR even when analysing data from just two detectors, allowing for

better background rejection for two detector analyses.

4.1.6 Coherent χ2 Tests

There are many instrumental and environmental sources of non-stationary, non-

Gaussian noise in GW detectors. These frequently take the form of a large SNR

spike in the data, which we call a glitch. The coherent statistics discussed in the

preceding sections will downweight these glitches, but loud glitches will still have a

high coherent SNR and so can appear to be a GW. We need a way to distinguish

between glitches and GWs. We do this using signal consistency tests, which checks

that triggers match the waveform of the template. In this section we introduce three

signal consistency tests used by PyGRB.

Signal Consistency Tests

We can describe non-stationary detector output as the sum of three parts: a part

h(t) which is proportional to the template, a part g(t) that is orthogonal to the

template, and Gaussian noise n(t), so that

s(t) = n(t) +Ah(t) +Bg(t) (4.53)

where A and B are amplitude factors and we have normalised the the h and g

components, so that

(g|h) = 0, (g|g) = 1, (h|h) = 1 . (4.54)

Matched filtering this data will return a high SNR if B is large, regardless of whether

there is a GW signal in the data or not. This means that a loud glitch can return

a high SNR and appear to be a GW. To distinguish between a glitch and a signal,

note that the large SNR due to a glitch is not because it matches the template

well, but because it has an intrinsically larger amplitude. This means that loud

glitches should ring off against a wide variety of different templates in the template
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bank, unlike a GW signal where we would expect the SNR to be high only for those

templates that have similar morphology to the GW.

Motivated by this, we introduce a set of N templates T i that are orthonormal

to the template in question

(h|T i) = 0, (T i|T j) = δij . (4.55)

We now sum the squares of the matched filter of the data s with the templates T i.

When the noise is stationary (i.e. when B = 0), the orthonormality condition means

that

χ2 ≡
N∑
i=1

(T i|s)2 =
N∑
i=1

(T i|n)2 (4.56)

whether a GW signal is present or not. Each term in the summation is the square

of a Gaussian distributed variable with a mean of zero and variance of one, making

this χ2 distributed with N degrees of freedom. The mean and variance are therefore

〈χ2〉 = N, Var(χ2) = 2N . (4.57)

Now suppose that there is a glitch in the data (i.e. B 6= 0). In this case, we find

χ2 =
N∑
i=1

[(T i|n) +B(T i|g)]2 . (4.58)

This follows a non-central χ2 distribution with N degrees of freedom and non-

centrality parameter λ = B2(T i|g)2. This has mean

〈χ2〉 = N +B2
N∑
i=1

(T i|g)2 (4.59)

and variance

Var(χ2) = 2N + 4B2
N∑
i=1

(T i|g)2 . (4.60)

Now we can see how to use χ2 to distinguish signals from glitches. Calculate χ2 and

divide by the number of degrees of freedom. For a GW signal7 this should be close

to one, but for a glitch it will be greater than one by an amount that is proportional

to the square of the amplitude of the glitch. Similarly, the variance of χ2 per degree

of freedom for a GW signal will be approximately two, whereas for a glitch it will

scale with the square of the glitch amplitude. Thus we can apply a threshold on the

value of χ2 per degree of freedom, with triggers exceeding this value being considered

glitches.

It is not trivial to find a set of orthonormal waveforms such as the T i above. A

7Or for Gaussian noise.
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set of waveforms ti can be made into a set of waveforms orthogonal to h using the

formula

T i =
ti − (ti|h)h√

1− (ti|h)2
(4.61)

but in general these T i will not be orthonormal to each other. Using these waveforms,

the formula for χ2 is no longer a sum of independent Gaussian variables but a sum

of correlated Gaussian variables. For this distribution the mean is unchanged, but

the variance becomes8

Var(χ2) = 2N + 2
∑
i 6=j

(T i|T j)2 . (4.62)

This does not cause significant problems though as χ2 thresholds are set empirically.9

We can extend the idea of the χ2 test to a multidetector search. We start with

the four waveform components of hµ, as described in section 4.1.2. We saw in section

4.1.3 that in the dominant polarisation frame, these components satisfy the equation

(hµ|hν) =Mµν = diag(A,B,A,B) (4.63)

and as such are orthogonal, but not normalised. We can normalise them to obtain

(ĥµ|ĥν) = δµν . (4.64)

We then take a set of normalised test waveforms t̂iµ and construct waveforms that

are orthogonal to ĥµ using

T iµ =
t̂iµ −

∑
ν(t̂

i
µ|ĥν)ĥν√

1−
∑

σ(t̂
i
σ|ĥσ)2

. (4.65)

The multidetector χ2 is then defined as

χ2 =

4∑
µ=1

N∑
i=1

(Ti
µ|s)2 (4.66)

if we assume the templates used are orthonormal

(Ti
µ|Tj

ν) = δijδµν . (4.67)

This has a mean of 4N and a variance of 8N . The orthonormality condition is not

8The general formula for the variance of the sum of correlated Gaussian variables Xi is
Var(

∑
iXi) =

∑
i Var(Xi) +

∑
i6=j Cov(Xi, Xj) where Cov(Xi, Xj) is the covariance matrix of Xi

and Xj .
9In fact, we could generate orthonormal waveforms, but it is not worth the computational cost.
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in general true. Accounting for this, the mean is still 4N but the variance becomes

Var(χ2) = 8N + 2
∑
i 6=j

∑
µ 6=ν

[(Ti
µ|Tj

ν)2] (4.68)

We have seen how χ2 tests are expected to work, but there are several different

methods for obtaining the waveforms t̂
i
µ. In the rest of this section we will see the

three different kinds of χ2 test that PyGRB uses.

The Coherent Bank χ2 Test

A glitch will cause a high SNR across many templates in a template bank. This

is different to a GW, which will have a high SNR only for templates with similar

parameters to the signal. By selecting a set of templates from across the template

bank to be our test waveforms ti, we can use the χ2 test described above.10 The set

of waveforms remains the same for every template h in the template bank. This test

is most effective when Ti
µ are close to orthogonal, so templates are selected from

across the mass space. This is sufficient to make the deviation from a true χ2 test

negligible. In figure 4.1 we can see the distribution of bank χ2 values for a single

template filtered against data from the O2 observing run. The bank χ2 test used

10 templates selected from across the template bank, and as we can see it closely

follows a χ2 distribution with 40 degrees of freedom.

The Coherent Autocorrelation χ2 Test

Alternatively the ti can be selected by applying timeshifts to the original template

h. [50] The problem with this test is that the ti are in general far from orthonor-

mal, leading to a distribution that does not closely resemble a χ2 distribution. As

thresholds are set empirically, this can still be used as a consistency check, but it

has a large variance. [52]

The Coherent Power χ2 Test

The power χ2 test divides the triggering template h into N non-overlapping fre-

quency windows such that each window has the same expected SNR. [11] This is

then compared to the SNR in each window as measured from the data. For a real

signal, each window would have an SNR ρ/N , where ρ is the SNR for the whole

template. The expected SNR ρi is subtracted from the measured SNR in each win-

dow. In the presence of purely Gaussian noise this will be Gaussian distributed with

mean zero and unit variance. Thus, we can obtain a χ2 distributed variable with

10The single detector version of this tests was first described in [50].
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Figure 4.1: Bank χ2. Here we plot the bank χ2 values for a single template on real
data from the O2 observing run. We can see that the bank χ2 values approximate
a χ2 distribution with 40 degrees of freedom, plotted in red. We can also see a long
tail of triggers with a high bank χ2. These are glitches that can be cut.

(N − 1) degrees of freedom as follows

χ2 = N

N∑
i=1

(ρi − ρ/N)2 . (4.69)

The coherent power χ2 test is a natural extension of this. We define the SNR

contribution to the i-th window to be

ρiµ =
(s|hiµ)√
(hµ|hµ)

. (4.70)

The χ2 test is then

χ2 = N

N∑
i=1

4∑
µ=1

(ρiµ − ρµ/N)2 . (4.71)

In Gaussian noise this will the χ2 distributed with 4(N − 1) degrees of freedom.

In figure 4.3, we see the distribution of coherent χ2 values for an analysis with a

single template on data from the O2 observing run. This analysis used 16 frequency

bins, and so we expect it to follow a χ2 distribution with 60 degrees of freedom,

shown in red. Note that in this figure, there is no long tail of high χ2 triggers,

unlike in figures 4.1 and 4.2. This is because the analysis cuts these triggers before

calculating the coherent SNR in order to reduce computational cost.
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Figure 4.2: Autocorrelation χ2. Here we plot the autocorrelation χ2 values for
a single template on real data from the O2 observing run. The autocorrelation χ2

test was calculated with 40 time slides, which would follow a χ2 distribution with
160 degrees of freedom if the different time slides were not correlated. This is not
the case, as can be seen from the χ2 distribution in red. There is also a long tail of
triggers with a high bank χ2 (the plot has been truncated to not include the highest
values). These are glitches that can be cut.

– 75 –



4.2. The PyGRB Workflow

Figure 4.3: Coherent χ2. Here we plot the coherent χ2 values for a single template
on real data from the O2 observing run. The test used 16 frequency bins, which
would follow a χ2 distribution with 60 degrees of freedom if the different frequency
bins are not correlated. This is the case, as can be seen from how closely the
distribution follow the χ2 distribution, shown in red.

4.2 The PyGRB Workflow

Now we have seen the theory behind a coherent matched filtering search, we will

use what we have learned to make a targeted GW search pipeline. We will see how

PyGRB combines the coherent SNR, null SNR, and coherent χ2 values to make a

detection statistic and how this detection statistic is used to estimate the false alarm

probability (FAP) of triggers. We will see how PyGRB deals with uncertainty in

the sky position of a GRB. In section 4.2.6 we will see how PyGRB estimates its

sensitivity, which is important for providing upper limits on the rates of neutron

star mergers. We end this section by bringing all these parts together and looking

at the full workflow.

4.2.1 Background Noise Rejection

We have seen several statistics that can indicate whether a trigger is a GW or noise.

We apply cuts on these statistics, discarding any triggers that fail the cuts. We can

also speed up the analysis by discarding triggers before calculating computationally

expensive statistics, such as the coherent SNR and the signal consistency tests. In

this section we will discuss the PyGRB workflow as it was in the most recent LIGO

observing run O2, focusing on how triggers are discarded in order to speed up the
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analysis.

The analysis begins with matched filtering the individual detector data. Using

the known sky location of the GRB and the fact that gravitational waves travel at

the speed of light, we timeshift the data from each detector so that a GW associated

with the GRB will be coincident in each detector. A list of triggers is formed for each

detector by keeping only times when the individual detector SNR is greater than

four. We then discard any trigger that is not coincident in at least two detectors in

the network.

The coincident SNR is then computationally cheap to calculate, and any trigger

with a coincident SNR below six is discarded. We then calculate the coherent SNR

for the remaining triggers and apply the same threshold of six to the coherent SNR.

Once we have the coincident and coherent SNR, the null SNR is cheap to calculate.

We cut triggers with a high null SNR, as it is in general higher for glitches than

for GWs. However, differences between the actual GW waveform and the template

used for the matched filter, as well as inaccuracies in timing and sky position, can

all lead to some fraction of the energy of a GW contributing to the null SNR. In

practice, this could mean a loud GW has a high coherent SNR and a high null SNR.

For this reason, we increase the null SNR threshold with the coherent SNR for loud

triggers but keep the null SNR threshold fixed for quiet triggers, as can be seen in

figure 4.4. To be precise, we keep triggers meeting either of the following criteria:

ρN ≤ 5.25 and ρcoh ≤ 20 (4.72)

ρN ≤
ρcoh − 20

5
+ 5.25 and ρcoh > 20 . (4.73)

The χ2 tests (described in 4.1.6) are computationally expensive to calculate, so

we calculate these only on those triggers that survive all the other tests. The power

χ2 test is particularly expensive, and so is only calculated on triggers that pass the

bank and auto-correlation χ2 tests first.

4.2.2 Reweighted SNR

Once we have a final list of triggers, we need a way to rank the likelihood that they

are a GW. This could be done using the coherent SNR, but this is easily skewed

by glitches, even with the cuts mentioned above. To deal with this problem we

down-weight the coherent SNR of the remaining triggers according to their coherent

power χ2 values and their null SNR values. Thus, those triggers that pass the cuts

but nevertheless are inconsistent with a GW end up with a lower reweighted SNR.
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Figure 4.4: Null Statistic Cut. Here we plot the coherent SNR against the null
SNR. The blue crosses are background triggers. The red pluses are signal injections.
The black line is the veto line, with all triggers in the shaded region above the line
being discarded. The green line indicates the expected SNR for optimally oriented
injections. The magenta line shows the one sigma error on the green line.

The reweighting happens first according to the χ2 values

ρχ2 =


ρcoh if χ2 ≤ ndof

ρcoh(
1
2

[
1+

(
χ2

ndof

)3
])1/6 if χ2 > ndof

(4.74)

and then they are reweighted again according to their null SNR,

ρrw =

ρχ2 if ρnull ≤ 4.25
ρχ2

ρnull−3.25 if ρnull > 4.25
(4.75)

Note that this reweighting only down-weights triggers with a high χ2 or a high null

SNR. The reweighting should not significantly alter the network SNR of a GW,

but will reduce the SNR of noise transients. The reweighted SNR is the detection

statistic used by PyGRB.

4.2.3 Event Significance

We use signal consistency checks to remove glitches from the trigger list, and we use

the reweighted SNR to rank the surviving triggers in order of likelihood of being
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a GW. The final step is to determine the significance of the surviving triggers, i.e.

how often will we find glitches with a higher reweighted SNR than our triggers.

We do this by calculating the false alarm probability (FAP) for each trigger. The

FAP depends on the data quality at the time being analysed, as poor data quality

can lead to more high SNR glitches which makes finding a high SNR trigger less

significant. For this reason, we must estimate the rate of glitches around the time

of the GRB in order to determine the significance of a trigger. In this section we

outline the process used to calculate event significance.

We calculate the FAP by using the data around the time of the GRB. If a GW is

there, then it is assumed to be in the window starting five seconds before and ending

one second after the GRB trigger time. This window would allow the detection of

GWs from most theoretical models of short GRBs. [71, 111] We call this 6s window

the on-source window. The loudest11 event, with the loudest template, in the on-

source is taken as our trigger.

To evaluate the p-value of this trigger, we analyse approximately 90 minutes of

data around the on-source12, called the off-source data. This data is assumed to

not contain a GW signal. The off-source is divided up into as many 6s segments as

possible, so that if we have Toff seconds of data then we have N = Toff/Ton segments,

where Ton is the length of the on-source. These segments are called the off-source-

trials. Using the same criteria as the for the on-source, we find the loudest trigger

in each off-source-trial. As the off-source is assumed to only contain noise, the FAP

of the on-source trigger is the fraction of off-source trials that have a louder trigger

than the on-source, i.e. the probability that noise would produce a trigger with a

reweighted SNR louder than the on-source.

This process alone is only capable of achieving a FAP of 10−3 as there are not

enough off-source trials to claim a lower FAP. This is low enough to reject a signal

hypothesis, but not low enough to claim a detection, for which we require a FAP

of less than 10−5, [122] which corresponds to one false alarm in ∼ 2000 years if we

assume one short GRB per week. One way to get around this would be to use a

longer off-source, but as detector noise is not stationary, it is possible that this extra

off-source data would have different properties to the time of the GRB. It would

also significantly increase the computational time required to complete the analysis,

as well as the amount of detector data required to analyse a GRB, meaning fewer

GRBs are analysed.

To find a lower FAP, the off-source data from each detector is time-shifted relative

to the other detectors in the network and the data is then reanalysed. The time-

shifts are longer than the light travel time between the detectors in the network and

also longer than the duration of a typical glitch (i.e. less than one second), so that

11Here loudest means highest reweighted SNR.
12The amount of data used before and after the on-source varies depending on the data available.

For example, sometimes a GRB will happen less than 90 minutes before (after) an interferometer
loses (acquires) lock.
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triggers in the time shifted data are unlikely to appear coherently.

There are two types of time shifting, called short slides and long slides. The

two types of time slides arise naturally from the fact that PyGRB analyses data

in segments, typically of 128s. Time shifting the data within a segment is called

short slides. For example, in an HLV analysis the Hanford data is not shifted, the

Livingston data is shifted in increments of 6s, and the Virgo data is shifted in incre-

ments of 12 seconds. This does not require the data to be matched filtered again,

as the time shift happens after filtering. This means only the network statistics

must be recomputed, making short slides computationally cheap but only able to

demonstrate a FAP as low as 10−4. Long slides refers to when the segments them-

selves are shifted relative to one another. This requires the matched filtering to be

redone, as the matched filter time series is not saved when analysing the following

segment. This makes long slides much more computationally expensive than short

slides. However, short slides can be done on top of the long slides, so that just 10

long slides are needed to show that a trigger has a FAP< 10−5.

It should be noted that our treatment of time slides assumes that each combina-

tion of time shifted data is statistically independent of the others. This is not true,

as each combination of time shifted data is still the same data being analysed. For

this reason, the FAP calculated from time slides is a lower limit on the true FAP.

[116, 117]

4.2.4 Searching over a Sky Patch

The sky position of GRBs cannot be determined exactly. The uncertainty in sky

position depends on which satellites detected the GRB13. The BAT instrument on

Swift can localise to within 1-4 arcminutes. [17] This is a small enough uncertainty

that the GW search can use a single sky point. [6] Other GRB detectors cannot

provide as precise localisation. The GBM on the Fermi satellite provides a roughly

circular 3σ confidence region with a radius of several degrees. [41] The IPN uses

triangulation to determine sky position, so depending on the number of satellites

that make the detection and how spatially separated they are, the sky localisation

can vary from under a square degree to thousands of square degrees.

It is important to have approximately the correct sky position for a coherent

search. If the sky position is incorrect, then the detector antenna patterns will be

incorrect for the GRB, reducing the search sensitivity. More crucially, an incorrect

sky position will cause the calculated time delays between detectors in the network

to be wrong, making it impossible to correctly find coincident triggers between

detectors. To overcome these issues, PyGRB searches over a grid of points that

cover the uncertainty region provided by GRB detectors. [122, 114].

The grid of points is constructed by filling the uncertainty region with concentric

13See section 3.4 for details on GRB detectors.
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circles of points separated by δa, such that each ring has 2πn/δa points with n = 0

being the central point of the patch. These concentric circles extend to cover the 3σ

confidence region. The value of δa depends on the depends on the timing uncertainty

we are willing to accept. In practice, we use a timing uncertainty of δt = 0.5ms,

which will limit the lost SNR to < 5%. [122] Searching over the sky grid is done

after the computationally dominant step of matched filtering, so that searching over

the sky grid does not significantly slow down the analysis.

In the two detector case, it is possible to search a reduced number of sky points

without losing sensitivity. This is because there is a ring of sky points that give

the same time delay between the two detectors. Searching different points on this

ring would not change the time of arrival of a GW to the detectors, though it would

change the antenna response factors. However, as the antenna response functions

drop out of the formula for the coherent SNR14 in the two detector case,15 search-

ing over different points on those sky rings would give exactly the same results.

Thus, in the two detector case, we can analyse a greatly reduced set of sky points.

Unfortunately, when we limit our search to looking for circularly polarised GWs,

as discussed in section 4.1.5, then the antenna patterns again affect the detection

statistic, and we must search over the sky grid.

4.2.5 Template Bank

PyGRB is a matched filter search, but we have so far taken for granted that we

have a template bank suitable for our needs. In this section we briefly discuss which

templates were included in the template bank and why.

The form of a GW signal emitted by a CBC depends on the component masses

and spins, as well as the orientation of the source relative to the detectors. It is

important that the template bank cover the region of this parameter space that is

expected to include the progenitors of short GRBs. It is also important that we do

not exceed this region by too much, as this will increase the the computational cost

of the analysis as well as the number of background triggers.

We are searching for compact binary inspiral waveforms that could potentially

produce a short GRB that is detectable from Earth. To produce a short GRB,

the binary must include at least one neutron star. This neutron star must then be

tidally disrupted by its companion before merger, in order to produce a torus of

matter around the object formed by the merger. [38, 79, 80, 91] The matter in the

torus then powers relativistic jets along the axis of total angular momentum. [71]

Due to the requirement that the progenitor system contain at least one neutron

star, we can limit the template bank to only contain templates such that at least one

14Given by equation (4.38).
15This is because in the two detector case, both the coherent and coincident SNR have four

degrees of freedom. Thus, any observed amplitude and phase is consistent with an astrophysical
signal.
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Figure 4.5: PyGRB Sky Grid. Here we see an example of a full search grid used
by PyGRB, indicated by the blue dots, and a reduced sky grid parsed by PyGRB
in the case of a two detector search using the Hanford and Livingston detectors,
the empty circles labeled ’parsed’. The parsed circles do not form a line due to the
parsing routine, but this has no effect the on analysis. [122]

of the component masses is consistent with being a neutron star. The theoretical

upper bound on neutron star masses is 3M�, [60] but the highest measured mass

of any neutron star in a binary is (2.1 ± 0.04)M�. [14] We therefore restrict the

template bank such that the neutron star mass is in the range 1M� − 2.8M�.

The highest measured dimensionless spin magnitude for a pulsar in a binary

neutron star system is ∼ 0.05. [23, 21] We therefore limit the neutron star spin to

be 0.05 at most. It should be noted, however, that the search is still sensitive up

to spin magnitudes of 0.4, [89] which is the highest spin magnitude measured for a

pulsar. [54]

Accreting black holes with dimensionless spins in excess of 0.95 have been ob-

served, [78] so we allow templates to have dimensionless spin up to 0.999. We also

allow black hole masses up to 25M� for NSBH systems.16 The black hole masses

and spins are further restricted to only those that have the potential to produce a

torus of matter, rather than the neutron star plunging into the black hole before it

has been tidally disrupted. These restrictions are based on the work in [93].

As mentioned in section 4.1.5, it is reasonable to assume that GRB detections

are emitted from binaries with orbital inclination angles of either ∼ 0◦ or ∼ 180◦.

It was shown in [122] that the effect of inclination up to 30◦ is minor, and that

16An NSBH system is where exactly one of the masses is greater than 2.8M�.
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restricting the template bank to contain only waveforms with inclination angles of

0◦ or 180◦ can reduce the number of background triggers and reduce computation

time. We therefore adopt this restriction for our template bank.

The templates we use are generated with an aligned spin model, tuned to nu-

merical relativity simulations of binary black holes [62]. This model has been shown

to provide good signal recovery with relatively low computational cost. All models

that contain matter effects or generic spin orientations were found to be too compu-

tationally costly. [24] The template bank is designed to have an SNR loss of no more

than 3% due to discretisation, [40] which results in a bank of ∼ 190, 000 templates.

Filtering is performed from 30 Hz to 1000 Hz.

4.2.6 Calculating Search Sensitivity

It is useful to estimate the sensitivity to GWs around the time of the analysed GRB.

In the case that no GW is detected, this can be used to provide a lower limit on the

distance to the source.

To do this, we inject simulated signals into the off-source data and see if Py-

GRB can find them. The injected signals are CBC waveforms drawn from three

populations: BNS mergers, NS-BH systems that have spins aligned with the angu-

lar momentum, and NS-BH systems with spins generically aligned. The injections

are drawn from an astrophysically motivated distribution of distances, component

masses and spins, and binary inclination. The NS mass distribution is a normal

distribution with mean 1.4M� and standard deviation of 0.2M� [63, 124] restricted

to the 1M� − 3M� range, with the upper limit set by theoretical considerations.

[60] The NS spins magnitude is restricted to be ≤ 0.4, the fastest observed pulsar

spin. [54] The BH masses are drawn from a normal distribution of mean 10M�

with standard deviation of 6M�, restricted to the range 3M�−15M�. The BH spin

magnitudes are ≤ 0.98, motivated by X-ray observations. [125] The injections are

limited to have binary inclinations of 0◦ − 30◦ or 150◦ − 180◦, as the opening angle

for a CBC powered GRB is expected to be less than about 30◦. [69]

We quantify the sensitivity of the search using the 50% and 90% exclusion dis-

tance. This is the distance at which 50% and 90% of the injected signals are recovered

with a greater reweighted SNR than the most significant on-source trigger.

4.2.7 The PyGRB Workflow

We conclude this section by seeing how all the different elements we have seen come

together in the PyGRB workflow. Figure 4.6 shows the PyGRB workflow. The

workflow starts with two parallel branches: one for the injection runs (right branch)

and the other for the background and on-source analysis (left branch). We will

discuss the non-injection branch first.

To speed up the analysis, the matched filter jobs are run in parallel. In order to
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do this, the template bank is first split into many smaller template banks (typically

∼ 1500). These are used by the inspiral jobs, which matched-filter the data, perform

the consistency checks, and calculate the network SNR statistics. The results of

each inspiral job are then compiled together by trig combiner and binned into off-

source, on-source, or off-trial triggers.17 Another file is produced which contains all

triggers found (i.e. both in the on-source and in the off-source). Each of these is

then clustered, meaning only the loudest trigger with the loudest template in any

0.1 second window is kept. The clustered output is then used to calculate detection

efficiency for each injection set18 and each off-trial19 and make plots that are added

to the results webpage by the HTML summary job.

The injection jobs are similar but have a few extra steps. First the injections

must be generated. At the moment this uses the same code (called inspinj ) as the

all-sky search for black hole binaries. As we are only looking for binaries that could

theoretically produce a GRB, we remove any injections that have the wrong masses

or orientations.20 The injections are then split into multiple jobs and combined with

different parts of the split bank to be analysed by the inspiral code. These jobs can

be run quickly by only searching the data with those templates that are expected

to find the injections, rather than using the full template bank. For this reason, the

bank is only split into two for the injection runs. The inj finder code analyses the

output of the injection inspiral jobs to determine which injections were found and

which were not. The inj combiner job combines injections of the same waveform

type from different injection campaigns into a single file. The inj combiner output

is used to calculate injection detection efficiencies and make plots, which are then

used in the results webpage.

4.3 O2 PyGRB Search

From November 2016 to August 2017, the Advanced LIGO detectors undertook their

second observing run O2 with the Advanced Virgo detector joining on August 1st

2017. PyGRB was used to search for GWs associated with short and ambiguous

duration GRBs detected during O2. The results of the search were reported in [24],

but we will outline the key findings here. We begin with a brief discussion of the

GRB sample that was analysed before moving on to the results of the search.

17The off-trials are six second chunks of data which are each treated as a dummy on-source to
assess whether the pipeline is behaving nominally. Only if these off-trials behave sensibly will we
look at the on-source results.

18Using results from the injection branch described below.
19The detection efficiency is the fraction of injections that were recovered with a detection statis-

tic larger than the loudest event in the off-trial.
20The scripts that remove unsuitable injections are not included in the flowchart as they do

not add much to the understanding of the workflow. In future, a script that produces only the
appropriate injections will be written to replace the ad hoc system we currently use.
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4.3.1 GRB sample

The GRBs analysed were those detected by Swift BAT, Fermi GBM, or the IPN (see

section 3.4 for more details on these). There were in total 242 bursts detected by

Swift and Fermi, and 52 detected by the IPN, with many GRBs appearing in both

catalogues. Only short GRBs (T90 < 2s) and ambiguous GRBs (2s < T90 < 4s) were

analysed using PyGRB, as long GRBs are not expected to have a CBC progenitor

(as discussed in chapter 3). At least 1664s of data is required for PyGRB to correctly

estimate the background. Any detector that does not have this much data available

around the time of a GRB is not used for the analysis, and if no detectors have

sufficient data available then PyGRB will not analyse that GRB. Removing the

GRBs for which there was insufficient data left 42 short/ambiguous GRBs that

could be analysed by PyGRB.

4.3.2 Results

The analysis found one GW signal, GW 170817. It was associated with GRB

170817A and had been previously reported [8, 30]. The p-value for this event is

≤ 9.38× 10−6 and the coherent SNR is 31.26. [24] No other GWs were detected in

conjunction with any other GRBs. Apart from GW 170817, there were six GRBs

with a p-value of less than 0.1. These candidate events had further data quality

checks, which found no clear noise source that could explain the triggers. They were

then analysed using lalInference [112], a coherent Bayesian parameter estimation

pipeline, to determine if there could be a subthreshold signal in the data or if it was

more likely to be background noise. No evidence of a subthreshold signal was found.

In figure 4.7 we have plotted the p-value for the remaining 41 GRBs analysed

after the removal GW 170817 from the sample. For GRBs with no trigger in the on-

source window, we provide upper and lower limits on the p-value. The upper limit

is a p-value of 1. The lower limit is the fraction of off-source trials that also had no

trigger. The distribution lays within the 2σ range, shown by the upper and lower

dotted lines. The population consistency with a no-signal hypothesis was calculated

using the weighted binomial test outlined in [1]. This test considers the lowest 5%

of p-values in the population, weighted by their prior probability of detection based

on the time and sky position of the GRB. This analysis did not include GW 170817

as it is a confirmed detection. The combined p-value for the search is 0.3. Thus we

find no significant evidence for a population of subthreshold signals.

As GRB 170817A is known to have originated in the galaxy NGC 4993 [30], the

distance to this GRB is approximately 43Mpc. For the other GRBs in our sample

we calculated the 90% exclusion distance. This is the distance at which 90% of the

signal injections are recovered with a greater coherent SNR than the loudest trigger

in the on-source. The 90% exclusion distances are plotted in figure 4.8. The median

90% exclusion distance for the BNS waveform is 80 Mpc, for an NS-BH waveform
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Figure 4.7: P-value for each GRB. This is the p-value distribution for the 41
GRBs other than GRB 170817A. The GRBs with no trigger in the onsource window
have upper and lower limits on the p-value. The upper limit is a p-value of 1. The
lower limit is the fraction of offsource trials that also had no trigger. The distribution
lays within the 2σ range, shown by the upper and lower dotted lines.
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Figure 4.8: Cumulative exclusion distance. This is the cumulative 90% exclu-
sion distance for every GRB analysed by PyGRB except GRB170817A. The 90%
exclusion distance is the distance at which 90% of injected simulated signals are
recovered with a greater coherent SNR than the loudest trigger in the onsource.

with generic spin is 105 Mpc, and for NS-BH with aligned spin is 144 Mpc. These

values are slightly lower than in O1, which were 90 Mpc, 139 Mpc, and 150 Mpc

respectively [40], though this seems to just be due to a statistical fluctuation due to

the small sample size in O1. There is a summary table of the information about each

GRB analysed by PyGRB in appendix B.2. This table includes the 90% exclusion

distance for each waveform type for each GRB.

4.3.3 Rates

During O2 we detected just one GW from a sample of 42 short GRBs. For the

non-detections we placed lower limits on the distance to the source. Using this

information it is possible to estimate the rate at which BNS mergers produce ob-

servable GRBs. This depends on the intrinsic luminosity of GRBs, as well as their

jet structure and opening angles. While there is strong evidence that GRB jets

are structured, we will treat all differences in measured luminosity as though they

resulted from an intrinsically lower luminosity. This is acceptable for the purposes
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of modeling the potential for joint GW-GRB detections as we only need to know

the number of faint GRB detections, not the reason why they are faint. As such,

we use the luminosity function from [30], which extends the model in [113] to have

a second break at low luminosity. This function is given by

φo(Liso) =



(
Liso

L??

)−γL (L??
L?

)−αL
Liso < L??(

Liso

L?

)−αL
L?? < Liso < L?(

Liso

L?

)−βL
Liso > L?

, (4.76)

where Liso is the isotropic luminosity, and the parameters L? = 2 × 1052 ergs−1,

L?? = 5 × 1049 ergs−1, αL = 1 and βL = 2 are used to fit the observed GRB

redshift distribution, and γL is the free parameter associated with the second break.

To fit this model to the data, the detectability threshold for Fermi-GBM used was

2 photons cm−2s−1 for the 64 ms peak photon flux in the 50-300 keV band and

the short GRB spectrum was modeled as a band function with Epeak = 800 keV,

αBand = −0.5, βBand = −2.25. The redshift distribution obtained by this model was

then normalised to match the Fermi-GBM detection rate of 40 short GRBs per year.

The free parameter γL was constrained using Monte Carlo sampling to calculate the

probability of finding the results obtained during O2 for a given value of γL. This

yields 90% confidence bounds on γL of [0.04, 0.98]. In figure 4.9 the luminosity

functions corresponding to these bounds are plotted. For comparison, the estimated

BNS merger rate [30] and the cumulative Fermi detection rate [56] are plotted, as

well as the redshfit for every short GRB for which a measurement exists apart from

GRB 170817A. The gold sample is the subset of the GRBs with a measured redshift

for which a confident association with a host galaxy was made, which reduces the

chance that the redshift measurement was made for the wrong galaxy.

As can be seen, the rates calculated using the PyGRB results are consistent

with both the estimated BNS merger rate and the Fermi observed rate. With more

GW detections of BNS systems, it will become possible to determine the ratio of

BNS mergers that produce detectable short GRBs, which in turn has implications

for GRB jet structure and opening angle. Also, if short GRBs are detected within

the LIGO-Virgo horizon that do not have a corresponding GW signal, then that

would suggest that not all short GRBs have BNS progenitors. With the model

described above, the 2019-20 LIGO-Virgo observing run is predicted to make 1-30

BNS detections, and 0.07-1.80 joint GW-GRB detections. [24]
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Figure 4.9: Cumulative Rate of BNS and short GRB Events. The magenta
lines show the 90% confidence bounds for joint GRB/GW events as a function of
redshift. This was calculated using the 41 non-detections and single detection by
PyGRB during O2. The black line and the grey region shows the estimated BNS
merger rate 1210+3230

−1040. In green is shown the estimated Fermi detection rate and its
90% confidence region. [56] The measured redshifts of every short GRB apart from
GRB 170817A are shown in brown. The gold sample refers to those GRBs that were
localised to near a host galaxy, making the redshift measurement more reliable that
short GRBs measured more distant from a host galaxy. Our results are compatible
with both the Fermi-GBM observed rate and the predicted BNS merger rate. [24]
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Chapter 5

The Future of PyGRB

In the previous chapter we discussed the PyGRB pipeline as it was used in the

second LIGO observing run O2. The code is now about 10 years old, and in that

time new software tools have become available that could speed up and improve the

analysis. In particular, there is the PyCBC software package, [12, 13, 36, 88, 108]

which has highly optimised tools for performing a matched filter search. For this

reason, PyGRB is being rewritten and fully implemented in the PyCBC framework.

In this chapter we will begin by discussing the reasons why this change was necessary,

then we will see the progress that has already been made in rewriting PyGRB and

the improvements they provide. We will then end this chapter by looking forward at

the changes that need to happen for the PyGRB rewrite to be used in a GW search.

5.1 Reasons to Rewrite the Pipeline

The primary reason for rewriting the pipeline is to make use of PyCBC’s faster and

more efficient matched filtering software. Developments in the all-sky search have

drastically sped up matched filtering in recent years, but these developments are

currently unavailable to PyGRB. Speeding up the analysis will not only reduce the

computational cost of the analysis, but allow new science to be done with PyGRB.

The medium latency PyGRB search aims to provide a preliminary analysis of a GRB

within a day. As the kilonova that follows a short GRB fades on a timescale of hours,

this delay can mean missing vital data about the early evolution of the kilonova.1

With the new code, we expect to be able to perform a preliminary analysis (with

minimal injections and no timeslides) within a couple of hours. Eventually we could

take advantage of the low-latency PyCBC search, PyCBC live, [87] to reduce this

time to minutes or even seconds.

Slow matched filtering also limits the size of the sky patch that can be analysed

in a reasonable amount of time. There were four short/ambiguous GRBs in O2 that

1For example, the top right panel of figure 3.14 shows that observations in the first day after a
short GRB can be vital for determining the jet structure.
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were too poorly localised for PyGRB to analyse in a reasonable amount of time.2

With faster code, these could have been analysed. Similarly, slow matched filtering

limits the number of timeslides that can be performed in a reasonable amount of

time. This limits how accurately the FAP of a trigger can be measured.

There are two bottlenecks in the PyGRB workflow. The first is the matched

filtering, where using the PyCBC matched filtering engine can lead to significant

speed up. The other is in post-processing, which can be sped up significantly by

using a modern file format.3 The post-processing also frequently exceeds the memory

allowance on computing clusters, which requires the job to be manually halted and

rerun with the post-processing split into many smaller jobs. As PyGRB deals with

far fewer triggers (and so should use less memory) than the all-sky search, this should

not be a problem. Using tools in PyCBC will fix this.

Faster code is not the only reason for integrating PyGRB into PyCBC. It will

also make new tools that were developed for the all-sky search available to the

targeted search, as we will see in section 5.2. Integrating into PyCBC will also

mean that any new tools developed in PyCBC will become immediately available

to PyGRB, increasing the rate of development of PyGRB. Similarly, any techniques

developed for the targeted search can easily be adopted by the all-sky search. For

example, coherent follow-up, using PyGRB tools, could be carried out on the sky

patch around GW triggers found using the all-sky search.

The final reason to integrate PyGRB into PyCBC is to make the code more user

friendly and less cumbersome. This will speed up development and make it easier

for new users to become proficient in using PyGRB. One way we will do this is by

using the tools developed by PyCBC for making the results webpages. The PyGRB

results webpages are static and contain little information about how to reproduce

the results they show. The PyCBC webpages are far more user friendly, containing

interactive tables and the command line arguments required to replicate the plots.

These tools will, for example, speed up diagnosing missed injections.

Another example of how integrating into PyCBC will make PyGRB simpler is

the PyGRB implementation of autogating. Autogating is a method to prevent very

loud glitches contaminating the matched filter time series. PyCBC does this by using

a time-frequency excess power burst search [2, 96] to find times of excess strain in

the data.4 These times are then zeroed out using an inverse Tukey window, as seen

in figure 3.7. While autogating was used by PyGRB during O2, its implementation

was ad hoc. A script was made that used PyCBC tools to autogate the data and

write out the gated frame files, which are then used by the rest of the PyGRB

2These were all IPN detections, which can have poor localisation depending on which satellites
detect the GRB (see section 3.4).

3The old code used xml files, which are significantly slower for our purposes than the hdf5 files
used by PyCBC.

4To be precise, the threshold for gating was set at a burst SNR of 100 during O2, higher than
any expected GW signal. For example, GW 150914 had a burst SNR of 10.
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workflow. In future, the autogating will be handled automatically by the matched

filtering executable, just as it is with PyCBC. This will not have a significant effect

on computation time, but is an example of how integrating into PyCBC will simplify

the workflow.

5.2 Workflow Modifications

The new analysis is qualitatively different from the one described in chapter 4. The

most significant change is to the signal consistency tests. Not only can we use new

tools developed in PyCBC to make these tests more powerful, but we have chosen

to move away from using coherent χ2 tests in favour of the single detector tests.

We will discuss these changes in 5.2.1. The change in χ2 tests then necessitates

the development of a new detection statistic, as the old one uses the coherent χ2

tests. This is discussed in 5.2.2. We will end with the most significant change to the

PyGRB pipeline, the new coherent matched filtering executable.

5.2.1 Consistency Checks

Most of the changes made to the PyGRB pipeline were motivated by either speeding

up the analysis or using new data analysis tools that were not previously available.

One of the changes we made that does not fall into either of these two categories is

abandoning the coherent χ2 tests.5 Apart from being computationally expensive, it

was also clear that these tests were performing no better than the single detector

χ2 tests.6

The problem with coherent χ2 tests is that glitches are a single detector phe-

nomenon, and so cannot be coherently combined. Coherent matched filtering works

well because we have a network of detectors that should all detect the same signal

when a GW is present. In this case, the coherent matched filter provides a natural

way to downweight coincident signals that are not consistent in phase or amplitude

with the sky location and time of the GRB. Contrast this with a glitch, which is

a burst of energy in one detector. In this case, combining the data streams from

multiple detectors washes out the effect of the glitch, making it harder to detect, as

the signal consistency tests are supposed to do. This is clear from the formula for

the coherent χ2 tests, given by equation (4.66) but repeated here for convenience

χ2 =

4∑
µ=1

N∑
i=1

(Ti
µ|s)2 (5.1)

where the Ti
µ are the N multidetector waveforms orthogonal to h and s is the vector

of detector data streams. The sum implicit in the multidetector inner product makes

5Described in section 4.1.6.
6Also described in section 4.1.6.
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the contribution of any one detector more difficult to detect, making a test for a single

detector glitch less effective. Ultimately, this manifests itself in a higher variance for

the χ2, given by equation (4.68) but repeated here for convenience

Var(χ2) = 8N + 2
∑
i 6=j

∑
µ 6=ν

[(Ti
µ|Tj

ν)2] . (5.2)

Compared to the single detector χ2 test, given by (4.62), the variance of the multi-

detector χ2 test is 6N larger from the first term, as well as the sum over µ and the

implicit sum over detectors in the inner product. As the variance is much higher in

the coherent χ2, it is inherently more difficult to place an appropriate threshold to

remove glitches. For these reasons, we have decided to drop the use of the coherent

χ2 tests from the PyGRB analysis, in favour of the single detector χ2 tests used by

the PyCBC all-sky search.

Not only have we moved to single detector χ2 tests, but PyCBC has made

improvements to the χ2 test that can now be incorporated into the GRB search.

The power χ2 test described in 4.1.6 divided the template into a fixed number of

bins, which should each contain an equal amount of signal power for a real GW.

This test can be improved by using the parameters of the template to determine the

number of bins. In particular, templates with a higher peak frequency have more

cycles in the sensitive band of the detectors and so using more χ2 bins can make

the test more powerful. Conversely, a template with a low peak frequency will have

fewer cycles in the sensitive band and so needs to use fewer bins, otherwise some of

the bins will have an SNR comparable to the background noise.

PyGRB currently uses 16 χ2 bins, regardless of template parameters. The new

code uses a variable number of bins p according to the formula

p = b0.72f
2
3

peakc (5.3)

where fpeak is the peak frequency of the waveform, measured in Hertz. This formula

is the same as the current PyCBC analysis, and was determined empirically to give

the best rejection of advanced LIGO noise transients. [2]

5.2.2 Detection Statistic

As we no longer use the coherent χ2 statistic, we also cannot use the reweighted

SNR described in section 4.2.2. Instead we define a new network χ2 statistic, and

use this to define a new reweighted SNR. This statistic needs to be able to take into

account both the signal consistency and the SNR of the trigger in each detector. If

we only used the signal consistency, then a high χ2 value in one detector would be

enough to veto a trigger, even if that detector only had a low SNR. In the worst

case, a GW that occurred in the null of a detector (like GW 170817 did) will have

a low SNR in that detector, but could also have a high χ2. The GW would then
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be vetoed despite having a large SNR and low χ2 in the remaining detectors in the

network. To get around this problem, we reweight the χ2 contribution from each

detector by the SNR from that detector before summing over the χ2 value from each

detector. The resulting network χ2 is then used to reweight the coherent SNR, in

a similar way as the PyCBC all-sky search reweights the single detector SNRs with

the single detector χ2.

To be precise, the new network χ2 statistic for an N detector network, where

the SNR and χ2 per degree of freedom values for each individual detector are given

by ρi and χ2
i respectively, is given by

χ2
N =

1

ρ2
coinc

N∑
i=0

χ2
i ρ

2
i . (5.4)

From this, we calculate the new reweighted SNR to be

ρχ2 =
ρcoh

((1 + (χ2
N )a)/2)b

(5.5)

with a = 3 and b = 1/6 by default and ρcoh is the coherent SNR. This is then

reweighted by the null SNR, exactly as in equation (4.75)

ρrw =

ρχ2 if ρnull ≤ 4.25
ρχ2

ρnull−3.25 if ρnull > 4.25
(5.6)

This is the detection statistic used by the new PyGRB code. In section 5.3 we will

see how well the network χ2 and the new detection statistic perform in a search.

5.2.3 The new Coherent Matched Filtering Executable

The most significant change to the PyGRB workflow is the new matched filtering

executable. This has been written entirely within the PyCBC framework. In this

section we outline the algorithm the new matched filtering executable goes through.

As coherent statistics and signal consistency tests are computationally expensive,

the philosophy behind writing the coherent matched filter code has been to apply

the computationally cheapest tests first, and only perform the more expensive tests

on those triggers that survive all the previous tests.

With this in mind, let us start at the beginning. Using the time and sky location

of the GRB being analysed, the antenna pattern for each interferometer is calculated.

The coherent matched filtering code then reads in data from every detector in the

network. The first template from the bank is then matched filtered against the

data from each detector. A threshold, usually an SNR of 4, is applied to the SNR

time series from each detector. Any sample in the SNR time series that passes this

threshold in any detector is called a trigger. The SNR time series from each detector
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is then time shifted, using the GRB sky position, so that a GW would be coincident

in all of them. At this stage, any trigger that is not coincident in at least two of the

detectors is cut.7 For each remaining trigger, the SNR from each detector is added

in quadrature8 to produce the coincident SNR. A threshold is then applied, such

that any trigger with a coincident SNR below 6 is cut.

If the analysis uses three or more detectors, then we now calculate the coherent

SNR. We first use the antenna pattern and the template to calculate the inverse

of the matrix (4.28). We then use this to calculate the coherent SNR, following

equation (4.25). We then apply another threshold such that any trigger with a

coherent SNR below 6 is cut. It is then easy to calculate the null SNR by finding

the quadrature difference between the coincident SNR and coherent SNR for the

remaining triggers. We apply a threshold on the null SNR that increases with the

coherent SNR of the trigger, as described in section 4.2.1.

For the remaining triggers we calculate the single detector χ2 values, and then

calculate the network χ2 described in section 5.2.1. The χ2 values are computation-

ally very expensive to calculate, but few triggers survive the previous cuts so it is

not too much of a burden. The network χ2 is then used reweight the coherent SNR,

as described in 5.2.2. The triggers are then reweighted again by the null SNR, using

equation (5.6). No cut is applied to the reweighted SNR in the executable, as there

are no more statistics left to calculate and so no improvement in analysis time to

be gained by further cuts at this point.9 The remaining triggers are then clustered,

meaning that only the most significant trigger in any 0.1 second window is kept,

and then stored in memory. The code then moves onto the next template in the

template bank. Once all templates have been analysed, an output file containing all

the information about each trigger is written.

5.3 Search Performance

In this section we will see how well the new code performs by using it to analyse

two GRBs from O2. We will start by looking at the results from these analyses in

order to convince ourselves that the code is behaving sensibly. Then we will look at

how much faster the new code is than the old.

As the new code cannot yet search over a sky patch, we chose two well localised

GRBs for the test. The first was GRB 170817A, this has an associated GW, and

the afterglow provides very accurate sky localisation. This was also a three detector

analysis, allowing us to check the coherent and null SNR are behaving correctly.

The second GRB was GRB 170112A, which was a well localised swift GRB with

7This is a very powerful cut. For almost every template, this will leave no triggers remaining
and we can move on to the next template.

8Note that this includes the SNR contribution from any detector that was below the single
detector SNR threshold.

9Although more cuts are made on the triggers in post-processing.
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Livingston and Hanford detector data available at the trigger time.10 The data

around the trigger time of this GRB had some noise transients, that can be used to

test the effectiveness of the network χ2 test and the new detection statistic.

5.3.1 Testing the Detection Statistic

In this section we will look at the new detection statistic, to see how well it performs

in a GRB analysis. We will start by looking at the SNR time series for the two GRBs

analysed. Figure 5.1 shows the coherent SNR (top panel) and the reweighted SNR

(bottom panel) time series for GRB 170817A. The plots show the triggers for every

template in the template bank,11 clustered such that only the most significant trigger

in each 0.1 second window is kept. In the top panel we can see the coherent SNR

time series looks clean, and GW 170817 is clearly visible at the correct time with a

coherent SNR of 29.22, which is comparable to the coherent SNR of 31.26 PyGRB

obtained in O2.12 The bottom panel shows the reweighted SNR time series. We

can see that some of the noise transients that peak the coherent SNR have been

downweighted to have a comparable significance to background noise, but the GW

is still clearly visible. In figure 5.2 we plot the coherent (top panel) and reweighted

(bottom panel) SNR time series for GRB 170112A. From the coherent SNR time

series we can see that there are several significant glitches. The reweighted SNR

time series shows that these glitches were downweighted to be no more significant

than background noise.

From the time series plots, it seems that the reweighted SNR is behaving as

expected. In figure 5.3 we have plotted the null SNR against the coherent SNR

(left) and reweighted SNR (right) for GRB 170817A13, in order ensure that triggers

are being correctly reweighted by the null SNR. The null SNR shows no significant

deviations from the background level, with a peak of just 5.22. Only a few points

are above the 4.25 threshold required to reweight a trigger by the null SNR, see

equation (4.75), but the triggers that exceed this threshold are being appropriately

downweighted.

Similarly, in figures 5.4 and 5.5, we plot the coherent SNR (left) and reweighted

SNR (right) against the network χ2 for GRB 170817A and GRB 170112A respec-

tively. Figure 5.4 shows that the triggers with higher network χ2 are downweighted

more. The GW, visible as the rightmost point in each plot, is downweighted but

still far more significant than any background event. In figure 5.5, we see that the

glitches in the data around GRB 170112A have a high coherent SNR and a high

10GRB 170112A was not a single sky point analysis when analysed by PyGRB in O2, but did
have a small sky error. The O2 PyGRB analysis searched over three sky points.

11There are about 190000 templates in the template bank.
12Some differences in SNR are to be expected as the search is using different PSD options to the

O2 PyGRB search.
13As GRB 170112A was a two detector analysis, there was no null SNR. Hence this plot is only

made for GRB 170817A.
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Figure 5.1: Coherent and Reweighted SNR Time Series for GRB 170817A.
The top panel shows the coherent SNR vs time for GRB 170817A. The GW is clearly
visible, as are some smaller peaks that are due to noise. The bottom panel shows
the reweighted SNR time series. The background noise has been downweighted but
the GW is still very prominent. It is noteworthy that the peaks in coherent SNR
that were due to noise have mostly been downweighted to be less significant than
the median background trigger.
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Figure 5.2: Coherent and Reweighted SNR Time Series for GRB 170112A.
The top panel shows the coherent SNR vs time for GRB 170112A. There is no GW,
but several glitches are clearly visible. The bottom panel shows the reweighted SNR.
We can see that the gltiches have been downweighted to be less significant than the
median background trigger.

network χ2, but are appropriately downweighted so that these loud glitches are no

more significant than background events.

We also plotted the peak coherent and reweighted SNR in each 6-second off-

source trial, as well as the on-source. The results for GRB 170817A can be seen in

figure 5.6. As we do not have timeslides, there are not many off-source trials (892

in total), but we can clearly see that the on-source trial, marked by the blue and

red stars, are substantially louder than the background for both the coherent and

reweighted SNR. Note that the coherent SNR has a small tail of higher significance

events at around a coherent SNR of 7-9, which does not appear in the reweighted

SNR. In figure 5.7 we make the analogous plot for GRB 170112A. As the data

contained several glitches, this plot shows a long tail of events with a very high

coherent SNR, which the reweighted SNR does not have. We can also see that the

coherent SNR and reweighted SNR in the on-source window, indicated by the red

and blue stars respectively, are consistent with background. The new code finds a

p-value for the loudest event in the on-source data is 0.14.14 This plot shows the

importance of the reweighting. Suppose there had been a GW in the on-source of

GRB 170112A that had a coherent SNR of ∼ 30 and a reweighted SNR of ∼ 23, as

GW 170817 did. In this case, the GW would not have had a higher coherent SNR

14The analysis of this GRB with the old code found the p-value to be 0.29.
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Figure 5.3: Null SNR vs Reweighted SNR for GRB 170817A. Here we plot
the null SNR against the coherent SNR (left) and the reweighted SNR (right) for
GRB 170817A. Only triggers with a null SNR above 4.25 are reweighted by the null
SNR (with the other triggers being reweighted only by their χ2 values). We can see
that these triggers have been downweighted more than the triggers with a low null
SNR. The GW is clearly visible on the right of both plots.
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Figure 5.4: Network χ2 vs Coherent and Reweighted SNR for GRB
170817A. Here we plots the network χ2 against the coherent SNR (left) and
reweighted SNR (right) for GRB 170817A. We can see that the higher the net-
work χ2 of a trigger, the more it is downweighted. The GW is clearly visible on the
right of both plots.

than all of the off-source trials, making a detection claim based on the coherent

SNR impossible. Using the reweighted SNR, the GW would have been far more

significant than anything in the background. With more off-source trials, this could

allow us to claim a detection.

We also injected BNS waveforms with an opening angle of up to 30◦ into the

off-source data of GRB 170817A in order to measure the search sensitivity. In figure

5.8 we have plotted the injection distance against time. From this we can see that

the BNS waveforms are detectable up to about 200 Mpc. In figure 5.9, we show an

analogous plot from the O2 PyGRB analysis of GRB 170817A. We can see that the

old code could also detect these waveforms up to a distance of about 200 Mpc.15

5.3.2 Computational Cost

As mentioned previously, one of the primary motivations for integrating PyGRB

into PyCBC was to speed up the analysis. We will now measure this speed up

by analysing the same data using both the old and new codes and compare the

analysis time of the new executables with the corresponding executable from the old

code. This comparison was performed using jobs taken from an analysis of GRB

15The post-processing codes that determines the false alarm probability of injections has not yet
been written for the new code.
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Figure 5.5: Network χ2 vs Coherent and Reweighted SNR for GRB
170112A. Here we plot the network χ2 against the coherent SNR (left) and
reweighted SNR (right) for GRB 1710112A. The data contained several glitches,
which are apparent from the triggers with a high network χ2 and high coherent
SNR. As we can see, these triggers are downweighted appropriately, such that the
reweighted SNR contains no significant peaks.
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Figure 5.6: Loudest Event per 6-second Trial for GRB 170817A. Here we
see the peak coherent SNR (orange line) and reweighted SNR (blue line) in each 6-
second trial for the GRB 170817A analysis, with the stars indicating the GW. Again,
we can see that the on-source has a much higher reweighted SNR than any of the
off-source trials. Also note that the tail of events with a coherent SNR of about
7-9 does not appear in in the reweighted SNR. This shows that the reweighting is
lowering the significance of glitches.
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Figure 5.7: Loudest Event per 6-second Trial for GRB 170112A. Here we
see the peak coherent SNR (orange line) and reweighted SNR (blue line) in each
6-second trial for the GRB 170112A analysis. The peak coherent and reweighted
SNR in the on-source trial are indicated by the red and blue stars respectively. We
see that the on-source results are consistent with background. We can also see that
reweighting the SNR removed the long tail of high SNR glitches for this analysis.

Figure 5.8: Injection Distance against Time. Here we plot distance against time
for the BNS injections of the GRB 170817A analysis. We can see that the analysis
is able to better detect nearby injections than far ones. It also has a range of about
200 Mpc, which is comparable to the PyGRB analysis in O2.
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Figure 5.9: Injection Distance against Time. This is the distance (Mpc) vs
time (seconds) plot for the BNS injection run in the PyGRB O2 analysis of GRB
170817A. Blue crosses indicate that the injection was found and was more significant
than event in the background data. Red crosses indicate that a trigger was found
that was coincident with the injection, but it was vetoed. Black crosses indicate that
no trigger was found that was coincident with the trigger. Coloured circles indicate
that the injection was found but was not louder than all of the background, and in
this case the circle colour indicates the FAP of the trigger. We can see that nearby
injections are almost always found, and typically with a low FAP. More distant
injections tend to be vetoed, missed completely, or have a relatively high FAP. It is
at a distance of about 200 Mpc that injections start to be missed.
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170817A. The detectors at this time were operating nominally, apart from the GW

and the glitch in L1 that was removed from the data using gating. If we analysed a

segment of noisy data, then we would expect to see more triggers and more signal

consistency tests would need to be performed, thus we would expect that the speed

up of the new code would be even greater than shown below. The new matched

filtering executable does not yet have all the functionality the old code has, and so

any comparison of analysis time should be considered preliminary.

For testing, we ran as close as possible to an identical analysis with the old and

new code. This meant disabling the features of the old analysis that the new code

does not have. Features that the new code does not have include the face-on coherent

analysis described in section 4.1.5, the bank and auto χ2 tests, and timeslides. As

the power χ2 test is different in the old and new codes, we ran three tests: One

with no χ2 tests, one with only the power χ2 test, and one with all the χ2 tests.

The analysis with no χ2 tests will indicate the speed up in matched filtering. The

test with just the power χ2 test is a comparison between the current best analysis

the new code can perform, and the old code equivalent. This test is not a fair

comparison for the old code, however, as it performs the bank and auto χ2 tests

before the power χ2 test as the coherent power χ2 test is the most computationally

expensive. We therefore also compare an analysis where the old code uses all the χ2

tests it has available, even though the new code only uses the power χ2 test.

We will compare the CPU runtime for several of the executables that have been

rewritten. The most significant of these is the matched filtering job. This is by a

large margin the most computationally expensive part of the analysis. Analysing

a single GRB involves matched filtering over 1 hour of data with approximately

192,000 templates. To speed this analysis up, the template bank is split into 1500

split banks, which are then filtered against the data in parallel. There are also

the injection jobs, where GW signals are added to the data in order to measure

the sensitivity of the analysis and ensure the pipeline is behaving correctly. In O2

there were seven different sets of injection waveforms used.16 Each of these seven

injection sets is split into 520 smaller injection sets, in order to speed up analysis

and because the injections need to be spread throughout the data so that they do

not skew the PSD. Just as with the non-injection runs, the injection jobs are sped

up by splitting the template bank. However, for the injection jobs, the template

bank is only split into two. The reason this is possible without being prohibitively

slow is that PyGRB (both the old and new versions) will only filter the data with

templates that match the injections. This drastically speeds up analysis. Bringing

all these factors together, we see that for a standard GRB analysis in O2 there are

approximately 9000 individual jobs, of which 8780 are matched filtering jobs. Of

the matched filtering jobs, 7280 are injection jobs and 1500 are non-injection jobs.

16These include one BNS set, and NSBH sets with and without precession, with and without
aligned spin, and two different NSBH models [22, 104].
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In either case, these matched filtering jobs can take hours. With the set up

described above the jobs do not take as long as in a production run, as timeslides

etc. are turned off, but they can still be used to test performance. In table 5.1 we

see the average CPU time for the old code and the new code to complete a single

matched filter job, with a three detector network, with no injections, and filtering

129 templates. The left-most column indicates which χ2 tests were used. As we

can see, the new code is significantly faster than the old in every scenario tested.

Also, the use of χ2 tests has almost no impact on the analysis time of the new

code.17 That the χ2 tests have little impact on analysis time is not very surprising

as the PyCBC χ2 tests are highly optimised as it is a computational bottleneck

for the all-sky search. It is not such a problem for PyGRB as the χ2 tests are

only calculated on triggers that have survived single detector SNR cuts, coincidence

checks, and network SNR cuts. This leaves relatively few triggers for which the χ2

test is calculated. From these results, we can conclude that the matched filtering

alone is now more than twice as fast as the old code. When χ2 tests are included

in the analysis, the new code is almost five times faster than the old code. For a

comparison of the matched filter job speed with injections, we only compared the

analysis time with all χ2 tests. In this case, the old code took 7781 seconds and the

new code took 2132 seconds, more than three times faster.

It is also instructive to compare the computation time to the PyCBC all-sky

matched filter job. These jobs matched filter data from just a single detector, as

opposed to the three detector analysis described above. Hence, we should expect

the matched filtering to take a third of the time of the new PyGRB code. The rest

of the time difference between the two matched filter jobs can must be due to the

coherent calculations performed by PyGRB. Analysing data from a single detector

with 129 templates and no signal consistency tests takes the PyCBC all-sky code

2m 47s. This suggests that the coherent calculations take about ∼ 17% of the total

run time of the new PyGRB matched filtering executable.

Computation time for the old code was dominated by calculating Fourier trans-

forms and calculating χ2 tests. Profiling the code reveals that 51% of the time taken

to complete the analysis is spent matched filtering the data, of which 35% is due to

calculating Fourier transforms. Fourier transforms are therefore still a limiting factor

for reducing computational time. The next biggest cost to completing the analysis

comes from reading in the data and preprocessing it (highpass filtering etc.). This

accounts for 28% of the computational cost. These are by far the most expensive

parts of the new analysis. It is noteworthy that the new χ2 test algorithms intro-

duced for PyCBC have reduced the computational cost for the signal consistency

tests to less than 1% of the total analysis time.

17The slight increase in speed associated with using the χ2 tests is not significant. Analysis times
can vary by more than a minute from run to run.
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χ2 tests used Old code New Code

None 24m 20s 10m 9s
Power 77m 18s 9m 59s

Power, auto, and bank 58m 37s n/a

Table 5.1: Time to Complete Single Matched Filter job. Here we see how
long a single matched filter job in the GRB 170817A analysis took to complete with
different χ2 tests being used. The new code does not use the bank or auto χ2 tests.
We can see that there is a substantial speed up of the analysis.

While the limiting factor on the analysis time is the matched filter jobs,18 rewrit-

ing the post-processing jobs has also led to a useful speed up. In particular, the

trigger combining job, which combines the results from all the different split bank

matched filter jobs into one large results file, is now much faster. It previously had to

be split into many smaller jobs to prevent it from exceeding the memory allowance

of the computer cluster. In total, the trigger combining stage required 20 jobs of

about 200 seconds each and one job of about 80 seconds. With the new code, this

can be done with one job in about 70 seconds. A similar story applies to the trigger

clustering stage, which used to be 20 jobs of about 60 seconds each followed by one

job of about 30 seconds. This is now a single 4 second long job. It is expected

that once the PyGRB rewrite is complete, the post-processing will take a negligible

amount of the total run time.

5.4 Future Plans

We have shown that the work to integrate PyGRB into PyCBC has reached a

significant milestone in being able to analyse a GRB and achieve a reasonable FAP

of ∼ 1/1000. We have also shown that it is significantly faster than the old code

and described the new tools that are available for the PyGRB search. We end this

chapter by looking at what there is left to be done to make the new pipeline as

sensitive as the old one, and what can be done after this to make PyGRB even more

sensitive.

In order for the new code to achieve the same confidence in a GRB trigger as

the old code does, we must implement timeslides. Without timeslides, we can only

achieve a FAP of about 1/1000. With timeslides implemented, a FAP of 10−5 will

be achievable. It should be noted that the relative speed increase seen with the new

code is likely to be lower when using timeslides. This is because short timeslides do

not require the matched-filtering step to be repeated, as mentioned in section 4.2.3,

and this is the part of the analysis that has seen the biggest reduction in computation

time. Long time slides do require the data to be matched filtered again, so some

speed increase will be seen there.

18Both with the old and new code.
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The final thing required to make the rewrite as sensitive as the old code is to

incorporate the fact that GRB GW signals are expected to be face on, as described

in section 4.1.5. This led to a 3% increase in the sensitivity of the old code, and we

expect the same improvement with the new code.

These changes will make the new code as sensitive as the old code, but we

also need to be able to search over a sky patch. Some Swift GRBs are localised well

enough that PyGRB can search a single sky point, but the majority require multiple

sky points to be analysed. This means that the new code currently cannot analyse

the majority of short GRBs. Work is currently ongoing to add this functionality,

and we expect it to be incorporated into the new code in the near future.

Once the above functionality has been added to the new PyGRB pipeline, it will

be faster and more sensitive than the old code. We can then turn our attention to

new methods to improve the pipeline, and the new science that can be done. At

this point, it will be possible to analyse a GRB on a timescale of hours, significantly

increasing the amount of science that can be done with a positive detection. We

could also use PyGRB to followup well localised triggers from the all-sky search.19

This could be built into the all-sky pipeline, as a hierarchical search, where the all-sky

search is used to determine candidates and their sky location for coherent followup.

With more detectors, such as KAGRA and LIGO India, the case for a hierarchical

search strengthens. This is because more detectors improves localisation, which then

makes running the coherent analysis computationally cheaper, but also improves the

power of the coherent analysis when compared to the coincident search.

We can also start to use some more of the PyCBC tools that have so far been

unavailable to PyGRB. For example, PyCBC can downweight triggers based on

properties of the template that found the trigger. [88] This works because certain

templates have been found to be more likely to produce a high SNR trigger when

filtered on detector noise than other templates. There are also new χ2 tests that

use sine-Gaussian waveforms in order to better reject certain kinds of short duration

glitches that are particularly common in the LIGO detectors. [90]

There are also plans to make an astrophysically motivated detection statistic.

This means that triggers that don’t fit astrophysical models will be downweighted,

while sources that are expected to be common will not be. This is a natural next

step for a coherent search, as the coherent SNR determines whether a trigger is

consistent with the state of the detector network at the time of the trigger, but does

not determine if the trigger is consistent with the current best models of the GW

source populations.

19As with a network of three or more detectors, the localisation can be better than the localisation
of some GRBs.
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Chapter 6

A Search for Unmodelled

Gravitational Wave Signals

using Machine Learning

In previous chapters we focused on searching for gravitational waves (GWs) from

binary mergers using a matched-filter search. Matched filter searches are very sen-

sitive, but they require theoretical waveforms to have been produced in advance.

For this reason, matched filtering is not appropriate for some of the most interest-

ing potential sources of GWs, e.g. core collapse supernova, as the GW morphology

is not known. For this reason, it is important to develop unmodelled searches as

well. Unmodelled searches, otherwise known as burst searches,[105, 96, 65] look for

coherence between the data streams of multiple interferometers. We will consider

the case of a burst search where the sky position of the candidate source is known.

This allows us to calculate the relative time of arrival and the relative signal power

in each detector.

In this chapter, we will first discuss how an existing targeted burst search, called

X-pipeline, searches for gravitational wave bursts (GWBs). We will then see how we

can improve this pipeline by using multivariate analysis (MVA) to rank candidate

GW events.

6.1 X-pipeline

In this section we provide a brief summary of X-pipeline, a targeted search for

GWBs. For full details, see [105, 118]. It uses the sky location of an astrophysical

event, such as a GRB, to coherently combine the data streams of each detector in

the network. There are two types of coherent data stream made by X-pipeline:

• Signal streams, which increase the power of a GW signals relative to noise.

• Null streams, which reduce the power of GW signals relative to noise.
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Figure 6.1: X-pipeline Time-Frequency Map This figure shows a time-frequency
map from X-pipeline for a 1.4 − 10M� NSBH merger using simulated background
from the two Hanford detectors. The top figure shows a coherent signal stream
called the standard likelihood ESL and the bottom figure shows the top 1% of pixels.
[105]

X-pipeline makes time-frequency maps from these coherent data streams. A group

of neighbouring high energy pixels in a time-frequency map of a signal stream is

called a trigger (see figure 6.1). X-pipeline cuts triggers based on correlations of the

various signal and null data streams (see figure 6.2). The position of these cuts is

set to give the best detection efficiency at a fixed false alarm rate, determined using

a subset of the triggers that are used for tuning.1

We will begin by deriving the standard likelihood, a signal stream used by X-

pipeline, and a corresponding null stream. Then we will see how X-pipeline uses

these with incoherent data streams to reject background triggers and measure the

significance of the surviving triggers. We will end this section by looking at the

X-pipeline search results from the most recent observing run.

1For the MVA pipeline, there are no cuts. Instead the machine learning algorithm ranks triggers
such that background triggers have a low score and GWs have a high score, as we will see in 6.2.
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Figure 6.2: X-pipeline Background Rejection Test. This figure shows an
example of X-pipeline background rejection. The axes show two of the statistics
that X-pipeline calculates. Specifically, the x-axis shows the coherent null energy
and the y-axis shows the incoherent null energy (see section 6.1.4 for more details on
these statistics). The red squares show simulated GW signals, and the crosses show
background triggers. The colour bar shows the base 10 logarithm of the significance
of each trigger. The injection amplitude plotted is chosen such that approximately
90% of injections will survive the cut. Hence, the cut eliminates most of the noise
but only a few signals. [105]
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6.1.1 Burst Search Background

Suppose we have a network of D detectors. A GW, described by h+(t) and h×(t),

passes through the Earth from direction Ω̂. We describe the sensitivity of detector

α ∈ {1, ..., D} to the plus and cross polarisations using the antenna response func-

tions, denoted F+
α (Ω̂) and F×α (Ω̂). The position of detector α is denoted by rα and

nα(t) is the noise in this detector. The detector output dα(t) is then given by

dα(t+ ∆tα(Ω̂)) = F+
α (Ω̂)h+(t) + F×α (Ω̂)h×(t) + nα(t+ ∆tα(Ω̂)) . (6.1)

Here ∆tα is the time taken for the GW to reach the detector from some arbitrary

reference point2 r0

∆tα(Ω̂) =
1

c
(r0 − rα) · Ω̂ . (6.2)

From now on we will suppress explicit mention of the reference point r0 or the time

delay ∆tα on the understanding that detector outputs need to be time-shifted by

an appropriate amount.

In reality, detector outputs are not continuous but sampled discretely. The

discrete Fourier transform x̃[k] of the time series x[j], and its inverse, are given by

x̃[k] =
N−1∑
j=0

x[j]e−i2πjk/N , x[j] =
1

N

N−1∑
k=0

x̃[k]ei2πjk/N . (6.3)

For sampling rate fs and N data points in the time domain, we convert continuous

to discrete notation by using

x(t)→ x[j] (6.4)

x̃(f)→ f−1
s x̃[k] (6.5)∫

dt→ f−1
s

∑
j

(6.6)

∫
df → fsN

−1
∑
k

(6.7)

δ(t− t′)→ fsδjj′ (6.8)

δ(f − f ′)→ Nf−1
s δkk′ . (6.9)

For example, the one-sided noise spectral density for a detector with noise n(t) can

be written in continuous form as3

〈ñ∗α(f)ñβ(f ′)〉 = δαβδ(f − f ′)
1

2
Sn(f) (6.10)

2The center of the Earth is a fairly intuitive choice for a worldwide detector network, but in
practice it is more computationally efficient to use one of the detectors as the reference point.

3Note that this is the same as 4.14 up to a factor of 1/2.
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where the angle brackets indicate an average over the noise. In the discrete notation

listed above, this becomes

〈ñ∗α[k]ñβ[k′]〉 =
N

2
δαβδkk′Sα[k] . (6.11)

We will be working with the noise-spectrum-weighted quantities, defined by

d̃wα[k] =
d̃α[k]√
N
2 Sα[k]

(6.12)

ñwα[k] =
ñα[k]√
N
2 Sα[k]

(6.13)

F+,×
wα (Ω̂, k) =

F+,×
α (Ω̂)√
N
2 Sα[k]

(6.14)

The normalisation of the whitened data is

〈ñ∗wα[k]ñwβ[k′]〉 = δαβδkk′ . (6.15)

In what follows we will only use the whitened detector data, noise, and antenna

patterns, and drop the subscript w for clarity. In vector notation, we can write

equation (6.1) as

d̃ = Fh̃ + ñ (6.16)

where F = [F+ F×] and h̃ = [h̃+ h̃×]T .

6.1.2 Standard Likelihood

With the notation and conventions laid out in the previous section, we now derive the

standard likelihood,4 a coherent signal stream. We start by supposing a GW h̃ passes

through a detector from a given direction. Assuming the detector noise is Gaussian,

the probability of attaining whitened detector output d̃ in one time-frequency pixel

is given by

P (d̃|h̃) =
1

(2π)D/2
exp

[
−1

2

∣∣∣d̃− Fh̃
∣∣∣2] . (6.17)

For a set {d̃} of Np time-frequency pixels, labeled by k, we have

P ({d̃}|{h̃}) =
1

(2π)NpD/2
exp

[
−1

2

∑
k

∣∣∣d̃[k]− F[k]h̃[k]
∣∣∣2] . (6.18)

4This derivation has a lot in common with the derivation of the coherent SNR in section 4.1.2.
The primary difference being that here we consider the likelihood of obtaining a certain collection
of time-frequency pixels, whereas before we considered the likelihood of measuring a certain SNR
for a template.
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By comparing this value to the probability that the detector produces this output

in the absence of any GW, we can calculate the likelihood of the signal being a GW.

The Likelihood Ratio L is the log of the probability that the detector network

will have output d̃ in the presence of GW h̃ divided by the probability of obtaining

the same output in the absence of a gravitational wave (h̃ = 0)

L = ln
P ({d̃}|{h̃})
P ({d̃}|{0})

=
1

2

∑
k

[∣∣∣d̃∣∣∣2 − ∣∣∣d̃− Fh̃
∣∣∣2] . (6.19)

For the above analysis to be applied, we would need to know the waveform h̃

in advance. For unmodelled searches, this is not possible. One way to handle this

problem is to fit a waveform to the data in such a way as to maximise the likelihood

ratio. Hence we have

0 =
∂L

∂h̃

∣∣∣∣
h̃=h̃max

. (6.20)

Solving this, we find

h̃max = (F†F)−1F†d̃ (6.21)

where the superscript dagger † denotes the conjugate transpose.

Calculating the likelihood ratio for h̃max gives us the Standard Likelihood5 ESL

ESL = 2L(h̃max) =
∑
k

d̃
†
PGWd̃ (6.22)

where

PGW ≡ F(F†F)−1F† . (6.23)

We can see from equation 6.1 that the contribution made to the data output by a

passing GW from fixed sky location is restricted to the subspace spanned by F+

and F×. Therefore the energy in this subspace is the energy that is consistent with

a GW from a given sky location. We can show that PGW is a projection operator,

projecting the data into this same subspace. The standard likelihood maximises the

energy in this subspace, and so is the maximum energy contained in the whitened

data that is consistent with a GW from the given sky location. This is an example

of the coherent signal streams that X-pipeline uses.

6.1.3 Null Energy

We can use the standard likelihood to construct a null stream. We start with the

total energy in the data, given by

Etot =
∑
k

|d̃|2 . (6.24)

5Also known as the maximum likelihood.
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This is an incoherent statistic as it contains auto-correlation terms but no cross-

correlation terms, i.e. each detector is treated individually. If we subtract the stan-

dard likelihood from the total energy, we obtain the null energy6

Enull ≡ Etot − ESL =
∑
k

d̃
†
Pnulld̃ . (6.25)

This is the energy that is inconsistent with a GW from given sky location, and must

therefore be associated with noise. This is the minimum amount of energy in the

whitened data that is inconsistent with the GW. It is an example of the null streams

used by X-pipeline.

This shows one of the key advantages of coherent analysis. If we analysed our

data incoherently, we would be working with just the total energy. By using coherent

methods, we can project the whitened data into the subspace spanned by F+ and F×,

removing some fraction of the noise without removing much of the signal energy.7

The drawback is that if the sky position is not known in advance, then the analysis

needs to be repeated for a set of directions that span the entire sky (& 103 directions),

each with different antenna response functions F+ and F×. This will slow down

analysis and increase the false alarm probability (FAP).

6.1.4 Incoherent Energy and Background Rejection

The diagonal elements of (6.25) are auto-correlation terms, and the other elements

are cross-correlation terms. The auto-correlation part of the null energy is called

the incoherent null energy, and given by

Inull =
∑
k

∑
α

P null
αα |d̃α|2 . (6.26)

Background triggers are typically not correlated between the different detectors of

the network, so the cross-correlation terms are small relative to the auto-correlation

terms. This means that for glitches, we have

Enull ≈ Inull . (6.27)

Compare this to the case of a GW signal. This will be correlated between the

detectors. By construction, the energy consistent with the GW does not appear in

the null stream. Therefore, in the presence of a strong GW, the incoherent energy

is much larger than the null energy

Enull � Inull . (6.28)

6This is analogous to the null SNR described in section 4.1.4.
7Again, this is analogous to the coherent SNR and the discussion in section 4.1.3.
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Using (6.27) and (6.28), we see that the ratio of Enull and Inull is very different in the

case of a glitch as opposed to a GW signal. We can use this to make the following

cut to remove noise triggers from our sample

Inull/Enull > C (6.29)

for some constant C > 1. This test does not work as well for small amplitude

glitches, where the statistical fluctuations can lead to Enull being smaller than Inull.

For this reason X-pipeline varies C with Inull. as can be see in figure 6.2. The

precise position of the cut is set to maximise performance on a set of injections and

background noise triggers.

We have seen how X-pipeline uses the coherent and incoherent null stream for

background rejection. X-pipeline uses this same process for other measures of co-

herent energy, i.e. it uses the coherent energy to define an incoherent energy and

then make a cut. Specifically, it uses coherent statistics that assumes either a plus,

cross, or circularly polarised GW, which are described in detail in [26, 105, 118]. In

section 6.2 we will see how these statistics can instead be used by a machine learning

algorithm to rank triggers, using arbitrary combinations of coherent and incoherent

statistics, as well as other statistics.

6.1.5 Tuning and Trigger Significance

In this section we will describe how the coherent statistics are tuned and how X-

pipeline calculates the significance of a trigger. X-pipeline searches for GWs in a

window [-600, +60] seconds around the trigger time of a typical GRB, which we call

the on-source data. For GRBs with a T90 value greater than 60 seconds, the on-

source is extended to [-600, +T90] seconds around the trigger time. To tune the cuts,

GW signal injections are placed into the on-source data. The cuts that are chosen

are the ones that minimise the amplitude of the GW injections for a fixed detection

percentage and at a given false alarm rate. For example, the user could decide that

a FAP of 1% is acceptable, and that the cuts should be chosen to minimise the

injection scale at which 90% of the injections are detected.

In order to measure the significance of a trigger, approximately 1.5 hours of data

either side of the on-source window is also analysed, called the off-source data. The

off-source data is split into trials of equal length to the on-source window. The FAP is

calculated as the fraction of off-source trials that have a higher value for the detection

statistic than the loudest trigger in the on-source. X-pipeline creates several ranking

statistics, such as a Bayesian-inspired modification to the standard likelihood [118]

and a statistic based on power law distributed noise. [115] The ranking statistic

used as the detection statistic is the one that gives the best sensitivity at the user

specified FAP. To create more trials and hence better measure the FAP, timeslides
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are applied to the off-source to simulate more data.8

6.1.6 O2 X-pipeline Search

The Advanced LIGO second observing run started in November 2016 and ended in

August 2017, with Advanced Virgo joining for the last month. During this time

there were 242 GRBs reported by the Swift and Fermi GRB observatories, and 52

reported by the InterPlanetary Network (IPN), with many GRBs appearing in both

lists. X-pipeline requires at least 660 seconds of coincident data between any two

detectors in the network. This resulted in 98 GRBs being analysed by X-pipeline

during O2. Data from Virgo was only used if it improved the sensitivity of the closed

box analysis.

The injections used for this analysis were circular sine-gaussian (CSG) and ac-

cretion disk instability (ADI) waveforms. [110, 109] The CSG injections are ad hoc

waveforms, not based on any astrophysical model, chosen to have a total radiated

energy of EGW = 10−2M�c
2 and a Q-factor of nine.9 The ADI waveforms model

the GW signal from instabilities in a magnetically suspended torus around a rapidly

spinning black hole. These two waveforms are chosen as they have very different

morphology and duration, with CSG waveforms lasting 0.01 − 1 second and ADI

waveforms lasting for 10− 250 seconds.

Of the 98 GRBs analysed, the only statistically significant signal was that of

GRB 170817A, which was recovered with a FAP of 3.1 × 10−4. The FAP of the

97 other GRBs analysed is plotted in figure 6.3. A weighted binomial test of the

5% most significant GRBs analysed by X-pipeline in O2 gave a combined p-value

of 0.75, indicating that there is no evidence for a sub-threshold population of weak

GRB triggers.

Plotted in 6.4 is the 90% confidence exclusion distance for each analysed GRB

apart from GRB 170817A. This is the distance at which 90% of injected signals have

a higher ranking statistic than the most significant event in the on-source. This

can be used to rule out a burst event occurring within the exclusion distance for

each GRB, and also places upper-limits on the amount of energy that GRBs emit

as GWs. The CSG waveforms are not astrophysical and so have no well defined

distance. The reported distance to the source of a CSG GW with energy EGW and

central frequency f0 is given by the formula [106]

d2 =
5

2

G

π2c3

EGW

f2
0h

2
90

(6.30)

where h90 is the root-sum-square amplitude hrss of the trigger at which 90% of

8This is the same approach taken by PyGRB, as discussed in section 4.2.3. Also like PyGRB,
X-pipeline also uses long and short timeslides.

9The Q-factor corresponds to the number of cycles contained within some finite region of the
sine-Gaussian envelope.
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Figure 6.3: Cumulative Distribution of p-values. Here we plotted the p-values
for every GRB analysed by X-pipeline in O2 apart from GRB 170817A. Also plotted
is the expected distribution and the 2σ deviation. The results are consistent with
the no-signal hypothesis. [24]

injections are detected. The hrss is a standard measure of amplitude used in burst

searches and is given by

hrss =

√∫
dt(h2

+(t) + h2
×(t)) . (6.31)

The exclusion distance can also be used as a measure of search sensitivity to burst

signals. Comparison with the X-pipeline results from O1 [40] shows that the sensi-

tivity is largely unchanged.

6.2 Machine Learning

We have seen how X-pipeline makes cuts on coherent statistics to distinguish between

noise and GW signals. X-pipeline uses pairs of coherent and incoherent energy for

background rejection, as in (6.29). These cuts are effective and well motivated10

10As we saw in section 6.1.4
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Figure 6.4: Cumulative Distribution of Exclusion Distance. Here we plotted
the 90% exclusion distance for every GRB analysed by X-pipeline in O2 apart from
GRB 170817A. This is the distance to which 90% of injections can be recovered with
a significance greater than the loudest event in the on-source.[24]

but they cannot explore the full parameter space, looking for patterns using all

of the statistics out our disposal. In this section we discuss how to use machine

learning to achieve this. The software we use is the Toolkit for Multivariate Analysis

(TMVA) package in the ROOT data analysis framework. We call the pipeline that

uses machine learning on X-pipeline triggers XTMVA. For details on the TMVA

software package, see [55]. This pipeline has been previously reported11 in. [10]

6.2.1 Supervised Machine Learning

The type of Machine learning we use is called supervised machine learning. Su-

pervised machine learning algorithms are trained on data which has already been

classified. They can then be shown a new, not-classified data point and determine

the appropriate classification. Supervised machine learning requires data to be in

a particular format (see table 6.1). It is a list of events, each with a label and cor-

responding attributes. The machine learning algorithm builds a classifier that can

determine the label of an event when given the event’s attributes. In the case of

our GW search, the events are the triggers returned by X-pipeline (see section 6.1).

The labels are signal or background, and the attributes are the values of the signal

and null data streams for those triggers and some statistics describing the time-

frequency properties of the trigger. A full list of the attributes used, together with

11Though they did not call the pipeline XTMVA.
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Label loghbayesiancirc standard circenergy circinc

Background 12.3128 58.3523 44.7196 24.9015

Background 12.0349 67.5344 41.7045 22.4848

Signal 18.2145 59.8136 53.3320 22.0601

Signal 43.7113 123.9194 118.9774 43.9234

Signal 6422.1467 14426.9124 14167.2933 4991.7876

Table 6.1: Example MVA training data. Each event has a label and several
attributes. The training sets we actually use have up to 16 attributes and thousands
of events. The labels are various coherent and incoherent measures of energy, as well
as trigger properties such as the bandwidth and duration. A full list is given in table
6.2.1.

a short description of each attribute can be seen in table 6.2. The signal triggers

are generated by injecting signal waveforms into the data. Background triggers are

triggers that do not coincide with an injected signal and are typically formed from

timeslides and using data outside the on-source window.

The signal and background trigger sets are each divided into two subsets: The

training set and the testing set. The training set is used to build the classifier,

while the testing set is used to measure the accuracy of the trained classifier. If the

classifier performs much better on the training set than on the testing set, then the

classifier is overtrained. This means that the classifier has learned the properties of

precisely the signals and noise in the training set, rather than learning the general

properties of signals and noise. When an overtrained classifier is used on a different

data set with different noise properties (such as the testing set), it will perform

poorly.
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Statistic Description

loghbayesiancirc A likelihood ratio based on Bayesian methods, for the
hypothesis of a circularly polarised GW vs Gaussian noise

[118]

ESL The maximum energy in the whitened data that is
consistent with a GW from a given sky location.

Enull The minimum amount of energy in the whitened data that is
inconsistent with a GW from a given sky location.

Given by ESL − Emax.

Inull The sum of the autocorrelation terms of Enull.

Ecirc The maximum energy in the whitened data consistent with a
circularly polarised GW from a given sky location.

Icirc The sum of the autocorrelation terms of the Ecirc.

Ecircnull The energy in the whitened data that is consistent
with a GW but inconsistent with a circularly

polarised GW from a given sky location. Given by Etot − Ecirc.

Icircnull The sum of the autocorrelation terms of Ecircnull.

EH1 The energy in the H1 interferometer.

EL1 The energy in the L1 interferometer.

EV1 The energy in the V1 interferometer.

Number of Pixels The number of pixels in the cluster.

Power law The standard likelihood defined for
the case where the noise is power law distributed

instead of Gaussian distributed.

Duration Time duration of the trigger in seconds.

Bandwidth The frequency range spanned by the trigger in Hertz.

Sky Position The sky position of the trigger.

Table 6.2: MVA Attributes.The attributes used by the machine learning classifier.
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6.2.2 Boosted Decision Trees

A Decision Tree is a simple type of classifier. It is a flowchart of true/false statements

about a trigger’s attributes to determine the correct label. For example, consider the

decision tree shown in figure 6.5. Here the attributes are labeled as the components

of a vector x. We start at the top node and work downwards. If the statement

in the node is true then we follow the branch to the left and if not then we follow

the branch to the right. We then consider the statement at the end of whichever

branch we follow. We continue this process until we reach a leaf node, which has no

branches and contains a final classification for the trigger.

We can improve the performance of the classifier by using an ensemble (or forest)

of trees. This means training multiple distinct trees, with each tree independently

classifying the trigger. The final classification of each trigger is a normalised sum of

the outputs of each tree, with +1 corresponding to signal, and -1 corresponding to

background. This leads to different regions of the parameter space having different

MVA scores, as can be seen in figure 6.6. The higher the score, the more likely an

event is to be a signal.

To train a decision tree we must determine the best variable and cut for each

decision node, as well as the correct label for each leaf node. Each of these values

is set by brute force: trying every possible cut in some discrete range to get the

best performance on the training events. Ensemble methods work best when each

classifier in the ensemble is independent of the others, so training every tree on the

same events is not going to give optimal results. For this reason each tree is trained

on some subset of the training set. We could pick events at random from a uniform

distribution to form these subsets, but a more powerful method is to use Adaptive

Boosting.

When using adaptive boosting, each event in the training set is given a probabil-

ity that it will be selected to train the next tree. Initially each event in the training

set has the same probability of being selected. Then, after each tree is trained, the

probabilities are updated such that misclassified events are more likely to be selected

to the train the next tree. In this way, the ensemble become gradually more effective

at classifying those events that are most difficult to classify. To be precise, all the

misclassifed events have their probability of being selected for training the next tree

multiplied by a boost weight before being renormalised. The boost weight is given

by [55]

α =
1− err

err
(6.32)

where err is the misclassification rate, the fraction of events misclassified by the

previous tree. Note that the boost weight is greater than one for err< 1/2, and

that as the error gets smaller, the boost weight increases12. The effect of this is

12The misclassification rate is always less than half when there are only two labels as otherwise
the algorithms would simply swap the labels around.
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Figure 6.5: Schematic Decision Tree. To determine if a trigger is a signal or
noise event the tree makes a series of cuts on the attributes x[N]. If the inequality
in a node is true, then the next node is the branch to the left. Otherwise the next
node is the one to the right. The properties of the tree, such as the number of layers
it has, are set by the user (see section 6.2.4).

that each new tree is more likely to be trained on the events that are most difficult

to classify. For example, if the previous tree only misclassified one event, then the

misclassification error will be very small and the boost weight will be very large.

This boost weight will then only be applied to the one misclassified event, making

it almost much more likely that this event will be selected to train the next tree.

It can be useful to slow down the rate at which the probabilities are updated.

To understand why, suppose that a difficult-to-classify event is, by chance, correctly

classified by the first few trees. It will now have a low probability of being selected

to train future trees. If we could slow down the rate at which the probabilities are

updated, then only those events that are consistently classified correctly should end

up with a low probability of being selected for training the next tree. This is done

by adding an exponent β < 1 to the boost weight, so that α → αβ. The smaller β

is, the slower the probabilities are updated. For this reason, we call β the learning

rate.

The ensemble output is also changed, so that it is weighted rather than being a

simple sum. If the output of the ith tree is given by hi(x), with x being the event

attributes, then the ensemble output is given by [55]

H(x) =
1

N

N∑
i=0

ln(αi)hi(x) (6.33)

where N is the number of trees in the ensemble. In this way, greater significance

is given to trees with lower misclassification rates. It is common practice when

using a forest of decision trees such as this to say that values of H below zero are
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Figure 6.6: Visualising the Classifier. In the top plot you can see the value
for log(Enull) and log(Inull) for all the signal and background training data used
to build the classifier. We chose one of these events at random (indicated by the
star) and varied Enull and Inull to see how it changed the MVA score, indicated by
the colour in the bottom plot. As we can see, increasing Inull and decreasing Enull
leads to the event being more likely to be classed as a signal. This is akin to the
X-pipeline cut shown in figure 6.2.

– 125 –



6.2. Machine Learning

background event and those above zero are signals. We determine classification in

a slightly different way. The trained classifier is used on the off-source trials and it

returns a value of H for each trial. We then calculate a FAP by determining the

fraction of off-source trials that had a larger value of H than the on-source trial. In

this way, lower values of H are interpreted as more likely to be background events

while higher values are more likely to be a signal, but a value of H on its own is

not enough to determine if a trigger is a GW signal. Instead it is used to calculate

a FAP for the trigger.

6.2.3 Training Data Preprocessing

Extra data preprocessing is required when training the classifier. This is because

the MVA will learn what a signal looks like based on the training data, and so a

small contamination can cause the classifier to fail completely. For example, suppose

a small amplitude signal injection is added close to a large amplitude glitch in the

data. This trigger will be labeled as a signal, due to the injection, but the properties

of the trigger will resemble a glitch, as the glitch has a much larger amplitude than

the signal injection. In this case, the injection is essentially a background trigger

that has been mislabeled as a signal. This reduces the ability of the classifier to

detect real signals by making the properties of signals harder for the algorithm to

learn. Even worse, it can lead to background triggers being misclassified as GWs.

For these reasons it is important to make sure that signal injections do not overlap

in time or frequency with background triggers. To prevent this from happening we

remove any injected signals that coincide with noise, a process we call cleaning the

data. This process starts with finding all of the triggers in the data for the smallest

signal injection scale. The injected waveforms are too small to be detected so all of

these triggers must be background. We then increase the injection amplitude and

look for triggers again. Any triggers that overlap in time or frequency with the noise

triggers are then identified and removed from the from the signal set.

We must also not include injections in our signal training set that are too small to

be detected, as this would again be including triggers labeled as signals but with the

properties of a noise trigger. For this reason we apply a threshold on the amplitude

of the signal set, so any injection below that amplitude is removed. The level of the

threshold has to be set experimentally. If the threshold is set too low then we will

increase the chance of a false positive and hurt our sensitivity to real signals, but if

it is too high then we will limit the classifiers ability to detect low amplitude signals.

As XTMVA is to be used for the unmodelled search, for which the physical wave-

forms are uncertain, it is also important to ensure that the search can find waveforms

that are not in the training set. There are several tools that we use to achieve this.

The first is to limit the amount of information the classifier is given about the

waveform morphology. The classifier cannot know the precise morphology of any
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waveform because the only attributes that the classifier trains on are the duration,

bandwidth, and number of pixels in the trigger, as well as the various measurements

of the coherent and incoherent energy between the detectors in the network. Thus

the classifier has very limited information of the waveform morphology.

There is still a possibility that the classifier will become too specialised to the

waveforms in the training set, as certain waveform morphologies may have particular

characteristics that become apparent in the parameters that the MVA is given. For

this reason we also trained the classifier on a variety of different waveforms. The

training set includes long and short waveforms, and a variety of different morpholo-

gies. Some of the signals are astrophysically motivated, such as compact binary

coalescence signals, while some are artificial, such as the white noise burst.

The final tool we use to ensure the classifier is sensitive to generic waveforms

is to test the classifier on waveforms that are not included in the training set. If

the classifier can find waveforms not in the training set, then we can be reasonably

confident that it is sensitive to generic waveforms. We also try removing certain

waveforms from the training set to test the robustness of the classifier. This should

lead to a drop in sensitivity for that waveform, but if the drop in sensitivity is small,

then we can be confident that the classifier is robust. Experiments with removing

certain waveforms from the training set showed that the sensitivity did not change

by more than a few percent. This is discussed in more detail in the next section.

It was also found to be important that the injection runs for the MVA were

performed on the off-source data. This is different to how X-pipeline is typically

tuned, where the injections are performed in the on-source data. It was found that

using injections in the on-source data can lead to false positive results. This is

probably because some of the injections will be masked by noise in the detector

data, when the MVA classifier analyses the on-source, it will then see this noise and

mistakenly identify it as a GW.

6.2.4 Optimisation and Validation

With any machine learning algorithm there are hyperparameters that must be tuned.

These are the parameters of the classifier itself, such as the number of trees in the

ensemble, or the maximum depth of the trees. We optimise the hyperparamters

by repeatedly running an example analysis with different hyperparameters, trying

to improve the sensitivity of the search. We measured the sensitivity of the search

by looking at a dummy on-source, the off-source trial that had the 90th percentile

loudest trigger. We then calculate the 50% and 90% injection scale upper limit,

a measure of injection amplitude at which 50% or 90% of the injections can be

recovered with a detection statistic higher than in the dummy on-source. The smaller

the 50% and 90% injection scale upper limits are, the more sensitive the search is.

Setting our hyperparameters using the testing set can cause data leakage. Data

– 127 –



6.2. Machine Learning

leakage is when data from outside the training set is used to build a classifier. As we

tune our classifier on the testing set, it is possible that we will implicitly tune our

classifier to work well only on this training and testing set.13 To avoid this, once we

have tuned the hyperparameters on a single GRB, we test the classifier on several

other GRBs. If the performance drops significantly on these other GRB analyses,

then we have had data leakage and we need to retune our classifier. This process of

testing on previously unused data is called validation. If there is evidence of data

leakage, then we must retune our classifier and validate it again, this time using a

different (previously unused) GRB so as to avoid data leakage from the validation

GRB.

Optimisation is a somewhat cyclical process, as once we have changed one hyper-

parameter, we must then go back and test that other parameters do not now need

changing. That said, optimisation is not pure guess work, and in the rest of this

section we will see the strategy we used to optimise our classifier. We first discuss

optimising the training data, as the other hyperparameters will not have much of

an effect if the training data is of poor quality. As mentioned in section 6.2.3, there

are several choices to make regarding what data is used for training, such as setting

the amplitude threshold. We then discuss optimising the BDT classifier itself.

Training Set

Many of the hyperparameters mentioned in section 6.2.3 had to be optimised. Con-

sider the amplitude threshold applied to triggers before they are included in the

training set. We applied the threshold to the loghbayesian statistic (see table 6.1).

Experimentation showed that allowing triggers with a loghbayesian value below 20

led to the misclassification of background triggers as signal. Setting a value higher

than this slowly reduced the sensitivity of the search.

We also optimised the waveforms that are included in the training set. In partic-

ular we were interested in how sensitive the MVA is to waveforms not in the training

set. We found that the MVA was fairly robust to having waveform types removed

from the training set. For example, the final classifier we used was trained on a set

of waveforms that included white noise burst (WNB) signals of about 0.1 seconds

and about 10 seconds as well as cusp waveforms. Removing these from the train-

ing set surprisingly had almost no effect on the ability of the MVA to detect WNB

signals, cusp signals, or any other waveform, as can be seen in figure 6.7. Similar

results were found when removing other waveforms. This suggests that by limiting

the waveform morphology information given to the MVA, we have managed to build

a classifier that is agnostic to waveform morphology, as required for a burst search.

Table 6.3 details all the waveforms used for training and testing.

13This is very similar to overtraining discussed in section 6.2.
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Waveform Description

ADI Accretion disk instability waveforms. Essentially,
these model a ‘clump’ forming in the accretion disk,

that spins down the black hole via GW emission. We use
five different ADI waveforms, labeled a-e. They vary in

the masses of the black hole, accretion disk, and the clump,
as well as the spin of the black hole. Their durations range

from 10 seconds to 250 seconds, hence they are all
considered long waveforms for our purposes. [109, 110]

BNS Inspiral and merger of a binary neutron star system.
Typically has a duration of about 10 seconds.

NSBH Inspiral and merger of a neutron star-black hole
system. Typical duration of a few seconds.

SGC Circularly polarised sine-Gaussian. Ad hoc waveforms,
not based on any astrophysical source. We use four
different SGC waveforms, which differ in there peak

frequency. They are less than one second long.

SGE Elliptically polarised sine-Gaussian waveform. Like
SGC waveforms, this is not astrophysically motivated.

WNB White noise burst. This waveform is random noise.
We use two different durations of WNB, short 0.1 second

bursts, and long 10 second bursts.

Cusp Short duration waveform, predicted to be emitted
by cosmic strings.

Table 6.3: Training Waveforms. Here we list the waveforms used by XTMVA for
both training and testing, together with a short description.

– 129 –



6.2. Machine Learning

Figure 6.7: Removing WNB and Cusp Waveforms from Training Set. Here
we plot the percentage change in 50% upper limit injection scale per waveform after
removing WNB and Cusp waveforms from the training set. Negative values indicate
that the sensitivity improved after the change. We see that the sensitivity to most
waveforms drops, but by less than 1%. As we use a few hundred injections at each
injection scale, this is not a statistically significant result. This shows that the MVA
is able to detect GW morphologies that it has not been trained on.
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BDT Parameters

There are many hyperparameters that need to be set for a BDT analysis. In this

section we discuss some of these hyparameters and the method we used to optimise

them for our analysis.

We began by setting values for NTrees, the number of trees in the ensemble, and

the learning rate, discussed in section 6.2.2. These two parameters are set first to

ensure the machine learning algorithm will converge in a reasonable amount of time,

even if the results are not very sensitive. Setting the learning rate too low causes

the classifier to take longer to converge. Setting the learning rate too high can cause

the classifier to never converge. Similarly, using too many trees takes too long for

the classifier to finish training, but too few and the training will terminate before

the algorithm has converged. Setting these first ensures that we have a classifier

that gives sensible results in a reasonable amount of time. While optimising, we

set the learning rate slightly high and the number of trees slightly low, allowing the

analysis to complete quickly while we optimise our other parameters. Once the other

parameters are set, we again optimise NTrees and the learning rate, increasing the

number of trees and decreasing the learning rate to ensure the algorithm reaches its

optimum performance, even if it increases the time taken for training.

We now tune the tree-specific parameters. Unlike the number of trees and the

learning rate, which are primarily tuned to ensure the classifier will converge and

do so in a reasonable time, these parameters are set to ensure that the classifier

is accurate but does not overtrain. Overtraining can happen when the trees are

allowed to make cuts that are too fine, carving out regions of parameter space

around anomalous events in the training set rather than finding cuts that generalise

beyond the training data. The way to prevent this is to limit how fine the cuts made

by the decision trees are allowed to be, while allowing cuts that are fine enough to

pick out the general features of signal and background events in our data. There are

several hyperparameters we can set to do this, which must all be tuned.

The first of these is the maximum depth of the trees, which is the maximum

number of cuts a tree can make before it reaches a leaf node. Each cut divides the

parameter space into ever smaller regions which it labels as background or signal.

Setting the maximum number of cuts too low will therefore cause the classifier

to be too coarse in dividing up the parameter-space, resulting in poor accuracy.

Increasing the maximum depth allows the classifier to pick out smaller features in the

parameter-space. If the maximum depth is too high then the classifier will overtrain;

dividing the parameter-space into precisely the regions that work for the training

set and losing generality. As we are using adaptive boosting, it is recommended [55]

to use trees with fewer cuts. For this reason we tried values from 2-16 and recorded

the effect this had on the sensitivity of the search. We found that for our problem

a maximum depth of 8 was optimal.

– 131 –



6.2. Machine Learning

A related hyperparameter is the minimum number of events that we allow in a

leaf node. If we allow the training algorithm to have any number of events in a leaf

node, then it will occasionally find cuts that result in a small number of events in

one or more of the leaf nodes. Just as with the trees that were too deep, this can

cause the classifier to carve out regions of parameter space around anomalous events

in the training set rather than finding cuts that can generalise beyond the training

set. Conversely, setting the minimum number of events allowed in the leaf nodes to

be too high does not allow the classifier to pick out the key features in the data. We

used a grid search over the values 100-1600 for the minimum number of events per

leaf node and found the optimal value to be 400.14

The final hyperparameter we set was the number of cuts that the training algo-

rithm scans over to find the best cut. When the classifier is training it searches for

the best way to cut the parameter space into a signal subspace and a background

subspace. To do this we can try every possible cut on every parameter. This can

be very slow and lead to overtraining. To speed up our analysis and reduce the

chance of overtraining, we can choose the number of cuts to try on each parameter.

For example, we may decide to use 9 cuts for each parameter. In this case the

algorithm will tune the cut on a parameter which ranges from 0-100 by trying cuts

at 10,20,...,90 and selecting the best of these cuts. To tune the number of cuts we

wanted to use, we tested values in the range 10-160 as well as allowing the classifier

to try every possible cut. We found that 80 cuts was optimal for our purposes.

Result of Optimisation

Optimising the hyperparameters had relatively little effect on the overall sensitivity

of the classifier. The results of the optimisation are shown in figure 6.8. There you

can see that the optimisation made the classifier ∼ 3% more sensitive to certain

waveforms than the TMVA boosted decision tree default settings, though at the

expense of about a 1% drop in some others. With more time it might be possible to

see greater improvements, but our findings are that as long as the hyperparameters

are within some sensible range15, the performace of the MVA is fairly constant.

The same cannot be said for work done on optimising the training set. Without

appropriately set thresholds, the MVA will regularly make false detections, making

the pipeline unusable for a GW search. In figure 6.9 we plot a comparison of the

MVA against a standard X-pipeline analysis of the same GRB. You can see that the

MVA is outperforming X-pipeline on every waveform. As this was the GRB used

for optimisation, this results probably overestimate the improvement that the MVA

will bring. In the next section we will analyse a selection of other GRBs from O2 to

14It should be noted that this value should scale with the size of the training data. So if we
increase the number of events in the training data by a factor of 10 then we need to increase the
minimum number of events allowed in each leaf node by a factor of 10 as well.

15For example, using only trees of depth two hurts sensitivity, but depth 3 and above leads to
only modest improvements.
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make a fairer comparison of the X-pipeline and XTMVA.

6.3 Effectiveness of XTMVA

In this section we will compare XTMVA to X-pipeline. To do this, we ran XTMVA

on a selection of 15 GRBs from O2. Of these GRBs, one was use to optimise the

hyperparameters of the classifier, and so should not be used for comparison to X-

pipeline. The other was GW 170817, which is treated differently to the other GRBs

analysed as it is a confirmed detection. The remaining 13 GRBs make up the results

set. We will see that XTMVA has better sensitivity than X-pipeline, but also has

some pathologies that make X-pipeline a more robust search at the current time.

6.3.1 Analysis Setup

We compared the speed and sensitivity of XTMVA to X-pipeline on a subset of

GRBs analysed in O2. When performing the GRB analysis with XTMVA, we tried

as much as possible to keep the parameters of the analysis the same as used by

X-pipeline in O2, in order to make comparison fairer. However, this was not always

possible and it is important to clarify some of the differences between the X-pipeline

and XTMVA analyses that could bias the results.

The first is that XTMVA used off-source injections, unlike X-pipeline which uses

on-source injections. As mentioned in section 6.2.3, this is required for the MVA

or it will make false detections. Using off-source injections forced another change

upon the analysis. The O2 X-pipeline analysis used code that made the recovery of

long injections easier. X-pipeline analyses data in chunks of 256 seconds. For long

injections, especially those over ∼ 100 seconds long, this can lead to injections being

spread over multiple segments. For this reason, X-pipeline will analyse two neigh-

bouring segments of 256 seconds if a long injection is near the boundary between

these chunks. This can increase the signal power of long injections and prevent

them being broken up into multiple smaller signals. For purely technical reasons,

the code that allows multiple chunks of data to be analysed is not compatible with

off-source injections. Hence, the MVA is at a disadvantage when trying to find long

injections. For short waveforms, it is very unlikely they would be injected near the

boundary between two chunks of data and so the effect described above is negligi-

ble. Apart from these two changes (i.e. using off-source injections and not using the

long-injection code) the MVA analysis was identical the X-pipeline analysis used in

O2.

6.3.2 Sensitivity and Speed Comparison

To measure the sensitivity of XTMVA we used the same measure as in section

6.2.4, the 50% injection scale upper limit. In figures 6.10 and 6.11, we compare
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Figure 6.8: Effect of Hyperparameter Optimisation. Here we see the effects of
optimisation on the 50% upper limit injection scale. Lower values indicate a more
sensitive search. The top panel shows the absolute values and the bottom panel
shows the percentage change. The benefits of optimising the hyperparameters is no
more than a ∼ 3% improvement in sensitivity when compared to the default settings
of the TMVA boosted decision tree classifier. It is also interesting to note that the
three waveforms that have their sensitivity drop after optimisation (adi-a, adi-c, and
adi-d) are all long waveforms. We will discuss the problem with these waveforms in
section 6.4.
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Figure 6.9: MVA Improvement. Here we see the effects of using the MVA on the
50% upper limit injection scale for the same GRB that was used for optimisation.
The top panel shows the absolute values and the bottom panel shows the percentage
change. We can see that the MVA outperforms X-pipeline on every waveform. As
this was the GRB used to optimise the hyperparameters, it cannot be guaranteed
that these results will hold for other GRB analyses.
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Figure 6.10: X-pipeline and XTMVA ADI-a 50% Injection Scale Upper
Limit by GRB. Here we plot the sensitivity to the ADI-a waveform of both X-
pipeline and XTMVA. The lower injection scales for XTMVA show that XTMVA
is more sensitive than X-pipeline to the ADI-a waveform. Also, note the lower
variation in injection scale between GRBs for XTMVA, suggesting that XTMVA is
more stable than X-pipeline.

the sensitivity of XTMVA and X-pipeline on one of the accretion disk instability

waveforms (ADI-a) and the 150 Hz circular sine Gaussian waveform (CSG) for the

13 GRBs in the results set. These plots show several interesting features. The MVA

analysis is usually more sensitive to ADI-a waveforms than X-pipeline despite not

benefiting from the long injection code.16 The MVA also consistently outperforms

X-pipeline for the CSG waveform. These plots also show that the MVA is more

stable than X-pipeline, which has outliers for both waveforms, unlike the MVA.

In figure 6.12, we plot the median 50% injection scale upper limit for each wave-

form across the GRBs analysed. We can see that there is a small improvement when

using the MVA. For most long waveforms, in particular the ADIs and the BNS wave-

forms, the difference is small (except for ADI-a). For most of the short waveforms,

in particular the sine-Gaussian waveforms, the MVA displays a noticeable improve-

16ADI-a waveforms are 39 seconds long and the analysis segments are about 256 seconds long.
Therefore, we expect approximately 15% of them to intersect a segment boundary and therefore
lose some signal power.
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Figure 6.11: X-pipeline and XTMVA CSG 50% Injection Scale Upper Limit
by GRB. Here we plot the sensitivity to the 150 Hz circular sine-Gaussian wave-
form of both X-pipeline and XTMVA. The lower injection scales for XTMVA show
that XTMVA is more sensitive than X-pipeline to the CSG waveform. Again, note
the lower variation in injection scale between GRBs for XTMVA, suggesting that
XTMVA is more stable than X-pipeline.
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Figure 6.12: Median 50% Injection Scale Upper Limit by Waveform. Here
we plot the median sensitivity to each waveform of both X-pipeline and XTMVA.
Overall, XTMVA is more sensitive, especially to shorter waveforms such as sine-
Gaussians. Apart from ADI-a, the MVA is worse than X-pipeline for long waveforms,
though the difference is small. If the MVA could use the long injection code that X-
pipeline uses, it is reasonable to expect that the MVA would outperform X-pipeline
for long waveforms as well.

ment (with the exception of the 100 Hz circular sine gaussian waveform). See tables

B.4 and B.5 in the appendix for the full breakdown of sensitivity by waveform and

GRB analysed.

As well as the sensitivity improvement, XTMVA also uses less CPU time than X-

pipeline. In particular, training an MVA classifier is much faster than calculating the

optimal coherent cut with X-pipeline. The post-processing stage for a two detector

analysis with X-pipeline takes approximately 75 CPU hours, while the for XTMVA

it takes about 18. Though it should be noted that the initial processing stage, where

coherent statistics are calculated and triggers found, is still the most computationally

intensive part of the process, taking about 650 hours. This part of the pipeline is

identical between XTMVA and X-pipeline.

6.3.3 XTMVA Search Results

We analysed the 13 GRBs of the results set in the same manner as was done for

the X-pipeline results in O2 (see section 6.1.6). In figure 6.13 shows the p-values for
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Figure 6.13: XTMVA p-values. Here we have plotted the p-values for 13 of the
GRBs analysed with the MVA. The blue triangles indicate the p-value reported by
the MVA, the black dotted lines show the expected distribution and a 2σ deviation.
Two GRBs that were analysed were left out from this plot: GRB 170817A as it had
a known GW counterpart and E264930 as it was used to tune the hyperparameters.
The analysis shows some bias towards low p-values. In particular, two out of the 13
analysed GRBs have a p-value of ∼ 1%. This can be compared to figure 6.3 which
shows the X-pipeline p-values for O2. In particular, X-pipeline did not have the same
bias towards low p-values that XTMVA does. This needs further investigation.

each GRB, which can be compared to figure 6.3. We see that the MVA has a bias

towards low p-values. In particular, there are two p-values of about ∼ 1%. Further

investigation shows that these two low p-value events were ranked by X-pipeline to

be the most significant triggers in the on-source window before vetoes were applied,

but the failed the coherent cuts.

In figure 6.14 we replicated figure 6.4, the 90% exclusion distance plot. While

we do not have as many GRBs in our sample as the X-pipeline O2 analysis did, we

can see that the exclusion distance for ADI-a is higher than for the X-pipeline O2

analysis. The XTMVA analysis also does not have the long tail of low exclusion

distance analyses that the X-pipeline analysis does. This is consistent with the

results shown in figures 6.10 and 6.11, which show that for some GRBs the X-
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Figure 6.14: Cumulative Distribution of Exclusion Distance. Here we plotted
the XTMVA 90% exclusion distance for the 13 GRBs in the results set. This is the
distance to which 90% of injections can be recovered with a significance greater than
the loudest event in the on-source.

pipeline analysis has much lower sensitivity, while the MVA is far more consistent

between analyses.

We also analysed GRB 170817A with XTMVA. This was the only known GW

we analysed with XTMVA. The p-value of the most significant on-source trigger

was 4.095 × 10−4, a factor of twenty lower than the most significant trigger of the

13 other GRBs analysed and comparable to the p-value of 3.1 × 10−4 measured

by X-pipeline. This p-value corresponds to just one off-source trial having a more

significant event, and is therefore at the limit of how low a p-value we can achieve

with the number of timeslides we were using. The on-source for this event also had

two other low p-value events, which time-frequency data show are different parts of

the inspiral signal. Had the energy from these different sections been considered one

trigger, then the significance would have been even greater. We will discuss how

this might be achieved in section 6.4.
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6.4 Discussion and Future Work

In this chapter, we have shown that machine learning shows promise as a method for

improving GW searches in the future. Building upon the work in [10], we showed

that XTMVA is capable of detecting GWs, and that it is both computationally

cheaper and more sensitive than X-pipeline. We tested XTMVA on a relatively

large sample of real GRBs, and compared the results to a production run with X-

pipeline and found the results to be promising. With that said, the analysis also

has some problems that have not been previously reported. In this section we look

at some of the problems with XTMVA, potential ways to fix these problems, and

other areas for future development. We then end with a brief discussion of other

work using machine learning for GW searches.

6.4.1 Low p-value Triggers

The most notable problem with XTMVA is the relatively high number of low FAP

triggers. While the results shown in section 6.3.3 would not suggest any detection

other than GW 170817, it had two ∼ 1% FAP triggers in an analysis of 13 GRBs.

Before XTMVA can be used in a search, we must be sure that it will not return a

false positive. This means analysing more GRBs to see if the problem persists. If it

does, then we must learn why XTMVA is ranking highly some glitches that fail the

standard X-pipeline cuts.

6.4.2 Long Injections

We must also make XTMVA work with the long injection code. This is a problem

for X-pipeline as well, as it will soon move to using off-source injections just as

XTMVA does, and when it does it will also not be able to use the long injection code.

This is a purely technical task and once fixed, XTMVA should see an appreciable

improvement in sensitivity to longer waveforms, especially ADIs.

At this point, XTMVA may run in to another problem we have noticed. The

cleaning code removes triggers that overlap in time or frequency with background

triggers. This is much more likely to happen for longer signals, and we have noticed

that for this reason, the signal training set ends up with relatively few long injections.

We experimented with other cleaning methods to try to fix this. One was to only

clean small injection scales, allowing loud injections to pass into the training set

uncleaned. The logic was that a loud signal should still be detectable in the presence

of some noise, and so cleaning was not as important. This approach did not work

as it allowed too much noise into the training set which then led to more low FAP

triggers.

Another cleaning method was also tried. This required that the injection and

noise time-frequency boxes overlap by at least some user-defined percentage to be
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removed from the training set. Overlaps of 50% and 90% were tested but both

yielded the similar results as the original cleaning code. There are two likely reasons

for this. The first is because glitches will typically be bigger in time-frequency space

than most injections, especially in the frequency dimension. The other reason is

because even when injections are long, they will usually be detected as many short

triggers rather than one large trigger. This means that although the injection is long,

the trigger that is reported will probably only be a fraction of the whole waveform,

which then makes it more likely that the overlap between the glitch and the injection

will be large enough for the trigger to be vetoed.

This brings us to another area of development for XTMVA, Generalised Clus-

tering. This is a tool developed for X-pipeline 17 that changes the way triggers are

defined. By default, triggers are groups of neighbouring pixels in the time-frequency

maps, such as in figure 6.1. Specifically, for pixels to be clustered together, they must

share an edge or a corner. Generalised clustering allows these pixels to be separated

by a user-specified number of pixels. The effect of this is to prevent one large GW

signal being broken up into many smaller triggers. This is what happened with the

analysis of GW 170817 mentioned in section 6.3.3, where the MVA reported three

high significance triggers in a small time-frequency window. The downside to using

generalised clustering is that it can cause noise triggers to be grouped together as

well, boosting the power of noise. This then causes our sensitivity to short triggers

to be reduced slightly. Experimenting with generalised clustering in X-pipeline sug-

gests that the benefits outweigh the costs, with an improvement of between 7% and

50% in detectable amplitude for long inspiral and ADI waveforms at the cost of a

decrease of 3% to 9% for short sine-Gaussian waveforms.

Experiments were done to see if generalised clustering would improve the sensi-

tivity of XTMVA. We found that the 50% injection scale upper limit for different

waveforms saw roughly the same changes as X-pipeline, with improvements for long

waveforms but not for short waveforms (see figure 6.15). However, the detection ef-

ficiency for very large injections was relatively low, meaning that the loudest signals

were being missed. To see the problem, we have plotted detection efficiency curves

for the NSBH injection set of an XTMVA analysis without generalised clustering

in figure 6.16 and with generalised clustering in figure 6.17. It is clearly visible

from the plots that using generalised clustering causes high energy injections to be

missed. The problem seems to only effect longer waveforms, such as ADIs and in-

spirals, while the shorter waveforms, such as sine-gaussians, do not see a fall in their

detection efficiency at high amplitude.

The problem seems to be the cleaning algorithm again. Generalised clustering

makes both signal and background triggers louder and longer, which increases the

chance that the injection will be coincident in time or frequency with a background

trigger. This will then cause more injections to be removed by the cleaning code.

17Though X-pipeline can use generalised clustering already, it has not yet been used in a search.
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Figure 6.15: Generalised Clustering Sensitivity Change. Here we see the
change in 50% injection scale upper limit for XTMVA with and without using gen-
eralised clustering. A lower value indicates a more sensitive search. The sensitivity
of XTMVA is significantly improved for long waveforms such as ADIs, BNS, and
NSBH when using generalised clustering. There is, however, a slight reduction in
sensitivity to short waveforms.
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To test this we looked at the time-frequency box size18 of the triggers in the signal

training set. The generalised clustering has a larger median trigger box size than

the default analysis, as we would expect. However, the 90th percentile of box size is

larger for the default analysis, suggesting that the longest triggers are not making

it into the training set. In figure 6.18 we can see a histogram of the time-frequency

box size for the triggers in the training set of the default and generalised clustering

runs of XTMVA. We can see that the default analysis has more triggers with a large

box size, supporting our hypothesis that the cleaning is removing long waveforms

from the training set. The figure also shows that many shorter injections are also

not making it into the training set.19 This does not affect the detection efficiency

of short waveforms by much as there are still many short waveforms making it into

the training set. As the number of waveforms making it into the training set falls

quickly with time-frequency box size in both the default and generalised clustering

analyses, losing a relatively small number of long injections can have a significant

detrimental effect on performance at large amplitudes, which is what we believe is

happening.

For this reason, generalised clustering does not seem to be compatible with the

MVA as it exists at the moment. Given the significant improvements it brings to

X-pipeline, it is unlikely that XTMVA will be able to outperform X-pipeline until

we can integrate generalised clustering into XTMVA. To fix this requires a rethink

of how we clean the signal training set.

6.4.3 Machine Learning Developments

There are now many more machine learning packages available than when work

on XTMVA first began. These new MVA packages have many tools that would

make XTMVA more transparent and run faster. Some of these packages have large

communities that could be used to speed up development. Work is also ongoing

to convert X-pipeline to python, [33] at which point it will become much easier

to use the many python based machine learning packages that exist. For these

reasons, it seems worthwhile to stop using TMVA. Future work using MVA on X-

pipeline triggers should move to a modern software package with a large community

of developers and users. This will likely increase the potential sensitivity of the

pipeline and speed up development. This will not involve drastic changes to the

XTMVA infrastructure, as most of the preprocessing code (cleaning, thresholding,

building training and testing sets etc.) will still be needed, only the machine learning

engine and post-processing scripts will need to be edited.

18This is the bandwidth multiplied by the duration of the trigger.
19In fact, using generalised clustering leads to 20% fewer triggers in the training set.
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Figure 6.16: Detection Efficiency Curve without Generalised Clustering.
This is the detection efficiency curve for an XTMVA analysis without generalised
clustering. The x-axis shows the root-sum-square amplitude of the injected wave-
forms and the y-axis shows the fraction of injections detected. This plot shows that
at low amplitude no injections are found, while for very loud injections there is
almost a 100% detection efficiency. This is the typical, expected behaviour.
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Figure 6.17: Detection Efficiency Curve with Generalised Clustering. This
is the detection efficiency curve for an XTMVA analysis using generalised clustering.
The x-axis shows the root-sum-square amplitude of the injected waveforms and the
y-axis shows the fraction of injections detected. We can see that some very loud
injections are being missed, despite the fact that close to 100% of some lower energy
injection sets are being found.

Figure 6.18: Time-Frequency Box Size. Here we have a histogram of the time-
frequency box size of triggers in the signal training set for an analysis with generalised
clustering and without. We can see that the default run not only has a lot more
triggers overall, but it has more triggers with a large time-frequency box as well.
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6.4.4 Comparison to other Machine Learning Approaches

We end with a brief note on some of the other machine learning approaches for

GW searches, and in particular on the differences with our search. Convolutional

Neural Networks (CNNs) and other deep-learning tools have received a lot of atten-

tion in recent years, and have developed rapidly. These tools have been shown to

be especially useful for image classification problems, and so it is perhaps natural

that many different groups are trying to use CNNs to analyse time-frequency data

to search for GWs, [47, 46] to determine the properties of the source, [100] and to

characterise detector data. [34] In essence, these CNNs are tasked with learning how

to coherently combine data-streams, recognise an inspiral waveform, or invent some

better technique for GW detection. This is quite different from the method we have

described in this chapter. We calculate statistics that we already know are useful

for finding GWs, a process called feature engineering, and then task the classifier

with finding more intelligent ways of combining these statistics. The advantages of

the standard approach (i.e. not feature engineering) is that it is faster, as feature

engineering can take time, and it is less restricted, which can allow it to find unex-

pected ways to solve the task it is given. The advantage of feature engineering is

that it makes it easier to train a classifier, as it does not need to learn how to, for

example, coherently combine data streams. Both approaches show a lot of promise

for the future of GW astronomy.
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Conclusions

“Equipped with his five senses, man explores the universe around him

and calls the adventure Science.”

- Edwin Hubble

This thesis has covered many areas of joint GRB/GW astronomy. After sum-

marising the current state of both GW and GRB astronomy, we discussed two cur-

rent targeted GW searches for the followup of GRB observations. The first of these

was the PyGRB targeted matched filter search for short GRB followup. We showed

how PyGRB works and discussed the results of the most recent PyGRB search. We

saw that PyGRB detected a GW associated with GRB 170817A, and used this with

the non-detection from the 41 other GRBs analysed to make predictions on rates of

joint detections in the future.

We discussed how PyGRB is being developed to make it faster, more sensitive,

and more flexible for future development. The new code is able to analyse a GRB

in half the CPU time of the old code, and can use new developments in the all-sky

search to further improve speed and sensitivity. The shorter analysis time improves

the scientific usefulness of a detection by allowing earlier prompting of EM followup.

It also allows poorly localised GRBs to be analysed, unlike the current search which

cannot analyse poorly localised GRBs in a reasonable amount of time. Faster anal-

ysis also allows for more time slides, which allows for more accurate measurements

of the false alarm rate. The new code can currently only analyse a single sky point,

and cannot use time slides. Work is ongoing to add this functionality. Once this is

done, the new pipeline will be ready to carry out a search.

We also saw the X-pipeline burst search for GWs associated with both long and

short GRBs. After summarising the key features of the pipeline and looking at its

performance in O2, we looked at how XTMVA attempted to improve the sensitivity

of X-pipeline using machine learning. We saw that XTMVA had improved sensitivity

and reduced the analysis time compared to X-pipeline. We discussed some of the
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problems that come with using machine learning, as well as how these problems

have been, or can be, overcome. Despite significant progress, it does not seem like

XTMVA will be in a position to replace X-pipeline in the near future. This is

partly for technical reasons, such as the need to rewrite and update the code to use

modern software, and partly for reasons that are intrinsic to the approach we took to

machine learning, such as the problem training a machine learning classifier on long

waveforms without polluting the signal training set with noise. For these reasons,

it is sensible to use X-pipeline with the other improvements, such as generalised

clustering, that have been developed in parallel to XTMVA. That said, there is

currently a lot of ongoing work to try and using machine learning for a GW search,

and many of the problems we faced will likely affect these searches too. Hopefully

they will learn from our experience.

With the detection of GWs associated with GRB 170817A, a new era of multi-

messenger astronomy has begun. With the KAGRA and LIGO India detectors

coming online soon, the future of GW/GRB astronomy is promising. The same

techniques discussed in this thesis can also be used to followup triggers from other

messengers, such as neutrino signals, opening up yet more windows into the universe.

Within hours of a trigger from any one of these messengers, followup analysis will be

carried out using the others. In the not-too-distant future, we will have EM, GW,

and neutrino observatories acting as different tools for the same searches.

Equipped with these three senses, we explore the universe.
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Appendix A

General Relativity

Here we collect useful formulas and definitions from general relativity. For more

details on these, see, for example, [25, 123].

Christoffel symbol

Γλµν =
1

2
gλρ[∂νgµρ + ∂µgνρ − ∂ρgµν ] (A.1)

where gµν is the metric tensor.

Riemann curvature tensor

Rµλαβ = ∂αΓµλβ − ∂βΓµλα + ΓµναΓνλβ − ΓµνβΓνλα (A.2)

Ricci tensor

Rµν = gαβRαµβν = Rβµβν (A.3)

Ricci scalar

R = gαβRαβ = Rββ (A.4)

The Einstein equations

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (A.5)

where Tµν is the stress energy tensor, G is Newton’s gravitational constant, and c is

the speed of light.

An alternative form of the Einstein equations

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
(A.6)
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Results Tables

In this appendix we provide the tables of results for the analyses described in this

thesis. Table B.1 lists the median 50% injection scale upper limit values for different

waveform sets for X-pipeline and XTMVA. Tables B.2 and B.3 list information about

each GRB analysed with PyGRB during O2. Table B.4 shows the 50% injection scale

upper limit for each waveform and for each GRB analysed with XTMVA, and table

B.5 shows the corresponding values obtained with X-pipeline.

Waveform X-pipeline MVA

sgc70 1.18 1.13
sgc100 0.81 0.81
sgc150 0.95 0.72
sgc300 0.81 0.79
adi-a 0.31 0.24
adi-b 0.14 0.13
adi-c 0.18 0.17
adi-d 0.51 0.52
adi-e 0.17 0.18
BNS 0.25 0.24

NSBH 0.18 0.18

Table B.1: Median 50% Injection Scale Upper Limits. Here we list the median
50% injection scale upper limit values for X-pipeline and XTMVA.
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Appendix B. Results Tables
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