GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/128221/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Fuller, Daniel Barry, Fernandes De Arruda, Edilson and Ferreira Filho, Virgilio José Martins 2020.
Learning-agent-based simulation for queue network systems. Journal of the Operational Research Society 71
(11), pp. 1723-1739. 10.1080/01605682.2019.1633232
Publishers page: http://dx.doi.org/10.1080/01605682.2019.1633232
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.

ORIGINAL PAPER

Learning-Agent-Based Simulation for Queue Network Systems

Daniel Barry Fuller, Edilson Fernandes de Arruda® and Virgilio José Martins
Ferreira Filho?*

4Industrial Engineering Program, Alberto Luiz Coimbra Institute - Graduate School and
Research in Engineering, Federal University of Rio de Janeiro

ARTICLE HISTORY
Compiled September 9, 2019

ABSTRACT

Established simulation methods generally require from the modeler a broad and
detailed knowledge of the system under study. This paper proposes the application
of Reinforcement Learning in an Agent-Based Simulation model to enable agents
to define the necessary interaction rules. The model is applied to Queue Network
Systems, which are a proxy for broader applications, in order to be validated. Simu-
lation tests compare results obtained from learning agents and results obtained from
known good rules. The comparison shows that the learning model is able to learn
efficient policies on the go, providing an interesting framework for simulation.

KEYWORDS
Simulation; Agent; Machine Learning; Queue Network

This is an original manuscript / preprint of an article published by Taylor & Fran-
cis in Journal of the Operational Research Society on 09 Sep 2019, available online:
https://www.tandfonline.com/doi/10.1080/01605682.2019.1633232.

1. Introduction

Established simulation methods generally require from the modeler a broad and de-
tailed knowledge of the system under study. Such a comprehension should encompass
the system elements and their interactions and translating that knowledge into a model
may require a considerable amount of time. Agent-based Simulation (ABS) represents
systems through agents and their rule-based interaction with the environment (Macal
& North, 2010) in an attempt to separate the systemic knowledge into smaller parts.
Agent-based representation aims to be more useful than other simulation paradigms by
making the real world representation more faithful through elements which are more
or less in a one-to-one correspondence with the real systems (Macal, 2016). This helps
making technical explanations easier and more convincing (van Dam, Adhitya, Srini-
vasan, & Lukszo, 2009) and curtails the need for complete knowledge of the system’s
behaviour as a whole.

In developing ABS models, it is necessary to guarantee that the behavior and inter-
action rules, which form the agents’ policies, are sufficient and valid for a wide range

CONTACT Daniel Barry Fuller. Email: fullerdb@ufrj.br

of expected states in all cases. This paper proposes the application of Reinforcement
Learning to let the agents define adequate rules “by themselves” during simulation
runs, thus reducing the model development time and producing useful simulation re-
sults quickly.

In order to cover a broad application domain, the concept of dynamically defined
policies in ABS shall be presented through its application in queue network systems
(QNSs). This is posited as an adequate choice for three reasons:

(1) Queue network models may be used to represent many real-world systems, such
as manufacturing (Azaron, Katagiri, Kato, & Sakawa, 2006; Bitran & Morabito,
1996), supply chain (Kerbache & MacGregor Smith, 2004), computing systems
(Osman, Awan, & Woodward, 2009; Xu, Li, Hu, & Li, 2014), communications
(Choi & Silvester, 1999; Pourmohammad, Fekih, & Perkins, 2015) and healthcare
(C & Appa Iyer, 2013),

(2) Many queue network systems require control or management akin to ABS rules
to attain good performance, therefore research is devoted to defining effective
policies, as exemplified by Azaron et al. (2006), who use a multi-objective model,
Ghazel and Saidane (2015), who define a control method that regulates arrival,
and Pourmohammad et al. (2015), who propose a control method and compare
it to other approaches.

(3) Analogously to general simulation, much of the concern with QNSs involves the
performance evaluation of the systems under different conditions and policies
(e.g. Bitran and Morabito (1996); Horvath (2015); Morabito, de Souza, and
Vazquez (2014); Osman et al. (2009)).

In this paper, the concept of ABS with agents capable of determining their own
rules is called Learning-agent-based Simulation (LABS). There are other ways to train
ABS agents, but these are often domain based (Garcia-Magarino & Palacios-Navarro,
2016). The original idea presented here is the application of R-Learning, which is a
Reinforcement Learning (RL) technique (Sutton & Barto, 1998), as a means for ABS
agents to identify effective, near-optimal policies as the simulation runs regardless of
the system under study.

Reinforcement learning is already applied to many domains, but, usually, the goal is
to define policies for a fixed system. For instance: Chen, Dong, and Zhou (2014) apply
RL to a negotiation environment, Dogan and Giiner (2015) apply it to a competitive
ordering and pricing problem, Jiang and Sheng (2009) and Yu and Wong (2015) study
the application of RL in supply chain inventory control and supplier selection, and Sun
and Zhao (2012) and Kara and Dogan (2018) look into suppy chain ordering policies.
What these papers have in common is that they concern themselves with evaluating
the learning methods themselves. This paper aims to present a simulation method
in which the necessary policies are defined concurrently with the simulation of the
system, which outputs system performance measures: the policies are necessary, but
the main goal of the simulations is to evaluate the systems’ structure and generate
understanding of their behavior.

The test instances were developed based on those presented by Kelly and Laws
(1993), who apply reflected Brownian motion to estimate the performance of a set
of QNSs under different routing and sequencing policies. They assume heavy traffic
conditions and consider the case when a route is determined upon arrival and can-
not change later. In the proposed simulation method, neither of these assumptions is
necessary, therefore broadening the possible application domain. Tests are made with
system expected occupation as low as 50% and additional test instances, called ser-

vice models, allow routes to be dynamically defined in order to demonstrate how the
proposed technique remains valid without these assumptions.

The performance of the QNSs was evaluated under different learning configurations
and predefined rules based on Kelly and Laws (1993) to demonstrate that the learning
method can consistently find good policies for diverse scenarios. A modification to the
standard R-Learning is also proposed that improves the results obtained for the test
instances.

System performance was measured mainly by customers’ time in the system (a.k.a.
system time or sojourn time) and the tests were run through a simulation tool detailed
in Section 5. The main goal is to validate the general method in order to motivate
its application in diverse domains, where the reference rules presented in that paper
do not apply. For one such example, we refer to Fuller, Ferreira Filho, and de Arruda
(2018).

Sections 2 and 3 present the relevant definition of QNS and a LABS model that can
represent these systems. Section 4 explains alternative definitions of Actions, States
and Rewards necessary for the learning method. Section 5 describes the simulation
tool that was implemented to test the proposition, while test instances are detailed in
Section 6. Simulation experiments and results are discussed in Section 7.

2. Queue network systems

A description of queueing networks and an associated control problem is provided by
Laws (1992). In that paper, a network is composed of single-server stations. Customers
of multiple types arrive according to type-specific renewal processes and are allocated
a route. Routes are sequences of stations a customer must pass through. If a route
includes the same station more than once, each pass is considered a separate stage.
Each station is assigned one queue for each stage of each route that passes through
it. When a station is assigned to a customer, the station’s server takes some (possibly
random) time to complete the service.

The application of dynamic control to queue networks and analysis of several system
topologies under heavy traffic conditions is presented by Kelly and Laws (1993) by
means of a systematic sequence of emblematic examples. Two types of decision are
proposed: routing and sequencing. Routing is the decision about the sequence of queues
and servers a customer should visit in the system; once chosen, the route cannot be
changed. Sequencing refers to the choice by a server of which customer to serve when
there are multiple concurrent requests (which, when defined by the network’s structure,
is all the time under heavy traffic conditions).

Kelly and Laws (1993) assume the system to be under heavy traffic conditions,
which enables the Brownian representations demonstrated there. In this paper, this
premise is not necessary, which makes the application possibilities broader. Servers
have the option to postpone a service if another, with higher priority potential, is
probabilistically expected. The priority is potential because a customer’s priority is
under the dynamic policy, i.e. it may change over time or depend on the state of the
system.

The value of allowing a route to be dynamically decided instead of assigned to a
customer upon arrival will be explored. This allows single queues for multiple servers.
In order to allow routing decisions to be made as the customer moves through the
network, it is necessary to redefine routes as sequences of services sought by the
customers. In this new case, servers have a list of offered services added to their

definition and the server for the next service that a customer requires is defined only
when a customer is about to leave the service queue. In Section 6.1, it will be shown
that, under these new conditions, routing decisions can be converted to sequencing
decisions.

3. Simulation model

Agent-based simulation models are defined by agents, environment and their inter-
action rules (Macal & North, 2015). Agents and parts of the environment are collec-
tively dubbed elements. This section will define an agent-based queue network model
in which agents have to make choices akin to the Multi-armed bandit problem (Auer,
Cesa-Bianchi, & Fischer, 2002). Section 4 shows the method proposed to make these
choices.

3.1. Simulation elements

In queue network systems (QNS), as defined in Section 2, the elements are customers,
servers (also called service stations), queues, routes, and customer generators (arrival
processes).

Furthermore, queues and routes form the model’s environment, because they inter-
act with agents, but not with each other. Customers, servers and customer generators
(CGs) are the agents; interacting with the environment and each other. A further dis-
tinction can be made between Decision Agents (also known as Proactive Agents) and
Passive Agents (also known as Reactive Agents). Servers and CGs actually have to
make decisions regarding what actions they should perform. Customers, on the other
hand, are passive and may only follow the decisions made by the other agents when
notified.

Figure 1 shows a basic class diagram for the simulation elements and a description
of the agents follows.

CGs are defined by a list of routes to allocate to the customers it creates and the cus-
tomer arrival processes. During the simulation, they generate customers, decide
which route to allocate to them and introduce them into the system.

Customers are defined by an individual label and a route to follow. During the
simulation, they join the appropriate queue for the first server (or service) on
their route when they enter the system. After each service, they move to the next
queue according to their route or leave the system if their route is completed.
They make no decisions, but interact with other elements as agents.

Servers are defined by a service time probability distribution. During the simulation,
they are either serving a customer or idle. All queues are always candidates
for the decision to select which one is to be served, even if there is no current
demand.

3.2. Decision rules

CGs and Servers have to make the routing and sequencing decisions respectively. This
means choosing an action from a list of possibilities. For CGs, this is a list of the routes
to assign and assigning each route is an action. For Servers, the list contains the queues
it may serve and serving a customer from these queues is an action. This selection is

<<Environment>>

Queue

<<Environment>>

Route

Route route
int stage
List<Customer> customers

String idLabel
List<Server> servers

Customer getHeadCustomer()

Server getNextServer(Server currentServer)

<<Passive Agent>>

Customer

String idLabel

Route route

Server currentServer
Queue currentQueue

Server getNextServer()
void joinQueue(Queue queue)

void receiveService(Duration serviceDuration)

void leaveSystem()

<<Decision Agent>>

Server

<<Decision Agent>>

Customer Generator

String idLabel

Customer currentCustomer
RandomVar serviceTime
Map<Route-Stage, Queue>

String idLabel
List<Route> routes
RandomVar arrivallnterval

void generateCustomer()

void serveCustomer(Customer customer)
Customer chooseQueueToServe()

Figure 1. Basic class diagram for the simulation elements.

akin to the Multi-armed bandit problem (Auer et al., 2002) and is implemented here
in two modes: fixed policy and learning.

In fixed policy mode, the decisions are always made according to a predefined policy.
For testing and comparison, three possible fixed policies defined by Kelly and Laws
(1993) are used:

Random: the action (see Section 4.1) is chosen randomly.

Shortest /Longest: for routing, the route with the shortest first queue is chosen, for
sequencing, the server’s longest queue is chosen to be served.

By turn: routes to assign and queues to serve are chosen according to a looped list
(option A, option B, option C, option A, option B, and so on).

These fixed policies, like many others mentioned by Garcia-Magarino and Palacios-
Navarro (2016), reflect a prior knowledge that they are good for each specific system in-
stance. It should be remarked that defining policies of future systems based on previous
experience (as the case with the approach of Garcia-Magarino and Palacios-Navarro
(2016) was) is not always straightforward and the application of the Reinforcement
Learning technique may be helpful, because servers and CGs can find good policies
by themselves. This removes the need to previously define and test policies, therefore
reducing the model development time and possibly improving its accuracy, or, at least,
mitigating its reliance on experts’ opinions.

The fixed policies are also useful to validate the learning models through the Com-
parison to other models technique described by Sargent (2013).

The learning technique that was applied was R-Learning, as defined by Sutton and
Barto (1998). R-Learning is a Reinforcement Learning technique similar to Q-Learning
(Watkins, 1989), but it allows for continuous, undiscounted activities. This is the case
with the analyzed queue network systems, because the expected values of the states
do not vary over time (undiscounted) and there are no episodes or terminal states
(continuous), since the considered queue systems operate uninterruptedly.

R-Learning is a reinforcement learning technique, which is a family of unsupervised
machine learning methods that do not rely on fitting behavior to recorded data, but
relies on a mechanism which rewards “good behavior”.

The standard off-policy routine that was used is presented in Algorithm 3.1. Each
learning agent (CGs and servers) runs the algorithm independently.

In Algorithm 3.1, s and s’ are the pre- and post-action states, a* is a chosen activity,
p is the current average reward and r(s) is a reward or penalty for achieving state s.
R(s,a) is the expected reward for activity a taken at state s. « and (3 are, respectively,
the learning and average reward updating rates.

The set of activities A could be, more generally, dependent on the states and, as
such, defined for each state s in the state space S as A(s). However, this is not necessary
for the defined agents, because all activities are available at all states.

In Algorithm 3.1, activity a* is chosen through Function chooseAction. This func-
tion, where the symbol — negates the following boolean value, implements an original,
quasi-e-greedy strategy with decaying e.

A standard e-greedy strategy, such as described by Sutton and Barto (1998), may
choose an activity randomly with probability e € [0,1] or greedily with probability
1 — e. In this decaying € strategy, the value of ¢ is initialized as 1 and decreases with
each decision according to a decay parameter €gecay- This makes the first choices mostly
random, but, as € — 0, the policy becomes fixed and purely greedy.

The greedy selection does have one problem: if an agent remains in the same state

Algorithm 3.1: Off-policy, temporal-difference R-Learning algorithm adapted
from Sutton and Barto (1998).

// All Data is specific for each agent

O Gk W N

B W N = O © ®

Data: p // expected global reward
Data: R(s,a)Vs € S,a € A // expected reward for action a at state s
Data: S // set of all possible states
Data: A // set of all available actions
Data: r(s) // reward paid to the agent Vs € S
Data: « // update step size for R(s,a)
Data: g // update step size for p
Data: sf // last observed state
Data: Af // last calculated reward update value
Initialize p and R(s,a)Vs € S,a € A arbitrarily // Usually, with 0
Loop

s* < current state // observe current state

n + a random number € [0, 1] // generate a random number

a* + chooseAction (s*,n,s!,AT) // call the chooseAction function

Take action a* // apply the effects of action a*, including

updating the agent’s internal clock’s time

7 s’ < new state // observe state immediately after all effects of

a* have been applied

// Update learning knowledge

A+ r(s) — p+maz,R(s',a) — R(s*,a*) // update value

R(s*,a*) < R(s*,a") + aA // reward update

if R(s*,a*) = max,R(s* a) then update p

| p+ p+ BA

AT+ A

st s*

wait // wait for a signal to repeat the loop

Function chooseAction(s, n, s', AT)

Input: s // a state of the agent
Input: n € [0,1] // a threshold value
Input: s // previously observed state
Input: Af // a previous value of a reward update
// All Data is specific for each agent

Data: € // current value of ¢
Data: €gecay // value of the update for €
Data: A // set of available actions
Data: R(s,a)Va € A // expected reward for action a at state s
// This function chooses an action a from A

Result: a

if e <n A —(s= s AAT <0) then is greedy and is not stuck in a bad state
| @< argmax,c, R(s,a)
else is random
k<« kell,|Al // k is chosen randomly
a — ag // aj is the kth element of A
€ <= € X €decay
return a

i =2 L S N U R

after a poor action, it will repeat the poor action until the rewards are updated to
reflect the unwanted consequences. This is not a large issue if the learning algorithm
is allowed to run for a large number of iterations and is only evaluated at the end
of the run. However, the learning algorithm is run during the simulation and its bad
decisions may affect the simulation output. This leads to the proposition of a modified
strategy, called quasi-e-greedy. In this strategy, shown in the chooseAction function,
the agent chooses the next activity randomly if it is still in the same state it was
at the time of the last activity choice (s = sT) and the perceived reward decreased
the value of the state-activity pair (AT < 0). Without this, the agent could greedily
repeat the reward-reducing action until either the reward became lower than that of
another action or the state changed due to actions of other agents. Either way, this
modification helps to avoid a series of poor choices that would have a detrimental
impact in the system’s simulated performance which would find no correspondence in
the real system.

It should be noted that the learning algorithm is part of the simulation and is in
effect throughout the simulation run, although it is expected (but not enforced) to be
mostly stable (i.e. greedy) after the warm-up period.

4. Learning method
As can be seen in Algorithm 3.1, the learning method requires that actions, states and

rewards be defined. This section will present alternatives to these definitions. Multiple
alternatives are presented in order to be evaluated in Section 7.

4.1. Actions

The available actions to CGs correspond to the routes they can assign to customers.
Every time a customer is generated to enter the system, its generator will choose
a route for it. Once a customer is in the system, its route cannot change. In the
alternate version, where a route is not set upon arrival, routing decisions as defined
are unnecessary and CGs become passive (see Sections 2 and 6).

For servers, each action corresponds to a queue attached to it. Every time a service
ends, the server chooses a new action to perform. Note that a server may always choose
any queue to serve, even if it is empty. In this case, the server idles for a predefined
duration of simulation time and then chooses a new action based on the (possibly new)
current state.

4.2. States

There are many ways to define states for learning agents and each manner may bring
different results. Multiple ways were proposed and tested for CGs and Servers. In the
remainder of this paper, roman numerals are used to identify each case.

4.2.1. Customer Generator States

Two ways to define CG states are proposed:

I The first proposal was to define a state by the length of the first queue in each route.
For instance, if a CG has two possible routes, A and B, and there are, say, three
customer in the first queue of route A and two customers in the first queue of
route B, the state is A-3/B-2 (but see Section 4.2.3). The order of the routes
(A/B or B/A) is irrelevant.

IT An alternative definition of states was to simply sort the routes by their first queues’
occupation regardless of their actual length. In this way, if the first queue of
route A is longer than that queue of route B, the state is simply BA. If route B
has the longer queue, the state is AB. Ascending or descending sorting orders
are equivalent.

4.2.2. Server States

An additional way to define server states are proposed, with options I and IT analogous
to those for CGs in Section 4.2.1.

I The queues the Server may serve have their length used to define the states in the
same way as the states for CGs.

IT As for CGs, it is also possible to define the states by sorting the queues the Server
may serve.

IIT This is similar to alternative I, but the set of queues the Server may serve is
replaced by the set of queues the customers may join immediately after leaving
the server.

4.2.3. State dimensionality

The number of states in option II is the number of permutations of the relevant queues,
but, in options I and I1I, the states are defined by the combination of the queue lengths,

which may lead to a very large number of different states, as every additional customer
on each queue defines a new state.

Dealing with large numbers os states is an inherent problem of algorithms derived
from Dynamic Programming, such as R-Learning and other Reinforcement Learning
methods (Barto & Mahadevan, 2003). In this specific application of Reinforcement
Learning, which is also based on the Monte-Carlo method, there is an additional issue
in that some states may not happen often enough during the simulation for good
policy estimates to be calculated. To circumvent this, a way to reduce the state space
is proposed.

The premise assumed is that when queues are short, the difference between the
states is more relevant to the decisions; when queues are long, the most useful actions
may not differ. In other words, the difference between having, say, 19 or 20 customers
in a queue is arguably less relevant than the difference between 1 and 2 customers.
A logarithmic scale, defined by Equation (1), was employed to reduce state domain
size by replacing the raw number of customers in the queue (length(queue)) with an
occupation level for the queue. || is the floor function.

0 if length(queue) = 0

1
|logio(length(queue)) x 5+ 4.9] otherwise M

level(queue) := {

Figure 2 shows how the application of Equation (1) aggregates many queue lengths
in a small number of states. Only the lower states are presented as an example; there
is no upper limit for the queue lengths. It should also be noted that more queue
lengths are considered the same state as the queues get longer. The constants were
experimented with, and those presented are used throughout this paper.

14
124
10

Queue State

8
6
4
2
04

O x D0 O P PP PR RGP P

Queue Length

Figure 2. Lower queue states defined from queue lengths with Equation (1).

When the states are defined through this reduced space, they are indicated Ib and
IIIb.

10

4.3. Rewards and penalties

After choosing an action, the learning agent must be informed about the quality of the
ensuing results. This is done by assigning rewards or penalties r to the action results.
There is no real difference between rewards and penalties. Algorithm 3.1 works just
as well with » > 0 as with » < 0, as long as reward ro is always better than ry if
ro > riVri,r9 € R.
To define the rewards, it is first necessary to define some system metrics:

L is the length of a queue a customer joins; the queue is either the first on a route
or the next on the customer’s route after a service. If the customer leaves the
system and, therefore, joins no queue, L := 0.

L. is the current length of the first queue in a route chosen by a CG.

W, is the current average wait time in the first queue in a route chosen by a CG; this
time is updated during the simulation every time a customer leaves the queue.

Cy 1s the time a customer has waited in the current queue when a server selects it.

I is the set of the first queues of the routes the CG can assign. L; and W; are,
respectively, the current length and current average wait time for the queues i €
1.

T is the sum of the expected service times of the unvisited servers on a customer’s
route.

NC is a penalty for serving no customer. NC € [0,00). The value of NC should
be such that unduly leaving customers waiting is discouraged. And to prevent
situations where servers unduly make the customers wait, —NC' should also be
the worst penalty a served customer may report.

Four reward modes were tested (roman numeral labels in parenthesis indicate how
the modes are referenced in the results):

Queue length (I) provides a reward based on Equations 2, for CGs, and 3, for
servers. In the case of servers, it is necessary to define a penalty if no customer
is served. In order to make this the worst possible result and prevent situations
where servers unduly make the customers wait, —NC' is also the worst reward a
served customer may report.

r=—1L (2)
- -NC if no customer was served 3)
~ |max(—~NC,—L) otherwise

Wait time (II) provides a reward based on Equations (4), for CGs, and 5, for servers.
If no customer is selected by a server, a default penalty is applied to discourage
idling.

r=—L.x W, 4)

11

()

—-NC if no customer was served
r =
max (—NC,—C,,) otherwise

Relative wait time (III) provides a reward based on Equations (6), for CGs, and 7,
for servers.

er Li X Wi
po et X Wiy (6)
1]
- —-NC if no customer was served 1)
max (—NC,T — Cy,) otherwise

Expected time (IV) provides a reward based on Equations (8), for CGs, and 9, for
servers.

r="T (8)

0 if no customer was served
T =
T otherwise

5. Simulation tool

The model was implemented as an event-based, agent-oriented simulator. This tool
keeps a list of agents sorted by the time when the action each agent is currently
performing will end. When an action is chosen to be performed, it generates an activity
which will be performed by the agent during a time window and may affect the states
of agents and the environment. At every simulation step, the first agent of the list
decides its next action. If the activity ends before the end of the simulation, the agent
is returned to the list at the appropriate position, given by the end time of the latest
activity; it is removed from the list otherwise. Algorithm 5.1 is the basic instruction
set of the simulator.

How a decision agent chooses its next action depends on the rules currently in effect
(see Section 3.2). The effect of an activity depends on whether the agent that performs
it is a CG or a Server.

CGs’ activity is to assign a route to the next Customer and its effect is to place the
Customer at the respective queue for the first server in the route. Servers’ choice is
from which queue to take a Customer to serve. When there are no Customers at the
chosen queue, the server’s activity is to wait for a prescribed time and choose again.
This has no other effect. In contrast, when there are customers waiting, the activity
is to define a service time and the effect is that the served Customer is moved to the
appropriate queue for the next server in its route (or leaves the system, if the route

12

Algorithm 5.1: Simulator’s main loop algorithm.
Data: A // List of agents
Data: h // The simulation horizon
1 while A # () do
2 sort (A) // sort agents according to their internal clocks’
times
3 agent < ag // aog is the first (earliest) element of A
agent chooses and executes next activity
5 time < currentTime (agent) // The current time according to the
agent’s internal clock
if time > h then remove agent from A
| A\ {agent}

is over). The Customer can only join the next queue (or leave the system) after the
service time has elapsed.

Customers, as Passive Agents, make no decisions and are only moved from queue to
queue by CGs and Servers until their route ends and they leave the system. Although
Customers produce no effect in the system in the same sense that Decision Agents do,
Customers do report their experience to their generator and the servers on their route
when they are leaving the system. This report includes waiting times and total time in
the system. This data is essential for producing the simulation output, but may also
be used in the definition of states and rewards (see Wait time (II) in Section 4.3, for
instance).

It should be remarked that there are situations where the rule in effect (see Sec-
tion 3.2) is overridden for some agents: when a CG can only assign one route to the
Customers it generates or when a Server can only select Customers from one queue.
Other agents in the same scenario apply the selected rule regardless. See Figures 3
and 4 for examples where some agents apply the rules and others have no decision to
make.

The simulator’s main output is the number of customers that went through the
system and the average time they spent in it. These values are the main performance
evaluators. Other variables, such as quantity of customers assigned to each route and
number of customers that went through each server and each server’s utilization level
are calculated and checked to detect spurious cases.

6. Test instances

Test instances were taken from Kelly and Laws (1993). They start simple, but add
complexity by steps. The figures in this section represent the test cases. They show the
Customer Generators (hexagons), Queues (rectangles) and Servers (circles). Routes are
indicated by different line types and named next to the CG that may assign them.

The first system (Figure 3) only has a routing decision to be made by Customer
Generator C (CG C). There are two routes: one through Server S1 and another through
Server S2. CG A and CG B can only assign one route each; therefore they make no
decisions. Each server can only serve one queue and they make no decisions either. In
the second system (Figure 4), S1 must make sequencing decisions while the CGs and
S2 make no decisions.

13

The system in Figure 5 combines routing decision in CG B, which can assign two
routes, and sequencing in servers S1 and S2, which can serve two queues each. CG A
makes no decisions. Figure 6 shows a system with multiple routing and sequencing
decisions. Both CGs can assign two routes each and all four Servers must choose from
two queues each to serve.

The system in Figure 7 expands that on Figure 6. In this case, CG B can assign
three routes and there are six servers, all of which can make sequencing decisions
concerning two queues each.

6.1. Dynamic routes

As mentioned in Section 2, allowing the customers’ routes to be defined as they move
through the system will be evaluated. In order to do this, the concept of Service needs
to be introduced. When a Server selects a Customer, it will provide a Service for a
duration of time. Each server has a set of Services it may provide.

Customer routes shall be redefined in terms of service, i.e. customers will have a list
of services they wish to receive instead of a list of servers to visit. Instead of queueing
for servers, customers queue for services. It should be noted that multiple servers may
now select customers in this arrangement, whereas before a customer was linked to a
single server by its route.

The conversion from the test case in Figure 6 to a new model, which is service-
oriented, is presented in Figure 8. This new system has two types of customers: A,
which seeks services o and 3, and B, which seeks services « and J. It also has four
servers: S1, S2, S3 and S4, which can provide, respectively, services a and v, 8 and
~v, a and 6, and S and J. When queues are defined for each service, as shown in the
bottom part of Figure 8, each CG has only one possible route to assign. This means
no routing decision is necessary, but the servers still make sequencing decisions. The
service-oriented model obtained by this example is shown in Figure 12.

The new models for the test cases are defined in Figures 9, 10, 11, 12 and 13.
Figure 9’s version of the system of Figure 3 has no decision making elements and is
only included for completeness; it was not simulated.

7. Simulation experiments
Simulation scenarios were defined by QNS instance, expected system utilization level,

and decision rules (including alternative State and Reward definitions). The main
output is the customer time in the system, but the customer count was checked to

Figure 3. Parallel queues (routing).

14

Figure 4. Network with sequencing.

Figure 5. Routing and sequencing on two stations.

r34

Figure 6. Four-station network.

15

--------------------- r1a 36

25
i

Figure 7. 2 X 3 network.

CGA Qa > Qp
(a,B) (81, 83) 7 (s2,54)

g -
(v,5)

]
(81, S2) 7| (s3,84)

Figure 8. Transition to a service-based model of the system from Figure 6. The final model is in Figure 12.

16

CGA @
<CGB>—> Qa CExit)
cGC @

Figure 9. Service model corresponding to Figure 3.

< CGA >—> Fa -—->(Exit)
(ceB) Fy Fp (s2)

Figure 10. Service model corresponding to Figure 4.

identify spurious results. The QNS instances were the five presented in Section 6 and
their service-based versions in Section 6.1.

7.1. Input parameters

Utilization level (ratio of busy time by available time) for the system is defined as
the utilization level of the busiest server. The amount of expected customers to be
generated is calculated from this with Equation (10) and the total is distributed evenly
among the available routes of all CGs (except for the system of Figure 3, where CG C
generates half the expected customers). All tested arrival processes were independent
and exponentially distributed.

Expected utilization level x Simulation horizon

Expected customers = (10)

Expected service time

The decision rules are those from Section 3.2. For the learning rules, a few sets of
parameters where tested, but eventually they where fixed as « = 8 = 1 with the initial
value of € = 1 and €gecay = 0.5 for all presented results. The same was done to define

the NC penalties as 100, 5,000 and 1,000 for Queue length (I), Wait time (II) and

<CGA>—> Fa >

< CGB >> Fy

Figure 11. Service model corresponding to Figure 5.

17

Figure 13. Service model corresponding to Figure 7.

Relative wait time (III), respectively. Service times for all servers were exponentially
distributed with mean 100 seconds.

Simulation horizon was 604,800 seconds (7 days) and 100 Monte-Carlo replications
were run for each scenario. The scenarios were defined by a combination of the follow-
ing:

e A case from Figures 3 to 7 or 10 to 13.
e Expected utilization level: 50%, 85% or 95%.
e A predefined rule or learning with modes.
One combination of CG state (I, Ib or IT) and reward (I, I, III, IV) modes
for Figures 3 and 5 to 7.
One combination of Server state (I, Ib, II, III or IIIb) and reward (I, II,
III or IV) modes for Figures 4 to 7 and 10 to 13
e Normal or modified learning.

The total valid combinations amount to 5,154.

7.2. Randomness

Random numbers were generated with the MRG31k3p method (L’Ecuyer & Touzin,
2000) from the SSJ library (L’Ecuyer, 2012). Each replication was assigned its own
seed.

18

7.3. Simulation results

Garcia-Magarino and Palacios-Navarro (2016) state that agent-based simulation fre-
quently relies on domain-specific behavior rules, which requires a broad and detailed
knowledge of the simulated system. Frameworks help to implement these rules faster,
but fail to define the rules themselves. The simulation results show that the learning
model can achieve results which approximate those obtained based on the predefined
rules specified by Kelly and Laws (1993) without assuming that such knowledge is
available. In most cases, results are statistically equivalent.

It should be noted that the policies defined are secondary to the simulated system
results. The main goal of the simulations is to evaluate the structure of QNSs and
the policies are here only means to attain this goal, as opposed to the cases of Ghazel
and Saidane (2015) and Pourmohammad et al. (2015), that aimed at defining optimal
policies.

Some highlights and insights regarding the simulation results follow.

7.3.1. Expected results under heavy traffic conditions

Table 1 shows the results for the QNS from Figure 3, which only has routing decisions.
It is noteworthy that, according to Kelly and Laws (1993), the waiting time under the
Shortest rule in heavy traffic conditions is half of that under the Random rule (under
certain conditions). The simulated scenarios comply with most of the necessary condi-
tions for this result to hold, but do not enforce heavy traffic conditions. Nevertheless,
results interestingly seem to converge to that ratio as the utilization level rises, which
loosely emulates heavy traffic conditions.

7.8.2. Effect of the R-Learning modification

The application of machine learning and simulation simultaneously aims to provide
adequate policies when optimal policies are unknown or too costly to determine. It
may generate results such as those seen in Figure 14, which depicts confidence intervals
for the Time in the System for some scenarios obtained with the standard learning
method. As the fixed policies that were tested were known to be good policies (Kelly
& Laws, 1993), it is to be expected that not all of the learning scenarios match their
performance. Many of them, however, are worse than the Random policy, which is
unacceptable.

Results for the same scenarios obtained with the modified R-Learning method are
depicted in Figure 15. Most results are much closer to the fixed policies and all beat
the Random policy by a significant margin.

The average reduction in the simulated Customer Time in the System obtained
through the modified method considering all learning scenarios was 45% in relation to
the simulation results without the modification.

7.8.3. Best agent configurations

Not all configurations of CGs and Servers provide good results. In order to evaluate
the quality of the results, a relative result is defined as the ratio between Customer
Average Time in the System for learned policies and for the best fixed policy under
the same conditions. For instance: in Table 2, the best fixed policy result for 85%
utilization is 521s; for configuration Server[I/I], the result 562s gives a relative result
of 1.079. Relative results greater than 1 indicate that the fixed policy’s Time in the

19

Table 1. Results for the simulation of the system from Figure 3 with standard R-Learning.

Rule Ut. Cust. Gen. System time Cust. Count
Level | State | Reward | Avg. | St.Dev. Average

Random | 50% 198 7 6,069
By turn | 50% 183 7 6,078
Shortest | 50% 171 4 6,071
Learning | 50% I I 173 5 6,063
Learning | 50% I II 173 5 6,074
Learning | 50% 1 111 175 6 6,065
Learning | 50% I v 331 33 6,079
Learning | 50% Ib I 172 5 6,069
Learning | 50% b 11 172 5 6,070
Learning | 50% Ib 111 174 5 6,069
Learning | 50% Ib I\Y% 329 32 6,079
Learning | 50% II I 173 5 6,060
Learning | 50% 11 11 172 5 6,070
Learning | 50% 11 111 171 5 6,072
Learning | 50% 11 I\Y% 332 34 6,077
Random 85% 663 88 10,295
By turn | 85% 584 68 10,305
Shortest | 85% 419 46 10,307
Learning | 85% I I 447 59 10,285
Learning | 85% I II 451 59 10,289
Learning | 85% I 111 468 57 10,307
Learning | 85% I v 45,172 4,964 8,649
Learning | 85% Ib I 437 43 10,278
Learning | 85% b 11 439 48 10,292
Learning | 85% Ib 111 439 42 10,293
Learning | 85% Ib I\Y% 45,570 3,279 8,638
Learning | 85% II I 427 39 10,306
Learning | 85% 11 11 416 36 10,274
Learning | 85% 11 111 425 34 10,299
Learning | 85% 11 v 45,497 3,244 8,640
Random 95% 1,858 523 11,477
By turn 95% 1,638 492 11,484
Shortest | 95% 1,047 309 11,495
Learning | 95% 1 I 1,443 703 11,479
Learning | 95% I 11 1,478 694 11,487
Learning | 95% I 111 1,567 756 11,480
Learning | 95% I v 60,474 7,858 8,966
Learning | 95% Ib 1 1,094 343 11,480
Learning | 95% Ib 11 1,091 358 11,490
Learning | 95% Ib 111 1,084 328 11,480
Learning | 95% Ib v 61,463 3,602 8,918
Learning | 95% 11 I 1,098 397 11,481
Learning | 95% 11 11 1,032 345 11,466
Learning | 95% 11 111 1,055 349 11,488
Learning | 95% 11 v 61,429 3,626 8,918

20

78,000

76,000
74,000

68,000

66,000

@b

e
£ & = g = = g = g g g g £ £ § E §
B o= a g g g H g E g g g E
G i 5] - E 3 T %% 7§ P s o§
5 z i i 3 H 8 5§
Scenario

Figure 14. Confidence interval for some scenarios (Figure 7, 85% occupation, standard R-Learning).

21,000
20,000
17,000
§1a,uuu
%IE,DDU
g
4,000
1,000 e +
’
8 g 8§ g S g g g © 8 © 8 g g
Scenario

Figure 15. Confidence interval for some scenarios (Figure 7, 85% occupation, modified R-Learning).

21

System is lower than the learning policy’s.
All learning results in the table are significantly different from the best fixed policy
with 95% statistical confidence, unless indicated by T in the relative result.

Table 2.: Results for the simulation of the system from Figure 13 with modified

R-Learning.
Rule Ut. Server System time Cust. Count Relative
Level | State | Reward | Avg. | St.Dev. Average Result

Random 50% 6,026 3,456 7,452

By turn 50% 281 4 7,569 | <« reference
Longest 50% 298 4 7,566

Learning 50% I 1 310 5 7,556 1.103
Learning 50% I II 307 4 7,561 1.093
Learning 50% I 111 309 5 7,568 1.100
Learning 50% I I\% 326 5 7,567 1.160
Learning 50% Ib 1 314 5 7,548 1.117
Learning 50% Ib 1I 309 5 7,554 1.100
Learning 50% Ib 111 312 5 7,542 1.110
Learning 50% Ib v 330 5 7,562 1.174
Learning 50% II I 334 8 7,553 1.189
Learning 50% II II 331 9 7,567 1.178
Learning 50% II 111 337 9 7,566 1.199
Learning 50% II I\% 366 9 7,566 1.302
Learning 50% II1 I 284 4 7,561 1.011
Learning 50% II1 II 284 4 7,577 1.011
Learning 50% II1 111 284 4 7,555 1.011
Learning 50% 111 v 285 4 7,556 1.014
Learning 50% IIIb I 284 3 7,564 1.011
Learning 50% IIIb 1I 283 3 7,563 1.007
Learning 50% IIIb 111 285 4 7,570 1.014
Learning 50% IIIb v 285 3 7,574 1.014
Random 85% 5,804 2,140 12,677

By turn 85% 521 24 12,844 | < reference
Longest 85% 552 27 12,853

Learning 85% I 1 562 27 12,859 1.079
Learning 85% I II 572 35 12,851 1.098
Learning 85% 1 111 579 45 12,845 1.111
Learning 85% I v 571 36 12,833 1.096
Learning 85% Ib I 581 30 12,835 1.115
Learning 85% Ib 11 590 38 12,847 1.132
Learning 85% Ib II1 600 42 12,842 1.152
Learning 85% Ib v 599 32 12,857 1.150
Learning 85% II I 546 24 12,827 1.048
Learning 85% II 11 553 28 12,848 1.061
Learning 85% II 111 556 31 12,848 1.067
Learning 85% II I\% 557 32 12,848 1.069
Learning 85% 11 1 542 35 12,854 1.040
Learning 85% 111 11 548 31 12,857 1.052
Learning 85% 111 111 561 39 12,847 1.077
Learning 85% 111 v 538 28 12,844 1.033
Learning 85% II1b I 540 28 12,836 1.036
Learning 85% IIIb II 546 33 12,857 1.048
Learning 85% I1Ib 111 567 46 12,843 1.088
Learning 85% IITb v 549 34 12,846 1.054
Random 95% 8,006 2,454 14,132

By turn 95% 1,138 257 14,358

Longest 95% 1,065 173 14,330 | <« reference
Learning 95% I I 1,267 343 14,342 1.190
Learning 95% I 1I 2,160 1,321 14,304 2.028
Learning 95% I 111 2,090 818 14,311 1.962
Learning 95% I v 1,676 599 14,333 1.574
Learning 95% Ib I 1,132 178 14,320 71.063
Learning 95% Ib II 1,728 841 14,330 1.623
Learning 95% Ib 111 1,935 791 14,304 1.817

22

Table 2.: Continued...

Rule Ut. Server System time Cust. Count Relative

Level | State | Reward | Avg. | St.Dev. Average Result
Learning 95% Ib I\% 1,361 355 14,343 1.278
Learning 95% 1I I 1,029 185 14,339 70.966
Learning 95% 11 11 1,241 588 14,346 1.165
Learning 95% 1I 111 1,283 322 14,342 1.205
Learning 95% II v 1,228 260 14,347 1.153
Learning 95% II1 I 1,146 201 14,351 1.076
Learning 95% II1 II 4,133 3,375 14,188 3.881
Learning 95% IIT 111 4,259 2,613 14,184 3.999
Learning 95% II1 I\% 1,211 222 14,319 1.137
Learning 95% IIIb I 1,107 186 14,335 71.039
Learning 95% IIIb 1I 3,462 2,625 14,220 3.251
Learning 95% IIIb II1 3,143 1,516 14,244 2.951
Learning 95% IIIb v 1,348 373 14,334 1.266

Figures 16 to 21 aggregate relative results from all the presented QNS scenarios to
which the shown configurations apply.

7.3.3.1. Customer Generator Configurations. Figure 16 shows the average rel-
ative result for all CG configurations. Configurations with reward mode IV (Expected
time) clearly generate worse results. Even if the results are filtered to remove config-
urations which presented congestion resulting in a loss of more than 10% of arrivals
in relation to the best fixed policy, Figure 17 shows that reward mode IV is still the
worst case. Even when only the best relative result is observed (Figure 18), reward
mode IV is still clearly worse than the others, which produce similar results.

7.3.3.2. Server Configurations. There is no clear pattern of the best Server con-
figurations (Figure 19). It is valid to point out that the relative results of the service
versions of the models (Figure 20) are better than those from the original versions
(Figure 21) and of the CG configurations. Taking the relative results of the system
from Figure 4, which only has Servers as learning agents, the results are similar to
those from Figure 20. This seems to indicate that the learning method was more suc-
cessful in defining good policies for Servers than for CGs, which points an advantage
of defining the service oriented versions of the models whenever possible.

7.8.4. Model comparison

Models with fixed policies and learning models are essentially different models for the
same system. By following the Comparison to other models technique described by
Sargent (2013), it is, therefore, possible to validate the learning models by comparing
their results with those obtained through fixed policies. Fixed-policy models (except
Random, of course) are considered valid because they are based on methods known to
be effective.

Results from Table 2 show that most of those produced by learning models closely
match those produced by the fixed policies, indicating that the learning models are
valid.

23

Relative result
w
[=]

= =) =) 5 = = = = = = = =
= = = E =) = = = = = 5 £
T § & 2 & 2 & & § § E 2
w = =
o [} =]
] o o =] g [o = g
Configuration

Figure 16. Average relative result for CG configurations.

Relative resuilt

caly]
e[y
Gy
calyv
CG[Ih/1]
Cah/i]
Ca[Ib/m]
CG[Ib/1v]
cay
calnyil
ey
CalIyIv]

Configuration

Figure 17. Average relative result for CG configurations disregarding results with customer count less than
90% of reference fixed policy.

1.50

125

1.00

0.75

Relative result

0.50

0.25

0.00

a1
eyl
calym
calyv]
Cal1b/1]
caib/i]
CGIb/m]
CGIb/1v]
ol
el
o]
calyv]

Configuration

Figure 18. Best relative result for CG configurations disregarding results with customer count less than 90%
of reference fixed policy.

24

N 2o Mg oingingn g
n w = =< mmMm@MCm@M A 4 o O
1Nsal aAnepR

[
[
ﬁ
[
[
[
[
[
ﬁ
[
il
[
ﬁ
[
[
[
ﬁ
[
[
ﬁ

AlfOII]EAES
11/ qur] eres
1/quIlieaes
I/quleaes
ALTIMEAES
G EERES
/1] enes

L/nleaiEs

I/11]snlEs
m/mliEiies
/1] e
IR RERNEDS

Ijqr]ianies
1rfqrleeaes
I/arlEnes
1/qrienes

I T]EES
II/1M=aEs
1I/1]18nlEs
S IRELNES

Configuration

19. Average relative result for Server configurations.

igure

F

[
[
[
[
[
[
[
[
ﬁ
[
tl
[
ﬁ
[
[
[
[
[
[
[

nsal w_,___.._m_vm_

ALfQIIT]IBA1ES
i/quilesiss
I/ quilieazs
Ifqrr]eaes
AlfTI]IEkEg
I/ 10] =i 1es
I/ B nIEs
I/1I]dealas
IR =T
IIjianiss
I/1]1sr1e5
If1]ishiEs
e RIS
TI/dr]ienies
1/arleales
1/qrlisalas
AlfT]4Bnlas
I/liznias
II/1]48rlms
I{Tlisnies

Configuration

. Average relative result for Server configurations in service-based models.

20

Figure

25

8. Concluding remarks

The presented simulation method, LABS, requires that its agents apply policies to
select routes for customers and sequence multiple service requests. In order to achieve
that, concurrent machine learning is applied during the simulation. Examples suggest
that the performance of the simulated system closely follows that of known good
policies for the proposed application. Even though the method cannot be seen as
a replacement for analytical tools which find the optimal policy, it is an efficient
substitute when optimal policies are unknown or too expensive (if at all possible) to
obtain.

The successful application of LABS to the study of queue network systems indicates
that it should also be useful in other domains, as many systems can be modeled as
QNSs. This is particularly useful in applications where the rules are unknown or very
hard to determine and calibrate. One such example is presented by Fuller et al. (2018).

Funding

The authors would like to thank the Carlos Chagas Filho Foundation for Research Sup-
port of the State of Rio de Janeiro, FAPERJ, for supporting the research by means of
Grant E-26/202.789/2015. This work was partially supported by the National Council
for Scientific and Technological Development — CNPq, under Grants 303543/2015-9
and 312725/2013-2.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time Analysis of the Multi-
armed Bandit Problem. Machine Learning, 47(2/3), 235-256. Retrieved from
http://link.springer.com/10.1023/A:1013689704352

Azaron, A., Katagiri, H., Kato, K., & Sakawa, M. (2006, oct). Modelling complex as-
semblies as a queueing network for lead time control. Furopean Journal of Oper-
ational Research, 174 (1), 150-168. Retrieved from http://www.sciencedirect
.com/science/article/pii/S0377221705001347

Barto, A. G., & Mahadevan, S. (2003). Recent Advances in Hierarchical Reinforcement
Learning. Discrete Event Dynamic Systems: Theory and Applications, 13(12),
343-379. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.113.9749{&}rep=rep1{&}type=pdf

Bitran, G. R., & Morabito, R. (1996). Open queueing networks: Optimization
and performance evaluation models for discrete manufacturing systems (Vol. 5)
(No. 2). Retrieved from http://www.scopus.com/inward/record.url?eid=2
-52.0-0000309631{&}partnerID=tZ0tx3y1l

C, L., & Appa Iyer, S. (2013, mar). Application of queueing theory in health
care: A literature review. Operations Research for Health Care, 2(1-2), 25—
39. Retrieved from http://www.sciencedirect.com/science/article/pii/
S52211692313000039

Chen, L., Dong, H., & Zhou, Y. (2014). A reinforcement learning optimized ne-
gotiation method based on mediator agent. Fxpert Systems with Applications,
41(16), 7630-7640. Retrieved from http://dx.doi.org/10.1016/j.eswa.2014
.06.003

26

Choi, J., & Silvester, J. A. (1999, feb). Simulation of controlled queuing systems
and its application to optimal resource management in multiservice cellular
networks. Journal of the Brazilian Computer Society, 5(3), 00-00. Retrieved
from http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=
S0104-65001999000100005{&}1ng=en{&}Inrm=iso{&}t1lng=en

Dogan, I., & Giiner, A. R. (2015). A reinforcement learning approach to competitive
ordering and pricing problem. Ezxpert Systems, 32(1), 39-48.

Fuller, D. B., Ferreira Filho, V. J. M., & de Arruda, E. F. (2018). Oil industry value
chain simulation with learning agents. Computers & Chemical Engineering,
111(4), 199-209.

Garcia-Magarino, 1., & Palacios-Navarro, G. (2016). ATABS: A technique for au-
tomatically training agent-based simulators. Simulation Modelling Practice
and Theory, 66, 174-192. Retrieved from http://linkinghub.elsevier.com/
retrieve/pii/S1569190X15301647

Ghazel, C., & Saidane, L. (2015). Satisfying QoS Requirements in NGN Networks
Using a Dynamic Adaptive Queuing Delay Control Method. Procedia Com-
puter Science, 56, 225-232. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1877050915016841

Horvath, G. (2015, oct). Efficient analysis of the MMAP[K]/PH[K]/1 pri-
ority queue. European Journal of Operational Research, 246(1), 128-
139. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0377221715001976

Jiang, C., & Sheng, Z. (2009). Case-based reinforcement learning for dynamic inven-
tory control in a multi-agent supply-chain system. Expert Systems with Applica-
tions, 36(3 PART 2), 6520-6526. Retrieved from http://dx.doi.org/10.1016/
j-eswa.2008.07.036

Kara, A., & Dogan, I. (2018). Reinforcement learning approaches for specifying order-
ing policies of perishable inventory systems. Ezpert Systems with Applications,
91, 150-158. Retrieved from http://dx.doi.org/10.1016/j.eswa.2017.08
.046

Kelly, F. P., & Laws, C. N. (1993). Dynamic routing in open queueing networks:
Brownian models, cut constraints and resource pooling. Queueing Systems, 13(1-
3), 47-86.

Kerbache, L., & MacGregor Smith, J. (2004, oct). Queueing networks and the topo-
logical design of supply chain systems. International Journal of Production
Economics, 91(3), 251-272. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0925527303002883

Laws, C. N. (1992). Resource Pooling in Queueing Networks With Dynamic Routing.
Advances in Applied Probability, 24(3), 699-726.

L’Ecuyer, P. (2012). Random Number Generation. In Handbook of computational
statistics (pp. 35-71). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://link.springer.com/10.1007/978-3-642-21551-3{_}3

L’Ecuyer, P., & Touzin, R. (2000). Fast combined multiple recursive generators with
multipliers of the form a = +27 4+ 2". In J. A. Joines, R. R. Barton, K. Kang,
& P. A. Fishwick (Eds.), Proceedings of the 2000 winter simulation conference
(pp. 683-689). San Diego, USA. Retrieved from http://informs-sim.org/
wscOOpapers/090.PDF

Macal, C. M. (2016, may). Everything you need to know about agent-based modelling
and simulation. Journal of Simulation, 10(2), 144-156. Retrieved from http://
link.springer.com/10.1057/jos.2016.7

27

Macal, C. M., & North, M. J. (2010, sep). Tutorial on agent-based modelling and
simulation. Journal of Simulation, 4(3), 151-162. Retrieved from http://
www.palgrave-journals.com/doifinder/10.1057/jo0s.2010.3

Macal, C. M., & North, M. J. (2015, dec). Introductory tutorial: Agent-based mod-
eling and simulation. In Proceedings - winter simulation conference (pp. 6-20).
Huntington Beach, CA, USA.

Morabito, R., de Souza, M. C., & Vazquez, M. (2014, feb). Approximate decom-
position methods for the analysis of multicommodity flow routing in general-
ized queuing networks. Furopean Journal of Operational Research, 232(3), 618
629. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0377221713006796

Osman, R., Awan, 1., & Woodward, M. E. (2009, mar). Application of Queueing
Network Models in the Performance Evaluation of Database Designs. FElectronic
Notes in Theoretical Computer Science, 232, 101-124. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1571066109000589

Pourmohammad, S., Fekih, A., & Perkins, D. (2015, apr). Stable Queue Man-
agement in communication networks. Control Engineering Practice, 37, 67—
79. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0967066115000039

Sargent, R. G. (2013). Verification and validation of simulation models. Journal
of Simulation, 720(1), 12-24. Retrieved from https://pdfs.semanticscholar
.org/9917/5990a45f646a8c5e2a47137beb0837bb5a50 . pdf

Sun, R., & Zhao, G. (2012). Analyses about efficiency of reinforcement learning to sup-
ply chain ordering management. IEEFE International Conference on Industrial
Informatics (INDIN), 124-127.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction.
Cambridge, Massachusetts, USA: Bradford. Retrieved from http://webdocs
.cs.ualberta.ca/{~}sutton/book/ebook/the-book.html

van Dam, K. H., Adhitya, A., Srinivasan, R., & Lukszo, Z. (2009, oct). Critical
evaluation of paradigms for modelling integrated supply chains. Computers &
Chemical Engineering, 33(10), 1711-1726. Retrieved from http://dx.doi.org/
10.1016/j .compchemeng.2009.01.023

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards (Unpublished doctoral
dissertation). King’s College.

Xu, Y., Li, K., Hu, J., & Li, K. (2014, jun). A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues. Informa-
tion Sciences, 270, 255—287. Retrieved from http://www.sciencedirect.com/
science/article/pii/S002002551400228X

Yu, C., & Wong, T. N. (2015). An agent-based negotiation model for supplier selection
of multiple products with synergy effect. Ezxpert Systems with Applications,
42(1), 223-237. Retrieved from http://dx.doi.org/10.1016/j.eswa.2014.07
.057

28

[
[
[
[
[
[
[
[
[
(L
rl
[
[
[
[
[
[
[
[
[

alfarlienlEs
Ifaulieales
/ol ienles
IjomlEnes
AL e ES
LI/ ienas
I/l ienies
/1] @aas
ALTI)IBAIES
/1] enles
/il enies
I/TI]ieiles
AL IBAES
1II/a1]1enies
IIfarlienes
I/ailianlas
M(T]iiles
1II/1]1miies
1I/1]1=2iies
I/1]1enias

Configuration

21. Average relative result for Server configurations.

igure

F

29

