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Mining is an important economic activity and a highly complex industry. As such, it demands a com-
plex supply chain to connect mines to clients, often involving railways, ports and long-distance maritime
shipping. State-of-the-art optimization tools are an invaluable asset to help manage such a complex envi-
ronment, which makes mining industry a very fertile ground for operational research applications. This
paper aims to present a bibliographical review of published works involving operational research appli-
cations in the mining industry. We start by mapping applications within each isolated link of the chain.
Then, we make inroads into the researches involving and connecting multiple links of the mining chain.
Finally, we present summaries of our finding and pinpoint some directions for research opportunities in
the mining industry.
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1. Introduction

Mining is an essential economic activity, which amassed a global revenue of 496 billion U.S. dollars in
2016 [1]. In many countries, mining is responsible for a large share of the Gross Domestic Product
(GDP); in particular, mining industry accounts for around 5% of the Brazilian GDP and was
responsible for more than a third of the Brazilian trade balance in 2016 [2].

As it involves a supply chain with multiple interlinked activities, mining industry features a rich
sample of potential operational research (OR) applications. These applications become even more
appealing given the significant amount of investment that the industry demands. It is usual to
divide the different OR problems according to the stages they happen within the mining supply
chain. In this work, we will adopt the following classification:

Mine: involves OR problems in open-pit and underground mines, such as: mine layout and design;
production and scheduling; and operational equipment allocation.

Railway: accounts for railway scheduling decisions;

Port: covers stockpiling, conveyor routing and ship loading problems in the port area;

Maritime Shipping: includes scheduling and routing of cargo ships;

Supply Chain: applications that aggregate more than one stage in the logistics supply chain.
Some examples are planning and scheduling, blending and capacity expansion problems.

A graphical illustration of the proposed classification is depicted in Figure 1. There, the numbers
in parenthesis indicate the number of surveyed papers which were analyzed in each category.
The vast literature in the area motivated a number of bibliographical reviews on the application
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Figure 1. Mining Supply Chain Classification

of OR techniques to mining problems [3—6]. In their excellent work, Caccetta [4] identified multiple
optimization applications in the mining industry. As it focused on mine optimization and transport
and logistics network design, the work lacked an extensive covering of port and maritime shipping
problems. The comprehensive survey in [6] covered OR problems in almost every stage of the
mining industry supply chain, with the exception of maritime shipping. However, these stages were
examined only individually, with no broader categorization for problems covering more than one link
in the supply chain. Bjgrndal et al. [3], on the other hand, concentrated solely on mine and supply
chain optimization, not discussing the specifics of railway, port and maritime shipping problems.
Finally, a number of studies were mostly concerned with mine optimization [e.g., 7-10].

This paper aims to present a bibliographical review of OR applications related to all stages in the
supply chain of the mining industry. In contrast to other existing bibliographical reviews (BR), this
work does not focus on just one link of the mining supply chain. Nor does it simply cover each link
individually and separately. Instead, it covers the literature within each of the four traditional stages
(mine, railway, port and shipping), but with a special interest in problems that involve multiple
links. After an extensive investigation regarding these papers, a fifth category was created for them.
Another distinguishing contribution of this paper is a deep investigation within the methodologies,
thus providing a better characterization of objective functions and model constraints. In addition,
the paper discusses how current issues such as environmental concerns and new technologies have
changed mining supply chain OR models.

This work is organized as follows. Section 2 describes the methodology applied. Section 3 covers
applications in mine optimization. Railway transport applications are addressed in Section 4. Next,
Section 5 deals with port storage applications and Section 6 refers to maritime shipping. Section
7 covers applications involving multiple links of the supply chain. Section 8 summarizes research
opportunities and Section 9 concludes the paper.

To improve readability, a list of abbreviations used throughout the text appears in Table 1.

2. Methodology

Given the scope and number of articles available about the subject addressed in this study, it was
necessary to adopt a methodology to guarantee that the most relevant literature was researched
and analyzed. The same methodology was used for each type of model or problem found, varying
selection criteria. Table 2 summarizes the work flow executed.

It is noteworthy that nowadays there are dozens of relevant literature databases available. Since it
would be impossible to cover them all, six bases recognized for their content in operations research,
computer science, engineering and mathematics were selected:

e Google Scholar;
e Microsoft Academic;
e Science Direct;



Table 1. List of Abbreviations

Al - Artificial Intelligence

BIH - Best-Insertion-Heuristic

BPMJSS - Blocking Parallel-Machine Job-Shop Scheduling
BR - Bibliographic Review

CEP - Capacity Expansion Problem

CP - Constraint Programming

DES - Discrete Event Simulation

DSS - Decision Support System

GA - Genetic Algorithm

GDP - Gross Domestic Product

HVCC - Hunter Valley Coal Chain

ILP - Interval Linear Programming

IoT - Internet of Things

IP - Integer Programming

JCR - Journal Citation Report

LG - Lerchs Grossman

LP - Linear Programming

MILP - Mixed Integer Linear Programming

ML - Machine Learning

MLD - Mine Layout and Design

MPSP - Mine Production and Scheduling Problems
NPV - Net Present Value

OPBS - Open Pit mine Block Sequencing problem

OR - Operational Research

SCPPSP - Supply Chain Production Planning and Scheduling
Problems

RAL - Remote-controlled/Automated Load-haul-dump
TS - Tabu Search

VND - Variable Neighbourhood Descent

e Scopus;
e SpringerLink;
e Web of Science.

The bibliographic search started using keywords associated to the models and to important topics
of mining supply chain problems. The research was expanded with relevant articles that were cited
in the researched literature but did not feature in the initial list of references.



To expand the research beyond the original list of researched papers, we initially evaluated
existing Bibliographical Reviews (BR) and the references therein. When necessary to refine the
search, the number of citations was included as a selection criterion. For an overview of the selection
criteria adopted for each type of model or problem we refer to Table 2.

In some types of problems, it was necessary to adopt a selection criterion to ensure that the most
relevant works were studied. Initially, existing bibliographic reviews (BR) were evaluated and used
as the first guidelines. The periodic classification carried out by InCites Journal Citation Report
(JCR) was used to assist article selection. In addition to BR and periodic evaluation, the number of
article citations and its publication year was taken into account. When it was necessary, a minimum
citation amount on any of the bases was defined for an article to be selected. The selection criteria
adopted for each type of model or problem found are described in Table 2. To conclude, we reserve
the right to include some papers deemed relevant even if they did not meet the selection criteria
adopted.

3. Mine

One of the most studied OR applications in the mining industry, mine optimization is the subject
of a number of scientific works. The literature review in [8] is focused on mine production and
proposes a classification in two broad clusters, namely surface mining and underground mining
problems. For both categories, the paper classified the problem of determining suitable exploitation
layouts in terms operational, tactical and strategic planning. At the strategic level are mine layout
and design models, whereas mine production scheduling models belong to the tactical level. Finally,
mine operational equipment-allocation models are part of the operational level.

Bjorndal et al. [3] also contributed with a literature review and proposed that the problems
should be classified in three groups: strategic mine planning, tactical mine planning and operational
mine planning including transportation. For the authors, strategic mine planning includes strategic
problems in open pit design and pit boundaries definition. The block sequencing problem is classi-
fied as tactical mine planning. Operational mine planning including transportation comprises models
designed to find ways for the trucks to meet mine demand. A somewhat distinct classification is
proposed by Caccetta [4], who enumerates the following OR applications in mine optimization: pit
designs, mine production scheduling, equipment choice and site rehabilitation plan. Kozan and Liu
[5], on the other hand, chose to divide mine optimization problems in four categories. The first
three groups are similar to those defined in related works: mine design (open-pit mine design and
underground mine design), mine production (open-pit ore mining production, underground ore min-
ing production and coal mining production), mine transportation (fleet management, truck haulage
and train scheduling). The fourth group is mine evaluation (mining method selection, quality con-
trol, financial risk and environmental protection). Finally, in [6] the authors opted for a broader
categorization, involving only two types of OR problems: open-pit and underground mine scheduling
and mine load and haulage equipment allocation. It is worth mentioning, however, that the authors
include the wltimate pit design problem in the first category.

We will make use of the classification below, which is adopted by most authors:

(1) layout and design models;
(2) production and scheduling problems (MPSP);
(3) operational equipment allocation models.

Table 3 features a list of surveyed papers, selected according to the methodology in Section 2
and Table 2, and classified according the adopted rule. The category with the largest number of
surveyed articles is production and scheduling problems. A relatively smaller body of literature deals
with operational equipment allocation models.

It is very common in the logistics literature to classify decision problems according their time



Table 2. Systematic Review

Not
~
Citati Selected
itations
w ik Selection
: ot Selected
R List Criteria
Keywords search
vy
Re- q
election electe ota
searched Select Selected Extras Total
Keywords Models . Criteria List List
List L (# works)
(# works) (# citations) (# works) (# works)
Layout and BR: All
Design 147 JER(Z2008): ALl 32 4 36
Artificial intelligence in mine opt. Models (= ‘))> =
Belt conveyor routing Not JCR: > 70
Belt conveyor transport opt.
Coal plendlng ) Mine
Coal capacity expansion .
Coal production planning Production BR: > 30
Coal production scheduling and 3492 JCR(Z2OIFG)1 >4 15 41 56
Coal rail scheduling Scheduli JCR(<2015): > 100
Coal shipping optimization cheduling Not JCR: > 140
Coal stockpiling optimization Problems
Coal stockyard optimization
Coal supply Chain .
Conveyor routing Operatlonal
Conveyor transport opt. Equipment BR: > 10
In-pit crushing scheduling qup a 124 JCR: All 22 8 30
In-pit dumping scheduling Allocation Not JCR: > 50
Machine learning in mine opt. Models
Mine block sequence
Mine Capacity optimization .
Mine complex optimization Train
1\/1'11’18 des'lgn optlmlzat19n scheduling 25 All 25 0 25
Mine equipment allocation
Mine equipment dispatch Problems
Mine equipment selection
Mine facility location
Mine haulage system Stockyard
Mine layout optimization Planning 15 All 15 0 15
I}/Ilne life Optl[I}lZ‘atIO}’) Models
Mine phases optimization
Mine planning optimization
I\ﬁ/ilne prod}ugti(l)(n optimization Conveyor
ine pushback optimization .
Mine rail scheduling Routing 7 All 7 0 7
Mine scheduling optimization Models
Mine shipping optimization
Mine to mill optimization
Mine truck allocation Vessel
Mli\;ll'e Frucl};ldiilpatch Allocation
ining blending
Mining capacity expansion and 11 All 11 0 1l
Mining conveyor routing Scheduling
Mining design optimization
Mining layout optimization Models
Mining production planning
Mining production scheduling
Mining rail scheduling SupRly
Mining shipping optimization Chain
NII\Iining sto}clhastic plz:lnning opt. Production BR: > 10
ining stochastic production opt. . JCR(>2016): All
Mining stochastic scheduling opt. Plannlng 149 JCR(L 2015): >15 47 38 85
1\I/\I/Iining; stoclz(kpile blending opt. and Not JCR: > 20
ining stockpiling optimization s
Mining stockyard optimization SChedUhng
Mining supply chain Problems
Ore blending
Orce) capa'clityhezpalu'nsion BR: All
re rail scheduling . :
Pit limit optimization Blending 116 JCR(>2016): All 38 2 64
Short-range mine optimization Problems JCR(<2015): > 15
Short-range mine planning Not JCR: > 20
Short-term mine optimization
Short-term mine planning . .
Ultimate pit optimization Capacity BR: All
Underground mine optimization Expansion 16 JCR(>2016): All 7 2 9
Underground mining optimization JCR(<£2015): > 15
Problems

Not JCR: > 10

horizon. As an example, [108] divided the supply chain decision phases into three groups:

e Strategic: when a company designs their supply chain structure for the next several years;



Table 3. Mine Optimization Articles Classification
Bibliographic

Revi Deterministic Stochastic # Articles
eview
[3-6; 8; 11-15] [16-32] [33—41] 36
Layout and
Design Models
3-6; 8 ,
Production and 10;[14; 15; 42 [43-69] [70-88] 56
Scheduling
Problems
Operational 135 65 8 15: 42\ 17 6. 61, 99-101] | [70; 78; 102-107] 30
Equipment 89-91]
Allocation
Models

e Planning: considering that the configuration of the supply chain is fixed, a company selects
its strategy for a short period that may vary from a quarter to a year;

e Operational: a company makes decisions regarding customers’ orders in a weekly or daily time
horizon.

Some authors use the same group classification for mining supply chain problems. Newman et al.
[8] classify “Ultimate Pit Limit Design and Mine Layout Models" as strategic, “Block-Sequencing
Models" as tactical and “Fquipment-Allocation Models" can be either tactical or operational, de-
pending on the time horizon. Pimentel et al. [6] made a similar classification. For the authors, the
“Strategic Mine Planning" problem is strategic. “Ultimate Pit Limit", “Production Scheduling” and
“Storage and Blending" are tactical problems. Finally, “Mine equipment allocation”, “Storage and
Blending" and “T'rain Loading” problems are operational.

Another group of authors adopt a different classification, comprised of short-term and long-
term problems. Long-term models usually maximize the net present value (NPV) within the mine
life span. Short-term models can optimize equipment utilization or minimize operational costs,
following ore grade bounds or volume targets defined previously during the long-term planning
[42; 92]. Usually, operational equipment allocation models are associated to short-term planning and
production and scheduling problems to long-term planning.

The remainder of this section features a detailed review of mine optimization models. Section
3.1 discusses mine layout and design models; Section 3.2 addresses mine production and scheduling
models; and mine operational equipment allocation models are discussed in Section 3.3. In all these
sections, the researched papers are classified in “Open-pit" or “Underground” mining and their
characteristics and differences are explored.

3.1 Mine Layout and Design Models

Mine layout and design (MLD) models search for the most profitable contour to exploit the ore
body. That means planning the shape of the mine up to the end of its life, which is referred to as
the ultimate pit limit. MLD is important because it determines mine feasibility by prescribing the
sequence of exploration stages.
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Figure 2. Mine Articles

8.1.1  Open-pit Mining

MLD models arose in the literature in the 1960’s, focusing on Open-Pit Mining. Some interesting
bibliographic reviews regarding these models are [3; 4; 6; 8; 12; 109]. According to Newman et al. [§],



the standard approach of the pit design problem ‘uses a discretized orebody model, i.e., the block
model’. They argue that there are two principal classical methods to determine the shape of a surface
mine: a) the floating cone method, developed by Laurich and Kennedy [110] and b) the integer
program model presented by Lerchs and Grossman [20]. An MLD problem is a network model that
can be solved using a maximum flow algorithm [3], such as that proposed by Lerchs and Grossman
[20], still used nowadays [5]. Other mine design optimization models include Seymour’s Parametrized
Pit Limit Algorithm, Network Flow Approaches, Dagdelen—Johnson Lagrangian Parametrization, IP
Formulations and the Fundamental Tree Algorithm. For more details on these approaches we refer
to [12| and references therein.

Lerchs and Grossman [20] proposed two deterministic methods to solve the problem: a simple
dynamic programming algorithm for the two-dimensional pit and a graph algorithm for the three-
dimensional pit. Because it generally finds the optimal solution rather rapidly, this algorithm is
implemented in many specialized commercial software packages and can be viewed as a maximum
flow problem |e.g., 111|. Some authors strove to propose improvements Lerchs and Grossman’s
model [20|. Underwood and Tolwinski |23] developed a duality based network flow algorithm and
Hochbaum and Chen [17] suggested an adapted maximum flow push-relabel algorithm. Both authors
compared their results to the LG Algorithm and claimed to have found better results.

Objective functions and constraints used in mine layout and design (MLD) models are shown in
Figures 2 a) and 2 b), respectively.

Recent deterministic approaches often focus on different aspects of the open-pit design problem.
A cut-off grade optimization model which considers the escalation of metal price and operating
costs was studied in [25; 26]. In contrast, Jélvez et al. |27] proposed a model for automatic selection
of pushbacks which made use of MILP techniques. Rahmanpour and Osanloo [21]| developed a deci-
sion support system (DSS) that considers sustainability indicators. Sari and Kumral [22] developed
a MILP model to solve the dig-limits problem where ore and waste clusters correspond to mine
excavator movements. Ahmadi and Shahabi [16] applied a genetic algorithm to determine the opti-
mal cutoff grade, maximizing the net present value. Ahmadi and Bazzazi [28] tested two different
metaheuristic optimization algorithms (Particle Swarm Optimization and Imperialist Competitive
Algorithm) to determine the optimal cutoff grade in mine No. 1 Golgohar. In their research, Impe-
rialist Competitive Algorithm presented a higher accuracy. Klingman and Phillips [19] presented an
integer programming model to support optimal mining strategic decisions for a phosphate produc-
tor with blending constraints. Osanloo and Ataei [29] focused on multiple material deposits. They
proposed that for all metals, an equivalent grade of main metal should be determined and used.
Then, traditional techniques can be applied and the problem can be solved as if there was only one
variable.

As for stochastic models, they seem to have gained momentum in the 1990’s. Table 3 illustrates
the division in the literature between deterministic and stochastic approaches. Dowd [38] used
geostatistical simulation to develop sensitivity and risk analyses involving reserve estimation and
open-pit planning, considering uncertainty in the ore reserve. In [35; 36] one can find a model that
accounts for grade, tonnage and geology uncertainty. The authors suggested two new implemen-
tations of conditional simulation: the generalized sequential Gaussian simulation and direct block
simulation. According to simulated stochastic parameters (such as gold price, copper price, capital
cost and plant utilization), [39] used four categories of options that can be incorporated dynamically
into their model: mine options, pre-processing stockpile options, processing plant options and capac-
ity constraint options. Asad and Dimitrakopoulos [33] developed a graph representation solved by
means of a parametric maximum flow algorithm with Lagragnian relaxation that employed the sub-
gradient method. They consider uncertainties in the mineral deposit and in commodity prices and
address such uncertainties by simulating multiple realizations. [37] suggested the upside/downside
approach to the mine design problem, taking into account orebody uncertainty. They start with
orebody simulation data, then use the LG algorithm with the heuristic Milawa mine production
scheduler to solve each simulated orebody. Finally, they implement risk analysis for all solutions.



[34] developed a minimum cut network flow algorithm for open-pit mine design. The model also
uses a smoothing splines algorithm with sequential Gaussian simulation to consider commodity
price or market uncertainty. Recently, Farmer and Dimitrakopoulos [40] proposed a schedule-based
push-back design method with multiple ore-body simulations to optimize pit design and pit limit
problems.

8.1.2  Underground Mining

Another line of research that emerged most recently was underground mine design. Not as studied
as open-pit models, underground mine limits models are different from open-pit mine problems.
According Bjgrndal et al. [3], ‘underground mine design is more complicated, not only because there
are more operational constraints to consider but also because there is no single, generic design model
that is applicable to all underground mines’. Pimentel et al. [6] argue that underground operations
are more challenging from a computational standpoint.

Although fairly recent, underground mine design is the subject of intense research, as well as
bibliographical reviews [11; 13]. In [11; 13], the authors classify the existing algorithms in exact and
heuristic. They enumerate the following exact algorithms: a) dynamic programming, b) downstream
geostatistical approach, and c) branch and bound for integer programming. They also listed the
following heuristic algorithms: a) octree division, b) floating stope, ¢) multiple pass floating stope,
d) maximum value neighbourhood, e¢) Topal and Sens heuristics, f) network flow, g) Sandanayake’s
heuristic. Both reviews present comparisons between these different algorithms.Topal and Sens [30]
proposed an algorithm that can find the true optimal solution for the 3D stope layout problem.
Sandanayake’s heuristic incorporates stope size variation and outperformed the Maximum Value
Neighbourhood algorithm in a realistic ore body model test [31]. Considering grade uncertainty,
Grieco and Dimitrakopoulos [32] formulated a stochastic MILP with risk analysis and applied it to
Kidd Creek Mine, Canada.

An option found in the literature is to consider simultaneously open-pit and underground phases
[18; 24|. King et al. [18] used a MILP with an adhoc branch-and-bound strategy for solving linear
programming (LP) relaxations and a rounding heuristic to convert the LP relaxation to MILP
solutions. The method proposed in [24], on the other hand, starts by optimizing the design of
an open-pit mine, framed as a maximum graph closure problem. Then, it introduces non-trivial
strongly connected sub-graphs (NSCSs) to deal with the transition to the underground phase.

3.2 Mine Production Scheduling Problems (MPSP)

Another application of OR in the mining industry, which has led to a number of published works,
is to help mine production scheduling decisions. This application gives rise to mine production
scheduling problems (MPSP), which appear in the literature under various names:

Long-term production planning (LTPP): [9];

Long-term (open pit) mine planing: [43; 75];

Mine production scheduling problems (MPSP): [4; 52; 76; 77];

(Multi-period) open pit (mine) production scheduling (problem): [44; 45; 53; 57; 72];
Open pit mine block sequencing problem (OPBS): [50];

Resource-constraint pit optimization (R-C Pit): [43; 48; 49|.

e 6 o o o o

Since the aforementioned models are designed to define mine production schedule over time, it
is no surprise that they are all multi-period. There also seems to exist a consensus on the modeling
technique. To solve MPSP, authors divide the mines into blocks and propose models to decide if and
when each block should be mined. For some bibliographic reviews in this area we refer to [3-6; 8-10].
These papers cover several aspects of the problem and help us to attain a better understanding of



MPSP definition and characteristics.

MPSP often makes use of a discretized orebody model known as block model [8]. Such a model
aims to prescribe an order for the blocks to be removed [4; 8]. Mine production scheduling problems
can be distinguished from the mine layout and design models of Section 3.1 in a number of ways.
The main difference is that, while the latter focuses on selecting blocks to be removed, the former
is concerned with when the blocks should be removed [8]. According to Bjorndal et al. [3] the
block sequencing problem can be classified either as strategic or as tactical, depending on the model
complexity. Generally, the objective is to maximize the total discounted profit, considering both
selling prices and operational costs. The set of constraints include, for instance, mine extraction
sequence, slope safety rules, production and stockpile capacities and product quality [4; 6; 8|

For the same reasons explained in Section 3.1, MPSP have different characteristics when we
compare open-pit and underground mining. For a literature review on system simulation studies in
underground and open-pit mines, we refer to [10].

8.2.1 Open-pit Mining

In a related review about open-pit mining, Kozan and Liu [5]| classified MPSP models in two
categories, according to the commercialized product: ‘ore mining production’ and ‘coal mining
production’. They argue that ore mining and coal mining have distinct requirements, since the former
is found in hard-rock whereas the latter is encountered in sedimentary rocks. For a classification of
MPSP models into deterministic and uncertainty-based approaches, we refer to [9]. We will adopt
this classification later in this work.

Generally, the decision maker wishes to maximize the net present value (NPV) of the overall
mine production throughout its lifetime. There are, however, distinct objectives that may be pur-
sued. Figure 2a) summarizes objective functions found in the literature. The numbers within the
histogram refer to the mapped articles.

In the optimization process, however, some constraints must be enforced. We find in the literature
of Mine Production Scheduling Problems mentions to the following constraints:

e Equipment and Facilities Volume Capacity: Solution must obey production (mining, milling
and refining), machinery and storage capacities at all times;

e Demand: demand should be met at all periods. Depending on the stage of the supply chain,
this constraint may refer either to the demand of the final client or that of the next link
(player) in the logistics supply chain;

e Blending / Quality: The final product must meet the specifications for quality and purity.
These constraints are also known as the blending problem. We will deepen the study on this
theme later (Section 7.2);

e Pit Geometry (boundary and slopes): It is impossible to mine a rock if you do not have access
to it. For example, in an open-mine it is necessary to start mining in the surface in order to
be able to access the deepest areas following a mining extraction sequence;

Almost all models have Pit Geometry (boundary and slopes) and Equipments and Facilities Vol-
ume Capacity constraints. Figure 2b) depicts the constraints found in the literature. It is interesting
to notice that 13 articles also addressed the blending problem. Only 7 articles included demand
constraints, which means that most of them assume it is always possible to deliver everything that
is produced.

Some models go deeper and consider the various processes that occur inside the mine. First of
all, when a block is extracted, if its ore grade is low, it does not follow the mining process. Instead,
it is send to a waste dump [51; 55; 60; 61]. If its ore grade is acceptable, it follows to in-pit crushers
[62; 73; 102] and afterwards, it goes to milling facilities [6; 79; 80] to adjust its size and be prepared
to be sent to the processing plants. This whole process is known as Mine-to-Mill and increases the
model complexity.
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Naturally, some parameters may change as the project evolves. In fact, some of them may even
not be precisely known from the beginning. In other words, there may be uncertainty in the model
parameters. However, not all models address parameter uncertainty. Most papers employ deter-
ministic approaches that assume fixed and completely known parameter values during the whole
execution time of the project. Nonetheless, there is a significant portion of stochastic approaches in
the literature, as illustrated in Table 3.

The early deterministic formulations used LP models to solve MPSP. Johnson [53| formulated
a linear model to solve the multi-period open pit mine production scheduling problem by means
of a block formulation. Later on, some authors started to use integer or MILP models. Gershon
[52] presented four models to solve MPSP; three of them employ block-discretization with LP,
integer programming and MILP, whereas the remaining model applies column-discretization with
LP. Fytas et al. [62] also describe a computer package using LP capable of optimizing short-term
mine production and scheduling.

An important issue for integer programming or MILP MPSP models is that the number of
variables and constraints increases very rapidly in real-world applications, and that may render
the problem computationally intractable for moderately large problems. To circumvent this issue,
some authors propose simplified versions of the problem and/or apply heuristic algorithms [e.g.,
4; 44, 45].

Making use of a simplified model, Weintraub et al. [59] proposed an aggregation method based
on clustering analysis to run a global model for all mines of CODELCO, the Chilean state copper
mine. Comparisons between simplified approaches and traditional MILP models were proposed in
[44; 45], in the light of an iron ore mine case study. Their formulation combines mining blocks
into larger units called mining-cuts. Under a distinct approach, Pourrahimian et al. [56] propose
a multi-step method for long-term MPSP, comprised of three levels: a) aggregated drawpoints, b)
drawpoint level, ¢) drawpoint-and-slice level. Each step involves the solution of a MILP problem,
and the overall objective is to maximize the net present value (NPV).

Often designed to find good solutions for complicated problems in reasonable time, heuristic
algorithms are found rather frequently in MPSP applications. Busnach et al. [46] developed an
integer programming model solved by means of a heuristic algorithm to maximize NPV for a
phosphate mining plant in Israel. A three-step methodology was proposed in [48; 49] which: 1)
applies the critical multiplier algorithm to solve the LP relaxation, 2) rounds the fractional solution
with a rounding heuristic, 3) uses a local-search heuristic to find better solutions in the vicinity.
In a distinct approach, Cullenbine et al. [50] proposed a ‘sliding time window heuristic’ to solve
an integer programming formulation in reasonable time. In the authors own words, the heuristic
utilizes ‘(i) fixed variables in early time periods, (ii) an exact submodel defined over a “window”
of middle time periods, and (iii) a relaxed submodel in later time periods’. Finally, Caccetta and
Hill [47] introduced a branch-and-cut algorithm to find provably good solutions for practical sized
problems.

Even though IP and MILP seem to be the main modeling techniques for MPSP problems, other
techniques have also been applied in the literature. For example, Tolwinski and Underwood [58|
developed an algorithm that combines dynamic programming and heuristics to solve MPSP in-
stances in reduced time. Also, a genetic algorithm was utilized in [57] to reach the product quality
specification in a bauxite deposit over two years. The focus was on controlling percentages of AloO3
and 5709 during the mine production process. The paper evaluated five grade control plans.

The treatment of uncertainty is rather recent in MPSP models. Ore content variability seems
to be an important issue, since the purity content of the blocks may not be known a priori. Many
authors address uncertainty by means of scenario generation techniques. The rationale is to find
the alternative that performs best over all the generated scenarios, often in terms of expected
value. We refer to [81] for an application on ore body models. There, the authors first solve a
deterministic version of the problem and then apply scenario generation to evaluate the probability
that a given block is mined at any given time period. The simulation results are then utilized
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to propose adjustments in the original solution and improve performance. Halatchev [74] applied
Monte Carlo simulation to simulate ore-grade variance. Gilani and Sattarvand [82] used two different
strategies (single predefined probability value and multiple probability values) to improve the initial
solutions created by deterministic ACO procedure. [80] features a heuristic approach to solve the
MPSP considering multiple scenarios. The authors claim that their treatment of uncertainty was
able to increase the NPV by 30%. Finally, Mai et al. [83] proposed a framework to reduce the
computational time. First, the authors utilized the TopCone algorithm to cluster simulated ore-
body models. After that, they solved a stochastic model with NPV maximization and production
risk minimization.

Another methodology involves building multi-stage models, which construct a decision tree in
which each node is a stage to be solved in the process of maximizing the overall NPV. Boland
et al. [72] developed a multistage MILP model which deals with geological uncertainty and new
information obtained during the mining process. In the first stage, decisions are made based on
the geological information available. In the second stage, information obtained during the process
is used in the model. Upon studying a mine production scheduling problem (MPSP) with metal
uncertainty, Lamghari et al. [77]; Lamghari and Dimitrakopoulos [84] proposed a two-stage stochas-
tic programming approach and made use of a variable neighbourhood descent (VND) algorithm to
find the solution. Also working on a two-stage stochastic model, Lamghari and Dimitrakopoulos
[85] proposed a two-phase solution approach based on Rockafelllar and Wets’ progressive hedging
algorithm. In the first phase, the set of scenarios is partitioned into groups and the sub-problems
are solved iteratively. In the second phase, first phase results are used to reduce the original problem
complexity, resulting in near-optimal solutions with faster computational time.

Some other tools can also be applied to address uncertainties. A metaheuristic with two diver-
sification strategies solved with Tabu search was proposed in [76] to solve large-scale instances.
Mixing NPV and uncertainty cost, Koushavand et al. [75] developed a method to calculate the un-
certainty cost in mine production planning. To evaluate variability, the paper proposes simulating
different realizations. The technique, which can also use clustering algorithms to reduce the number
of variables, was validated through an oil sand deposit in northern Alberta. Inthavongsa et al. [86]
used real-options theory to built a dynamics decision-making tool framework with four strategic
operating options: deferral, maintain, expand and shutdown. They used discrete-event simulation
to evaluate the project. The authors showed that correct options management can increase NPV
hedging project risks.

3.2.2  Underground Mining

Underground mine planning and scheduling uses the same 3D block-model applied open-pit prob-
lems. However, due to a large variety of underground methods and geotechnical space constraints,
the problem becomes more involved and complex. There are some interesting bibliographic reviews
comparing both problems [e.g., 3; 6; 14; 15].

Underground models have gained momentum in the XXI century. In 2001, Carlyle and Eaves [63]
built a large mixed-integer programming model to find near optimal solutions for Stillwater Mining
Company production scheduling. Almost ten years later, Nehring et al. [64, 65] integrated short-
term and long-term objectives into the same model, combining two objectives: to maximize overall
NPV and to minimize short-term grade deviation from target. Their results suggest that combining
short-term and long-term goals leads to a more realistic model, which promotes an increased NPV.
In 2016, Montiel et al. [87] incorporated geological uncertainty and used a simulated annealing
algorithm to optimize a mining complex model.

In order to tackle the complexity underlying underground models, some authors searched for algo-
rithms with reduced computational time. Sarin and West-Hansen [66] developed a general solution
methodology based on the Benders’ decomposition to optimize a model with quality constraints and
with the nodes representing mining sections. Newman and Kuchta [67] developed a MILP program
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to optimize iron production at Kiruna, Sweden. The authors built a heuristic procedure with time
aggregation to reduce model complexity. A MILP model was also proposed in Topal [68] which
searched for the earliest and latest times for each machine placement. The rationale is to reduce
the number of integer variables, and hence the solution time. More recently, Nehring et al. [69]
presented a MILP model with a new formulation. The authors used a single variable to represent
production start which, in their model, will naturally be followed by drilling, extraction and back-
filling. Comparing to classical MILP models, their proposal reduces the computational time while
also reaching a near-optimal solution.

3.3 Mine Equipment Allocation and Selection Models

According to Newman et al. [8]: ‘In addition to determining a production schedule, a related question
1s determining the resources that enable such a schedule. These are generally separate models in the
literature; however, in theory, the decisions are connected. A tactical problem consists of the size
and nature of the fleet, which can be determined by artificial and geological mine characteristics and
by equipment capabilities. The operational problem of equipment allocation entails scheduling and
dispatching strategies; decisions are based on haul route requirements and equipment limitations’.
Mine equipment allocation and selection models aim to optimize mining operation taking into
account constraints related to the transportation of equipment, see also [6]. This is a very important
issue, since material handling utilizes large scale and expensive equipment and accounts for about
50% of production costs [99; 103].

This problem, which is becoming increasingly more studied, was the object of a number of
important bibliographic reviews. One of the first is [91], which classified truck dispatching strategies
and analyzed different mathematical models, striving to enumerate their strengths and weaknesses.
A number of posterior reviews followed [3; 6; 8; 15; 89; 91; 109]. A more recent work [90] pointed
future research directions in mine equipment allocation: they argue that the new models should
explore different types of equipment and researchers should develop complementary techniques to
solve problems with uncertainty.

In addition to the objective functions that have already appeared in mine production scheduling
problems (see Section 3.2), two new objectives appeared: to minimize transport time and to minimize
energy consumption. Figure 2a) illustrates the objective functions in different articles.

There are two new constraints in relation to mine production scheduling problems:

e Equipment Allocation (with Specifications): The number of pieces of equipment needed to
complete the task, as well as their specification;
e Routing: Pathway constraints for models with routing;

All models analyzed have demand constraints. One can find routing and blending constraints as
well in some models. Figure 2b) illustrates the constraints found in the literature.

Mine equipment allocation and selection models often do not take into account uncertainties
in parameters, especially in the early literature. More recently, models that integrate mine equip-
ment allocation and selection, mine production scheduling problems and blending models started to
deal with mine volume and quality uncertainty. For a classification of deterministic and stochastic
approaches, we refer to Table 3.

3.8.1 Open-pit Mining

Open-pit deterministic models, encountered everywhere in the early research, continue to find use
nowadays. Soumis et al. [97] develop a model to maximize productivity of trucks and shovels, fol-
lowing a prescribed production plan. Their model has three steps. In the first step, they determine
shovel locations using a methodology that combines operator expertise and LP optimization. The

13



second step solves a network problem to determine an optimal production plan. In the third step,
they allocate each truck to each shovel, according to the optimal strategy defined in step two. Cov-
ering a slightly different problem, Naoum and Haidar [94] applied a genetic algorithm to find an
optimal equipment usage in terms of the total operation cost. In the field of optimal blending prob-
lem, Costa [7| covered optimal blending of mine production, optimal blending of mine production
with dynamic equipment allocation and optimal blending of mine production with static equipment
allocation. Each problem motivated two models, one based on mathematical programming and one
heuristic based approach. One of the most important costs in fleet management is maintenance.
These costs were minimized in the MIP model in [99], which considers truck age. The model was
tested using data from a Western Australia Mine. Under a different focus, [60; 61] aimed at waste
material scheduling instead of ore production. They developed three MILP models with different
objective functions: maximize truck productivity, minimize the fleet variation in consecutive years,
and a mix of the two former objectives. Focusing on computational time efficiency, Gu et al. [100]
proposed a neighborhood search algorithm to find a good solution in an acceptable time to the waste
scheduling and equipment allocation problems. Recently, environment has also become a concern
in mine equipment allocation and selection models. Naturally, such a concern can be addressed in
a number of ways. One possible approach is to optimize energy consumption, as suggested in [95].
That work made use of a MILP formulation with a constructive algorithm and tabu search heuris-
tic to find an optimal truck and shovel allocation in terms of energy consumption. The model was
validated on an operating mine in South East Queensland.

Stochastic models are often associated to operational or maintenance variations. Ta et al. [104]
considered truckload and cycle time variability. Their model used a chance-constrained stochastic
approach with an alternate approach to simplify, which involves solving two sub-models. Ercelebi
and Bascetin [105] presented a two stage methodology. In the first step, they used closed queuing
network theory to optimize the quantity of trucks. In the second stage, they applied an LP model
to determine how the trucks should be dispatched to shovels. [106] also employs queuing theory to
formulate a linear approximation to the probability of shovel idleness as a function of the number
of trucks. Such an approximation is then inputed to a MILP model whose objective function is to
minimize the number of trucks. Following their work in [99], Topal and Ramazan [107] considered
maintenance cost uncertainty due to road conditions, age of equipment and many other local oper-
ational conditions. The authors used a stochastic integer programming model and compared it to
a deterministic approach. Dindarloo et al. [103] worked on a discrete event simulation framework.
The model considered uncertainties related to material loading and haulage input variables and
was applied to Golegohar iron ore mine, in Iran. Recently, Bakhtavar and Mahmoudi [102]| built
a two-phase scenario-based robust optimization model considering ore grade control. In the first
phase, they considered shovel capacity as uncertain, due to climate conditions, shovel breakdowns
and other operational variations. In the second phase, they took into account an uncertainty in the
number of available trucks. The model was tested in the Sungun copper complex, Iran.

Other authors considered mine quality uncertainties. Benndorf [70] applied a Generalized Sequen-
tial Gaussian Simulation (GSGS) method in a open pit coal operation. They analyzed how calorific
value variability impacts the ore supply chain, including extraction, transportation and blending.
Matamoros and Dimitrakopoulos [78| developed a stochastic programming model to optimize mine
scheduling production and fleet management with blending constraints. The authors simulate ore
body metal quantity and quality uncertainty.

8.8.2  Underground Mining

There are some works dedicated to equipment allocation in underground mining. In a pioneering
work, Vagenas [98| developed a graph procedure to optimize remote-controlled/automated load-
haul-dump (RAL) vehicle operation in an underground mine. In a related approach, Gamache et al.
[93] developed a shortest-path algorithm to optimize load-haul-dump vehicles in an underground
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mine. To optimize routing and scheduling vehicles on a haulage network in a underground mine,
Beaulieu and Gamache [101] worked on an enumeration algorithm with dynamic programming.
More recently, Nehring et al. [92] proposed a new dynamic mathematical model with MILP to
optimize short term production scheduling and equipment allocation. The model was tested in a
conceptual operation, with five LHD units and three trucks.

3.4 Literature Summary and Research Opportunities

It was possible to verify that there are many articles concerning OR applications in mines. The
earlier works studied open-pit mines. Due to their complexity, underground mine models developed
more recently. Because of that, one can find many research opportunities in this field. While mine
production scheduling and mine layout and design problems are specific applications of OR in the
mining industry, equipment allocation and selection models are more general and can be found in
different business areas. Both mine production scheduling and mine layout and design problems are
characterized by the discretization in mine blocks and by the pit geometry constraint.

It is possible to verify that the evaluation of environmental impacts still appears very timidly
in the models studied. In a paper on equipment allocation and selection models, the minimization
of CO9 emission in the objective function was found. Some authors may argue that environmental
concern appears indirectly in minimizing waste costs or minimizing fuel costs, but we believe that
there is room for this theme to be addressed more thoroughly in the models. In particular, life-
cycle analysis would provide an interesting tool to assess the environmental impacts of the mining
industry. Additionally, multi-criteria decision analysis (MCDA) and multi-objetive programming
(MOP) models can also be applied, in order to take into account different dimensions of the problem,
considering also the standpoint of different stakeholders.

Recently, there are two topics that have become very common in the computer science litera-
ture, partly due to the ever increasing data availability: “Machine Learning” (ML) and “Artificial
Intelligence" (AI). It is possible to find few attempts to use them in mine optimization problems.
They are commonly used for ore body conditional simulation and clustering. Usually, the drilling
process does not give information about all mineral deposits. Hence, it is necessary to infer the ore
grades of some areas. One of the most used techniques to accomplish that is “conditional simula-
tion", whereby ore body proprieties are simulated based on drilling information [35]. The Sequential
Gaussian algorithm is a popular conditional simulation procedure which clusters mine blocks and
simulates them simultaneously [32; 36; 83]. Since mine MILP models can rapidly become too large
and too time consuming to be solved, some authors focused their researches on clustering techniques
to reduce the problem complexity [45; 56]. Some of the employed clustering techniques used are:
Fuzzy C-mean [75], K-means [59] and TopCone algorithm [83].

The most popular application of OR in the mining industry seems to be mine production schedul-
ing problems. For these problems, we have found a larger number of deterministic approaches.
Moreover, one can also notice that the papers featuring stochastic models tend to be more recent.
Even though mine equipment allocation and selection models do not apply solely for the mining
industry, it is an important application in such an industry. There is a fair amount of literature
about this topic. Similarly to the other covered applications, most of the literature is concerned
with deterministic models. However, one can also notice a trend toward stochastic models in the
recent literature.

To sum up, regardless of the specific application, there seems to be a trend toward stochastic
approaches in the recent literature related to mine optimization, due to both endogenous and
exogenous uncertainties. The former refers mostly to uncertainties in the model parameters, whereas
uncertainties in supply and demand are examples of the latter. However, one can also argue that the
current stochastic approaches are largely based on simulation and scenario generation. Hence, there
is plenty of room different modeling techniques, such as stochastic programming, Markov decision
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processes (MDP), approximate dynamic programming (ADP) and reinforcement learning (RL). In
particular, MDP, ADP and RL provide a rather fertile ground for future research, as these models
rely on modeling one-step transitions, rather than enumerating scenarios, which may simplify the
modeling process.

Finally, it is important to mention the impacts that Internet of Things (IoT) may have on future
OR models in the mining industry. IoT will allow access to a greater amount of information and
greater traceability for remote equipment. Thus, we believe that models for short-term problems
could be better exploited when online information is made available.

4. Railway Transportation

Railway is often the preferred means of transportation for the mineral products coming from the
interior of the continent [6]. As it happens with mine production and planning, there are plenty of
opportunities for using OR in rail transportation.

Some examples of OR applications in railroad transportation are train scheduling, locomotive
scheduling, car scheduling and trip planing, railway blocking, and crew scheduling [112]|. Some works
specifically study the train scheduling problem in the mining industry. The other problems are more
specific to railway transportation and we have not found applications in the mining industry. Hence,
we decided to focus only on the train scheduling problem.

Table 4 shows the surveyed papers regarding railway transport optimization, selected according
to the methodology in Section 2 and Table 2.

Table 4. Classification of Railway Transport Optimization Articles

B1b110g.r aphic Deterministic Stochastic # Articles
Review

[5; 6] [96; 109; 113-129] [130-133] 25

Train Scheduling
Problems

4.1 Train Scheduling Problems

Train scheduling is concerned with departures, dwell times, crew scheduling, etc. [6; 112]. Naturally,
an integration with mining production can increase efficiency [5].

There are four types of constraints that appear in nearly all surveyed papers regarding the train
scheduling problems:

e Flow: This constraint ensures that all trains or products move properly, not fading or popping
up in inappropriate places;

e Capacity constraints of the facilities and pieces of equipment;

e Demand constraints: to ensure that the demand is met;

e Train Availability: One can only schedule the trains that are available. These are constraints
on the number as well as the specification of the trains scheduled.

When it comes to train scheduling problems, there is a wide variation of objective functions which
are difficult to categorize. A possible explanation is that authors wish to promote a smooth flow
in the railway and there seems to be no standard way of quantifying that. Indeed, one can argue
that finding a unifying performance measure is an open problem in the literature. One can notice,
however, several types of objectives, which appear categorized in Figure 3a). Figure 3b) illustrates
the main constraints found in the researched articles.
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Figure 3. Railway Transport Articles

Articles combining train scheduling and mining are rather rare in the literature. Australia and
Brazil, countries which are rich in iron ore and have continental dimensions, contributed most to this
literature. For some references on Australian railways connected to the mining industry, we refer to
[109; 118; 120; 121; 124—126]. In Brazil, most of the literature is concerned with the Vitoéria-Minas
railway, see for example [116; 117; 131; 132].

As illustrated in Table 4, deterministic models are predominant in train scheduling problems.
Salim and Cai [124] developed a genetic algorithm for the train scheduling problem with environ-
mental constraints. One such constraint makes sure that loaded trains do not cross populated areas
at certain times of the day. The model was tested in a real problem in the Mt. Newman Mines
railway system in Western Australia. In [114; 116; 117] one finds examples of integer programming
models. In [116; 117] one finds optimization models designed to minimize maintenance and fuel
consumption costs, under demand, train flow, rail yard, and resource availability constraints. The
model was applied to Ferrovia Vitoria-Minas, in Brazil. The model in [114], on the other hand, seeks
to maximize railway use by accelerating the return of empty wagons. MILP models were employed
with the use of heuristic procedures in [109; 119-121; 125]. Liu and Kozan [120, 121] exploited simi-
larities between coal train scheduling and blocking parallel-machine job-shop scheduling (BPMJSS).
In [120], they solved the BPMJSS problem using an improved shifting bottleneck procedure (SBP)
algorithm without considering blocking conditions. After that, a feasibility satisfaction procedure
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(FSP) algorithm is applied. A posterior work [121] utilized the BPMJSS model with a new three-
stage hybrid algorithm called the SLEK-BIH-TS, that uses best-insertion-heuristic (BIH) and tabu
search (TS). Both studies were validated through a case study in a coal railway system in Australia.
Another model based on the same analogy with BPMJSS was presented in [109] to minimize total
train travel time following stockpile and ship timetable, which was also applied to a coal railway
system in Australia.

Singh et al. [125] used a MILP formulation with a Lagrangian heuristic to solve the scheduling
train problem on the HVCC rail network. Their objective function seeks a balance between the
quantity of coal delivered to the terminal, the deviation from the preferred dumper-stacker combi-
nations, the total idle time, and the preferred train size for coal pick-up from each of the mines.
Resource and volume constraints were applied. Igyiiz et al. [119] worked on a specific problem called
monthly coal train reservations planning problem (MCTRPP), that occurs in North American rail-
roads. Every month, coal producers ask for train reservation and railway companies strive to meet
as much as possible of this demand. The authors utilized MILP to model the problem and sug-
gested two different heuristic methodologies. Non-linear programming models were introduced in
[118; 126]. The former paper applied the model with two different heuristics in a Rio Tinto iron
ore case study. The latter work also considered the blending problem and validated the model in
a supply network in the Pilbara region of Western Australia. Finally, Masoud et al. [122] used a
constraint programming (CP) approach to model the train scheduling problem. They developed a
new depth-first-search technique and used a real-world coal rail system to test their model.

Two models that considered stochastic parameters made use of discrete simulation. Meireles
[132] and de Faria and da Costa Cruz [131] tested their models in the Vitoria-Minas railway, in the
Southeast of Brazil. A closed loop simulation was proposed in [131]. The model includes: a) general
cargo trains (empty and loaded); b) passenger trains; c) ore loading processes; d) ore unloading
for external and internal markets. This model enabled the identification of bottlenecks along the
railway, as in maintenance and loading-unloading equipment. The results suggested that the number
of wagons could be reduced without compromising the service level. Reinhardt et al. [133| applied
a different approach, using queuing theory to analyze operational performance in the Powder River
Basin railway, in the United States.

4.2 Literature Summary and Research Opportunities

Railway transportation presents many opportunities for OR applications. However, since railroads
can carry various types of products, only a small portion of the literature is related to the trans-
portation of mining products. In particular, these works are specific to train scheduling problems.
There are opportunities to address other railroad OR problems concerning the mining industry.

As well as in mine equipment allocation and selection models, IoT will allow an increasing and
online control of railway operation. This will allow the development of short-term models that seek
optimal solutions to daily operational problems. In addition, machine learning techniques can be
used to predict failures and malfunction based on the online information provided by the railroad
and the pieces of equipment.

CO4 consumption is only indirectly addressed in some articles when minimizing fuel cost. No
models considering the minimization of COs emission were found, despite the ever-increasing im-
portance of such a topic in logistics. The socio-environmental concern arises only in [124], where
routing takes into account the impacts of train traffic in cities. Therefore, we believe there is plenty
of room for novel models considering not only COs emission, but also other environmental concerns.
Once again, life cycle analysis (LCA) can be an important tool to assess the overall environmen-
tal impact of railway transportation within the mining industry. In addition, Multi-criteria decision
analysis (MCDA) and multi-objective (MOP) programming models can be used to evaluate multiple
objective functions, as well as the concerns of different stakeholders.
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Due to the complexity of the underlying applications, most of the approaches are deterministic.
Hence, there is plenty of room for novel stochastic approaches that can account for the uncertainties
in the process such as: track and equipment maintenance, track interruptions, weather conditions,
as well as other operational problems. When uncertainty is considered, however, the literature seems
to be limited to discrete-event simulation tools. Hence, distinct approaches to address uncertainty
are needed. In particular, stochastic optimization (SO), Markov decision processes (MDP), rein-
forcement learning (RL) and approximate dynamic programming (ADP) provide solid frameworks
to modeling and quantifying uncertainty within an optimization environment.

5. Port

Port terminals are a very important link in mining supply chain. Often they receive trains carrying
products from the mines and store these products until they can be loaded to ships for delivery,
sometimes after further processing in the port dependencies. Ports are critical because, as the link
between production and delivery, they must not act as bottlenecks. Hence, they should enable a
continuous railroad flow by storing the received products in their limited stockyard, in such a way
as to avoid ship delays and demurrage penalties. An earlier reference argues that the literature is
biased towards simulation due to the complexity of the problem [6].

One can find at least two important problems involving OR in port operations, namely stockyard
planning problem and conveyor routing problem. It is possible to find the conveyor routing problem in
applications related to underground mines as well. However, such a problem is more common in port
operations. So we classified it as Port problem. Table 5 lists all surveyed papers, selected according
to the methodology in Section 2 and Table 2, classifying them according to this terminology.

Table 5. Port Optimization Articles Classification

BlbII{log.r el Deterministic Stochastic # Articles
eview
59; 96; 113; 123;

6 15%; 96; 113 123; 130; 141; 142 15
Stockyard 6] 134-140] [ ]

Planning Models

[6] [134] [143-147] 7

Conveyor
Routing Models

5.1 Stockyard Planning Models

In a typical mining port terminal, the product arrives by train from the mines and is transported
to the stockyards, where they will stay up to the scheduled ship boarding time. The product is
not uniform, having distinct specifications depending on the mine it comes from. Hence, it has to
be stored in different areas (pads) to avoid mixing and to guarantee the specifications. Generally,
mining port terminals have geographical constraints; moreover, since there is limited capacity,
decision makers should avoid keeping products in store for long time periods. Decisions on the
storage time are tricky, for it may seem at first glance that keeping products stored well in advance
can help guarantee the shipment schedule and thus avoid demurrage penalty. However, since there
is limited space in the stockyard, keeping a product too long may, on the other hand, disrupt the
flow of products to the port, and hence compromise the shipment schedule. Stockyard planning
problems are designed to exploit these trade-offs while striving to find the best pad allocation to
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Figure 4. Port Articles

meet demand and avoid demurrage penalties.

There is a wide range of possible objectives in stockyard planning models. Some works seek to
maximize the product volume, other works are concerned with minimizing operational costs. A
distinct approach involves secking to avoid contractual penalties for delayed /unsatisfied demand.
For a thorough picture of the different objective functions found in the surveyed papers, see Figure
4a).

With regards to the constraints, inventory balance constraints are present in all surveyed articles,
often in order to define storage rules and avoid volume differences in stockpiles. Capacity constraints
are also seemingly universal, as the loading and unloading capacity of the facilities and the storage
area are both limited. Many papers combine stockyard planning and equipment allocation con-
straints. Some papers impose the constraint that demand should always be met, whereas other
articles choose to maximize the output volume instead. Figure 4b) conveys the main constraints in
the researched articles.

As depicted in Table 5, the vast majority of works employs deterministic approaches, perhaps
due to the underlying complexity of the problem. In the group of deterministic models, Nobrega
[123] developed a MILP model aimed to maximize stockyard availability with a view to improve
the loading of vessels at Tubarao Port Terminal, Brazil. Ago et al. [134] worked on a MILP model
with Lagrangian decomposition and coordination technique to optimize simultaneously the storage
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allocation and transportation routing at the raw materials yard. In [137; 138] we find an integer
programming model with greedy construction and enumeration to optimize stockyard management.
A case study was considered at HVCC, New SouthWales, Australia. Hanoun et al. [139] created
a bi-objective model for stockyard planning with resources scheduling. The authors presented an
effective heuristic to solve this problem and tested it on different real-life data scenarios. Belov
et al. [135, 136] introduced a CP model with large neighbourhood search to optimize stockyard
planning, considering reclaimer scheduling and vessel arrivals, and validated through HVCC real
data. A tree search algorithm was proposed in Savelsbergh and Smith [140] for stockyard planning,
which makes use of space—time diagram geometric properties of coal stockyard planning. The model
is applied to a case study in the HVCC in Australia. Finally, Moreno et al. [55] proposed several
variants of MILP models to optimize a combined version of open pit mine production scheduling
with stockyard planning.

Stochastic approaches were selected in [141] and [142]. Binkowski and McCarragher [141] used
queuing theory to optimize the operation of a mining stockyard. In order to solve the problem,
the authors also developed a local search algorithm. In a distinct approach, Le et al. [142] utilized
a DES model of a stockyard operation. The simulation allows the decision maker to evaluate the
value of different production plans with respect to some performance function of interest.

5.2 Conveyor Routing Models

Port terminal operations generally involve the transportation of mining product from the railway to
the stockyard and then from stockyard to ship by means of a conveyor belt. An operational challenge
is to define the best route to transfer the product using the conveyor belt system. This problem
is both complex and specific, as each port terminal has its own system design and configuration.
Stochastic formulations are dominant in this type of problems, and uncertainties arise with respect
to ship and train arrival, as well as machine breakdowns. Table 5 provides an outline of the stochastic
and deterministic approaches found in the surveyed papers.

As previously mentioned in section 5.1, Ago et al. [134] proposed a MILP model with Lagrangian
decomposition to address simultaneously storage allocation and transportation routing from the
raw materials yard.

The stochastic approaches found in the literature consisted solely of discrete-event simulation
models. Fioroni et al. [143] built a discrete-event simulation model of the conveyor network at
COSIPA (Companhia Siderurgica Paulista), a steel company in Southeast Brazil. Meanwhile, a
model of the conveyor network system of a surface mine in China was presented in [146]. Discrete-
event simulation was also applied to redesign a conveyor belt network in [145] and for the design
of a ground articulating pipeline system [144]. In the latter paper, the authors claim that their
approach can also be applied to conveyor belt systems.

As previously mentioned, the Conveyor routing problem can also be applied to underground
mines. As an example, McNearny and Nie [147] developed a simulation model for an existing con-
veyor belt haulage system at an underground coal mine in Southern Utah, USA. The authors con-
sidered spillage, belt stoppage and loading variations. They tested different designs and operational
modifications, and analyzed their performances.

5.3 Literature Summary and Research Opportunities

We listed two specific applications of OR connected to ports in the supply chain of the mining
industry, namely stockyard planning models and conveyor routing models.

Since none of the surveyed articles considered environmental impacts, we believe this is an impor-
tant open problem in the literature. This is reinforced by the fact that port operation is generally
very demanding in terms of heavy machinery. Once again life cycle analysis (LCA) is an interesting
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tool to assess the overall impact of the activity. Furthermore, environmental aspects can be con-
sidered within the model constraints, as well as in the objective functions of multi-criteria decision
analysis (MCDA) or multi-objetctive programming (MOP) models.

Stockyard planning models are found more frequently. Even though there is real world uncer-
tainty regarding demand and machine breakdowns, for example, most articles employ deterministic
approaches. Hence, we can safely state that there is a gap in the literature with regards to stochas-
tic approaches, such as stochastic optimization, Markov decision processes, reinforcement learning,
approximate dynamic programming, etc. These approaches enable the decision maker to quantify
the uncertainty and use the quantification within an optimization framework.

Conveyor routing models, on the other hand, seem to be quite rare. Most of the models in
the literature are concerned with building detailed discrete-event simulation models of the conveyor
system, possibly due to the fact that each terminal has its own system design and belt configuration.
General, reproducible models, both deterministic and stochastic, would be a very useful development
in the literature.

6. Maritime Shipping

Often mining industries are located faraway from customers, sometimes even in another continent.
In that case, maritime shipping is generally the preferred means of transportation from mine to
customer.

Whereas maritime shipment has attracted considerable attention in the literature [148; 149|, it
is not often that this literature is directly connect to the mining industry. Shipping optimization
problems include for example berth allocation, CO5 emissions control, fleet design, maritime inven-
tory management, pilot scheduling, ship routing, ship scheduling and stowage planning [149-152].
Among these applications, one can find some works connecting wessel allocation and scheduling
with the mining supply chain. It is these works that we survey in this section. Table 6 presents a
summary of the researched articles, selected according to the methodology in Section 2 and Table

2.

Table 6. Maritime Shipping Optimization Articles Classification

Blbfl{lggireav[;hlc Deterministic Stochastic # Articles
o
Vessel [96; 115; 137; 138; _
Allocation and 153-157] [130; 158] 11
Scheduling
Models

6.1 Vessel Allocation and Scheduling Models

The Vessel allocation and scheduling problem is concerned with deciding which ships should carry
the mining product to the clients and when. In particular, berth scheduling is concerned with
defining a port berth for each incoming vessel, depending on the capacities of the berth and of
the vessel. Such a problem typically aims to synchronize operations, considering scheduled train
arrivals, stockpiling levels and vessel loading times. As such, it may become quite complex even for
moderately sized operations, involving many uncertainty factors.

Vessel transport scheduling, on the other hand, is concerned with delivering the demand for the
final client. As such, it involves planning, tactical and operational decisions on which type and
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quantity of vessels to employ, as well as scheduling decisions on when to deploy each vessel to
transport the final product to the destination.

The most popular objective in the surveyed literature is to minimize the operational cost. Other
objectives are also found in the literature, such as minimizing idle time, penalties or deviations.
Figure 5a) summarizes the objectives encountered in the surveyed literature.

Upon analyzing vessel allocation and scheduling models, one finds two types of constraints that
appear very frequently concerning equipment and facilities volume capacity and equipment alloca-
tion, the latter concerning the compatibility between pieces of equipment and operations, prevalent
in vessel allocation decisions. Figure 5b) depicts the main constraints found in the researched arti-
cles.
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Figure 5. Maritime Shipping Articles

Two papers were found which presents a stochastic approach, as illustrated in Table 6. Table 6
also presents many examples of deterministic models applied to wvessel allocation and scheduling.
Among the deterministic approaches one can find a MILP model aimed to minimize coal inventory,
purchase and transportation cost [156], applied to a Taiwanese company. A model for fleet design
and ship routing decisions was proposed in [157], whereas [155] features a MILP model to optimize
coal fuel blending and shipping fleet design to transport coal from overseas to domestic power plants.
The latter model was validated through a case study involving the coal logistics system of a local
electric utility company. Meanwhile, Christiansen et al. [154| developed a constructive heuristic
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to optimize a maritime inventory routing problem faced by a cement producer in Norway. While
mainly concerned with stockyard management, the model in [137; 138] is also concerned with vessel
scheduling decisions aimed to minimize ship delays. A combination of railway problem and vessel
scheduling designed to have the product reach the port in time for boarding was studied in [115] and
solved by means of a MILP model, with an application to the HVCC. A more ambitious formulation
[153] modeled the global market of thermal coal shipment, with the objective of connecting export
and import ports while also meeting the demand at each node. They utilized their model to analyze
the impact of shipments and coal market changes in the worldwide flow of coal distribution.

The stochastic approach in [158] made use of a deterministic multi-period mixed integer pro-
gramming model to minimize total coal purchasing and transport.The stochastic component is a
scenario tree method designed to account for the uncertain coal demand.

6.2 Literature Summary and Research Opportunities

Similarly to railway transportation problems, maritime shipping presents many potential OR, ap-
plications. However, one can find only a limited literature directly connected to mining products.
Such a literature is mainly concerned with wvessel allocation and scheduling, and is dominated by
deterministic approaches. Hence, approaches that account for the underlying uncertainties of mar-
itime transportation would certainly enrich the literature. In particular, approaches that can both
quantify uncertainty and optimize the system under the mapped uncertainties would be welcome
additions to the literature.

CO4 emission and environmental issues were also not addressed in the surveyed literature. Hence,
approaches that consider the environmental burden related to the operation, as well as other ob-
jectives and stakeholders perspectives, constitute possible innovations in future research.

7. Supply Chain

The previous sections presented an outline of researches focused specifically on a single stage of
the mining supply chain. Naturally, as it can be expected, many approaches do exist that combine
multiple stages in the chain. This section is dedicated to a survey of these approaches. For an early
survey paper which addressed the mine-mill-market supply chain integration, the interested reader
is referred to [3].

When combining different production stages, the objective is often to determine production plans
and schedules that optimize the overall supply chain performance. Another very popular problem
in this context is the blending problem, as it often determines the revenue. That happens because,
depending on the blending process, one can manufacture different final products which, in their turn,
are sold at distinct prices [6]. Kozan and Liu [5] also highlights the importance of maintaining target
composition of iron quality. Another problem in our categorization of supply chain applications is
capacity exrpansion. Since mining is an activity that generally demands high investments, these
problems are solved to optimize these investments and their return. Table 7 presents a summary of
the researched literature on mining supply chain problems, selected according to the methodology
in Section 2 and Table 2.

An important application of operational research in logistics is the so-called Facility Location
Problem [197-200]. Despite this fact, there are few works that apply the Facility Location Problem
to the mining industry. Kumral [201] applied a genetic algorithm to find a solution to a deterministic
Mine Facility Location Problem. Zhou and Li [196] developed a two-stage stochastic integer pro-
gramming model with compound real options to optimize a multi-echelon coal supply chain under
uncertainty. Paricheh and Osanloo [41], on the other hand, took into account metal price and grade
uncertainties in their work. They used a quantitative simulation-based risk management approach
to solve the primary crusher location at Sungun Copper Mine (SCM) in Iran. Their results showed
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Table 7. Supply Chain Articles Classification

Bibliographic L. . .
Deterministic Stochastic # Articles
Review
25| [7; 19; 44; 45; 51;
—57; 62; 64; 65; 39; 70; T1; 73; 78—
Supply Chain 54-57; 62; 64; 65; [39; 70; 71; 73; 7
. 69; 96; 113; 115; 82; 84; 87; 88; 102;
Production [3; 5; 6] 85
) 118; 123; 126— 106; 130; 158; 181—
Planning and
129; 137-139; 153; 1
Scheduling ’ ’ ’ 96]
155; 156; 159-18
Problems ’ ’ 0]
[7; 19; 44; 45; 51;
54; 56; 57; 62; 64—
mmm [39; 70; 71; 73; 78—
- 66; 69; 118; 123;
= 82; 87; 88; 102;
) [3; 5; 6] 126; 153; 155; 159; 64
Blending 106; 130; 181
161-163; 166—
Problems 189; 191-195]
168; 170; 172—
174; 176-178; 180]
Capacity 3; 6] [96; 115; 160; 175 [189; 190; 196] 9
Expansion
Problems

that, depending on the chosen location, the project risk can increase ten times. It is worth pointing
out that the discussion about mining Facility Location will be constrained to the present paragraph
due to the limited literature on the subject.

7.1 Supply Chain Production Planning and Scheduling Problems

When the objective is to optimize overall supply chain performance, an important problem is to
determine which suppliers or mines will be used and what volume will be produced for each pe-
riod. OR applications dealing with this problem are collectively known as supply chain production
planning and scheduling problems (SCPPSP). Models covering multiple mines, stockpiles and pro-
cess are also known as “Mine complexes" models. Here, it is important to notice the difference
between Mine Production Scheduling Problems (MPSP) and Supply Chain Production Planning
and Scheduling Problems (SCPPSP), since both are production scheduling problems. Mine Produc-
tion Scheduling Problems (MPSP) are specific to the mining activity and use the block model to
divide the mines into blocks and determine when each block should be mined. Supply Chain Pro-
duction Planning and Scheduling Problems (SCPPSP), on the other hand, are more general and
cover more than one link of the mining supply chain. Their objective is to produce an schedule for
the production at each link with a view to optimize the overall gain. Hence, these models do not
need a detailed description of the mining blocks.. When a model covers more than one stage of the
mining supply chain and employs a block model, it is classified as both MPSP and SCPPSP [e.g.,
3; 5; 6; 445 45; 51; 54-57; 62; 64; 65; 10; 71; 13; 18-82; 84; 87; 88].
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Perhaps due to the stochastic nature of the revenue, which depends on market fluctuations, the
most common objective found in mining supply chain applications is to minimize the operational
cost. Naturally, this is not the only goal in the specialized literature. Figure 6a) is included to
provide an outline of the objective functions found in the researched articles.

As SCPPSP models more than one stage of supply chain, it must control the product flow between
successive stages in the chain. That, in turn, imposes constraints on flow and inventory balance.
Capacity constraints on pieces of equipment and facilities in general are also commonly found to
deal with limited processing capacity. Since the main objective is to sell mining product to the
final clients, one may also expect to find demand satisfaction constraints. Figure 6b) provides an
account of the main constraints found in the literature. Combination of SCPPSP and blending will
be considered in the next section.

Perhaps due to factors such as problem complexity and difficult to determine the cause and effects
of uncertainties, deterministic models are prevalent, as illustrated in Table 7. However, Table 7 also
shows a large body of literature covering stochastic aspects of the problem.

As often happens, deterministic approaches jump-started this research field. Early on, a LP model
was proposed to optimize United States coal supply chain in [164; 165]. Somewhat later, a fuzzy
bi-criteria multi-index transportation model was applied in [179] to aid decisions on the annual coal
purchase and allocation plan at Taipower, an electricity company in Taiwan. In a related work,
Pendharkar [172] proposed a fuzzy linear program to optimize production planning with blending
constraints, applied to coal mines in Virginia, Illinois and Pennsylvania. The choice of routs to
transport coal from mine to port in Colombia (including, roadway, railway and inland waterway)
was approached in [171] by means of a LP model. Meanwhile, Thomas et al. [128] employed mixed
integer programming to a planning and scheduling problem in Australian coal mines involving trains
and terminal integration. MILP models have been applied in [113] and [129]. The former paper aimed
to optimize a coal export supply chain by means of train scheduling and stockyard management
decisions. They suggested that DES systems be applied to tackle the integration of those decisions.
In contrast, Thomas et al. [129] employed column generation (CG) to solve a resource constrained
scheduling problem, with application in a real-world coal supply chain in which all mines share the
same railway. More recently, a research work proposed a decentralized approach for the coal supply
chain which is comprised of three components, namely multiple independent mines, railway company
and port terminal company [127]. In their column generation based decentralized approach, terminal
and railway find better upper bound solutions and feed them to a coordination problem. Finally,
Canales-Bustos et al. [161] proposed a multi-objective model that makes use of MILP and particle
swarm metaheuristic algorithms to optimize a mining decarbonized supply chain.

Stochastic models appear in more recent papers. Bodon et al. [71] optimized an export supply
chain scheduling problem with blending using LP and DES techniques. They applied the model in
a coal export supply chain. To tackle demand uncertainty in a coal trade enterprise, Cheng et al.
[184] employed model predictive control in conjunction with MILP. General purpose optimization
experiences with mine companies were presented in Balzary and Mohais [130] which involved plan-
ning and scheduling, blending, rail and vessel scheduling, along with two examples related to iron
and coal supply chains in Western Australia and Queensland. A scenario-based comparison was
proposed in [169] whereby a global turnover minimizing solution was compared to the actual sce-
nario in terms of ash emission. In order to come up with the optimized solution, the authors made
use of a deterministic LP model.

7.2 Blending Problems

Similarly to supply chain production planning and scheduling problems, blending problems are also
mainly concerned with optimizing operational costs, as illustrated in Figure 7a). As observed in Fig-
ure 7a), other objective functions also appear, concerned with revenue maximization, environmental
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Figure 6. Supply Chain - Production Planning and Scheduling Problem Articles

indicators, deviation from quality specifications, as well as other aspects of the operation.

A very important characteristic of a mining product is its quality, often related to the chemical
composition of the mineral ore. Products are generally specified by required target levels (intervals)
of certain key chemical elements. The addition of quality assurance constraints to supply chain
production planning and scheduling problems gives rise to blending problems. Consequently, blending
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problems must have blending constraints. A by-product of that is the additional need for flow and
inventory balance constraints, which also seem to be universal in blending problems. Capacity and
demand constraints are also common in the literature, as observed in Figure 7b), which summarizes
the main constraints found in the literature.
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Table 7 presents a graphical feature of deterministic and stochastic approaches for the blending
problem. Similarly to the other topics covered in this research, deterministic models are prevalent.
However, one can also observe a large portion of the literature considering uncertain aspects of the
problem, around 42% of the surveyed works.

Among the deterministic models, it is worth highlighting an early work by Ravindran and Hanline
[176], which develops a MILP model to find optimal locations for blending plants and applies the
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model to the state of Indiana, USA. Later, Barbaro and Ramani [159] were concerned with selecting
processing facilities and scheduling the production of a coal plant system. To solve the problem,
they made use of a MILP model. Sherali and Puri [178|, on the other hand, studied a similar
problem designed to optimize blending and distribution and modeled by means of three distinct
LP models, which were applied to the Westmoreland Coal Company. The three models are rather
similar, differing on the level of simplification they apply to the complexities arising in the real-
world supply chain. A different approach was proposed in [163|, which employs a multi-objective
linear goal programming model for the blending problem. In the same trend, Lyu et al. [170]
developed a goal programming model to minimize coal requirements deviation with an application
to a real-world problem at Hsinta Power Station. In contrast, a MILP formulation is proposed in
[166] to minimize total coal shipping and purchasing cost with blending constraints at a Taiwanese
power company. In Brazil, Nobrega [123] developed two complementary models to optimize Vale’s
Southeast system supply chain, aiming to maximize ore throughput while also accounting for vessel
delay penalties. The developed models make use of linear and integer programming techniques.
These same techniques were employed in a binary model solved by heuristic techniques and aimed
at optimizing coal shipping and blending at an electricity company in Taiwan [168]. Some time
later, to optimize coal mines supply chain in neighboring China, Peng et al. [174] developed a linear
programming model applied to Xuzhou’s coal mines supply chain. More recently, Schellenberg
et al. [177] evaluated the performance of genetic algorithms for nine instances of the coal blending
problem, comparing it to LP. A different study, Kumar and Chatterjee [54| developed a scheduling
model with both scheduling and stockpiling constraints, applying it to a large open-pit coal mine
in India.

Despite the complexity of the problem, one can also find non-linear formulations designed to con-
vey a better representation of the system. For a non-linear formulation to the production scheduling
of coal mines, we refer to [173]. A more involved model for the coal blending problem was proposed
in [167] which combines non-linear fuzzy neural network and genetic algorithm. A different ap-
proach was applied by Xi-Jin et al. [180], who employed simulated annealing to solve a non-linear
formulation of the coal scheduling and blending problem.

The blending problem is subject to many uncertainties, one of which is the very composition
of the arriving product. In Candler [183], such an uncertainty was introduced in a deterministic
MILP model by means of a sampling strategy with certainty equivalence. Uncertainties in the
product composition were also considered in the multi-objective chance-constrained formulation
introduced in [194] for the coal blending problem, which was applied to 6 case studies. The same
modeling approach was applied by Kumral [187], who applied multi-objective chance-constrained
programming to minimize blending cost, also considering quality variability. In a different direction,
Conradie et al. [185] developed a generic linear goal programming model for a multi-objective prob-
lem, considering demand variability by means of simulation scenarios. A number of works employed
chance-constrained models for the brass casting industry [191-193| under quality variations, with a
case study at MKEK brass factory in Kirikkale, Turkey. Montiel and Dimitrakopoulos [79] built a
stochastic programming model to solve mine production scheduling combined with processing and
transport planning, under different scenarios of geological uncertainty. The method is applied to a
mining complex that produces copper and contains two different pits. Other stochastic program-
ming approaches appear in [73; 181; 195|. Arigoni [181] developed optimization models to help US
power plants evaluate their purchase strategy under market changes. Goodfellow and Dimitrakopou-
los |73, 88] proposed a two-stage model that includes mine extraction uncertainty and non linear
transformations during production process. The two-stage model in [195], in contrast, accounts for
uncertainties both in ore supply and comodity market (price and demand). The model details mine,
stocks, plants and delivery to the final customer, but not the transportation and port operation.
Finally, a DES model is applied in [182] to a coal supply chain. The model, which encompasses
planning and blending decisions, was applied to a case study at PT Kaltim Prima Coal (KPC) in
Indonesia.
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Another way to tackle uncertainty is fuzzy logic, applied in [162] in the context of a multi-objective
blending problem. In a similar yet distinct setting, Li et al. [188] proposed an inexact fuzzy coal
blending model (IFCBM), with interval linear programming (ILP) and fuzzy linear programming
(FLP) to solve the coal planning and blending problem. Additionally, Dai et al. [186] proposed
a simulation-based fuzzy possibilistic programming approach for the coal blending problem. The
model was tested in a real-case power plant in Gaojing and Shijingshan,in the west of Beijing.

Environment constraints appear in some works regarding blending problems. Generally, they
impose limits to ash contents. Most of the literature consists in articles on coal mining [54; 153;
155; 162; 163; 166—168; 170; 172-174; 176-178; 180; 181; 185; 186; 188; 189; 194]. The exception is
[19], which addresses phosphate mining.

7.3 Capacity Expansion Problems (CEP)

Depending upon the considered time horizon, an analysis of the production planning and scheduling
problem must consider possible changes to the facilities. Since expanding capacity is often expensive
and involves projecting future demand, the expansion of an existing facility or the addition of a new
one requires very careful consideration. Deciding upon expansion process is the main motivation of
the so-called capacity expansion problems [202].

As occurred with previous Mining Supply Chain articles, to Minimize Operational Cost is a
often the objective. We found Minimize Investment Cost very frequently as well, because generally
capacity expansion incurs in investment cost. Figure 8a) show the different objective functions
found in the researched articles.

With regards to the problem’s constraints, flow constraints are always present, mainly because
planning capacity also involves projecting future operations. Naturally, since we are considering
whether or not to expand capacity, capacity constraints must always apply. Moreover, since the
expansion project is generally conceived to meet future demand, one can also expect demand con-
straints to be always part of the formulation. Observe in Figure 8b) that the preceding constraints
are, in fact, part of all surveyed formulations. Note also that Figure 8b) lists several additional
constraints, which depend on the formulation applied.

While capacity expansion is a consolidated problem in the literature, we found a modest number of
applications to mining supply chain. The surveyed papers are well distributed between deterministic
and stochastic models, as depicted in Table 7.

The surveyed papers on capacity expansion are fairly recent, which demonstrates that this is a
relevant problem for present research. Once again, linear and integer models tend to be prevalent.
Singh et al. [96] applied MILP to find an optimal expansion plan for the HVCC Supply Chain.
Different heuristics are applied to speed up the convergence time. Another MILP model was em-
ployed in [160] for the storage location problem in a coal supply chain, applying their results to
a real-world case study. Finally, another MILP formulation was applied to a coal supply chain in
Thailand Promban and Kittithreerapronchai [175].

Among the stochastic models, Liu et al. [189] developed an inexact coupled coal and power
management (ICCPM) model with uncertainty. To solve it, the authors mixed chance-constrained
programming (CCP), interval linear programming (ILP) and MILP techniques. Pimentel et al. [190]
suggested a multi-stage stochastic mixed-integer programming approach to solve the stochastic
capacity planning and dynamic network design problem (SCPDNDP). They use scenario analysis
combined with MILP to tackle demand uncertainty. They also developed a Lagrangian Heuristic to
speed up computational time. The authors used a Brazilian global mining company supply chain
example to evaluate the model. Zhou and Li [196] developed a two-stage stochastic MILP model
with non-convexr generalized Bender decomposition (NGBD) and Lagrangean relaxation to optimize
coal supply chain. The authors also built a deterministic model and a mixed non-linear programming
model to compare final results.

30



[196] [196]
4 [190] [190]
3 [189] [189]
7 [175] [175]
160 160
" [160] [160]
[115] [115] [96] [115] [189] [96]

0

Max Total Product Min Operational Cost ~ Min Investment Cost Min Idle Time Min Energy Min Time Schedule

Volume Consumption /CO2  Deviations / Penalties
emission
(a) Objective Functions

8
7

[196] [196] [196]
6

[190] [190] [190]

5

[189] [189] [189]
4
5 [175] [175] [175]
3 [160] [160] [160]
" [115] [115] [115] [115] [115] [115]
0 [96] [96] [189] [96] [96] [96] [96] [189]

Equipment and Demand Blending / Quality = Equipment Flow / Inventory Train Availability Berth Use Capital Budget
Facilities Volume Allocation (with Balance (with
Capacity Specifications) Specifications)

(b) Constraints

Figure 8. Supply Chain - Capacity Expansion Problems Articles

7.4 Literature Summary and Research Opportunities

One can find a significant number of work dealing with more than one link in the mining supply
chain. Interestingly, researches involving multiple links generally address production planning and
scheduling. As we are connecting links of the chain, it makes sense that these works present flow
constraints, which are prevalent. As often happens, deterministic linear models are mostly used.
Nonetheless, one still can find a significant number of stochastic approaches.

The blending problem is also commonly found in supply chain approaches. Blending is often
necessary since the products are not uniform over the mines. Blending is also very important in
other industries, such as oil & gas and chemical, where the final product is a mix of a number
of supplies. As it happens with scheduling problems, linear deterministic models are prevalent.
However, one can also find a considerable number of stochastic approaches.

Capacity expansion decision also involve the analysis of multiple links of the chain. However,
not many applications are found in the literature specifically related to the mining industry. Once
again, the majority of the literature features deterministic approaches.

In coal mining, there are a many blending models that impose constraints with respect to ash
emission. When it comes to iron ore models, however, only a small number of them address envi-
ronmental issues, such as COy or ash emissions. We believe that new studies in this area have the
potential to greatly contribute to both the industry and the society in general.

Finally, we hope that IoT, with online monitoring of the whole supply chain, will become a reality
and it will contribute for more complex models with faster responses to day-to-day operational
problems.
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8. Research opportunities

Due to the complex nature of mining operations and also to the often large distance between mines
and consumers, the mining supply chain is a fertile ground for OR applications. Some applications
are concerned with optimizing planning and operation of a single link in the chain. Among these
applications, mining operations are the subject of large body of research. Port and railway trans-
portation have received considerably less attention in the literature, hence present more research
gaps to be bridged. Still, one can argue that the latter topics motivated a fair amount of scien-
tific works. Maritime shipping, on the other hand, attracted only limited attention and therefore
presents even larger research gaps and opportunities.

As it can be expected, the mining industry has some peculiar features. However, one can also
argue that its supply chain does present some similarities with respect to other industries. In
that respect, the number of papers regarding specific topics within the mining industry seems to
be inversely proportional to the number of industries that share this topic. For instance, mine
production scheduling and mine layout design are rather specific and one can find a vast literature
on these subjects. On the other hand, train scheduling and wvessel allocation and scheduling are
rather general, and we find a rather limited number of applications to the mining industry. Hence,
the application of optimization techniques developed in related fields to the mining industry is a
fertile ground for new research. Inside mining industry, Underground Mine models are a recent
research topic. Due to their complexity, they are an interesting area for future developments.

Ash control is a fairly common environmental concern in coal mining articles with blending
models. On the other hand, only 4 of all surveyed articles placed the minimization of COs emissions
as one of their objectives [95; 161; 169; 189]. As might be expected, most of these articles are fairly
recent, as it is shown in Figure 9d). Given the volumes transported and the distances traveled, it is
undeniable that the CO2 footprint of this industry is high. Consequently, it is fair to expected that
this theme will be increasingly present in future researches.

The application of “Machine Learning" and “Artificial Intelligence" techniques to the mining
industry should, in all likelihood, increase in the next years. We also expect IoT to provide an
evolution in OR models in the mining industry. There will be more online information on the
traceability of the equipment and the system. Such a wealth of data will allow the creation of more
complex models for day-to-day problems, which can be expected to anticipate problems and bring
faster responses to them.

An important classification of the literature is with regards to the assumptions on the variability
of model parameters. There is a predominance of deterministic (65.2%) models against stochastic
models (34.8%). However, as previously stated, while the early literature is nearly entirely deter-
ministic, stochastic approaches have gained ground in recent research. With regards to the modeling
choice among stochastic approaches, discrete-event simulation, conditional simulation and chance-
constrained programming have received the larger share of attention. However, one can also find
stochastic programming, interval programming and queuing models as well. Figure 9a) conveys a
summary of the stochastic approaches found in the literature. One can see that the number of ap-
proaches is still limited. For example, one can notice the absence of Markov models, reinforcement
learning and approximate dynamic programming. It is clear that a greater variety of stochastic
approaches is desirable in the near future. We believe that new approaches and techniques have the
potential to generate innovations in this field. Finally, Figure 9¢) shows that stochastic approaches
tend to be more recent than deterministic ones..

We observed that, while nearly 50% of the researched literature combine multiple links of the
mining supply chain, as illustrated in Figure 9b), these articles typically cover only a couple of links.
We found only one work dealing with the four links in the chain, namely [96], which studies a problem
involving mine, railway, port and shipping. This indicates that there are many research opportunities
in supply chain modeling. Considering also the gap in the stochastic models, applications involving
multiple links and distinct stochastic modeling techniques can provide interesting and welcome
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This article covered state-of-the-art applications of operational research techniques to mining prob-
lems. It found the existing modeling techniques and pointed out research gaps and opportunities
for future research. We believe that future models will focus on environment issues and will enjoy
IoT, ML and Al benefits, providing faster responses to more complex problems. We also believe
that future literature should involve a wider variety of stochastic models and cover multiple aspects
of the chain.
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