Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

An investigation of galaxy evolution with H-ATLAS and gravitational lenses

Amvrosiadis, Aristeidis 2019. An investigation of galaxy evolution with H-ATLAS and gravitational lenses. PhD Thesis, Cardiff University.
Item availability restricted.

[thumbnail of 2019AmvrosiadisAPhD.pdf]
Preview
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview
[thumbnail of Cardiff University Electronic Publication Form] PDF (Cardiff University Electronic Publication Form) - Supplemental Material
Restricted to Repository staff only

Download (183kB)

Abstract

This thesis presents a collection of studies which mainly focus on the population of high-redshift dusty star-forming galaxies (DSFGs) in the context of galaxy evolution. The sample of DSFGs that is used in this thesis was discovered as part of the Herschel-Astrophysical Terahertz Large Area Survey (HATLAS; Eales et al., 2010) which is the largest area extragalactic survey undertaken with the Herschel Space Telescope. One Chapter of this Thesis studies the clustering statistics, i.e. the angular correlation function (ACF), of this population demonstrating that when selected on the basis of their flux density (i.e. S250¹m È 30 mJy) they exhibit a higher clustering strength at high redshift (z È 1; r0 Æ 8¡14 Mpc/h) than at low redshfit (z Ç 0.3; r0 Æ 1¡2 Mpc/h). From a galaxy evolution point of view this it is evident that we are dealing with two different galaxy populations, where the later is consistent with being the progenitors of massive early-type galaxies in the local Universe. This study uses that largest sample of DSFGs (discovered in the H-ATLAS survey) that has even been used to perform the measurement of their ACF. Another Chapter of this Thesis studies the properties of the Interstellar medium (ISM) of one of these high redshift DSFGs (HATLAS J091043.0¡000322) using a suite of multiwavelength observations. As this object is strongly lensed, we combined the resolving power of (ALMA) with the enchanced resolution offered by strong lensing to probe scales down to 300¡700 pc. Our morphological and kinematical analysis of the ISM components led us to conclude that this object is more likely undergoing a major-merger event. Finally, another chapter of this thesis utilizes a sample of Herschel-selected strongly-lensed galaxies to study the density profiles of the lens population in a statistical manner. Using both numerically and analytically-derived density distributions we were able to reproduce the observed distribution of image separations. Although we were not able to distinguish between the two profiles, we showed that with a sample »200 lenses that would become possible, highlighting that the simplicity of our selection of our sample does not introduce any additional systematics.

Item Type: Thesis (PhD)
Date Type: Completion
Status: Unpublished
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Uncontrolled Keywords: strong gravitational lensing, high-redshift galaxies, submillimetre galaxies, large-scale structure
Funders: STFC, Cardiff University
Date of First Compliant Deposit: 7 January 2020
Last Modified: 20 Oct 2020 01:39
URI: https://orca.cardiff.ac.uk/id/eprint/128266

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics