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ABSTRACT 

Multi-contrast images are commonly acquired together to maximize complementary diagnostic 

information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-

quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled 

data with joint regularization terms that leverage common information across contrasts. However, 

these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. 

Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of 

this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic 

resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. 

Joint regularization terms group sparsity and colour total variation are used to exploit common features 

across images while individual sparsity and total variation are also used to prevent leakage of distinct 

features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast 

algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared 

against using only individual and only joint regularization terms in reconstruction. Comparisons were 

performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction 

quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and 

improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions 

that solely use joint regularization terms are prone to leakage-of-features, the proposed method 

reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great 

promise for clinical use.  

Index Terms: compressive sensing, joint reconstruction, leakage-of-features, magnetic resonance 

imaging, multi contrast, parallel imaging, image reconstruction, joint regularization. 

INTRODUCTION 

Multiple images of the same anatomy under the influence of different contrasts are often acquired in magnetic resonance 

imaging (MRI) to accumulate diagnostic information. Common examples include multi-contrast imaging with T1, T2, or PD 

weighting, parametric mapping, and diffusion weighted imaging. However, with each acquisition lasting several minutes, MRI 

exams can become impractically long and costly. Prolonged scan times also increase susceptibility to patient motion and necessitate 

cumbersome motion correction or image registration procedures. Therefore, scan-time reduction techniques are direly needed to 

limit cost, patient discomfort, and motion with increasing number of acquisitions.  
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Accelerated imaging approaches including parallel imaging (PI) 1-6, multi-slice imaging 7-9 localizing the excitation volume 10-

17, dephasing outer volumes 18,19, localizing encoding to a sub-volume 20-22 and compressive sensing (CS) 23-45 are promising 

solutions. Among these, CS has gained prominence in the last decade, as it does not require complicated excitation pulses with 

increased specific absorption rate (SAR) or additional hardware. Furthermore, CS is compatible with alternative approaches such 

as parallel imaging 32,41 and simultaneous multi-slice imaging 46.  

Conventional CS techniques process each acquisition in a multi-contrast protocol individually 25-28. Yet, although tissues may 

appear at different signal levels in separate contrasts, the underlying tissue structure is shared among multi-contrast acquisitions. 

As such, multi-contrast images share common tissue boundaries, and they are likely compressible in similar transform domains. 

These observations have motivated researchers to investigate the benefits of jointly reconstructing multiple images of the same 

anatomy 29-40. Proposed application domains include dynamic MRI reconstructions that handle single-contrast acquisitions across 

time 35,36, multi-coil MRI reconstructions 32, multi-echo MRI reconstructions that handle repeated acquisitions with minor changes 

in contrast 33,37, fat-water separation 38, multi-contrast MRI reconstructions that process multiple distinct contrasts 29-31, and even 

multi-modality reconstructions 34.  

Joint reconstructions aim to utilize the information shared across contrasts to improve image quality. Sparse recovery during 

joint reconstructions has been attempted with a multitude of regularization terms in literature. A group of studies have focused on 

aggregation of individual regularization terms on each separate image such as the well-known ℓ1-sparsity 47 and Total Variation 

(TV) 48 terms. In Ref. 32, sparsity was promoted simultaneously across multiple receive channels by imposing ℓ1-sparsity on 

concatenated multi-channel dynamic MRI data. Ref. 38 jointly reconstructed water and fat images from a multi-echo acquisition by 

minimizing the sum of individual regularization functions on each image. Ref. 49 performed a quasi-joint reconstruction by spatially 

weighing the individual ℓ1-sparsity and Total Variation of an image using structural information extracted from a prior individually 

reconstructed image. The performance improvement with joint reconstruction depends on how shared information is leveraged 

against the information unique to each contrast. Classical individual regularization terms help preserve unique information in each 

contrast without leakage of distinct features across images, but reconstructions can be sub-optimally sensitive to shared information 

across contrasts. Meanwhile, joint regularization terms such as group sparsity 50 and Colour TV 51 that enforce ℓ1-sparsity and total 

variation on multiple images simultaneously have provided useful in several applications including parametric mapping 40, 

diffusion tensor imaging 39, multi-echo T2-weighted imaging 29,33 and multi-contrast imaging 30,31,52,53. Ref. 35 minimized the 

nuclear norm to exploit the temporal correlations whereas Ref. 36 used Frobenius and nuclear norms in a blind compressed sensing 

approach to dynamic MRI. Variations of TV regularization such as total generalized variation 34, parallel sets 54 and weighted joint 

(colour) TV 55,56 have also been used for jointly reconstructing MR and PET images 34,54,56 or for multi-contrast MRI 57,58. Joint 

regularization terms boost sensitivity for features that are common across acquisitions, but as a result they can reduce sensitivity 
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for features that are unique to each acquisition, and a feature that is only prominent in a single acquisition may leak into 

reconstructions of other acquisitions. Appearance of such artificial features can severely impair diagnostic evaluations; therefore, 

multi-acquisition reconstructions should be carefully investigated for leakage-of-features. 

In this study, we propose a reconstruction method for multi-acquisition MRI, named SIMultaneous use of Individual and joinT 

regularization terms for joint CS-PI reconstruction (SIMIT). SIMIT leverages both joint and individual regularization terms to 

maximize sensitivity for shared features among contrasts as well as unique features of each contrast while preventing undesirable 

leakage-of-features.  Specifically, colour TV (CTV) 51 and group ℓ1-sparsity 50 are used to exploit common information across 

contrasts, and individual TV 48 and ℓ1-sparsity 47 are used to prevent leakage-of-features. SIMIT is demonstrated for multi-contrast 

imaging, where the resulting optimization problem is solved efficiently via an adaptation 59 of Alternating Direction Method of 

Multipliers (ADMM) 27,60,61. First, SIMIT is compared against alternative reconstructions that only use individual ℓ1-sparsity and 

TV terms (Indiv-only) 59 or only use the joint terms CTV and group ℓ1-sparsity (Joint-only) 62, on a numerical phantom dataset. 

The phantom only included a single-channel receiver coil to isolate potential leakage artefacts. SIMIT is then compared against 

Indiv-only and Joint-only as well as ESPIRiT reconstructions 63 on multi-channel in vivo datasets. The main contributions of this 

study are as follows: 1) We introduce the simultaneous use of individual and joint versions of regularization terms in a multi-

channel multi-acquisition reconstruction problem. 2) We demonstrate improved image quality and reliability against leakage-of-

features in accelerated multi-contrast MRI. Single-channel and multi-channel implementations of this method were presented in 

part in the 2017 and 2019 Annual Meetings of the International Society for Magnetic Resonance in Medicine 64,65.  In Ref. 64, a 

single-channel version of the method was presented on a single subject. In Ref. 65, preliminary comparisons were performed 

between an earlier multi-channel implementation and ESPIRiT. Here, further to Refs. 64,65, we provide a detailed theoretical 

description of the multi-channel, multi-contrast reconstruction method, thoroughly investigate the benefits of simultaneously using 

individual and joint regularization terms as opposed to using only joint or only individual terms, demonstrate reconstruction 

performance across a broad range of acceleration rates and numbers of jointly reconstructed contrasts, and perform qualitative and 

quantitative comparisons against three state-of-the-art methods for in-vivo data acquired from N=11 participants.  

METHODS 

Theory 

We propose to jointly reconstruct multi-contrast datasets by leveraging common information across contrasts via CTV and group 

sparsity (ℓ2,1-norm, denoted by 𝑔𝐿1) regularization while preventing unwanted leakage artefacts via individual TV (𝑖𝑇𝑉) and 

sparsity (ℓ1-norm, denoted by 𝑖𝐿1) regularization. The resulting optimization problem is: 
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min
𝑥

[𝛼𝐶𝑇𝑉  𝐶𝑇𝑉(|𝒙|) + 𝛽𝑔𝐿1 ‖𝒙‖2,1 + 𝛾𝑖𝑇𝑉  ∑ 𝑇𝑉(|𝒙(𝑖)|)

𝑘

𝑖

+ 𝜃𝑖𝐿1  ∑‖𝒙(𝑖)‖
1

𝑘

𝑖

] 

 

(1) 

subject to ‖𝑨(𝑖,𝑗)𝒙(𝑖) − 𝒚(𝑖,𝑗)‖
2

≤ 𝜖𝑖,𝑗,             𝑖 ∈ 1, … , 𝑘;  𝑗 ∈ 1, … , 𝑁𝑐, 

 

(2) 

where 𝑘 is the number of contrasts, 𝑁𝑐 is the number of channels (coils), 𝑨(𝑖,𝑗), 𝒙(𝑖), 𝒚(𝑖,𝑗) and 𝜖𝑖,𝑗 denote the encoding matrix, the 

reconstructed image vector, the received signal acquired through channel 𝑗 for contrast 𝑖 and the upper-bound for data-fidelity. 

Equation (2) denotes the data fidelity constraint for the 𝑖th-contrast and 𝑗𝑡ℎ-channel. We prefer including data-fidelity as a constraint 

as opposed to a Lagrangian form, since 𝜖𝑖,𝑗 can simply be set according to the noise level calculated from noise-only data (i.e., data 

acquired without RF excitation). The CTV, ℓ2,1, TV, and ℓ1 regularization terms can be expressed as:  

𝐶𝑇𝑉(|𝒙|) =  ∑ √∑ ((∇1|𝑥(𝑖)[𝑛]|)2 +  (∇2|𝑥(𝑖)[𝑛]|)2)𝑘
𝑖=1𝑛 , 

‖𝒙‖2,1 =  ∑ √∑ |𝑥(𝑖)[𝑛]|2𝑘
𝑖=1𝑛 , 

𝑇𝑉(|𝒙(𝑖)|) =  ∑ √(∇1|𝑥(𝑖)[𝑛]|)2 + (∇2|𝑥(𝑖)[𝑛]|)2
𝑛 , 

‖𝒙(𝑖)‖
1

=  ∑ |𝑥(𝑖)[𝑛]|𝑛 , 

(3) 

where 𝛼𝐶𝑇𝑉 , 𝛽𝑔𝐿1, 𝛾𝑖𝑇𝑉 , 𝜃𝑖𝐿1 denote the respective regularization parameters. In (3), ∇1, ∇2 denote the image gradients in two 

orthogonal dimensions. Note that, all functions in (3) can trivially be extended to a higher number of dimensions as would be 

required for three-dimensional or dynamic acquisitions. The joint regularization terms ℓ2,1 and CTV combine the contrasts or their 

spatial derivatives, respectively, before regularizing the images. This allows an image with an inconspicuous tissue boundary that 

would normally be suppressed via TV regularization to retain this boundary, if the boundary is more prominent in another contrast. 

However, a prominent but unique feature in one contrast may lead to imperfect noise suppression in other contrasts, leading to 

misleading artificial tissues. I.e., joint regularization terms enhance reconstructions based on common properties across contrasts 

but may also lead to leakage of unique features across contrasts. Meanwhile, the individual regularization terms TV and ℓ1 suppress 

interference and noise based on the unique structural properties of each contrast, promising sparse recovery at higher 

undersampling rates without introducing unwanted feature transfer across contrasts. Therefore, the simultaneous use of the 

individual terms with the joint terms suppresses leakage-of-features due to the latter. Note that, while the individual and group 

sparsity terms can be applied in a transform domain that sparsifies the image, they are applied in the image domain in SIMIT, since 

empirical results in the development stages showed >3 dB better peak signal-to-noise ratio (pSNR) when these terms were applied 

in the image domain rather than in Wavelet or Discrete Cosine Transform domains. Note that, for typical Wavelet transforms in 
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MRI reconstruction, the ℓ1-term in Wavelet domain captures partly similar information to the TV term in image domain. This 

redundancy is further increased due to simultaneous use of individual and joint versions of regularization terms. In contrast, an ℓ1-

term in the image domain can improve capture of unique prior information over the TV term. In this study, pSNR was calculated 

as the ratio of the maximum image intensity across voxels to the root-mean-squared error between the original (𝒙0) and the 

reconstructed (𝒙) images, and expressed in decibels: pSNR = 20 log10
max(|𝒙|)

RMS(|𝒙0−𝒙|)
.   

In the Supporting Information, we give the general ADMM formulation, show how the proposed optimization problem for multi-

contrast MRI can be cast in this general formulation, and derive the update rules for implementation. The only parameter not shown 

in the body of the manuscript, 1/𝜇, is the step-size parameter which determines the rate of convergence; a smaller µ means larger 

steps and faster convergence. ADMM is known to converge under mild conditions 66 and the step size should be carefully selected 

to ensure good convergence behaviour, as the algorithm may diverge for very small µ. An automated way of selecting this 

parameter is given in 67. For non-convex problems, if the exact solution of each sub-problem is known, then the algorithm converges 

to a local minimum.  

Undersampling Masks and Noise 

k-Space data were retrospectively undersampled in one (1D-acceleration) or two (2D-acceleration) phase-encode directions to 

demonstrate performance for two- and three-dimensional imaging, respectively (Fig. 1). The central one-eighth section of k-space 

was fully-sampled. For 2D-acceleration, the diameter of the fully-sampled disc was set to one-eighth of the width of the k-space. 

Sampling masks were generated using probability distribution functions that decayed with a polynomial order of (R-2) or 3 

(whichever is larger), where 𝑅 is the undersampling factor 25. The undersampling masks were identical across reconstruction 

methods but were different across contrasts.  

 

Fig. 1.  Two examples of 1D and 2D-undersampling masks. 

The data-fidelity upper-bounds for SIMIT (𝜖𝑖,𝑗) and its alternative variants (individual terms: Indiv-only; joint terms: Joint-only) 

were empirically set to half of the square root of the noise power in experimental reconstructions. Note that simulations were 

designed to investigate different factors that may affect performance. To isolate the effect of such factors on reconstruction 
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performance, noiseless images were used for the simulations, unless specified otherwise. 

Numerical phantom 

The numerical dataset was generated using a realistic individual-subject brain phantom that contained segmentation masks for 

eleven types of tissues 68. The original data for the phantom were acquired using a 1.5T scanner with the following parameters: 

T1-weighted images (3D spoiled gradient echo): TR, 22ms; TE, 9.2ms; flip-angle, 30∘; resolution, 1mm isotropic; PD- and T2-

weighted images (turbo spin echo): TR, 3300ms; TE (PD/T2), 15/104ms; resolution, 1mm isotropic; number of slices, 62; slice 

thickness, 2mm; interslice gap, 0mm. 

The following contrasts were simulated: PD-weighted (TE/TR: 17/2775 ms), T1-weighted (TE/TR: 14/575 ms), T2-weighted 

(TE/TR: 102/2775 ms), T1-weighted fluid-attenuated inversion recovery (FLAIR, TE/TI/TR: 17/1050/2775 ms), and T2-weighted 

short-time inversion recovery (STIR, TE/TI/TR: 17/240/2775 ms). Sinusoidal phase variations in the Anterior-Posterior direction 

were simulated to introduce image phase, and variations at different spatial frequencies were assumed for separate contrasts (Fig. 

2). 

 

Fig. 2.  Magnitude (top) and phase (bottom) images from the numerical dataset for five different tissue contrasts: 

proton-density (PD)-weighted, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR) and short-

TI inversion recovery (STIR) images. 

In-vivo data 

Comparisons were made using in-vivo raw-data, acquired from N=11 participants using a 3T scanner (Siemens Healthcare, 

Erlangen, Germany) with a 32-channel receiver-array head coil. Experimental procedures were approved by the local ethics 

committee and written informed consent was obtained from the participants. A field-of-view (FOV) of 192 mm x 256 mm x 176 
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mm (phase x readout x slice) and resolution of 1 mm x 1 mm x 2 mm were prescribed for all acquisitions. For T1-weighted 

acquisitions, an MP-RAGE sequence was used with TE/TI/TR=3.87/1100/2000 ms; flip-angle=20∘. For PD- and T2-weighted 

acquisitions, a turbo spin echo sequence was used with TEPD=12 ms, TET2=118 ms, TR=1000 ms, flip-angle=90∘; turbo-factor=16, 

echoes/slice=12. Coil sensitivities were estimated using the approach in 63. 

Parameter Optimization and Image Normalization 

In CS reconstructions, resultant image quality depends on proper selection of regularization parameters (e.g., 𝛼𝐶𝑇𝑉, 𝛽𝑔𝐿1, 𝛾𝑖𝑇𝑉, 

𝜃𝑖𝐿1, in SIMIT). These parameters are often optimized on held-out training data since fully-sampled data are not available in test 

subjects. Thus, parameter selection is expected to be suboptimal to varying degrees in practice. To allow for a controlled level of 

suboptimality, here we intentionally optimized parameters on a five-contrast numerical dataset but tested on datasets with fewer 

contrasts without dataset-specific optimization.  

A mismatch between the image intensities in the training and test datasets may affect reconstruction quality. Here, raw k-space 

data for each acquisition were normalized such that the images reconstructed using Inverse Fourier Transform (simulations) or 

ESPIRiT (in-vivo reconstructions) for R=1 spanned the same intensity range, [0,255]. To optimize reconstruction performance, 

the regularization parameters for SIMIT, Indiv-only and Joint-only were separately optimized to maximize SSIM (structural 

similarity), which has been suggested to correlate highly with perceptual quality of visual images 69. Reconstructions were 

performed with each method for 500 iterations. Each contrast in the five-contrast numerical dataset was 1D-undersampled at R=3. 

An interval search algorithm was used with grid size: 11x11, depth: 3, parameter range: 0.001 to 2.5. The parameters in 31 were 

used as initial values and the range was automatically expanded by the algorithm as necessary. The optimized parameters were 

0.02 (ℓ1-sparsity) and 1.14 (TV) for Indiv-only and 0.085 (Group ℓ1-sparsity) and 0.23 (CTV) for Joint-only. 

Because the search space for SIMIT with four regularization terms is four-dimensional, the parameters optimized for Joint-only 

were used for the joint terms and the individual regularization parameters were manually tuned using the joint regularization 

parameters as the initial values. Note that, the joint regularization terms scale with √𝑘 while the sum of the individual terms scales 

linearly with 𝑘. Because the parameters were optimized for a five-contrast dataset, parameters were scaled with √5/𝑘 and 5/𝑘. 

Scaling with √1/𝑘 and 1/𝑘 maintains balance among the regularization terms for an arbitrary number of contrasts 𝑘, while 

normalizing the scaling coefficients with √5 and 5 keep the coefficients unaltered for 𝑘 = 5, respectively. The optimization yielded 

𝛼𝐶𝑇𝑉 = 0.19/√𝑘, 𝛾𝑖𝑇𝑉 = 0.11/𝑘, 𝛽𝑔𝐿1 = 0.51/√𝑘,  𝜃𝑖𝐿1 = 9.13/𝑘. The convergence speed parameter was empirically selected 

as 1/𝜇 = √𝑁/10, where 𝑁 is the number of image pixels.  

For in vivo experiments, the original pixel intensities in T1-weighted images were approximately an order of magnitude smaller 

than those in PD- or T2-weighted images. Thus, the normalization of the data scaled the signal in T1-weighted images upwards, 
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preventing a potential mismatch between the image intensities and the regularization parameters. However, because SNR remains 

constant after normalization, T1-weighted images had higher noise level compared to that of PD- and T2-images during joint 

reconstructions, leading to noisy reconstructions. To alleviate this issue, parameters for individual regularization terms (ℓ1-sparsity 

and TV) were increased 5-fold for Indiv-only and SIMIT.  

An adaptation of ESPIRiT with ℓ1-sparsity and TV terms was used to keep regularization terms as consistent as possible across 

methods under comparison. The parameters were optimized using the same approach as above, but because ESPIRiT uses a 

fundamentally different algorithm, the initial parameter range was adapted as 0.00005 – 0.125. We observed that optimized 

parameters yielded over-smoothing in in-vivo reconstruction, so the parameters were manually fine-tuned to increase visual acuity 

and pSNR, yielding 0.00025 (ℓ1-sparsity) and 0.000625 (TV). A kernel size of 6x6 was used for ESPIRiT. 

Simulated data 

SIMIT was compared to Indiv-only and Joint-only. All methods used optimized parameters and 250 iterations. To assess 

reconstruction performance as a function of acceleration rate, methods were compared in terms of pSNR and SSIM for acceleration 

rates between R=2 and R=5 for 1D-acceleration and between R=4 and R=15 for 2D-acceleration.  

To investigate performance as a function of the number of acquisitions that are jointly reconstructed, SIMIT was performed on 

2D-accelerated data with undersampling factors between R=4 and R=15. The number of contrasts was varied from 1 to 5, and for 

each number all possible subsets of the five-contrast dataset were considered. pSNR and SSIM were averaged across 10 

initializations of the undersampling mask for each case. pSNR and SSIM were also averaged across all subsets that contained a 

given contrast, e.g., the SSIM of the PD image was averaged across PD-T1, PD-T2, PD-FLAIR and PD-STIR for two-contrast 

joint reconstruction. 

Methods were also compared in terms of reconstruction time and stability of performance across undersampling masks and noise 

instances via a Monte-Carlo simulation with 250 runs. The five-contrast dataset was used with 1D-undersampling and R=3.  Each 

run was performed with independent instances of noise and undersampling masks. Runtimes (excluding data-preparation) at each 

iteration were measured with the cputime command in Matlab (which excludes any parallel computing capabilities) and averaged 

across runs. SSIM and pSNR averaged across contrasts and runs were plotted as a function of cumulative runtime for each method. 

Bivariate Gaussian noise was added with a standard deviation equal to 10% of the mean intensity of k-space data across all 

contrasts. A second set of Monte-Carlo tests were conducted (25 runs) to investigate the effect of using the same undersampling 

masks for each contrast versus using different masks across contrasts. 

An important concern regarding the use of joint regularization terms is leakage-of-features that are unique to a subset of the 

contrasts to other contrasts. To assess reliability against leakage-of-features, an elliptical dark region was introduced artificially in 

the PD-weighted image and an elliptical bright region was introduced in the T1-weighted image. These regions did not overlap 
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spatially, and their intensities were accordingly set to the minimum and the maximum of their respective images. To increase the 

potential effect of unique features on the joint regularization terms, the dataset was reduced to three contrasts (PD-, T1-, T2-

weighted).  All acquisitions were 2D-accelerated with R=4.  

To test stability against variations in the regularization parameters, all four parameters in SIMIT (𝛼𝐶𝑇𝑉, 𝛽𝑔𝐿1, 𝛾𝑖𝑇𝑉, 𝜃𝑖𝐿1) were 

individually scaled up/down until average SSIM across images (PD-, T1-, T2-weighted; 2D-acceleration, R=3) decreased from 

98% (optimized parameters) to below 95%. Since 𝜇 primarily controls convergence rate, it was not altered. 

In-vivo data 

SIMIT was compared to Indiv-only and Joint-only as well as the state-of-the-art ESPIRiT method for retrospectively 2D-

undersampled in-vivo data from N=11 participants. Methods were compared in terms of pSNR and SSIM (R=8, R=12, R=16) as 

well as via neuroradiologist reader studies (R=8). Images reconstructed with ESPIRiT without any undersampling (R=1) were used 

as reference in both evaluations. A neuroradiologist reader with 18 years of experience was blinded to method names, and methods 

were presented in randomized order. The reader evaluated the images for anatomical detail (1: low, 2: fair, 3: good/ acceptable for 

clinical use, 4: very good, 5: excellent) as well as Gibbs artefacts and noise level (1: intolerable, 2: too much, 3: acceptable/ not 

degrading the image, 4: very little, 5: none). All reference images were assigned a score of 5 in all categories by the reader to set 

a benchmark. Wilcoxon signed-rank test was performed on the reader scores as well as pSNR and SSIM measurements.   

Further Comparisons (Supporting Information) 

The proposed method was also compared to a collection of 6 state-of-the-art individual and joint reconstruction methods from 

the literature; Sparse MRI 25, TVCMRI 26, RecPF 27, GSMRI 29, FCSA 28 and FCSA-MT 31 using the numerical phantom and in-

vivo data from a participant. Because these reference methods are for a single-coil receiver coil, these comparisons 65 are given in 

the Supporting Information for conciseness. 

RESULTS 

Simulation Results 

SIMIT consistently outperformed both Indiv-only and Joint-only in terms of SSIM for 1D- and 2D-acceleration, demonstrating 

the benefit of simultaneously using individual and joint regularization terms (Fig. 3). On the average, SIMIT improved pSNR 

compared to Indiv-only and Joint-only by 1.7 dB and 4 dB for 1D-acceleration, and by 1.7 dB and 4.4 dB for 2D-acceleration, 

respectively. While the difference in SSIM is rather small for two-fold 1D-acceleration, the difference between the methods 

becomes evident as the acceleration factor increases, with SIMIT yielding 1.6% and 3.6% better SSIM than Indiv-only and Joint-

only, respectively. For the range of 2D-acceleration factors shown, SIMIT yields 2.1% and 5% better SSIM compared to Indiv-

only and Joint-only, respectively. 
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Fig. 3.  Simultaneous use of individual and joint regularization terms (SIMIT) improves image quality (in terms of 

pSNR and SSIM) over using only individual (Indiv-only) or only joint (Joint-only) regularization terms at all 

examined acceleration factors for both one-dimensional (R1D=2 to 5), and two-dimensional (R2D=4 to 15) 

acceleration. SSIM and pSNR were averaged across contrasts. 

Different contrasts have different pSNR and SSIM values for the same acceleration factors as pSNR and SSIM depend on image 

content (Fig. SI-8 in Supporting Information). Nevertheless, regardless of their individual pSNR and SSIM levels, Fig. 4 

demonstrates that all contrasts benefit from joint reconstruction, and consistently across the examined range of acceleration factors 

between R=4 and R=15. The performance improvement with increasing number of contrasts is more noticeable for higher 

acceleration factors. Averaged across contrasts, SSIM and pSNR were 0.8% and 2 dB higher for 5-contrast reconstruction than 

individual reconstruction for R=4. For lower acceleration rates, SSIM curves are saturated near 100% and pSNR performance is 

enhanced for greater number of contrasts. For higher accelerations, PSNR curves are relatively flat and SSIM performance is 

enhanced towards higher number of contrasts. Comparing a 5-contrast reconstruction to individual reconstruction, SSIM 

improvement monotonically increases to 3.3% SSIM at R=15, while the pSNR improvement monotonically decreases to 1 dB at 

R=15.  
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Fig. 4.  The variations of pSNR and SSIM with respect to the number of jointly reconstructed contrasts and the two-

dimensional acceleration factor R is shown for SIMIT. As the number of contrasts that are jointly reconstructed 

increases, image quality increases for all contrasts and acceleration factors. For a given contrast and a given 

number of jointly reconstructed contrasts, pSNR and SSIM were averaged across all possible subsets of contrasts, 

e.g. for PD and 2-contrast reconstruction, SSIM of the PD-image was averaged across PD-T1, PD-T2, PD-STIR 

and PD-FLAIR reconstructions.  

When identical undersampling masks were used for all contrasts instead of different masks across contrasts, the pSNR values 

dropped by up to 0.1 dB across contrasts (data not shown). Therefore, the effect of using different versus identical undersampling 

masks on the performance of the proposed method was not further considered.  

Despite increases in computation time per iteration with more regularization terms in SIMIT, the simultaneous use of individual 

and joint regularization terms in SIMIT enables improved reconstruction performance. Fig. 5 shows the variations of pSNR and 

SSIM with respect to reconstruction time, and variations in undersampling masks and noise instances. SIMIT quickly surpasses 

Indiv-only and Joint-only to yield higher pSNR and SSIM before Indiv-only and Joint-only can converge to their final images. 

Note that these computation times exclude any parallel computation. Fig. 5b shows the change in SSIM and pSNR due to variations 

in noise and masks. SIMIT is less sensitive to these variations, yielding similar or lower standard variation across the Monte-Carlo 

runs. 
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Fig. 5.  The variations of pSNR and SSIM with respect to (a) the reconstruction time and (b) variations in noise 

instances and undersampling masks. SSIM and pSNR were averaged across contrasts. In panel (a), SSIM and pSNR 

were averaged over 250 Monte-Carlo runs. Although SIMIT is mildly slower in improving image quality metrics in 

the first iterations, it quickly surpasses Indiv-only and Joint-only, yielding higher quality images before the metrics 

can reach steady-state for Indiv-only and Joint-only. In (b), SIMIT shows similar or better stability against 

variations in noise instances and undersampling masks. Standard deviation values are Indiv-only: 0.14% and 

0.22dB, Joint-only: 0.46% and 0.17dB, SIMIT: 0.09% and 0.17 dB for SSIM and pSNR, respectively.  

Fig. 6 visually compares SIMIT, Indiv-only and Joint-only in terms of leakage-of-features and reconstruction artefacts. Although 

Indiv-only does not have any leakage since images are reconstructed separately, the images suffer from residual noise-like artefacts 

due to undersampling. Joint-only reduces these undersampling artefacts but suffers from two potential drawbacks of joint 

reconstruction; leakage-of-features are apparent in all images (red arrows) and blurring of unique features are seen in the dark 

crescent in the original T1-weighted image (green arrow). SIMIT does not have any structured leakage-of-features, and the intensity 

of the image reconstruction artefacts due to undersampling are below those observed for Indiv-only and Joint-only. Furthermore, 

the dark crescent is as clearly represented as in Indiv-only. These results indicate that the simultaneous use of individual and joint 

terms prevent both potential pitfalls of joint reconstruction. SIMIT also alleviates the staircase artefacts seen for Joint-only and 

suppresses the noise-like artefacts seen for Indiv-only. 
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Fig. 6.  SIMIT, Indiv-only and Joint-only were compared in terms of leakage-of-features across contrasts. The 

numerical phantom was stripped of the skull and the skin for visualization purposes (but both tissues were included 

in the simulations). Red arrows show the leakage-of-features in Joint-only reconstruction, which are suppressed 

with SIMIT. Green arrow shows that the black crescent seen in the original image is blurred in Joint-only, but it is 

clearly delineated with SIMIT. 

With optimized regularization parameters, SIMIT yields an average SSIM of 98.1% for the 3-fold 2D-accelerated three-contrast 

dataset. Individually scaling down 𝛼𝐶𝑇𝑉, 𝛾𝑖𝑇𝑉, 𝛽𝑔𝐿1, 𝜃𝑖𝐿1 up to an order of magnitude did not reduce SSIM below 95%. Scaling the 

parameters up makes the regularization functions penalize the reconstruction more heavily and may lead to suboptimal 

reconstruction performance. SSIM still remained above 95% when 𝛼𝐶𝑇𝑉 , 𝛾𝑖𝑇𝑉 and 𝜃𝑖𝐿1 were individually scaled up by an order-of-

magnitude. However, although SSIM remained above 95% when 𝛽𝑔𝐿1 was scaled up 5-fold, it reduced below 95% when 𝛽𝑔𝐿1 was 

further doubled. All parameters except 𝛽𝑔𝐿1 have an order-of-magnitude headroom downwards and upwards, before noticeably 

affecting the image quality. 
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In-vivo results 

 SIMIT, Indiv-only and Joint-only as well as ESPIRiT were compared on in-vivo multi-channel acquisitions from N=11 

participants. Magnified regions-of-interest (ROI) from representative reconstructions are shown in Fig. 7 for PD-, T1- and T2-

weighted images at R=8. Visual comparisons show that with respect to Indiv-only and Joint-only, which suffer from residual 

reconstruction error and noise, SIMIT yields better noise suppression and leads to a clearer depiction of tissues, particularly 

manifested inside the Lentiform Nucleus and the Putamen in the higher-SNR PD- and T2-weighted images (Figs. 7a and 7c). 

Furthermore, the grey-matter and white-matter boundaries are hard to distinguish in the lower-SNR T1-weighted image for Indiv-

only and Joint-only, whereas SIMIT yields a clear depiction of these boundaries (Fig. 7b).  ESPIRiT also yields better noise 

suppression than Indiv-only and Joint-only, albeit at the cost of blurring and Gibbs-artefacts. Compared to ESPIRiT, SIMIT yields 

sharper images with better suppression of Gibbs-artefacts. This leads to a more accurate representation of the Globus Pallidus in 

the PD-weighted image, better delineation of the grey- and white-matter boundaries in the T1-weighted image, and the Putamen 

in the T2-weighted image. 

 

 Fig. 7.  Representative reconstructions of (a) PD-weighted, (b) T1-weighted, (c) T2-weighted images from three 

different participants for all methods at R=8. Magnified views show the regions bounded by the yellow rectangles. 

(a) Indiv-only and Joint-only suffer from noise, while ESPIRiT shows blurring at the boundary of the frontal 

opercular cortex (yellow arrows) and a narrower representation of the Globus Pallidus (pink arrows). SIMIT yields 

better noise suppression while demonstrating a clearer delineation of tissue at the frontal opercular cortex (yellow 
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arrow) and inside the Lentiform Nucleus (pink arrows). (b) Due to the relatively lower SNR of the T1-weighted 

image, grey-matter boundaries in the sulci cannot be identified in Indiv-only and Joint-only reconstructions (cyan 

arrow). For ESPIRiT, while noise suppression is much better, tissue delineation is compromised in the gyri due to 

the Gibbs-like artefacts (white arrows). SIMIT yields much better suppression than Indiv-only and Joint-only while 

yielding a clear depiction of grey-matter white-matter boundaries without Gibbs-artefacts. (c) SIMIT yields better 

delineation of the Putamen (pink arrow) as well as the partial volume of the Lateral Ventricle (yellow arrow) 

compared to the other methods.  

Indiv-only and Joint-only show elevated levels of noise-like error while ESPIRiT and SIMIT yield improved suppression of 

noise-like artefacts as demonstrated by the error images between the reconstructions and the ideal reference of a representative 

participant in Fig. 8 (R=8). While the intensities of the error images are similar for ESPIRiT and SIMIT in the lower-SNR T1-

weighted image, SIMIT outperforms ESPIRiT in artefact suppression for the higher-SNR PD- and T2-weighted images.  

 

Fig. 8.  Error images were calculated between the fully-sampled reference image and the reconstructed images for 

all methods at R=8. Indiv-only and Joint-only suffer from noise-like reconstruction artefacts for all contrasts. For 

the lower-SNR T1-weighted image, the error images for ESPIRiT and SIMIT have similar intensity, although the 

error for ESPIRiT is considerably more intense than SIMIT for PD- and T2-weighted images.  
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The error images were summed across all participants and contrasts to compare the methods for different acceleration factors 

(Fig. 9). The reconstruction artefacts for SIMIT are visually less intense for all acceleration factors. Sparse reconstructions contain 

both noise-like and structured artefacts due to undersampling. In visualization of reconstructed images, the reduced intensity of 

noise-like artefacts in SIMIT might give the impression that structured artefacts are more prominent compared to Indiv-only and 

Joint-only, even though the latter methods also have similar levels of structured artefacts. To investigate this issue, we calculated 

the error images between each reconstructed image and the fully-sampled reference image. The error images for separate 

reconstruction methods were then subtracted from each other to demonstrate potential differences in artefacts (Fig. 10). The 

difference images have only noise-like behaviour and lack any structural information. This confirms that Indiv-only and Joint-only 

have similar levels of structured artefacts as SIMIT, but these are overshadowed by the higher levels of noise-like error in Indiv-

only and Joint-only.  

 

Fig. 9.  Maps of reconstruction error were calculated for each contrast in each individual subject. Error maps were 

averaged across all contrasts and participants. Error maps were intensified 10-fold and shown in the same colour-

scale as the originals in Fig. 8. Error maps are shown for all methods at R=8, R=12 and R=16. On average, SIMIT 

yields visually reduced reconstruction artefacts compared to reference methods.  
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Fig. 10.  The difference images for SIMIT were subtracted from the difference images for Indiv-only and Joint-only, 

and then summed over N=11 participants. The resulting maps show noise-like behaviour but lack structural 

information. This demonstrates that structured artefacts are at similar levels for SIMIT, Indiv-only and Joint-only. 

Methods were also compared quantitatively. Statistical analysis showed that SIMIT yields significantly better pSNR and SSIM 

values for all contrasts and acceleration factors (R=8, R=12 and R=16) compared to all methods (p<0.05, Fig. 11). Averaged across 

participants, contrasts and acceleration factors, SIMIT yielded higher pSNR values than Indiv-only, Joint-only and ESPIRiT by 

4.5 dB, 5.0 dB and 4.3 dB at R=8; by 4.1 dB, 4.4 dB and 6.0 dB at R=12; and by 3.6 dB, 3.7 dB and 6.5 dB at R=16, respectively. 

Compared to all reference methods across all acceleration factors, SIMIT yielded at least 3.6 dB improvement in pSNR. 

ESPIRiT yielded relatively more consistent reconstruction performance across contrasts, with less than 3 dB variation in 

(participant-averaged) pSNR across contrasts for all acceleration factors. For Indiv-only and Joint-only, the variation across 

contrasts was as high as 10 dB. SIMIT yielded more consistent results than Indiv-only and Joint-only with up to 6 dB pSNR 

variation across contrasts. Even though the variation was larger than that of ESPIRiT, comparing the maximum pSNR values of 

ESPIRiT (blue triangular markers) and the minimum pSNR values of SIMIT (red triangular markers) shows that the pSNR values 

of SIMIT were higher than those of ESPIRiT for all contrasts, acceleration factors and participants. 

Joint reconstruction via SIMIT allows increasing the acceleration factor without compromising image quality. For the PD-

weighted image, SIMIT allows increasing R=8 to R=12 compared to Indiv-only and ESPIRiT, and R=16 compared to Joint-only 

while improving pSNR and SSIM. For the T1-weighted image, R=8 can be increased to R=10 (not shown) compared to ESPIRiT 

and R=16 compared to Indiv-only and Joint-only with better pSNR and SSIM. For the T2-weighted image, SIMIT yields better 

pSNR and SSIM at R=10 than Indiv-only and Joint-only at R=8, and at R=16 than ESPIRiT at R=8. 
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Fig. 11.  Methods are compared in terms of pSNR and SSIM for all participants and contrasts at R=8, R=12 and 

R=16. SIMIT yields significantly higher pSNR and SSIM (p<0.05) than all methods, consistently across acceleration 

factors and contrasts. Blue and red arrows show the maximum and minimum values, respectively, and the error bars 

show the standard deviation of the measured metric (pSNR or SSIM). 

To confirm that the visual and quantitative improvements in image quality enabled by SIMIT translate to diagnostic assessment, 

neuroradiologist reader studies were conducted for R=8 (Fig. 12). For all contrasts and comparisons in terms of anatomy, noise 

and Gibbs-artefacts, SIMIT yields higher scores than the other methods. SIMIT yields significantly better (p<0.05) anatomy scores 

than the other methods except for T1-weighted against ESPIRiT, where the two methods perform similarly. In terms of noise, 

SIMIT performs significantly better than Indiv-only and ESPIRiT for two of the contrasts while performing similarly for a third, 

and it performs significantly better than Joint-only for all contrasts. In terms of Gibbs artefacts, SIMIT performs significantly better 

than all other methods for PD-weighted images. SIMIT performs significantly better than ESPIRiT for T1-weighted images, while 

performing similarly to Indiv-only and Joint-only. Meanwhile, all methods perform similarly for T2-weighted images. For each 

contrast, SIMIT yields significantly better scores (p<0.05) in at least one of the comparisons (anatomy/noise/Gibbs) against each 

alternative method.  
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Fig. 12.  Reconstruction methods were compared in terms of neuroradiologist reader scores. The reader was blinded 

to method names and methods were presented in randomized order. SIMIT yields significantly higher scores in 19 

out of 27 comparisons and yields similar performance in the remaining cases. The methods SIMIT yields 

significantly higher scores against are indicated by the asterisks and the vertical bars below the asterisks (e.g. 

against Joint-only and ESPIRiT for the T1-weighted image in terms of noise-level). Blue and red arrows show the 

maximum and minimum scores, respectively, and the error bars show the standard deviation of the scores.  

SIMIT performs significantly better (p<0.05) than Indiv-only, Joint-only and ESPIRiT in six, seven and six out of nine 

comparisons (three contrasts, anatomy/noise/Gibbs), respectively. Averaged across participants, contrasts and categories, the 

neuroradiologist scores for SIMIT were higher by 0.7, 0.9 and 1.2 compared to Indiv-only, Joint-only and ESPIRiT, respectively.  

Further Comparisons (Supporting Information) 

SIMIT was also compared to a large collection of state-of-the-art methods from the literature 25-29,31,59 in terms of pSNR, SSIM 

and computation speed (Supporting Information). While the reference method RecPF had a faster initial improvement in pSNR 

and SSIM, SIMIT quickly surpassed RecPF and converged to higher quality images (Fig. SI-2). SIMIT was also more robust to 

variations in undersampling masks and noise (Fig. SI-2), yielded better suppression of reconstruction artefacts (Figs. SI-3 and SI-

4), and provided better SSIM and pSNR for various 1D- and 2D-acceleration rates (Fig. SI-5). Finally, SIMIT yielded a clearer 

and sharper depiction of tissues for the in-vivo data (Figs. SI-6 and SI-7).  

DISCUSSION 

The proposed multi-channel multi-acquisition reconstruction method, SIMIT, incorporates both joint and individual 

regularization terms across multi-contrast images. The complex optimization problem that arises is solved via the ADMM 

algorithm. SIMIT enhances sparse recovery for multi-contrast datasets, for both single- and multi-channel receiver coils. It also 
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enables prescription of higher acceleration factors through joint reconstruction of multi-contrast acquisitions. In multi-contrast 

reconstructions, SIMIT outperforms a variant method that only includes individual regularization terms (Indiv-only), a variant 

that only includes joint regularization terms (Joint-only), as well as a state-of-the-art parallel imaging method (ESPIRiT). 

Compared to Indiv-only and Joint-only, SIMIT lowers reconstructions errors due to residual noise and aliasing. While Joint-only 

suffers from visible feature leakage across contrast, SIMIT yields enhanced reliability against these artefacts. SIMIT also 

improves recovery of high spatial frequency details compared to ESPIRiT. The enhanced image quality of SIMIT is also 

apparent in both quantitative metrics and neuroradiologist reader scores.  

Even though the proposed method uses four regularization terms, the additional time required by using more regularization 

terms is relatively small compared to the time required to complete a whole iteration. Furthermore, using all terms simultaneously 

improves image quality with respect to individual-only and joint-only reconstruction due to information sharing and prevention of 

leakage-of-features, respectively. Therefore, image quality rapidly improves in fewer iterations, and the method converges to 

higher-quality images.  

In this study, non-identical undersampling masks were used for each contrast. Even though random undersampling patterns in 

CS lead to incoherent undersampling artefacts, using identical masks for each contrast may create a coherence in the undersampling 

artefacts across contrasts. The method was also tested with identical undersampling masks across contrasts, however, the difference 

with respect to using non-identical masks was modest. This could partly be attributed to the dissimilarity of the jointly reconstructed 

contrasts. Even though the undersampled frequencies are the same, the energy content at these frequencies is different for each 

contrast, leading to dissimilar undersampling artefacts. Using identical undersampling masks could potentially lead to further 

reductions in imaging performance for similar contrasts such as multi-echo acquisitions at different echo-times. Detailed 

comparison of using identical undersampling masks to undersampling masks explicitly designed to complement each other can be 

found in Ref. 43,70. 

Previous joint reconstruction approaches in MRI include using nuclear and Frobenius norms 35,36 for dynamic MRI; K-SVD 71 

for parametric mapping 37; minimizing the sum of individual regularization functions 38, spatially weighting the regularization 

terms of an image using a prior image for multi-contrast MRI 49, and replacing one or both of the ℓ1-sparsity and TV terms with 

group sparsity and CTV for diffusion tensor imaging 39, parametric mapping 40, multi-echo T2-weighted imaging 29,33 and multi-

contrast imaging 30,31. In this study, our choice in regularization terms was motivated by two reasons. First, we preferred the more 

commonly used ℓ1-sparsity and Total Variation to other alternatives, since specific terms used in dynamic MRI and parametric 

mapping may not be directly applicable to multi-contrast datasets that comprise a small number of static acquisitions under distinct 

contrasts, and that may not lead to an overcomplete dictionary suitable for K-SVD. Second, we simultaneously used individual 
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and joint versions of the regularization terms to create a balance between utilizing common features across images and preserving 

individual features of each contrast. Group ℓ1-sparsity was introduced for improving signal recovery in low-SNR voxels, in cases 

where the signal is present broadly across contrasts. Note that group-sparsity can also lead to unwanted suppression of a signal that 

is present only in a small subset of contrasts. For such cases, individual sparsity was introduced to retain contrast-specific signals. 

Similarly, Colour TV better distinguishes tissue boundaries in lower-SNR images when there is clear delineation of tissues in a 

higher-SNR image. Any possible detrimental effects, when all images except one have noisy patterns in smoothly varying regions 

or across tissue boundaries, were prevented by the individual TV as it serves to reduce noise in individual images.  

In practice, individual reconstruction of each acquisition in a multi-contrast protocol is better suited to online processing as it 

improves workflow by recovering the images for the a given contrast while data are being acquired for the next contrast. However, 

this does not preclude a workflow in which a given contrast is reconstructed without latency as the data become available to guide 

the prescription of later acquisitions in the protocol. At the end of the protocol, all acquisitions can still be jointly reconstructed for 

maximal image quality. This workflow would be similar to the one in Ref. 49 with the difference being that in SIMIT both images 

are jointly reconstructed instead of using an initially reconstructed image to improve the reconstruction of later images, without 

updating the first.  

Selection of regularization parameters has a critical effect on the convergence behaviour and resultant image quality of 

regularized reconstructions. Each of the four regularization parameters used in SIMIT were separately varied until the average 

SSIM was reduced from 98% to below 95%. No significant variations in image quality were observed when the parameters were 

scaled up or down by an order of magnitude, suggesting that SIMIT is reasonably robust against variations in reconstruction 

parameters. The most sensitive parameter was that of group sparsity while the other parameters had broader margins. The optimal 

parameters may show larger deviations for body parts with substantially different tissue structure (e.g., the abdomen versus the 

brain). In such cases, parameters can be optimized a priori on a training dataset based on the anatomy of interest, yielding anatomy-

specific sets of parameters.  

The relative scales of image intensities and regularization parameters can affect the progression of iterative reconstructions. In 

case of a large mismatch in scale, it was observed that the updates in each iteration were either excessively small or large in 

magnitude, which caused all methods tested here to result in poor reconstructions. Therefore, intensity normalization was used to 

improve image quality and to ensure that similar ranges of regularization parameters work well across datasets. This is particularly 

important for joint reconstruction of multiple contrasts since image scales may vary significantly across acquisitions, and 

acquisitions with higher image intensities can dominate calculations of joint regularization terms such as joint sparsity or colour 

TV. To prevent potential scale-related biases, k-space data for each acquisition were normalized in this study, such that the 

respective fully-sampled reconstructed images are in the same range. Assuming similar initial noise levels, this normalization 
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scales the noise-level for images with relatively low intensity upward, compared with the noise-floor of the images with higher 

intensity. To compensate for this increase in the noise level, we had to adjust the individual regularization terms for the T1-weighted 

image for all methods that use individual regularization to improve image quality. Even prior to adjustment, we prefer imbalanced 

noise levels across acquisitions to poor reconstruction quality.  

SIMIT was demonstrated with both 1D and 2D undersampling, and thus it can be applied to both 2D and 3D imaging. Here we 

applied the regularization terms on cross-sectional images across the phase-encode directions. Alternatively, an entirely 3D 

optimization problem can be cast with regularization terms also incorporating tissue information along the readout dimension. In 

that case, group sparsity terms can be enforced across multiple cross-sections to further improve reconstruction performance.  
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SUPPORTING INFORMATION 

THEORY 

Here, we present a general formulation of the ADMM problem with multiple constraints and introduce the specific ADMM 

implementation for multi-contrast MRI.  

Generalized ADMM Formulation 

To solve the optimization problem cast in Equations (1)-(2) in the main text, we devised an ADMM-based algorithm. In general, 

ADMM can be used to solve problems of type: 

 min
𝒙,𝒛

𝑓(𝒙) + 𝑔(𝒛) [S1] 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑷𝒙 + 𝑸𝒛 = 𝒄, 

where an unconstrained multi-objective convex optimization problem is split via two variables 𝒙 and 𝒛, and a constraint is 

introduced with variables 𝑷, 𝑸, and 𝒄 that define the relationship between 𝒙 and 𝒛. Here we first show that the proposed SIMIT 

reconstruction can be cast in the form of Eq. [S1]. Note that the constrained optimization problem in Eq. (1) for multi-contrast 

images (𝒙) can be expressed as:  

 min
𝑥

𝜉1𝜙1(𝒙) + 𝜉2𝜙2(𝒙) + ⋯ + 𝜉𝑚𝜙𝑚(𝒙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑨(𝑖)𝒙(𝑖) − 𝒚(𝑖)‖
2

≤ 𝜖𝑖 , 𝑖 ∈ 1, … , 𝑘, 

[S2] 

where 𝑘 is the number of contrasts, 𝑚 is the number of regularization terms, 𝜙𝑗 denotes the jth regularization term (CTV, ℓ2,1, TV, 

or ℓ1) and 𝜉𝑗 is the corresponding regularization parameter, i.e. 𝛼𝐶𝑇𝑉, 𝛾𝑖𝑇𝑉, 𝛽𝑔𝐿1, 𝜃𝑖𝐿1. 𝑨(𝑖) = 𝑴(𝒊)𝑭 denotes the undersampled 

system observation matrix with 𝑴(𝒊) denoting the undersampling mask and 𝑭 denoting the Fourier transformation matrix. 𝑦(𝑖) is 

the acquired data, and ‖𝑨(𝑖)𝒙(𝑖) − 𝒚(𝑖)‖
2

≤ 𝜖𝑖 denotes the data fidelity constraint for the 𝑖th contrast.  

To efficiently solve the optimization problem in Eq. [S2] using ADMM, we define 𝒛 as the concatenation of k vectors:  

 𝒛 = [𝒛(0)𝑇
… 𝒛(𝑘)𝑇

]
𝑇
, [S3] 

where the vector for each contrast 𝒛(𝑖) is defined as the concatenation of m sub-vectors 𝒛(𝑖,𝑡) for each regularization term: 

 𝒛(𝑖) = [𝒛(𝑖,0)𝑇
 𝒛(𝑖,1)𝑇

… 𝒛(𝑖,𝑚)𝑇
]

𝑇
. [S4] 

Based on the definitions in Eqs. [S3]-[S4], here we propose solving:  

 min
𝑥

𝜉1𝜙1 ({𝒛(𝑖,1)}
𝑖=1,…,𝑘

) + 𝜉2𝜙2 ({𝒛(𝑖,2)}
𝑖=1,…,𝑘

) + ⋯ + 𝜉𝑚𝜙𝑚 ({𝒛(𝑖,𝑚)}
𝑖=1,…,𝑘

) 

[S5]  

subject to

            

  {  

‖𝒛(𝑖,0) − 𝒚(𝑖)‖
2

≤ 𝜖𝑖 , 𝑖 = 1, … , 𝑘

𝒛(𝑖,0) = 𝑨(𝑖)𝒙(𝑖), 𝑖 = 1, … , 𝑘

𝒛(𝑖,𝑡) = 𝒙(𝑖), 𝑖 = 1, … , 𝑘, 𝑡 = 1, … , 𝑚

           

            

 . 

Multiple sets of constraints are provided in Eq. [S5]. The first set is used to enforce data fidelity (as given in Eq. [S2]) on the first 

sub-vector of each 𝒛(𝑖), i.e., 𝒛(𝑖,0). The second set defines 𝒛(𝑖,0) as 𝑨(𝑖)𝒙(𝑖). The third set defines the remaining sub-vectors as 𝒙(𝑖) to 

pass those separately onto each regularization term. Here, we define a regularization function associated with the data fidelity 

constraint to treat it as a regularization term rather than a constraint. This change of variables does not change the solved problem 

and is equivalent to Eq. [S2]. We define 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒗) as the indicator function of the constraint (‖𝒗 − 𝒚(𝑖)‖
2

≤ 𝜖𝑖): 
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𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))

(𝒗) = {
0, ‖𝒗 − 𝒚(𝑖)‖

2
≤ 𝜖𝑖

∞, ‖𝒗 − 𝒚(𝑖)‖
2

> 𝜖𝑖

. [S6] 

Eq. [S5] is equivalent to Eq. [S1], and it can be cast into the same form with the following change of variables:  

 𝒙 = [𝒙(1)𝑇
… 𝒙(𝑚)𝑇

]
𝑇
, 

𝑓(𝒙) = 0, 

𝑷(𝑖) = − [(𝑨(𝑖))
𝑇

 𝑰 … 𝑰]
𝑇

, 

𝑸 =  𝑰, 

𝒄 = 0, 

𝑔(𝒛) = ∑ 𝜉𝑡𝜙𝑡 ({𝒛(𝑖,𝑡)}
𝑖=1…𝑘

) + 𝑚
𝑡=1 ∑ 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) 𝑘

𝑖=1 , 

[S7] 

where P is defined as a block diagonal matrix with 𝑷(𝑖) as its diagonal elements, Q is an identity matrix, and c is a zero vector.  

Having shown that the proposed optimization problem for multi-contrast MRI can be cast in the general ADMM formulation 

of Eq. [S1], we derive the following update rules: 

 𝒙𝑛+1 =  argmin
𝒙

 ‖𝒛𝑛 − 𝑷𝒙 + 𝒅𝑛‖2
2 [S8] 

 
𝒛𝑛+1 =  argmin

𝒛
 [∑ 𝜉𝑡𝜙𝑡 ({𝒛(𝑖,𝑡)}

𝑖=1…𝑘
) +  ∑ 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) 

𝑘

𝑖=1

𝑚

𝑡=1

+
μ

2
 ‖𝒛 − 𝑷𝒙𝑛+1 + 𝒅𝑛‖2

2] 

[S9] 

 𝒅𝑛+1 =  𝒅𝑛 + 𝒛𝑛+1 − 𝑷𝒙𝑛+1 [S10] 

where the subscript 𝑛 denotes the state of any given variable at iteration 𝑛, and 𝒅 denotes the dual variable associated with the 

Lagrangian of Eq. [S1]. The problem in Eq. [S6] is a simple least squares problem with block-diagonal entries. It can be separated 

and solved for each contrast as: 

 𝒙𝑛+1
(𝑖)

=  argmin
𝒙(𝑖)

 ‖𝑷(𝑖)𝒙(𝑖) − ( 𝒛𝑛
(𝑖)

+ 𝒅𝑛
(𝑖)

)‖
2

2
, [S11] 

 
= (𝑷(𝑖)𝐻

𝑷(𝑖))
−1

𝑷(𝑖)𝐻
( 𝒛𝑛

(𝑖)
+ 𝒅𝑛

(𝑖)
), [S12] 

 
= (𝑚𝑰 +  𝑨(𝑖)𝐻

𝑨(𝑖))
−1

(𝑨(𝑖)𝐻
( 𝒛𝑛

(𝑖,0)
+ 𝒅𝑛

(𝑖,0)
) + ∑( 𝒛𝑛

(𝑖,𝑡)
+ 𝒅𝑛

(𝑖,𝑡)
)

𝑚

𝑡=1

). [S13] 
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Hence the update equation for 𝒙 can be decomposed into 𝑘 separate least-squares problems. For MRI data from a single receiver 

coil, 𝑷(𝑖)’s are in the form of masked unitary transforms. In this case, each least squares operation to calculate 𝒙𝑛+1
(𝑖)

 and 𝑨(𝑖)𝒙𝑛+1
(𝑖)

 

can be implemented using several simple element-wise operations (O(N)) and 2 FFT operations per contrast per iteration 

(O(NlogN)) 1. The updates in Eq. [S9] can also be separated for each regularization term 𝜙𝑡(⋅) and the indicator 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) . 

For the sub-vector associated with data fidelity constraint the update becomes: 

 𝒛𝑛+1
(𝑖,0)

=  argmin
𝒛(𝑖,0)

 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) +
μ

2
 ‖𝒛(𝑖,0) − 𝑨(𝑖)𝒙𝑛+1

(𝑖)
+ 𝒅𝑛

(𝑖,0)
‖

2

2
, [S14] 

 𝒅𝑛+1
(𝑖,0)

=  𝒅𝑛
(𝑖,0)

+ 𝒛𝑛+1
(𝑖,0)

− 𝑨(𝑖)𝒙𝑛+1
(𝑖)

. [S15] 

Eq. [S14] is a simple projection onto an ℓ2-norm hyper-sphere 2. Here, the variable 𝜇 is the augmented Lagrangian parameter, and 

is associated with the inverse of the step size for the algorithm. For the remaining sub-vectors, the z-update step for each 

regularization terms in Eq. [S9] becomes: 

 
{𝒛𝑛+1

(𝑖,𝑡)
}

𝑖=1…𝑘
=  argmin

𝑧
 𝜉𝑡𝜙𝑡 ({𝒛(𝑖,𝑡)}

𝑖=1…𝑘
) + 

μ

2
 ‖{𝒛(𝑖,𝑡) − 𝒙𝑛+1

(𝑖)
+ 𝒅𝑛

(𝑖,𝑡)
}

𝑖=1…𝑘
‖

2

2

, [S16] 

 𝒅𝑛+1
(𝑖,𝑡)

=  𝒅𝑛
(𝑖,𝑡)

+ 𝒛𝑛+1
(𝑖,𝑡)

− 𝒙𝑛+1
(𝑖)

. [S17] 

The operation in Eq. [S16] is called the Moreau proximal mapping function 3, the result of which we shall denote 

Ψ𝜉𝑡𝜙𝑡
𝜇

({𝒙𝑛+1
(𝑖)

− 𝒅𝑛
(𝑖,𝑡)

}
𝑖=1…𝑘

).  

ADMM is known to converge under mild conditions 3. For non-convex problems, if the exact solution of each sub-problem is 

known, then the algorithm converges to a local minimum. Step size parameter 1/µ determines the rate of convergence; a smaller µ 

means larger steps and faster convergence. However, the algorithm may diverge for very small µ. Therefore, the step size should 

be carefully selected to ensure good convergence behaviour 3. An automated way of selecting this parameter is given in 4. 

Extension to Parallel Imaging + Compressed Sensing 

To extend the described algorithm to parallel imaging, coil sensitivities need to be incorporated. This was achieved by 

representing the encoding matrix 𝑨(𝑖) as a concatenation of the encoding matrix for each coil as 𝑨(𝑖) = [
𝑨(𝑖,1)

⋯
𝑨(𝑖,𝑁𝑐)

] = [
𝑴(𝑖)𝑭𝑪(1)

⋯
𝑴(𝑖)𝑭𝑪(𝑁𝑐)

], 

where 𝑪(𝑗) is the coil sensitivity for channel 𝑗, and separating each dual variable 𝒛(𝑖,0) into 𝑁𝑐 parts as 𝒛(𝑖,0) =

[𝒛(𝑖,0,1)𝑇
… 𝒛(𝑖,0,𝑁𝑐)𝑇

]
𝑇
, where 𝑁𝑐 is the number of coils. Then, the matrix associated with ADMM in Eq. [S7] and the indicator 

function in Eq. [S6] become:  
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𝑷(𝑖) = − [(𝑭𝑪(1) ⋯  𝑭𝑪(𝑙))

𝑇
 𝑰 … 𝑰]

𝑇

, [S18] 

 
𝛪𝐸(𝜖𝑖𝑗,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) = {

0,          ‖𝑴(𝒊)𝒛(𝑖,0,𝑗) − 𝒚(𝑖,𝑗)‖
2

< 𝜖𝑖,𝑗        ∀𝑗

∞,                otherwise.                                      
 [S19] 

This requires two updates to given equations. First, Eq. [S11] should be updated to reflect this change in 𝑷(𝑖). 

 
𝒙𝑛+1

(𝑖)
=  (𝑷(𝑖)𝐻

𝑷(𝑖))
−1

𝑷(𝑖)𝐻
( 𝒛𝑛

(𝑖)
+ 𝒅𝑛

(𝑖)
), [S20] 

 

= (𝑚𝑰 + ∑|𝑪(𝑗)|
𝟐

𝑁𝑐

𝒋=𝟏

)

−1

(∑ 𝑪(𝑗)𝐻
( 𝒛𝑛

(𝑖,0,𝑗)
+ 𝒅𝑛

(𝑖,0,𝑗)
)

𝑁𝑐

𝑗=1

+ ∑( 𝒛𝑛
(𝑖,𝑡)

+ 𝒅𝑛
(𝑖,𝑡)

)

𝑚

𝑡=1

), [S21] 

All operations given in Eq. [S21] are with diagonal matrices, and can be implemented using simple element-wise operations. Next, 

by extending the data fidelity to handle each coil separately using these definitions, the block diagonal structure in x-update step 

of Eq. [S12] is preserved, and this step can still be implemented in O(NlogN) operations using only simple FFT operations. 

Moreover, the projection step is still the same except now some elements of 𝒛 is kept constant. Final necessary changes are, Eq. 

[S16] becomes: 

 

𝒛𝑛+1
(𝑖,0)

=  argmin
𝒛(𝑖,0)

 𝛪𝐸(𝜖𝑖,𝑰,𝒚(𝑖))(𝒛(𝑖,0)) +
μ

2
 ‖𝒛(𝑖,0) − [

𝑭𝑪(1)

…
𝑭𝑪(𝑁𝑐)

] 𝒙𝑛+1
(𝑖)

+ 𝒅𝑛
(𝑖,0)

‖

2

2

, [S22] 

and Eq. [S15] becomes: 

 

𝒅𝑛+1
(𝑖,0)

=  𝒅𝑛
(𝑖,0)

+ 𝒛𝑛+1
(𝑖,0)

− [
𝑭𝑪(1)

…
𝑭𝑪(𝑁𝑐)

] 𝒙𝑛+1
(𝑖)

. [S23] 

Solving SIMIT using ADMM 

To efficiently solve the SIMIT problem using the adapted ADMM algorithm described above, proximal mapping functions are 

needed that yield the solution of each subproblem associated with each regularization term. The proximal mapping function of the 

individual ℓ1-norm is a simple element-wise operator known as soft-thresholding 1: 

 
Ψ𝜉𝑡‖.‖1

𝜇

(𝒗) = exp{1𝑗∠𝒗} ⋅ max  {0, |𝒗| −  
𝜉𝑡

𝜇
}. [S24] 

The proximal mapping function of scaled group sparsity can be derived as: 

 
Ψ𝜉𝑡‖.‖2,1

𝜇

(𝒗) = {𝒗(𝒊) ⋅ max  {0,1 −  
𝜉𝑡

𝜇‖𝒗‖2

}}
𝑖=1⋯𝑘

, [S25] 
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where ‖𝒗‖2 is defined across the contrasts. Note that, both definitions retain the phase of the input-function, and therefore, are 

readily applicable to complex images.  

For TV and CTV functions, proximal mapping functions rely on an algorithm  that minimizes the dual function as proposed by 

Chambolle 5 for individual TV, and Bresson for CTV 6. This study uses TV and CTV regularization terms on the magnitude of the 

image. For both algorithms proximal mapping functions associated with real-valued inputs with magnitude of the input vector were 

used while the phase was retained separately, similar to Eq. [S24] [Proximal mapping functions for TV and CTV are not derived 

here, since those were rigorously derived in Ref. 1,5,6].  

Finally, the regularization weights 𝛼𝐶𝑇𝑉, 𝛾𝑖𝑇𝑉, 𝛽𝑔𝐿1, 𝜃𝑖𝐿1 are assigned to the 𝜉𝑖’s that correspond to their respective 

regularization terms.  

 

 

 

 

 

 

 

 

 

 

 

At iteration n+1, 𝑘(𝑁𝑐 + 𝑚) instances of the variables 𝒛𝑛+1
(.)

 and 𝒅𝑛+1
(.)

 are created, one for data fidelity on each channel per 

contrast (and one for each regularization term, per contrast. The algorithm finds the 𝒛(.)
(.)

 that minimize the functions in Eq. [S14] 

(or Eq. [S20] for multi-channel) and Eq. [S16] using the current contrast images (𝒙𝑛+1
(𝑖)

) and the previous instance of 𝒅𝑛
(.)

; update 

𝒅𝑛+1
(.)

 based on the current image and current 𝒛𝑛+1
(.)

, and then combine all the new instances of 𝒛𝑛+1
(.)

 and 𝒅𝑛+1
(.)

 to update the contrast 

images.  

  

Algorithm 

Set iteration variable n=0, choose step size µ > 0 

Initialize the dual variables 𝒛𝟎
(𝑖,𝑡)

, 𝒅𝟎
(𝑖,𝑡)

 

Repeat 

for i = 1…k where k is the number of contrasts 

Update image 𝒙𝑛+1
(𝑖)

 via Eq. [S13] (single-channel) or Eq. [S21] (multi-channel)    

Update 𝒛𝑛+1
(𝑖,0)

 via Eq. [S14] (single-channel) or Eq. [S22] (multi-channel) 

Update 𝒅𝑛+1
(𝑖,0)

 via Eq. [S15] (single-channel) or Eq. [S23] (multi-channel) 

end for 

for t = 1…m where m is the number of regularization functions 

Update {𝒛𝑛+1
(𝑖,𝑡)

}
𝑖=1…𝑘

 via Eq. [S16] for each contrast i = 1…k 

Update 𝒅𝑛+1
(𝑖,𝑡)

 via Eq. [S17], for each contrast i = 1…k 

end for 

Increment iteration number n  n+1 

Until some stopping criterion is satisfied. 
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METHODS 

The proposed joint reconstruction method (SIMIT) was compared to seven CS methods for reference including Sparse MRI 7, 

TVCMRI 8, RecPF 9, GSMRI 10, FCSA 11 and FCSA-MT 12, and a modified version that only included individual regularization 

terms (Indiv-only) 1 for a single-channel receiver coil. To compare the methods, the numerical phantom and in-vivo data from one 

participant were used (details of the datasets are given in the main text). Parameters for all methods were optimized using the 

procedure outlined in the main text. The automatically optimized parameters yielded inferior SSIM values for FCSA and FCSA-

MT, which did not improve through manual optimization of the parameters. Therefore, the parameters given in Ref. 12 were used.  

Optimized parameters 𝛼𝐶𝑇𝑉 𝛽𝐺𝐿1 𝛾𝑖𝑇𝑉 𝜃𝑖𝐿1 

SparseMRI   0.012 0.01 

TVCMRI   0.355 0.696 

RecPF   0.419 0.04 

GSMRI  0.035   

FCSA   0.01 0.035 

FCSA-MT 0.01 0.035   

Indiv-only   0.021 1.142 

SIMIT 0.19/√𝑘 0.51/√𝑘 0.11/k 9.13/k 

Table SI-1: Optimized weight parameters for constraint functions for all methods. For the proposed method, 𝑘 

denotes the number of contrasts to be jointly reconstructed. 

Numerical Phantom 

The methods were compared in terms of SSIM and pSNR. To assess the stability of reconstruction performance across 

undersampling masks and noise distributions, a Monte-Carlo simulation with 250 runs was performed with independent instances 

of undersampling masks and noise. Runtimes (excluding data-preparation) at each iteration were measured with the cputime 

command in Matlab (which excludes any parallel computing capabilities) and averaged across runs. Image quality metrics averaged 

across runs were plotted as a function of cumulative runtime for each method. These comparisons were made using only three 

contrasts (PD-, T1- and T2-weighted images). 

To assess the performance of the methods for different acceleration rates, all methods were compared in terms of nRMSE for 

acceleration rates between R=2 and R=5 for 1D-acceleration and between R=2 and R=15 for 2D-acceleration using the five-

contrast dataset.  

In-vivo Data 

To compare with the reference methods 1,7-12 that were developed for a single-channel receiver coil, reconstructions were 

performed on acquisitions of retrospectively 2D-undersampled (R=3) three-contrast data of one of the participants. Reconstructions 

were performed separately for each channel of the 32-channel receiver-array and combined afterwards 13.  
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RESULTS 

Single channel comparisons - Numerical Phantom 

Figure SI-2 shows the image quality metrics pSNR and SSIM of multi-contrast reconstructions as a function of reconstruction 

time. Note that Indiv-only is omitted here as SIMIT and Indiv-only are already compared in the main text. The proposed method, 

SIMIT, achieves superior image quality than all alternative reconstructions upon convergence (Figure SI-2a). Note that FCSA and 

FCSA-MT yield substantially lower quality compared to remaining reconstructions although a broad range of regularization 

parameters were considered. The closest competitor to SIMIT is RecPF. While SIMIT has 32.5 ± 0.1 dB (mean ± standard 

deviation) pSNR and 97.5 ± 0.1% SSIM, RecPF had 30.4 ± 0.2 dB pSNR and 95.5 ± 0.3% SSIM. RecPF rapidly converges to a 

stable solution, but SIMIT surpasses RecPF in terms of image quality within 11 seconds of runtime. The superior performance of 

SIMIT is robust against variability in undersampling masks and noise instances (Figure SI-2b).  

 

Figure SI-2: Image metrics for the Monte-Carlo runs on the numerical phantom for R=3. In each run, a different 

undersampling mask and noise instance was used. Masks and noise instances were kept identical across methods 
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within runs. (a) Image metrics averaged over the runs are given as a function of reconstruction time. (b) Image 

metrics for the final images are given with respect to the Monte-Carlo runs. Axes were adjusted to show a smaller 

range of values to improve comparison among high performing methods. The proposed method SIMIT improves all 

metrics compared to alternative reconstructions. The standard deviations of each metric plotted on the right in each 

figure in panel (b) show that SIMIT is more robust against variations in the undersampling masks and noise 

distributions, yielding a more stable performance.  

Reconstructed images are given in Figures SI-3 and SI-4. Difference images between the reconstructed and the fully-sampled 

reference images show that SIMIT has lower error compared to all other reconstructions. Note that, 1D-acceleration in the AP 

direction leads to residual aliasing artefacts with all reference methods, particularly in PD-weighted images. In contrast, SIMIT 

successfully suppresses residual artefacts to achieve improved tissue depiction.  

 

Figure SI-3: Multi-contrast reconstructions for the numerical phantom with 1D-acceleration in the AP direction 

and R = 3. Contrasts shown are PD, T1, T2-weighted, FLAIR and STIR. SIMIT visibly improves image quality 

compared to alternative reconstructions.  
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Figure SI-4: Multi-contrast reconstructions for the numerical phantom with 1D-acceleration in the AP direction 

and R = 3. (a) Differences between the reconstructed images and the fully-sampled reference images were calculated 

for each contrast. Magnitude difference images were summed across contrasts and 4x intensified, and then, 

displayed in the same scale as in Figure SI-3b. (b) Magnified PD-weighted images show a region of interest in the 

upper half of the FOV. Compared to other methods, SIMIT offers superior suppression of residual artefacts.  
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Figure SI-5 compares the single-channel reconstruction methods for various 1D- and 2D-acceleration rates and shows that 

SIMIT consistently yields lower image nRMSE, for each image and on the average.  

 

 

Figure SI-5: Methods are compared in terms of nRMSE for various acceleration rates, ranging between R=2 and 

R=5 for one-dimensional and R=2 and R=15 for two-dimensional acceleration, for a five-contrast imaging case 

with PD, T1-weighted, T2-weighted, FLAIR and STIR images. Undersampling masks were varied across contrasts, 

but same set of masks were used for each method. Image error (nRMSE) is shown separately for each contrast and 

as a mean across contrasts. SIMIT consistently provided reconstructions with lower image error for all contrasts 

and acceleration rates. 

Single channel comparisons – In-vivo Data 

PD-, T1-, and T2-weighted in-vivo acquisitions from a single subject were reconstructed via SIMIT and reference methods. 

Representative reconstructions for 2D acceleration with R=3 are shown in Figures SI-6 and SI-7. SIMIT yields more detailed 

depiction of tissue structure compared to both individual and joint reconstruction methods (Figure SI-7). This is reflected in the 

SSIM values: SIMIT yields 95.8% SSIM, 33.9 dB pSNR while RecPF has 90.1% SSIM, 33.4 dB pSNR and TVCMRI has 87.8% 

SSIM, 31.8 dB pSNR.  
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Figure SI-6: Reconstructed images for the in-vivo data with 2D-acceleration and R = 3. The fully-sampled reference 

images are shown along with SIMIT and seven other state-of-the-art reconstruction methods. SparseMRI, TVCMRI, 

FCSA, RecPF, and Indiv-only yield reconstructions with apparent losses in image sharpness, especially in T1-

weighted images. GSMRI yields strong striping artefacts, while FCSA-MT shows a high-level of residual noise. In 

contrast, SIMIT achieves improved tissue delineation with relatively limited noise amplification compared to FCSA-

MT.  
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Figure SI-7: Reconstructed images for the in-vivo data with 2D-acceleration and R = 3. Magnified images from a 

region of interest in the posterior part of the FOV are given. SIMIT visually improves tissue delineation and image 

sharpness compared to all methods including FCSA-MT. SIMIT also improves image sharpness compared to its 

individual implementation, Indiv-only. 
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Multi-channel comparisons 

Contrasts have different pSNR and SSIM levels for the same acceleration rates in Figure 4 (main text) as the reconstruction 

error depends on the image content. While the tissue boundaries and therefore the underlying frequency content are the same for 

all contrasts, the energy at each spatial frequency is different. SSIM is a quantitative metric that captures the perceptual quality of 

reconstructed images, and is therefore more sensitive to local texture information compared to MSE-based metrics such as pSNR. 

FLAIR images tend to have sharper transitions across tissue boundaries and elevated high-spatial-frequency content compared to 

other contrast examined (e.g., PD images). Since reconstruction performance is expectedly poorest for high-spatial-frequency 

samples that are heavily undersampled in accelerated MRI, it is reasonable that FLAIR images have lower SSIM values for the 

same acceleration factor, leading to the differences in pSNR and SSIM levels (Figure SI-8).  

 

Figure SI-8: The reconstruction performance depends on the image content. Because FLAIR-images have higher 

intensity high-frequency variations inside the brain than PD-images, the reconstruction error inside the brain at the 

same acceleration factors is higher, which leads to lower performance in terms of pSNR and SSIM in Figure 4.  
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LIST OF ABBREVIATIONS 

MRI: magnetic resonance imaging  

PI: parallel imaging  

CS: compressive sensing  

SAR: specific absorption rate  

TV: Total Variation  

SIMIT: SIMultaneous use of Individual and joinT 

regularization terms for joint CS-PI reconstruction  

ADMM: Alternating Direction Method of Multipliers  

Indiv-only: Reconstruction method that uses only individual ℓ1-

sparsity and TV terms  

Joint-only: Reconstruction method that uses only joint terms 

CTV and group ℓ1-sparsity  

ESPIRiT: Eigenvalue-based implementation of Iterative self‐

consistent parallel imaging reconstruction from arbitrary k‐

space  

TVCMRI: Total Variation ℓ1 Compressed MR Imaging 

RecPF: reconstruction from partial Fourier data (RecPF) 

GSMRI: Group-Sparse MRI 

FCSA: Fast Composite Splitting Algorithm 

FCSA-MT: Multi Contrast FCSA 

CTV: colour TV  

gL1: Group ℓ1-sparsity, implemented as an ℓ2,1-norm  

iTV: Individual TV  

iL1: Individual ℓ1-sparsity  

pSNR: peak signal-to-noise ratio  

PD / T1 / T2: Proton density / T1- / T2- weighted 

1D / 2D: one- / two- dimensional 

TE / TI / TR: echo / inversion / repetition time 

FLAIR: fluid-attenuated inversion recovery  

STIR: short-time inversion recovery  

FOV: field-of-view  

SSIM: structural similarity 

R: Acceleration rate  

ROI: Region-of-interest  

 

 

 


