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ABSTRACT  
Various poly(alkylene sulfide)s have been synthesized and used as 
catalysts to enhance the para-regioselectivity in chlorination of 
phenol and 2-chlorophenol using freshly distilled sulfuryl chlo-ride 

in the presence of AlCl3 as an activator. Poly(alkylene sul-fide)s 

having alternating spacers, one having three methylene groups and 
the second having three, six or nine methylene groups were the 
most para-regioselective catalysts in chlorination of both phenol 
and 2-chlorophenol. For example, chlorination of phenol and 2-
chlorophenol in the presence of optimal examples of such 
poly(alkylene sulfide)s gave 4-chlorophenol and 2,4-dichlorophenol 
as the major products in 94.8 and 95.4% yields, respectively, com-
pared with 75.4 and 55.0% yields in the absence of catalysts. In 
addi-tion, double chlorination of phenol in the presence of 
poly(alkylene sulfide)s gave 2,4-dichlrophenol in up to 97.1% yield 
compared with only 58.6% in the absence of catalysts. 
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1. Introduction 
 
Chlorophenols are used in the production of many industrial products such as herbi-

cides, pharmaceuticals and dyes [1]. For example, 2,4-dichlorophenoxyacetic is used in 

weed control for many crops such as maize and rice [2,3]. It is still widely used mainly 

due to its low production cost and can be produced from the reaction of molar equiva-

lents of chloroacetic acid and 2,4-dichlorophenol (2,4-DCP) in the presence of an excess  
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of sodium hydroxide [4]. Therefore, there is continuing interest in the development of 

low-cost processes for the selective production of chlorophenols.  
Recently, several processes have been developed for the selective halogenation of 

aromatic compounds [5–10]. For example, chlorination systems involving the use of 

[bis(trifluoroacetoxy)iodo]benzene and aluminum chloride (AlCl3) in acetonitrile [5], 

1,3-dichloro-5,5-dimethylhydantoin in the presence of ammonium chloride in toluene 

[6], hydrogen chloride, manganese(II) sulfate and hydrogen peroxide in water [7], and 

N-chlorosuccinimide and Nagasawa’s bisthiourea catalyst in chlorinated solvent [8] 

have been reported. However, such systems are often selective towards the ortho-

isomers and involve use of solvent, which are not applicable for the commercial 

production of bulk chlorophenols.  
We have reported a number of efficient processes that employ solid catalysts to 

enhance the regioselective production of para- or linear isomers in electrophilic 

substitution of aromatic compounds [11–25]. Sheldon’s group has used a similar 

approach for chlo-rination of phenol (P) using SO2Cl2 in the presence of L type zeolite 

in isooctane to give 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) in 10.7 and 85.3% 

yields, respectively [26]. Under similar reaction conditions, the use of Al-pillared 

montmo-rillonite clay as a catalyst gave 2-CP and 4-CP in 13.4 and 75.7% yields, 

respectively [26]. Others have adopted different approaches to chlorination of phenols 

with various chlorinating agents [27,28]. However, one of the most promising 

approaches for commer-cially relevant selective para-chlorination of phenols involves 

the use of sulfur-containing catalysts.  

Selective chlorination of phenols using SO2Cl2 in the presence of sulfur-containing 
cata-lysts and Lewis acids was f irst reported by Watson [29,30]. For example, mono-

chlorination of P using SO2Cl2 in the presence of diphenyl sulf ide (Ph2S) and AlCl3 at 
25°C gave 2-CP and 4-CP in 8.5 and 89.5% yields, respectively [29,30]. Similarly, 

chlorination of 2-CP in the presence of ferric chloride (FeCl3) at 35°C gave 2,4-DCP 
and 2,6-dichlorophenol (2,6-DCP) in 94.0 and 4.2% yields, respectively [29,30]. Double 

chlorination of P using SO2Cl2 in the presence of Ph2S and FeCl3 at 25°C gave 2,4-
DCP (97.3%), 2,6-DCP (0.4%) and 2,4,6-trichlorophenol (2.0%) [29,30].  

Since then, various other sulfur compounds have been investigated as catalysts in the 

chlorination of P and 2-CP. For example, chlorination of P using SO2Cl2 and di-n-butyl 

sulfide in the absence of a Lewis acid at 25°C gave 2-CP, 4-CP, and 2,4-DCP in 8.7, 84.8, 
and 1.0% yields, respectively, along with unreacted starting material (5.4%) [31,32]. Chlo-

rination of P using SO2Cl2 in the presence of the cyclic disulfide 1,2-dithiocane and AlCl3 

at 25°C gave 2-CP (7.4%), 4-CP (91.2%), and 2,4-DCP (1.1%) [33], while use of the poly-
meric equivalent, poly(hexamethylenedisulfide), under similar conditions gave 2-CP, 4-CP 
and 2,4-DCP in 8.8, 89.0, and 2.2% yields, respectively [33]. The use of tetrahydrothiopy-

ran as catalyst in chlorination of P using SO2Cl2 in the presence of AlCl3 at 25°C gave 2-CP 

and 4-CP in 5.0 and 89.0% yields, respectively [34], while chlorination of P using SO2Cl2 in 

the presence of 5,18-dithiadocosane and AlCl3 at 35°C gave 2-CP and 4-CP in 6.6 and 

76.4% yields, respectively, along with unreacted starting material (11.4%) [35,36]. 
Methylthio alcohols, methoxy(methylthio)alkanes, and bis(methythio)alkanes have also been 

investigated as catalysts in chlorination of P using SO2Cl2 in the presence of AlCl3 at 25°C 

and led to the production 2-CP (8.2–12.7%) and 4-CP (83.1–88.8%) along with 2,4-DCP 
(1.6–2.3%) [37]. 
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We have previously had occasion to synthesize a series of poly(alkylene sulfide)s 
[38], which we have used to make stable borane complexes [39,40], and in the patent 
litera-ture we have also reported a more complex poly(alkylene sulfide) with a repeating 

unit [(CH2)8S(CH2)6S] [36]. Such solid sulfur-containing materials could combine some 

of the advantages of solid reagents (such as ease of removal by filtration, lack of odor) 
with some of the benefits of sulfur compounds (as regioselective catalysts). Therefore, 
we now report the preparation of further examples of more complex poly(alkylene 
sulfide)s hav-ing alternating alkylenethio groups of different chain lengths and their use, 
along with the use of symmetrical poly(alkylene sulfide)s, in the regioselective 

chlorination of phenol and 2-chlorophenol using SO2Cl2 and AlCl3. 
 

 

2. Results and discussion 
 
A range of poly(alkylene sulfide)s was synthesized using two different synthetic approaches. 

The first one involved lithiation of 1,ω-alkanedithiols (one mole equivalent) using n-

butyllithium (n-BuLi; two mole equivalents) in tetrahydrofuran (THF) at low temperature 

followed by reaction with 1,ω-dibromoalkanes (0.9 mole equivalent) and 1-bromobutane 

(0.2 mole equivalent) at room temperature (Scheme 1). Such a procedure allowed the 

production in 75–96% yields of poly(alkylene sulfide)s 1–19 that have alter-nating spacer 

units of different chain lengths (number of methylene groups) (Table 1). The second 

procedure involved reaction of 1,ω-dibromoalkanes (one mole equivalent) and sodium 

sulfide nonahydrate (Na2S.9H2O; 1.4 mole equivalents) under reflux conditions for 4 h 

(Scheme 2), in accordance with the reported procedure [38]. This method was used to 

synthesize poly(alkylene sulfide)s 20–24 that had just one type of spacer unit in 83–97% 

yields (Table 2). This method was successfully applied for the production of poly(alkylene 

sulfide)s that had 2–8 methylene units as spacers. The latter approach was also used on an 

equimolar mixture of two different dibromoalkanes, resulting in a poly(alkylene sulfide) 25 

with two different spacer groups, but not uniformly distributed (Scheme 3). The gen-eral 

natures of the synthesized poly(alkylene sulfide)s 1–25 were confirmed by the use of 
1
H 

NMR spectral data and where comparisons were possible were consistent with those 

previously reported [38].  

Chlorination of P (100 mmol) using distilled SO2Cl2 (110 mmol) in the presence of 

poly(alkylene sulfide)s (100 mg) as catalysts and AlCl3 (100 mg) as a Lewis acid in the 

absence of solvent was attempted at 25°C (Scheme 4; route a). In addition, the reaction 
was carried out in the absence of poly(alkylene sulfide)s under the same conditions for 
comparison. The yields of the chlorinated products obtained (2-CP, 4-CP and 2,4-DCP) 
are reported in Table 3.  
 
 
 
 
 
 
 
 

 

Scheme 1. Synthesis of poly(alkylene sulfide)s 1–19 using alkanedithiols. 
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Table 1. Synthesis of poly(alkylene sulfide)s 1–19 according to Scheme 1.  
 
Polymer n m Melting point (°C) Yield (%) 
     

1 2 2 165–168 75 
2 3 3 64–67 82 
3 3 4 60–63 94 
4 3 6 63–65 83 
5 3 9 71–73 84 
6 3 12 83–85 93 
7 4 4 68–70 90 
8 4 6 69–72 80 
9 4 8 75–78 95 
10 4 10 80–84 92 
11 4 12 86–90 96 
12 5 5 69–70 96 
13 6 6 74–77 84 
14 6 8 74–77 92 
15 6 10 78–81 93 
16 6 12 78–83 89 
17 8 8 82–84 88 
18 8 10 78–81 90 
19 8 12 85–88 91 
     

      
 
 

 

Scheme 2. Synthesis of poly(alkylene sulfide)s 20–24 using sodium sulfide. 

 

Table 2. Synthesis of poly(alkylene sulfide)s 20–24 according to Scheme 2.  
 
Polymer m  Melting point (°C) Yield (%) 
     

20 2  185–186 90 
21 3  55–57 90 
22 4  66–69 83 
23 6  70–77 97 
24 8  58–64 94 
     

      
 

 

Scheme 3. Synthesis of mixed poly(alkylene sulfide) 25 using sodium sulfide. 
 

 

The yield of 4-CP was only 75.4% when the reaction was carried out in the absence of 

any catalyst (Table 3). The yield of 4-CP improved in all cases when a poly(alkylene sulfide) 

was used as a catalyst. Catalysts containing at least one shorter spacer unit (at most three 

methylene groups) invariably provided higher yields of 4-CP (87.2–91.4%) than those hav-

ing only longer spacers containing at least five methylene groups (78.2–85.0%). Catalysts in 

which the shortest spacer group was four methylene units provided intermediate yields 

(82.4-90.3%), depending on the length of the longer spacer group (catalysts with longer 

second spacers giving lower yields of 4-CP). The same trends can be seen in the 4-CP/2-CP 

ratios (p/o ratios). Poly(alkylene sulfide) 5, which contains alternating spacers of three 



 5 

 

Table 3. Chlorination of phenol according to Scheme 4 (route a).
a 

 

  Repeating units    Yield (%)
b    

            

Mass balance (%)
c 

Polymer n m Terminal group  P 2-CP 4-CP 2,4-DCP p/o ratio 

–  – – – 0.3 21.9 75.4 2.4 3.4 100 
1 2 2  Bu 3.5 8.3 87.2 0.4 10.5 99.4 
20  – 2  Br 0.7 9.7 88.5 0.8 9.1 99.7 
2 3 3  Bu 3.9 5.9 89.8 0.2 15.2 99.8 
21  – 3  Br 0.2 7.9 90.9 0.8 11.5 99.8 
3 3 4  Bu 0.5 8.3 90.5 0.4 10.9 99.7 
4 3 6  Bu 5.9 5.2 88.3 – 17.0 99.4 
25  – 3/6  Br  – 7.5 91.3 1.0 12.2 99.8 
25d  – 3/6  Br  – 7.6 90.9 1.4 12.0 99.9 

25e  – 3/6  Br  – 7.5 90.8 1.5 12.1 99.8 
5 3 9  Bu 3.4 4.8 91.4 – 19.0 99.6 
5f 3 9  Bu  – 4.7 94.8 – 20.2 99.5 

5g 
3 9  Bu 3.8 5.3 90.1 0.3 17.0 99.5 

6 3 12  Bu 6.0 5.6 87.9 – 15.7 99.5 
7 4 4  Bu 3.6 5.9 90.0 0.1 15.2 99.6 
22  – 4  Br 0.6 8.5 90.3 0.5 10.6 99.9 
8 4 6  Bu 4.8 8.3 85.6 0.8 10.3 99.5 
9 4 8  Bu 2.4 12.7 83.4 1.0 6.6 99.5 
10 4 10  Bu 3.5 12.2 83.0 0.8 6.8 99.5 
11 4 12  Bu  – 13.9 82.4 3.1 5.9 99.4 
12 5 5  Bu 5.9 9.4 84.1 0.5 8.9 99.9 
13 6 6  Bu 5.0 13.0 80.5 1.0 6.2 99.5 
23 – 6  Br 1.5 12.5 85.0 0.8 6.8 99.8 
14 6 8  Bu 4.0 11.4 83.4 0.7 7.3 99.5 
15 6 10  Bu 2.8 13.2 82.2 1.3 6.2 99.5 
16 6 12  Bu 4.0 9.7 85.0 0.8 8.8 99.5 
17 8 8  Bu 1.7 16.7 79.7 1.5 4.8 99.6 
24 – 8  Br 5.3 15.6 78.2 0.7 5.0 99.8 
18 8 10  Bu 1.5 17.5 79.1 1.6 4.5 99.7 
19 8 12  Bu 0.7 17.0 80.5 1.2 4.7 99.4  
a Sulfuryl chloride (8.90 ml, 110 mmol) was slowly added to a mixture of phenol (9.41 g, 100 mmol), AlCl3 (100 mg) and 

poly(alkylene sulfide)s (100 mg) at RT over 2 h.  
b
Yield (%) based on quantitative GC.  

c Total yield (%) for all identified products, to confirm no other significant products formed. 
d

Polymer 25 (50 mg) was used.
 

ePolymer 25 (20 mg) was used.  

f Sulfuryl chloride (105 mmol) was used. 
g
Sulfuryl chloride (105 mmol) and polymer 5 (50 mg) were used. 

 

and nine methylene groups (i.e. n = 3, m = 9), was the most para-regioselective catalyst 

in chlorination of P, producing 4-CP in 91.4% yield under the standard conditions, 

which increased to 94.8% when the mixture was stirred at 55°C for 1 h before work-up. 

This was the highest 4-CP yield achieved from any of the reactions. Reducing the 

quantity of 5 to 50 mg and SO2Cl2 to 105 mmol led to the production of 4-CP in 90.1% 

yield along with a significant quantity of unreacted P (3.8%). Poly(alkylene sulfide) 25 

(m = 3/6) was also highly selective, leading to the production of 4-CP in 91.3% under 

the standard condi-tions and giving very similar results with lower quantities (50 mg or 

20 mg) of 25 under otherwise similar reaction conditions.  
Polymers with similar spacer groups but prepared by the different methods, one major 

difference therefore being the nature of the terminal group (Bu or Br), gave broadly similar 

results when direct comparisons were possible, suggesting that the length of the spacer 

groups has more effect than the nature of the terminal groups or the method of preparation. 

Nevertheless, in the cases with at least one short spacer group (at least one group being no 
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P  

 
OH   OH 

Cl Cl  Cl 
 

+ 

  

   

Cl
 2,4-DCP  2,6-DCP  

 
Reagents used in different routes (all at RT for 2h unless otherwise stated) 

 

route a: P (100 mmol), SO2Cl2 (110 mmol), polymer 1-25 (0.1 g), AlCl3 (0.1 g) 

route b: 2-CP (100 mmol), SO2Cl2 (110 mmol), polymer 1-25 (0.1 g), AlCl3 (0.1 g) 

route c: P (100 mmol), SO2Cl2 (210 mmol), polymer 1-25 (0.1 g), AlCl3 (01 g) 

 
Scheme 4. Chlorination of phenol (P) or 2-chlorophenol (2-CP) using sulfuryl chloride in 

the presence of poly(alkylene sulfide)s 1–25 and AlCl3. 

 

longer than trimethylene, or both being tetramethylene, which were the polymers giving  
higher p/o ratios), the p/o ratio was somewhat greater with the polymer made using the 

alkanedithiol route shown in Scheme 1 (i.e. 1 > 20; 2 > 21; 4 > 25; 7 > 22). By contrast,  
for polymers with longer spacers, which generally did not give high p/o ratios, the 

polymer made using Scheme 2 gave a somewhat greater p/o ratio than the corresponding 

example made by the alkanedithiol route (i.e. 23 > 13; 24 > 17). 

The fact that the presence of any of the polymers resulted in a higher p/o ratio than in 

their absence is consistent with the previously expressed view that the sulfur-containing 

catalyst forms a bulky electrophilic complex with the AlCl3 and SO2Cl2 that attacks the 

P at the least hindered 4-position to produce 4-CP as the major product [29,30]. 

However, this simplistic idea does not explain the subtleties displayed by the polymers 

with different spacer groups.  
In view of the commercial importance of 2,4-dichlorophenol, and in recognition that 

further chlorination of 4-CP would give virtually exclusively 2,4-DCP, it was of interest 

to investigate the further chlorination of 2-CP (Scheme 4, route b), which could give 

both 2,4-DCP and 2,6-DCP, under similar conditions to those used for the chlorination 

of P. The yields and p/o ratio for the chlorinated products (2,4-DCP and 2,6-DCP) are 

reported in Table 4.  
Under the standard conditions, in the absence of any poly(alkylene sulfide), the yields of 

2,4-DCP and 2,6-DCP were 55.0 and 12.5%, respectively, along with a high proportion 
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Table 4. Chlorination of 2-chlorophenol according to Scheme 4 (route b).
a 

 

Repeatingunits    Yield  (%)
b    

        

p/o ratio Mass balance (%)
c 

Polymer n m Terminal group 2-CP 2,4-DCP 2,6-DCP 

– – – – 32.4 55.0 12.5 4.4 99.9 
2 3 3 Bu 11.5 84.0 4.2 20.0 99.7 

2d 
3 3 Bu 0.4 95.4 3.7 25.8 99.5 

5 3 9 Bu 9.6 84.1 5.7 14.8 99.4 
7 4 4 Bu 5.9 84.6 8.5 10.0 99.0 

7d 
4 4 Bu 2.0 90.7 6.8 13.3 99.5 

22 – 4 Br 13.0 80.7 5.9 13.7 99.6 
8 4 6 Bu 9.9 84.5 5.3 15.9 99.7 

8d 4 6 Bu 1.4 92.1 5.7 16.2 99.2 
9 4 8 Bu 3.7 89.8 6.0 15.0 99.5 
10 4 10 Bu 8.0 85.7 6.1 14.0 99.8 
11 4 12 Bu 19.6 73.7 6.4 11.5 99.7 
13 6 6 Bu 13.9 76.8 8.9 8.6 99.6 
14 6 8 Bu 12.1 76.3 11.1 6.9 99.5 
15 6 10 Bu 17.2 72.6 9.9 7.3 99.7 
16 6 12 Bu 17.6 71.9 10.0 7.2 99.5 
17 8 8 Bu 14.3 78.8 6.6 11.9 99.7 
18 8 10 Bu 19.0 70.8 9.7 7.3 99.5 
19 8 12 Bu 16.4 70.5 12.1 5.8 99.0  
a Sulfuryl chloride (8.90 ml, 110 mmol) was slowly added to a mixture of 2-chlorophenol (12.86 g, 100 mmol), AlCl3 (100 mg) and 

poly(alkylene sulfide) (100 mg) at RT over 2 h.  
b
Yield (%) based on quantitative GC.  

c Total yield (%) for all identified products, to confirm no other significant products formed. 
d
The 

mixture was stirred at 55°C for 1 h before work-up.
 

 

 

(32.4%) of unreacted 2-CP (Table 4). In the presence of any one of the poly(alkylene sul-

fide)s, the yield of 2,4-DCP increased significantly (up to 89.9%) while the yield of 2,6-DCP 

decreased, leading in all cases, therefore, to a higher p/o ratio. However, there were sig-

nificant differences in the level of selectivity observed with the different poly(alkylene 

sulfide)s. Generally, poly(alkylene sulfide)s with shorter spacers (n = 3, 4 and m = 3–8) led 

to higher yields of 2,4-DCP and higher p/o ratios than the ones with longer spacer units (n = 

6, 8 and m = 6–12). However, a significant quantity (3.7–19.0%) of unreacted 2-CP still 

remained in the product mixtures and this could complicate the interpretation of the results. 

For example, with the only poly(alkylene sulfide) prepared by the sodium sulfide method 

(Scheme 2), polymer 22, 13% of 2-CP remained, resulting in a lower yield of 2,4-DCP 

(80.7%) than for the corresponding polymer prepared according to Scheme 1 (i.e. 7, 84.6%), 

despite giving a higher p/o ratio (13.7 compared to 10.0). Therefore, three of the 

poly(alkylene sulfide)s that produced high yields of 2,4-DCP were used in reactions con-

ducted under more forcing conditions (stirred at 55°C for 1 h before work-up). The yield of 

2,4-DCP increased to over 90% in all three cases and poly(alkylene sulfide) 2 (n, m = 3) 

provided a p/o ratio of 25.8 and the highest yield of 2,4-DCP (95.4%) ever recorded on 

chlorination of 2-CP using SO2Cl2. 
 

With the benefit of the information derived from monochlorination of phenol and chlo-
rination of 2-CP, it was of interest to investigate the direct double chlorination of phenol. A 
significant quantity of starting material was recovered in chlorination of 2-CP under the 
general conditions, which negatively affected the yield of 2,4-DCP. Therefore, for the dou-

ble chlorination of P (100 mmol) (Scheme 4, route c) a small excess of SO2Cl2 (210 mmol) 

was used, along with a poly(alkylene sulfide) and AlCl3, in an attempt to produce 2,4-DCP 
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Table 5. Double chlorination of phenol according to Scheme 4 (route c).
a 

 

  Repeating units     Yield (%)
b    

Polymer  n m  Terminal group  2-CP 4-CP 2,4-DCP 2,6-DCP p/o ratio Mass balance (%)
c 

–  – – – 9.0 29.2 58.6 3.0 19.5 99.8 
1 2 2  Bu 0.4 3.7 95.1 0.7 135.9 99.9 
20  – 2  Br 0.3 4.6 94.0 0.7 134.3 99.6 
2 3 3  Bu 1.6 37.8 59.7 0.4 149.2 99.5 
21  – 3  Br 0.8 23.0 75.7 0.4 189.3 99.9 
3 3 4  Bu 0.8 21.7 76.9 0.4 192.3 99.8 
4 3 6  Bu 2.0 34.4 62.9 0.6 104.8 99.9 
25  – 3/6  Br 0.4 18.7 80.4 0.4 201.0 99.9 
5 3 9  Bu 1.1 28.3 69.9 0.2 349.5 99.5 

5d 3 9  Bu 0.4 9.6 89.2 0.3 279.3 99.5 
5
e 3 9  Bu  – 5.5 93.3 0.3 331.0 99.1 

5f 3 9  Bu  – 2.1 96.6 0.3 321.7 99.0 

5g 
3 9  Bu 0.4 0.4 97.1 0.9 107.9 98.8 

6 3 12  Bu 1.8 28.5 68.9 0.7 98.4 99.9 
7 4 4  Bu 1.8 31.9 65.6 0.2 328.0 99.5 
22  – 4  Br 1.3 37.6 60.4 0.2 302.0 99.5 
8 4 6  Bu 4.5 27.4 66.7 1.1 60.6 99.7 
9 4 8  Bu 6.6 36.5 54.9 1.6 34.3 99.6 
10 4 10  Bu 3.6 24.4 70.1 1.5 46.7 99.6 
11 4 12  Bu 4.3 32.2 61.4 1.6 38.4 99.5 
13 6 6  Bu 5.6 25.8 66.0 2.1 31.4 99.5 
23  – 6  Br 2.5 18.3 77.1 2.0 38.6 99.9 
14 6 8  Bu 4.8 24.4 67.9 2.3 29.5 99.4 
15 6 10  Bu 4.9 29.4 63.3 1.8 35.2 99.4 
16 6 12  Bu 4.1 21.5 71.8 2.1 34.2 99.5 
17 8 8  Bu 8.7 39.4 49.4 2.0 24.7 99.5 
24  – 8  Br 2.3 9.9 84.3 3.2 26.3 99.7 
18 8 10  Bu 6.9 28.8 61.2 2.5 29.0 99.4 
19 8 12  Bu 4.5 18.1 74.1 2.7 27.4 99.4  
a Sulfuryl chloride (17.00 ml, 210 mmol) was slowly added to a mixture of phenol (9.41 g, 100 mmol), AlCl3 (100 mg) and 

poly(alkylene sulfide) (100 mg) at RT over 2 h.  
b
Yield (%) based on quantitative GC.  

c Total yield (%) for all identified products, to confirm no other significant products formed. 
d
The 

mixture was stirred at 55°C for 1 h before work-up.
 

e
Sulfuryl chloride (220 mmol) was used and the mixture was stirred at 55°C for 1 h before work-

up. 
f
 Sulfuryl chloride (230 mmol) was used and the mixture was stirred at 55°C for 1 h before 

work-up. 
g
Sulfuryl chloride (215 mmol) was used and the reaction was carried out at 55°C. 

 

directly in one step and in high yield without over-chlorination. The yields of 2,4-DCP 

and 2,6-DCP obtained are recorded in Table 5.  

In the absence of poly(alkylene sulfide) and AlCl3, the yields of 2-CP, 4-CP, 2,4-DCP, 

and 2,6-DCP were 9.0, 29.2, 58.6, and 3.0%, respectively, and the 2,4-/2,6-DCP ratio was 

less than 20 (Table 5). The yield of 2,4-DCP under the general conditions increased in all 

cases when poly(alkylene sulfide)s were used and the yield was highest for poly(alkylene 

sulfide)s containing at least one short spacer unit (n = 2 or 3 and m = 2-9). For example, 

poly(alkylene sulfide)s 1 and 20 (n, m = 2) provided the highest yields of 2,4-DCP (94.0 and 

95.1%, respectively) with a 2,4-/2,6-DCP ratio of ca. 135 in each case. Even higher 2,4-/2,6-

DCP ratios of over 300 were achieved when poly(alkylene sulfide)s 5 (n = 3,  
m = 9), 7 (n = m = 4), or 22 (m = 4) were used under the standard conditions, but in 

these cases the second chlorination step was slow and there were substantial quantities 

of 4-CP remaining, so that the actual yields of 2,4-DCP were not particularly high. The 

highest ratio (349.5) was with polymer 5, so in this case a period at higher temperature 

(55°C) and/or addition of extra sulfuryl chloride were used to try to increase the yield of 



   

 

2,4-DCP. Indeed, the yield of 2,4-DCP increased from 69.9 to 89.2% when the standard 

mixture was stirred at 55°C for 1 h before work-up. The 2,4-DCP yield increased further 

(to 93.3–96.6%), with little change in the 2,4-/2,6-ratio, when more sulfuryl chloride 

was used and the reaction mixture was stirred at 55°C for 1 h before work-up. The 

highest yield of 2,4-DCP was 97.1%, achieved when the amount of SO2Cl2 was 215 

mmol for 100 mmol of P and the reaction was heated at 55°C for 1 h before work-up, 

but it is not clear why in this case the selectivity was lower (possibly poorer temperature 

control). Increasing the reaction time in the double chlorination of P at RT showed little 

significant effect on the yield of 2,4-DCP.  
Clearly, polymer 5 was the most efficient catalyst in both monochlorination and dou-

ble chlorination of phenol in terms of para-selectivity and yields of 4-CP and 2,4-DCP, 

respectively. The best 4-CP/2-CP ratio obtained from monochlorination of phenol was 

ca. 20 (Table 3), while, the 2,4-DCP/2,6-DCP ratio obtained from double chlorination of 

phe-nol was ca. 320, when polymer 5 was used. Therefore, this catalyst provides a ca. 

16-fold increase in para-selectivity during the second chlorination step. 

 

3. Conclusion 
 
Highly para-regioselective chlorination systems for the chlorination of phenol and 2-

chlorophenol have been developed. The systems consist of a poly(alkylene sulfide), 

aluminum chloride and sulfuryl chloride. Such systems provide high yields of the para-

chlorinated phenols compared with those obtained in the absence of a poly(alkylene sul-

fide). The length of the spacer units (number of methylene groups) within the poly(alkylene 

sulfide) was found to be important for the regioselectivity of the chlorination reactions. High 

yields of the corresponding para-chlorinated phenols were obtained when at least one of the 

spacer units in the poly(alkylene sulfide) was short (2-4 methylene groups long). By use of 

one such poly(alkylene sulfide) it was possible to achieve direct double chlorination of 

phenol to give over 96% of 2,4-dichlorophenol with a 2,4-/2,6-DCP ratio of over 300. The 

polymers are odorless, used at a low concentration, and can be recycled and reused at a 

commercial scale; therefore, such catalysts have potential for industrial use. 

 

4. Experimental section 
 
4.1. General 
 

Chemicals and reagents were purchased from Aldrich Chemical Company. Sulfuryl 

chlo-ride was freshly distilled under nitrogen. The GC analyses were performed on a 

Shimadzu GC-2014 Gas Chromatograph using a capillary ZB Carbowax column (30 m, 

0.32 mm ID) and tetradecane was added as a standard. The column temperature was 

adjusted at 40°C for 3 min, ramped to 220°C (10°C/min) and held for 10 min. The 

injector and detector temperatures were 300 and 250°C, respectively. 

 

4.2. Synthesis of poly(alkylene sulfide)s 
 

4.2.1. Alkanedithiol method (Scheme 1)  
A solution of n-butyllithium in hexane (24.00 ml, 2.5 M, 60.00 mmol) was added over 

10 min to a stirred solution (−78°C) of the appropriate alkanedithiol (30.00 mmol) in 



10    K. SMITH ET AL. 

 

dry THF (40 ml) under nitrogen. The mixture was stirred for 30 min at −78°C and then 

allowed to warm to room temperature. The appropriate dibromoalkane (27.00 mmol) 

was added and the mixture was stirred at room temperature for 60 min. 1-Bromobutane 

(0.82 g, 6.00 mmol) was added and the mixture was stirred for 18 h at room 

temperature. The white solid obtained was collected by filtration, washed successively 

with water (3 × 25 ml), and dried at 50°C under reduced pressure to give a white solid. 

The melting points of the solids were recorded (see Table 1) and their proton NMR 

spectra were recorded in order to confirm the general nature of the polymers. 

 

4.2.2. Sodium sulfide method (Schemes 2 and 3)  
A mixture of an appropriate dibromoalkane (or an equimolar mixture of two dibromoalka-

nes; 3.00 mol in total) and sodium sulfide nonahydrate (1000 g, 4.17 mol) were placed in a 

round bottom flask (3 l) equipped with a magnetic bar and a water condenser. The mix-ture 

was heated under reflux for 4 h with vigorous stirring, by which time a very viscous material 

resulted. The mixture was poured into a clean beaker and cold water (350 ml) was added 

slowly with stirring, and the mixture was left to cool. The solid obtained was col-lected by 

filtration, washed thoroughly with water (3 × 200 ml), and dried at 50°C under reduced 

pressure to give a white solid. Again, melting points of the solids were recorded (see Table 

2) and their proton NMR spectra were recorded. 

 

4.3. Chlorination of phenol 
 

To a stirred mixture of melted phenol (9.41 g, 0.10 mol), AlCl3 (100 mg) and the 

appropri-ate poly(alkylene sulfide) (100 mg), SO2Cl2 (8.90 ml, 0.11 mmol) was slowly 
added over 2 h at room temperature (RT). The mixture was stirred at RT for 2 h and 

then quenched with water (20 ml). The products were extracted using Et2O (3 × 30 ml) 

and the combined solu-tion was dried over MgSO4. The drying reagent was removed by 
filtration and the solvent was removed under reduced pressure until the weight was 
constant. A weighed aliquot of the products and a known quantity of tetradecane were 
used for the GC analysis. In some cases (see results and discussion) the mixture was 

warmed to 55°C for 1 h prior to work up or extra SO2Cl2 was used in the reaction. 

 

4.4. Chlorination of 2-chlorophenol 
 

The procedure was identical to that used for phenol, but 2-chlorophenol (12.86 g, 0.10 

mol) was used instead of phenol. 

 

4.5. Double chlorination of phenol 
 

The procedure was identical with that used for phenol except that SO2Cl2 (17.00 ml, 

0.21 mmol) was used instead of 8.90 ml. 
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