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HAMILTONIAN OPERATORS AND RELATED

DIFFERENTIAL-ALGEBRAIC BALINSKY-NOVIKOV, RIEMANN AND

LEIBNIZ TYPE STRUCTURES ON NONASSOCIATIVE

NONCOMMUTATIVE ALGEBRAS

OREST D. ARTEMOVYCH1), ALEXANDER A. BALINSKY2) AND ANATOLIJ K.
PRYKARPATSKI3)

Abstract. We review main di¤erential-algebraic structures lying in background of an-
alytical constructing multi-component Hamiltonian operators as derivatives on suitably
constructed loop Lie algebras, generated by nonassociative noncommutative algebras.
The related Balinsky-Novikov and Leibniz type algebraic structures are derived, a new
nonassociative "Riemann" algebra is constructed, deeply related with in�nite multi-
component Riemann type integrable hierarchies. An approach, based on the classical
Lie-Poisson structure on coadjoint orbits, closely related with those, analyzed in the
present work and allowing e¤ectively enough construction of Hamiltonian operators, is

also brie�y revisited. As the compatible Hamiltonian operators are constructed by means
of suitable central extentions of the adjacent weak Lie algebras, generated by the right

Leibniz and Riemann type nonassociative and noncommutative algebras, the problem
of their description requires a detailed investigation both of their structural properties
and �nite-dimensional representations of the right Leibniz algebras de�ned by the cor-
responding structural constraints. Subject to these important aspects we stop in the
work mostly on the structural properties of the right Leibniz algebras, especially on their
derivation algebras and their generalizations. We have also added a short Supplement

within which we revisited the classical Poisson manifold approach, closely related to
our construction of Hamiltonian operators, generated by nonassociative and noncom-
mutative algebras. In particular, we presented its natural and simple generalization
allowing e¤ectively to describe a wide class of Lax type integrable nonlinear Kontsevich
type Hamiltonian systems on associative noncommutative algebras.

1. Introduction

We present a short review of main di¤erential-algebraic structures lying in background
of analytical constructing multicomponent Hamiltonian operators as derivatives on suitably
constructed loop Lie algebras, generated by nonassociative and noncommutative algebras.
During the last decades there were discovered [43, 23, 21, 76] many integrable Hamiltonian
systems, whose internal symmetyry structure was analytical nature was understood owing
to the Lie-algebraic properties of their internal hidden symmetry structures. A �rst account
of the Hamiltonian operators and related di¤erential-algebraic structures, lying in the back-
ground of integrable systems, was given by I. Gelfand and I. Dorfman [48, 38] and later was
extended by B. Dubrovin and S. Novikov [40, 41], and also by A. Balinsky and S. Novikov
[16, 13, 14, 12]. Also some new special di¤erential-algebraic techniques [84] were devised
for studying the Lax integrability and the structure of related Hamiltonian operators for a
wide class of the Riemann type hydrodynamic hierarchies. Just recently considerable work
[8, 9, 10, 78] has been done devoted to the �nite dimensional representations of the Balinsky-
Novikov algebra. Their importance for constructing integrable multi-component nonlinear
Camassa�Holm type dynamical systems on functional manifolds was demonstrated by I.
Strachan and B. Szablikowski in [98], which in part suggested the Lie-algebraic imbedding
of the Balinsky-Novikov algebra into the general Lie�Poisson orbits scheme of classifying
Lax integrable Hamiltonian systems. It is also worth of mentioning the related work [53]
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by Holm and Ivanov in which integrable multicomponent nonlinear Camassa�Holm type
dynamical systems on functional manifolds were constructed.
In our work here we describe a di¤erential-algebraic reformulation of the classical Lie

algebraic scheme and develop an e¤ective approach to classi�cation of the underlying al-
gebraic structures of integrable multicomponent Hamiltonian systems. In particular, we
have devised a simple algorithm allowing to construct new algebraic structures within which
the corresponding Hamiltonian operators exist and generate integrable multicomponent dy-
namical systems. We show, as examples, that the well-known Balinsky-Novikov algebraic
structure, obtained in [48, 16] as a condition for a matrix di¤erential expression to be Hamil-
tonian and in [19, 30, 55, 80] as a �at torsion free left-invariant a¢ne connection on a¢ne
manifolds, a¢ne structures and convex homogeneous cones, appears in our approach as a
derivation on the Lie-algebra naturally associated with a suitably constructed di¤erential
loop algebra. As a direct generalization of this example we obtain two new di¤erentiations,
whose underlying algebraic structures coincide, respectively, with the well-known [3, 45]
right Leibniz algebra, introduced in [24, 25, 64], and with a new �Riemann� algebra, which
naturally generate di¤erent Hamiltonian operators describing a wide class of multicompo-
nent hierarchies [22, 84] of integrable Riemann hydrodynamic systems. As the compatible
Hamiltonian operators, important for studying integrable multicomponent Hamiltonian sys-
tems, are constructed by means of suitable central extentions of the adjacent weak Lie
algebras, determined by the right Leibniz and Riemann type nonassociative and noncom-
mutative algebras, their description requires a detailed investigation both of the structural
properties and �nite-dimensional representations of the right Leibniz algebras de�ned by
the corresponding structural constraints. Subject to these important aspects we stop in the
work mostly on the structural properties of the right Leibniz algebras, especially on their
derivation algebras and their generalizations.
In a supplement the classical Poisson manifold approach, closely related to our construc-

tion of Hamiltonian operators, generated by nonassociative and noncommutative algebras,
is brie�y revisited. In particular, its natural and simple generalization appeared to be useful
[5, 6, 20, 42, 66, 71, 72] for describing a wide class of Lax type integrable nonlinear Hamilton-
ian systems on associative noncommutative algebras, initiated �rst in [28, 39, 82, 86] in case
of the noncommutative operator algebras and continued later in [66, 56, 57, 58, 66, 71, 72, 73]
in case of general associative noncommutative algebras.

2. The Hamiltonian operators and related algebraic structures via the
differential-algebraic approach

Assume (A; �) to be a �nite-dimensional algebra of dimensionN = dimA 2 Z+ (in general
noncommutive and nonassociative) over an algebraically closed �eld K: Using the algebra A
one can construct the related loop algebra eA of smooth mappings u : S1 ! A and endow
it with a suitably generalized natural convolution h�; �i on eA� � eA ! K; where eA� is the
corresponding adjoint to eA space.
First, we shall consider a general scheme of constructing nontrivial ultra-local and local

[43] Poisson structures on the adjoint space eA�; compatible with the internal multiplication
in the loop algebra eA: Consider a basis fes 2 A : s = 1; N g of the algebra A and its dual
fus 2 A� : s = 1; Ng with respect to h�; �i on A� � A; that is



uj ; ei

�
:= = �ji for all

i; j = 1; N; and such that for any u(x) =
P

s=1;N us(x)u
s 2 eA�; x 2 S1; the quantities

us(x) := hu(x); esi 2 K for all s = 1; N; x 2 S1: Denote by eA ^ eA := Skew(eA 
 eA) and let
#� : eA ^ eA ! eA be a skew-symmetric bilinear mapping. Then the expression

(2.1) fui(x); uj(x)g := hu(x); #�(ei ^ ej)i

de�nes for any x; y 2 S1 and all i; j = 1; N an ultra-local linear skew-symmetric pre-Poisson

bracket on eA�: Since the algebra eA possesses its internal multiplicative structure "�"; the
important problem arises: Under what conditions is the pre-Poisson bracket (2.1) Poisson

and compatible with this internal structure on eA ? To proceed with elucidating this question,
we de�ne a co-multiplication � : eA� ! eA� 
 eA� on any element u 2 eA� by means of the
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relationship

(2.2) h�(u); (a
 b)i := hu; a � bi

for arbitrary a; b 2 eA: Note that the co-multiplication � : eA� ! eA� 
 eA�; de�ned this
way, is a homomorphism of the algebra eA� with respect to the natural multiplication of

functionals, and the linear pre-Poisson structure f�; �g (2.1) on eA� is called compatible with
the multiplication " � " on the algebra eA; if the following symbolic invariance condition
(2.3) �fui(x); uj(x)g = f�(ui(x));�(uj(x))g

holds for any x 2 S1 and all i; j = 1; N:
Taking into account that multiplication in the algebra A is given for any i; j = 1; N by

the condition

(2.4) ei � ej :=
X

s=1;N

�sijes;

where the quantities �sij 2 K for all i; j and k = 1; N are constants, the related co-

multiplication � : eA� ! eA� 
 eA� acts on the basic functionals us 2 eA�; s = 1; N; as

(2.5) �(us) =
X

i;j=1;N

�siju
i 
 uj :

Additionally, if the mapping #� : eA ^ eA ! eA is given, for instance, in the simple linear
form

(2.6) #� : (ei 
 ej � ej 
 ei)!
X

s=1;N

(csij � c
s
ji)es;

where quantities csij 2 K are constant for all i; j and s = 1; N; then for the adjoint to (2.6)

mapping # : Symm(eA�)! eA� ^ eA� one obtains the expression

(2.7) # : us !
X

i;j=1;N

(csij � c
s
ji)u

i 
 uj :

For the pre-Poisson bracket (2.1) to be a Poisson bracket on eA�; it should must also sat-
isfy the Jacobi identity. To �nd the corresponding additional constraints on the internal

multiplication " � " on the algebra eA; de�ne for any u(x) 2 eA� the skew-symmetric linear
mapping

(2.8) #(u) : eA! eA�;
called [48] by the Hamiltonian operator, via the identity

(2.9) h#(u)a; bi := h# u(x); a ^ bi

for any a; b 2 eA; where the mapping # : eA� ! eA� ^ eA� is determined by the expression
(2.7) to which it is adjoint. Then it is well known [48] that the pre-Poisson bracket (2.1) is
Poisson i¤ the Hamiltonian operator (2.8) satis�es the well known [48] Schouten��Nijenhuis
condition:

(2.10) [[#(u); #(u)]] = 0

for any u(x) 2 eA�: Since the mapping

(2.11) #(u)ei =
X

s;k=1;N

(csik � c
s
ki)us(x)u

k

holds for any basis element ei 2 A; i = 1; N; the resulting linear pre-Poisson bracket (2.1)
becomes equal to

(2.12)

fui(x) ; uj(x)g = h#(u)ei; eji =

=
P

s=1;N

(csij � c
s
ji)us(x) =� u(x);

P

s=1;N

(csij � c
s
ji)es >
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for any u(x) 2 eA�: Now, de�ning on the algebra A the naturally adjacent to the algebra A
Lie commutator structure

(2.13) [ei; ej ] = ei � ej � ej � ei :=
X

s=1;N

(�sij � �
s
ji)es

for any basis elements ei; ej 2 A; i; j = 1; N; the expression (2.12) yields the well known
[1, 4] classical Lie-Poisson bracket

(2.14) fui(x) ; uj(x)g =� u; [ei; ej ] � :

Concerning the adjacent Lie algebra structure condition (2.13), it can be easily rewritten
as the set of relationships,

(2.15) �sij � �sji = c
s
ij � c

s
ji

whose evident solution is

(2.16) csij = �
s
ij

for any i; j; s = 1; N: It is also clear that the compatibility condition (2:3) is completely
unnecessary [13, 14] for the pre-Poisson bracket (2:1) to be a Poisson one. Moreover, as
the bracket (2:14) is of the classical Lie-Poisson type, for the Hamiltonian operator (2:11)
to satisfy the Schouten-Nijenhuis condition (2:10) is enough to check only the weak Jacobi

identity for the weak Lie algebra LeA; adjacent to to the algebra
eA via imposing the Lie

structure (2:13), taking into account the relationships (2.16). Simple calculations for the
special skew-symmetric case

(2.17) ei � ej + ej � ei = 0

for all i; j = 1; N give rise to the constraints

(2.18) ei � ej + ej � ei = 0; (ei � ej) � ek + (ej � ek) � ei + (ek � ei) � ej = 0;

coinciding exactly with those in [48]. The corresponding Hamiltonian operator (2.8) then
acts as

(2.19) #(u)ei =
X

s;k=1;N

(�sik � �
s
ki)us(x)u

k

on any basis element ei 2 A: Since the bracket (2.14), owing to the constraints (2.17) and

(2.18), satis�es the weak Jacobi identity implying that the mapping #(u) : eA! eA� satis�es
the Schouten�Nijenhuis condition (2.10), one has the following result.

Theorem 2.1. The general linear pre-Poisson bracket (2.1) on eA� under the constraints
(2.17) and (2.18) on the algebra A; which is of the Lie-Poisson type on the adjoint space
L�eA to the weak Lie algebra LeA adjacent to the loop algebra

eA; is a priori a Poisson and
compatible with the internal algebraic structure of A:

Remark 2.2. Similarly, one can consider a simple ultra-local quadratic pre-Poisson bracket

on eA�;
(2.20) fui(x); uj(x)g := hu(x)
 u(x) ; #

�(ei ^ ej)i ;

where the skew-symmetric mapping #� : eA^ eA ! Symm(eA
 eA) is given for any i; j = 1; N
in the quadratic form

(2.21) #�(ei 
 ej � ej 
 ei) :=
X

k;s=1;N

(cksij � c
ks
ji )(ek 
 es + es 
 ek):

In particular, if to assume that the coe¢cients cksij = �
k
ij�

s for some constant numbers �kij
and �s 2 K for all i; j and k; s = 1; N; where ek � es :=

P

k=1;N

�kijek; then the pre-Poissson

bracket (2.20) yields a very compact form

(2.22) fui(x); uj(x)g := hu(x)
 u(x) ; �
 [ei; ej ] + [ei; ej ]
 �i ;

generalizing (2.14) and parametrically depending on the constant vector � :=
P

s=1;N

�ses 2

A: For the pre-Poisson bracket (2.22) to be Poisson one can formulate suitable constraints
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on the algebraic structure of eA; similar to those obtained in [13], which we shall not consider
here.

Now, let eA(u) � eA denote the polynomial di¤erential ideal generated by an element

u 2 eA and its derivatives Dn
xu 2

eA; n 2 Z+: The corresponding space of polynomial
functions eA(u) ! K; constructed by means of some scalar form on eA(u); will be denoted
by FeA(u): Then the basic ultra-local and linear, with respect to an independent element

u(x) 2 eA; x 2 S1; pre-Poisson bracket (2.1) is easily generalized to a local pre-Poisson
bracket for arbitrary functions f; g 2 FeA(u) :

(2.23) ff; gg(u) = hu(x); #�(rf(u(x)) ^rg(u(x)i ;

in which the mapping #� : eA ^ eA ! Symm(eA 
 eA) is invariantly reduced on the subspace
eA(u)^ eA(u) and depends nontrivially on the derivation Dx : eA! eA: In (2.23), we denoted

the usual linear gradient mapping from FeA(u) to the ideal
eA(u) � eA by �r�; that is for

a given h 2 FeA(u), rh(u(x)) 2 eA(u) and hv(x);rh(u(x)i := dh(u + "v)=d"j"=0 for any

v(x) 2 eA�; x 2 S1: Keeping in mind the problem of �nding constraints on the multiplicative

structure of the algebra eA under which the pre-Poisson bracket (2.23) is Poisson, it is
very interesting to construct nontrivial examples of linear local pre-Poisson brackets on
FeA(u); compatible with the multiplication " � " on A and nontrivially depending on the

usual di¤erential operator Dx : eA ! eA for x 2 S1: In particular, for arbitrary functions
f; g 2 FeA(u) one can consider the following nontrivial and simplest linear local pre-Poisson
bracket

(2.24) ff; gg(u) := hu(x); #�(rf(u(x)) ^rg(u(x))i ;

where

(2.25) #� : (a(x) ^ b(x))!
X

j;k;s=1;N

[csjkDxa
j(x)bk(x)� csjkDxb

j(x)ak(x)]es

for any a(x) :=
P

j=1;N a
j(x)ej ; b(x) :=

P
j=1;N b

j(x)ej 2 eA ; x 2 S1; and some arbitrarily
chosen constant quantities csjk 2 K for all j; k and s = 1; N: If one also assumes that these

constant quantities satisfy the condition (2.16), that is csij = �
s
ij for all i; j and s = 1; N;

the mapping (2.25) can be recast as

(2.26) #� : (a(x) ^ b(x))! Dxa(x) � b(x)�Dxb(x) � a(x);

providing the pre-Poisson bracket (2.24) for arbitrary functions f; g 2 FeA(u) with the
canonical Lie-Poisson form

(2.27) ff; gg(u) := hu(x); Dxrf(u(x)) � rg(u(x))�Dxrg(u(x)) � rf(u(x)i ;

which was recently presented in [98]. Thus, if the Lie structure

(2.28) [a(x); b(x)]D := Dxa(x) � b(x)�Dxb(x) � a(x)

for any a(x); b(x) 2 eA; x 2 S1; generates the weak adjacent Lie algebra LeA; the pre-Poisson
bracket (2.27) will automatically be Poisson on the space FeA(u): Moreover, the expression
(2.27), rewritten in the tensor form

ff; gg(u) = h�u(x); Dxrf(u(x))
rg(u(x))�(2.29)

�Dxrg(u(x))
rf(u(x)i : = (#(u)rf(u(x));rg(u(x)));

naturally de�nes a related bilinear form (�; �) on the weak adjacent Lie algebra LeA; allow-
ing to determine the corresponding Hamiltonian operator #(u) : LeA ! LeA; whose matrix

representation with respect to the basis fes 2 A : s = 1; N g is

(2.30) #(u) = �(u)Dx + Dx�(u)
|;

where �(u) := f
P

s=1;N �
s
ijus : i; j = 1; Ng: So, if the Hamiltonian operator (2.30) sat-

is�es the Schouten�Nijenhuis condition (2.10), the pre-Poisson bracket (2.29) is Poisson.
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Yet, simultaneously, if the adjacent Lie algebra structure (2.28) satis�es the weak Jacobi
condition

(2.31)
hu(x); [[a(x); b(x)]D; c(x)]Di+ hu(x); [[b(x); c(x)]D; a(x)]Di+

+ hu(x); [[c(x); a(x)]D; b(x)]Di = 0

for any elements a(x); b(x) and c(x) 2 eA; x 2 S1; then the pre-Poisson bracket (2.27)
equivalent to (2.29), being of the Lie�Poisson type, will be a priori Poisson. As the second
criterion is easier to check, after some simple calculations one obtains the well-known [16, 48]
Balinsky-Novikov algebra constraints

(2.32) [Ra; Rb] = 0; [La; Lb] = L[a;b]

on the multiplication structure of the algebra A; where, by de�nition, for any a; b 2 A
the bracket [a; b] := a � b � b � a and the mappings La; Ra : A! A are left and right
multiplications, respectively: Lab := a � b = Rba:

Remark 2.3. As follows from Proposition 3.2, formulated below, if the algebra A is
a Balinsky-Novikov algebra (2.32), then the constructed above Hamiltonian operator
#(u) : LeA ! LeA is a derivation of the weak adjacent Lie algebra LeA and vice versa: the oper-
ator #(u) : LeA ! LeA is Hamiltonian if it is a derivation of the weak Lie algebra LeA adjacent
to the Balinsky-Novikov algebra (2.32).

The next example of the bilinear, nonlocal (pseudodi¤erential) and weakly skew-
symmetric mapping

(2.33) #� : (a(x) ^ b(x))! D�1
x a(x) � b(x)�D�1

x b(x) � a(x);

where DxD
�1
x := 1 : eA! eA is the identity mapping, generates the weak adjacent Lie algebra

LeA structure

(2.34) [a(x); b(x)]D := D
�1
x a(x) � b(x)�D�1

x b(x) � a(x)

for any a(x); b(x) 2 eA: It is easy to check that the commutator structure (2.34) satis�es
the weak Jacobi identity (2.31) i¤ the multiplicative structure of the algebra A satis�es
the so called [64] right Leibniz algebra constraints:

(2.35) Ra�b = [Ra; Rb]; Ra�b +Rb�a = 0

for arbitrary elements a; b 2 A: The corresponding matrix integro-di¤erential Hamiltonian
operator on the space FeA(u) with respect to the basis fes 2 A : s = 1; N g for this case
equals

(2.36) #(u) = �(u)D�1
x +D�1

x �(u)|

for any u(x) 2 eA�; x 2 S1:
Consider now the bilinear, nonlocal and weakly skew-symmetric mapping

(2.37) #� : (a(x) ^ b(x))! D�1
x b(x) �Dxa(x))�D

�1
x a(x) �Dxb(x));

which naturally generates the adjacent Lie algebra LeA structure

(2.38) [a(x); b(x)]D := D
�1
x b(x) �Dxa(x)�D

�1
x a(x) �Dxb(x):

Then it is easy to check that the commutator structure (2.38) satis�es the weak Jacobi
identity (2.31), i¤ the following so called Riemann algebra A multiplicative structure

(2.39) [Ra; Rb] = 0; La�b = Ra�b = Lb�a

holds for arbitrary elements a; b 2 A: For the related Hamiltonian operator on the functional
space FeA(u) with respect to the basis fes 2 A : s = 1; N g one easily obtains from (2.37)
the integro-di¤erential expression

(2.40) #(u) = Dx�(u)D
�1
x �D�1

x �(u)|Dx

for any u(x) 2 eA�; x 2 S1: The above results can be reformulated as the following theorem.
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Theorem 2.4. An arbitrary linear pre-Poisson bracket (2.29) on the functional space
FeA(u); which is of the Lie-Poisson type on the adjoint space L

�
eA to the weak Lie algebra LeA

adjacent to the loop algebra eA; is a priori Poisson and compatible with the internal structure
of the algebra A i¤ the related Lie algebra structure [�; �]D satis�es the weak Jacobi condition.

Thus, all the operators (2.30), (2.36) and (2.40) are Hamiltonian and a priori satisfy
the Schouten�Nijenhuis condition (2.10), as easily follows from Theorem 2.4. It is also clear
that in contrast to the simple Hamiltonian operator criterion formulated in this theorem,
direct and very cumbersome checking of the Schouten�Nijenhuis condition as in [48] for the
cases considered above, would be required for the multiplicative structures on the algebra
A coinciding with (2.32), (2.35) and (2.39).

3. Hamiltonian operators and related algebraic structures via the

Lie-algebraic approach

Assume now that the loop algebra (eA; �) allows a weak adjacent Lie algebra extension
(L eA; [�; �]D) by means of a commutator operation [�; �]D :

eA� eA! eA; which can be endowed
[17, 18, 43, 96] with a nondegenerate ad-invariant

(3.1) ([a; b]D; c) = (a; [b; c]D);

and symmetric

(3.2) (a; b) = (b; a)

bilinear form (�; �) : L eA�L eA ! K for any a; b and c 2 LA:

Remark 3.1. If the Lie-structure [�; �]D on eA coincides with the usual commutator structure
[�; �] on eA; with respect to the multiplication " � "; and the symmetric bilinear form (3.2)
also satis�es the shifting property

(3.3) (a � b; c) = (a; b � c)

for any a; b and c 2 LeA; then the ad-invariance condition (3.1) automatically holds.

The form (3.2) makes it possible to construct the natural identi�cation L�eA ' L eA:

One can consider the subspace of polynomial functions FeA(u) � F(L
�
eA) of the space F(L

�
eA)

of smooth functions on L�eA ; generated by an element u 2 L�eA ; jointly with its related

Lie-Poisson bracket:

(3.4) ff; gg0 := (u; [rf(u);rg(u)]D)

for any f; g 2 FeA(u): Owing to the construction [1, 4, 21, 17, 43], the Lie-Poisson bracket
(3.4) satis�es a priori the classical Jacobi identity, and it can serve as a very powerful tool for
constructing the related Hamiltonian operators on the functional space FeA(u): In particular,

following [48, 75], a smooth mapping #(u) : LeA ! L�eA ' LeA for a chosen element u 2
eA is a

Hamiltonian operator if the related pre-Poisson bracket

(3.5) ff; gg := (#(u)rf(u);rg(u));

determined for any f; g 2 FeA(u); satis�es the Jacobi identity.
Taking into account that the canonical Lie�Poisson bracket (3.4) depends essentially

on the loop Lie algebra structure of LeA; we proceed further to extending the Lie algebra
structure on LeA by means of the standard [43] central extension technique. Namely, let

L̂eA := LeA �K denote the centrally extended Lie algebra LeA endowed with the bracket

(3.6) [(a;�); (b;�)]D := ([a; b]D;$2(a; b))

for any a; b 2 LeA and �; � 2 K; where the 2-cocycle $2 : LeA �LeA ! K is a skew-symmetric
bilinear form satisfying the Jacobi identity:

(3.7) $2([a; b]D; c) +$2([b; c]D; a) +$2([c; a]D; b) = 0

for any a; b and c 2 LeA: It is evident that the existence of nontrivial central extensions on
the Lie algebra LeA strongly depends on the algebraic structure of the algebra A underlying
the whole construction presented above. Yet there exist some general algebraic properties
which allow to proceed further with success. For example, assume that a smooth mapping
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D : LeA ! End LeA de�nes for any u 2 L
�
eA ' LeA a weak derivation of the Lie algebra LeA;

that is

(3.8) (c;Du[a; b]D) = (c; [Dua; b]D + [a;Dub]D)

for any a; b and c 2 LeA: Then the following important proposition [74, 96] holds.

Proposition 3.2. Let a linear mapping Du : LeA ! LeA be for a �xed u 2 L�eA a weak

skew-symmetric derivation of the Lie algebra LeA: Then the expression

(3.9) $2(a; b) := (a;Dub)

for any a; b 2 LeA and u 2 L�eA ' LeA de�nes a nontrivial 2-cocycle on the Lie algebra LeA:

A proof is given by means of direct checking the Jacobi identity (3.7) and is omitted.

Remark 3.3. The expression (3.9) when linear in the element u 2 L�eA can be, evidently,

represented for any a; b 2 eA in the following scalar form:

(3.10) (a;Dub) = (u; #
�(a ^ b));

where #� : eA ^ eA! eA is some bilinear skew-symmetric mapping.

As follows from the results of Section (2) the right-hand side of expression (3.10) allows
the equivalent form

(3.11) (u; #�(a ^ b)) = (u; [a; b] �D);

where the bracket [a; b] �D de�nes for any a; b 2 eA a new adjacent Lie algebra structure on
the loop algebra eA; a priori compatible with the basic Lie structure [�; �]D: In the case when
these Lie structures coincide, that is [�; �]D = [�; �] �D; the cocycle (3.9) naturally determines
on the phase space FeA(u) the equivalent to (3.4) Poisson bracket

(3.12) ff; gg(u) := (rf(u(x));Durg(u(x)))

for any f; g 2 FeA(u):Moreover, as follows from (3.11) and the ad-invariance property (3.1),
the mapping Du(�) = �[u; �]D for any u 2 L�eA is automatically a derivation of the weak

adjacent Lie algebra LeA:

Example 3.4. As a natural example of the derivation Du : LeA ! LeA one can take the
mapping

(3.13) Du := �1u(x)Dx +Dx�2u(x);

where for u 2 L�eA the expressions �ju(x) : eA ! eA�; j = 1; 2; denote the convolution

operators of the co-multiplication � : eA� ! eA� 
 eA� with respect to its �rst and sec-
ond tensor components, respectively. In particular, we have (�u; a 
 b) := (u; a � b) =PN

s;i;j=1 �
s
ij

R
S1
us(x)a

i(x)bj(x)dx for a �xed u =
PN

s=1 us(x)u
j 2 eA� ' eA and any

a =
PN

i=1 a
i(x)ei; b =

PN
j=1 b

j(x)ej 2 LeA ; as we have assumed by de�nition, that

(ui; ej) := �ij ; i; j = 1; N: If now the weak Lie algebra LeA is generated by the commuta-
tor Lie structure (3.4), that is

(3.14) [a; b]D = Dxa � b�Dxb � a

for any a; b 2 LeA; it easy to check that the mapping (3.13) is a skew-symmetric with respect

to the bilinear form (�; �) on eA weak derivation of the Lie algebra LeA: Moreover, the related

weak Lie algebraic structure [�; �]D0 on eA; satisfying the condition (u; [a; b]D0) = (a;Dub)
for any a; b 2 LeA; coincides exactly with that (3.14).

There are also other strictly algebraic tools for constructing Poisson brackets on the
functional space FeA(u): For instance, as a simple consequence of Proposition 3.2 the following
result [38, 74, 96] holds.
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Proposition 3.5. Let a nondegenerate linear skew-symmetric R-matrix endomorphism
R : LeA ! LeA satisfy the well-known weak Yang�Baxter commutator condition:

(3.15) (c; [Ra;Rb]D) = (c;R ([Ra; b]D + [a;Rb]D)) = 0

for any a; b and c 2 LeA : Then the inverse mapping R
�1 : LeA ! LeA is a weak skew-symmetric

derivation of the Lie algebra LeA and the expression

(3.16) $2(a; b) = (a;R
�1b)

de�nes for any a; b 2 LeA a 2-cocycle on LeA:

Consider for any function f 2 FeA(u) its di¤erential �f 2 �1(eA(u)) and de�ne for a
chosen element h 2 eA(u)� the vector �eld �h 2 �(

eA(u)) via the equality
(3.17) �f(�h) = (rf(u); h):

As symplectic forms on the phase space eA(u) are dual objects to the Poisson brackets on
the functional space FeA(u); one easily obtains the following [74, 92, 96] proposition.

Proposition 3.6. Assume that the Lie algebra LeA allows a skew-symmetric nondegenerate
R-structure homomorphism R : LeA ! LeA; satisfying the weak Yang�Baxter condition

(3.18) (c;R([Ra; b]D + [a;Rb]D) � [Ra;Rb]D) = 0

for any a; b and c 2 LeA : Then di¤erential 2-forms !
(2)
j 2 �2(eA(u)); j = 1; 2; de�ned on the

ideal eA(u) � eA as

(3.19) !
(2)
1 (�f ; �g) = (R�f ; �g) := �(#1rf(u);rg(u);

where �f := #1rf(u); �g := #1rg(u) 2 �
1(eA(u)) with f; g 2 FeA(u); and

(3.20) !
(2)
2 (�f ; �g) = (u; [R�f ;R�f ]D) := �(#2rf(u);rg(u)

where �f := #2rf(u); �g := #2rg(u) 2 �
1(eA(u)) with f; g 2 FeA(u); are closed. Moreover,

the corresponding Hamiltonian operators #1 and #2 : LeA ! L�eA are compatible, that is the

sum �#1 + �#2 : LeA ! LeA for arbitrary �; � 2 K is also a Hamiltonian operator.

Proof. (Sketch). The 2-form (3.19) is closed, as the expression (3.19) determines a 2-
cocycle on the Lie algebra LeA owing to the fact that the inverse mapping R�1 : LeA ! LeA
is a weak derivation on LeA; that is

(3.21) (c;R�1[a; b]D) = (c; [R
�1a; b]D + [a;R

�1b]D)

for any a; b and c 2 LeA: A proof of the second part of the proposition consists in direct

checking the closedness of the 2-forms !
(2)
2 2 �2(eA(u)); which is equivalent to the Yang�

Baxter condition (3.18). Concerning their compatibility, we observe that the Hamiltonian
operator #2 : LeA ! LeA; corresponding to the expression (3.20), is representable as the

composition #2 = #1(#
�1
0 #1); where the Hamiltonian operator #0 : LeA ! L�eA is naturally

determined from the canonical Lie�Poisson bracket (3.4) as

(3.22) (u; [rf(u);rg(u)]) := (#0rf(u);rg(u))

for any f; g 2 FeA(u): From this representation one easily derives [23, 21, 74, 48, 96] the

compatibility of the Hamiltonian operators #2 and #1 on eA(u); following from the evident

compatibility of operators #0 and #1 on eA(u); owing to 2-cocycle property of the bilinear
form (3.16). �

The R-structures on the weak Lie algebra LeA can be e¤ectively exploited for constructing
additional Hamiltonian operators on L�eA owing to the fact that the bracket

(3.23) (c; [a; b](R)) := (c; [a;Rb]D + [Ra; b]D)

generates for any a; b and c 2 LeA a new weak Lie structure on the linear space LeA; thus

producing a new weak Lie algebra L
(R)
eA := (eA; [�; �](R)):
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Example 3.7. Consider the Rota-Baxter [93, 94] endomorphism R : LeA ! LeA; where for

any a 2 LeA we put R(a) :=
1
2 [
R x
0
a(y)dy �

R 2�
x
a(y)dy] for any x 2 S1; which satis�es the

weak Yang�Baxter commutator condition (3.15). Then it is easy to check that the inverse
mapping R�1 = d=dx; x 2 S1; is the natural skew-symmetric derivation of the weak Lie
algebra LeA; generating a Poisson structure compatible with that of (3.12).

In a manner similar to the above [74, 62, 92, 96] one veri�es the existence of the following
so called "quadratic" Poisson brackets. Namely, the next proposition holds.

Proposition 3.8. Let the weak Yang�Baxter condition (3.18) hold. Then the brackets

(3.24) ff; gg1 := (u � rf(u);R(u � rg(u)))� ( rf(u) � u;R(rg(u) � u))

and

(3.25) ff; gg2 := (u; [Rrf(u);rg(u)]D + [rf(u);Rrg(u)]D);

de�ned for any f; g 2 FeA(u); are Poisson and compatible on
eA(u):

As an interesting and also useful consequence of the R-matrix construction, one has the
fact that the following subspaces

(3.26) L�eA := (I�R)=22LeA

are Lie subalgebras of LeA; which is equivalent to the condition that the mappings

(3.27) (I�R)=2 : L(R)eA ! L�eA � LeA

are homomorphisms [96] of the Lie algebras L
(R)
eA := (eA; [�; �](R)) and L�eA : In the special case

when L+eA \L
�
eA = f0g; the operator R =P+�P�; the linear operators P� := (I�R)=2 : LeA !

LeA are projectors and the weak Lie algebra LeA allows the direct sum splitting LeA = L
+
eA�L

�
eA :

4. Integrable Riemann hydrodynamical systems and related multicomponent
Hamiltonian operators

4.1. General setting. In preceding sections we have shown that any skew-symmetric Lie
structure [�; �]D on the weak adjacent Lie algebra LeA; satisfying the Jacobi identity and

nontrivially depending on the derivation Dx : eA! eA; determines on the phase space FeA(u)
the local Poisson bracket

(4.1) ff; gg(u) := (u; [rf(u(x));rg(u(x))]D)

for any u 2 eA� and arbitrary functions f; g 2 FeA(u): Moreover, from the analysis provided
above we know that if the Hamiltonian operator #(u) : LeA ! L�eA ' LeA related (2.29)

corresponds to some 2-cocycle on the Lie algebra LeA; then it will be a priori Hamiltonian.
Moreover, owing to Proposition 3.2, if this 2-cocycle is generated by a derivation Du :

LeA ! LeA; u 2
eA� ' eA; on the Lie algebra LeA; one need only check the related weak Leibniz

property (3.8) in the weak adjacent Lie algebra LeA: In Section 2 we already showed that
the skew-symmetric structure

(4.2) [a; b]D = Dxa � b�Dxb � a

for any a; b 2 LeA; imposed on the weak adjacent Lie algebra LeA; gives rise to the Hamiltonian

operator (2.30) on eA(u)
(4.3) #(u) = �(u)Dx +Dx�(u)

|

and to the related multiplicative Balinsky-Novikov algebra structure (2.32) on A

(4.4) [Ra; Rb] = 0; [La; Lb] = L[a;b]

for any a; b and c 2 A: Similarly, the skew-symmetric structure (2.34)

(4.5) [a; b]D = D
�1
x a � b�D�1

x b � a

for any a; b 2 LeA on the weak adjacent Lie algebra LeA gives rise to the Hamiltonian operator

(2.30) on eA(u)
(4.6) #(u) = �(u)D�1

x +D�1
x �(u)|
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and to the related multiplicative right Leibniz algebra structure (2.32) on A

(4.7) Ra�b = [Ra; Rb]; Ra�b +Rb�a = 0:

Moreover, the skew-symmetric structure (2.34)

(4.8) [a; b]D = D
�1
x b �Dxa�D

�1
x a �Dxb

for any a; b 2 LeA on the weak adjacent Lie algebra LeA gives rise to the Hamiltonian operator

(2.38) on eA(u)

(4.9) #(u) = Dx�(u)D
�1
x �D�1

x �(u)|Dx

and to the related multiplicative Riemann algebra structure (2.39) on A

(4.10) [Ra; Rb] = 0; La�b = Ra�b = Lb�a

for any a; b and c 2 A:

Remark 4.1. Just as in Section 2, one can construct for any a; b and c 2 A dual Balinsky-
Novikov

(4.11) R[a;b] = [Rb; Ra]; [La; Lb] = 0;

Leibniz

(4.12) La�b = [La; Lb]; La�b + Lb�a = 0

and Riemann

[La; Lb] = 0; Ra�b = La�b = Rb�a

algebra constraints, respectively related to the adjacent Lie algebra LeA structures

[a; b]D = Dxa � b�Dxb � a;(4.13)

[a; b]D = a �D
�1
x b� b �D�1

x a

and

(4.14) [a; b]D = �Dxa �D
�1
x b+Dxb �D

�1
x a

for any a; b 2 LeA:

As mentioned above, simultaneously we have shown that the expressions (4.3), (4.7) and
(4.9) are true Hamiltonian operators on the functional space FeA(u) satisfying the Schouten�
Nijenhuis condition (2.10). Using the algebraic scheme in [98] and the right Leibniz algebra
(4.7) and the new Riemann algebra (4.9), one can describe a wide class of multicomponent
completely integrable dynamical systems containing, as follows from the recent results in
[84], in�nite hierarchies of the multicomponent hydrodynamical Riemann type systems.
As the expressions (2.30), (2.36) and (2.40) are true Hamiltonian operators on the

functional space FeA(u) satisfying the Schouten�Nijenhuis condition (2.10), following the
algebraic scheme of [98] mentioned above and using the results of [84] and the right Leibniz
algebra (2.35) and the new Riemann algebra (2.39), one can describe a wide class of
multicomponent completely integrable dynamical systems containing the in�nite hierarchies
of multicomponent Riemann hydrodynamical �ows. For instance, consider the generalized
completely integrable Riemann type dynamical system

(4.15) Dtu1 = u2; Dtu2 = u3; :::; DtuN = 0

on the functional space eA(u) for some nonassociative and noncommutative �nite-dimensional
algebra A; where Dt := @=@t+u1Dx; Dx := @=@x; x 2 S1 and N 2 Z+; which was recently
studied in detail in [83, 84]: The relationships (2.39) allow to calculate the corresponding
representations of the Riemann algebra A for cases N = 2 and N = 3; giving rise to the
corresponding Hamiltonian operators #(u) : LeA ! LeA; coinciding with those constructed in
[84] modulo the trivial constant 2-cocycles on the weak adjacent loop Lie algebra LeA: In
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fact, for the case N = 2 one easily obtains from (2.40) the skew-symmetric two-dimensional
matrix derivation representation

(4.16) #2(u) :=

�
0 u1;xD

�1
x

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x

�
;

coinciding, modulo the trivial constant 2-cocycle

(4.17) $2(a; b) := f2(D
�1
x a; b);

determined for any a; b 2 LeA and a suitable symmetric bilinear form f2 : LeA � LeA ! K;
with the Hamiltonian operator

(4.18) �2(u) =

�
D�1
x u1;xD

�1
x

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x

�
;

on the space FeA(u) for the Riemann type dynamical system (4.15), whose Hamiltonian
representation

(4.19)
d

dt
(u1; u2)

| = ��2(u)rH2(u1; u2)

holds for the Hamiltonian function H2 2 FeA(u); equal to

(4.20) H2 :=
1

2

Z 2�

0

(u2u1;x � u1u2;x)dx:

Proceeding similarly for the case N = 3; one easily obtains from (2.40) the skew-
symmetric three-dimensional matrix Hamiltonian operator #3(u) : LeA ! LeA representation

(4.21) #3(u) =

0
@

0 u1;xD
�1
x 0

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x D�1
x u3;x

0 u3;xD
�1
x 0

1
A ;

coinciding, modulo the trivial constant 2-cocycle

(4.22) $2(a; b) := f3(D
�1
x a; b);

determined for any a; b 2 LeA and a suitable symmetric bilinear form f3 : eA� eA! K with
the Hamiltonian operator

(4.23) �3(u) =

0
@

D�1
x u1;xD

�1
x 0

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x D�1
x u3;x

0 u3;xD
�1
x 0

1
A

on the functional space FeA(u) for the Riemann dynamical system (4.15), whose Hamiltonian
representation

(4.24)
d

dt
(u1; u2; u3)

| = ��3(u)rH3[u1; u2; u3]

holds for a suitably constructed Hamiltonian function H3 2 FeA(u):
There is also an interesting observation concerning an in�nite hierarchy [84] of the gen-

eralized Riemann hydrodynamic systems

(4.25) Dtu1 = u2; Dtu2 = u3; :::; DtuN�1 = (�uN;x)
s; Dt�uN = 0

on the functional space FeA(u); where s;N 2 Z+; with the algebra A generated by the con-
straints (2.39). For the case s = 2 and N = 3 the above skew-symmetric three-dimensional
matrix Hamiltonian operator �#3j2(u) : LeA ! LeA representation

(4.26) �#3j2(u) =

0
@

0 u1;xD
�1
x 0

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x D�1
x �u3;x

0 �u3;xD
�1
x 0

1
A

proves to coincide, modulo the trivial constant 2-cocycle

(4.27) �!2;��(a; b) := f��(D
�1
x a; b);
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determined for any a; b 2 LeA and a suitable symmetric bilinear form f�� : LeA � LeA ! K;
exactly with the Hamiltonian operator

(4.28) ��3j2 (u) =

0
@

D�1
x u1;xD

�1
x 0

D�1
x u1;x u2;xD

�1
x +D�1

x u2;x D�1
x �u3;x

0 �u3;xD
�1
x 0

1
A

on the functional space FeA(u) for the Riemann type dynamical system (4.25), whose
Hamiltonian representation

(4.29)
d

dt
(u1; u2; �u3)

| = ���3j2 (u)rH3j2
(u1; u2; �u3)

holds for the Hamiltonian function H
3j2

2 FeA(u); equal to

(4.30) H3j2 :=
1

2

Z 2�

0

[2u1(�u3;x)
2 � u22 � u

2
1u2;x]dx:

Moreover, one can calculate such a constant 2-cocycle on the Lie algebra LeA

$2;�#(a; b) := f
(1)
�#
(D�1

x a; b) + f
(2)
�#
(a; b);

determined for any a; b 2 LeA by means of two suitably symmetric f
(1)
�#
: LeA�LeA ! K and

skew-symmetric f
(2)
�#
: LeA � LeA ! K bilinear forms, which naturally generates the (4.28)

- compatible Hamiltonian operator

(4.31) �#
(0)
3j2 (u) =

0
@

0 1 0
�1 0 0
0 0 1=2D�1

x

1
A

on the functional space FeA(u) for (4.25), whose Hamiltonian representation

(4.32)
d

dt
(u1; u2; �u3)

| = ��#
(0)
3j2 (u)rH

(0)
3j2 (u1; u2; �u3)

holds for the Hamiltonian function H
(0)
3j2 2 FeA(u); equal to

(4.33) H
(0)
3j2 :=

1

2

Z 2�

0

[u1u2;x � u2u1;x � 2(�u3;x)
2]dx:

It is worth noting here, as was already remarked in [85], that the generalized Rie-
mann hydrodynamic system (4.25) for s = 3; N = 3 reduces to the well-known integrable
Degasperis�Processi dynamical system [36, 35] for the function u := u1 :

(4.34) ut � uxxt + 4uux � 3uxuxx � uuxxx = 0:

Also, for s = 2; N = 3, the system (4.25) for the function u := u1 reduces to the well-known
[33] integrable Camassa�Holm dynamical system

(4.35) ut � uxxt + 3uux � 2uxuxx + uuxxx = 0;

whose multicomponent extensions were recently extensively studied in [44, 53, 34, 98].
Now, returning to the case N = 2 of the system (4.15), it reduces under the substitutions

u1 := u; u2 := D�1
x u2x=2 to the well-known [54, 49, 79, 87] Hunter�Saxton nonlinear

dynamical system

(4.36) du=dt = �uux +D
�1
x u2x=2

on the functional manifold eA(u); u 2 eA�; describing propagation of short-waves in a re-
laxing medium with spatial memory e¤ects. As as shown in [79, 87, 81], the dynami-
cal system (4.36) is a completely integrable bi-Hamiltonian �ow on the functional man-

ifold eA(u); u 2 eA�; with respect to the compatible pair of scalar Hamiltonian operators
#1(u); #2(u) : T

�(eA(u))! T (eA(u)) :
(4.37) #1(u) = D

�1
x ; #2(u) = uD

�1
x +D�1

x u:

As we are interested in the corresponding multicomponent generalization of the dynamical

system (4.36), we need to consider the functional space eA(u); u 2 eA�; generated by a
�nite-dimensional noncommutive and nonassociative algebra A; and construct the Poisson
operators on FeA(u) in the form (2.36), related to the right Leibniz algebra structure (2.35)
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and reducing at N = 1 to the scalar Hamiltonian operator #2(u) : T
�(eA(u)) ! T (eA(u))

from the pair (4.37). Moreover, as the compatible Hamiltonian operators are generated
by means of suitable central extentions of the adjacent weak Lie algebra, the problem of
description them, as was noted above, requires a detailed investigation of the structural
properties and �nite-dimensional representations of the right Leibniz algebras de�ned by
the constraints (2.35). In what will follow, we stop mostly on the structural properties of
the right Leibniz algebras, de�ned by the constraints (2.35), in particular, we characterize
in detail the related derivation algebras.

5. Preliminary algebraic setting

An algebra (L;+; �) over a �eld K is called a (right) Leibniz algebra if it satis�es the
identity

x(yz) = (xy)z � (xz)y

for any x; y; z 2 L. Any Lie algebra is clearly a Leibniz algebra. Leibniz algebras were intro-
duced by A.M. Bloh [26, 27] and rediscovered by J.-L. Loday [64]. Recall that a subalgebra
H � L is said to be an ideal of a Leibniz algebra L if H � L; L �H � H. A linear mapping
� : L! L is called a derivation of L if

�(xy) = �(x)y + x�(y)

for all x; y 2 L. The set DerL of all derivation s of a Leibniz algebra L is a Lie algebra due
to operations of the addition �+" and the commutation �[�;�]" of linear operators in L.
The operator

ra : L 3 x 7! xa 2 L

of a right multiplication is a derivation of L (so-called an inner derivation of L induced by
a 2 L). The set

InnL := fra j a 2 Lg

of all inner derivation s of L is an ideal of the Lie ring DerL (see e.g. [47]). A general theory
for inner derivation s in nonassociative algebras is given in [95]. If L is a Leibniz algebra,
then

Leib(L) := spanfx2 j x 2 Lg

is the smallest ideal of L such that the quotient algebra L=Leib(L) is a Lie algebra (see e.g.
[15, 37]). The center

Z(L) := fz 2 L j zL = 0 = Lzg

and the right annihilator

rannL := ft 2 L j Lt = 0g

of L are ideals in L such that Z(L); Leib(L) � rannL.
A linear mapping F : L ! L is called a generalized derivation of a Leibniz algebra L

associated with a derivation � 2 DerL (in the sense of Breµzar [29]) if

F (xy) = F (x)y + x�(y)

for any x; y 2 L. We denote by GDerL the set of all generalized derivations of L: We
will write (F; �) 2 GDerL if and only if F is a generalized derivation of L associated with
� 2 DerL. Since (�; �) 2 GDerL for any � 2 DerL, we conclude that

InnL � DerL � GDerL:

A generalized derivation F of L that is associated with an inner derivation ra 2 InnL is called
a generalized inner derivation of L. By IGDerL we denote the set of all generalized inner
derivation s of L. Another various generalizations of Lie (and Leibniz) algebra derivation s
was introduced in [15, 32, 46, 61, 67] and others.

In what will follow further, let D = DerL, G = GDerL, � be a nonempty subset of D
(respectively G). If I is an ideal of L and �(I) � I for all � 2 �, then I is called a �-ideal
of L. Inasmuch (x + d(x))(x + d(x)) 2 Leib(L) for any x 2 L and d 2 D, we deduce that
d(x2) 2 Leib(L) and so Leib(L) is a D-ideal of L. For a Leibniz algebra (L;+; �), de�ne the
derived sequence as follows:

L1 = L; L2 = LL; L(k+1) = L(k)L (k � 1):
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A Leibniz algebra L is called nilpotent if there exists a positive integer s such that L(s) = 0
(see e.g. [2, 37, 46, 91]). For a (Lie or Leibniz) algebra L, X 2 f0; D;Gg and

W =

(
0 if Y = Leib(L) and X = X 2 f0; Dg;

Y if Y = rannL and X = G;

the algebra A=W is called:

� X-semisimple if, for any X-ideal T of A, the condition T 2 � Y implies that T � Y ,
� X-prime if, for any X-ideals T;Q of A, the condition TQ � Y implies that T � Y
or Q � Y ,

� X-simple if [A;A] 6= Y and it only has the following X-ideals: 0, Y and A (here 0
and Y are not necessarily di¤erent),

� X-primary if, for any X-ideals T;Q of A, the condition TQ � Y implies that T � Y
or Qm � Y for some positive integer m.

In particular, a X-semisimple (respectively X-prime, X-simple or X-primary) Lie (or
Leibniz) algebra L is called semisimple (respectively prime, simple or primary) if X = 0
and a 0-ideal is an ideal of L. A Leibniz algebra L is semisimple (respectively prime, simple
or primary) if and only if the Lie algebra L=Leib(L) is the ones. If L is a simple Leibniz
algebra, then L=Leib(L) is a simple Lie algebra, but the opposite is not true. It is not
di¢cult to check that if a Leibniz algebra L is prime (respectively semisimple or simple),
then rannL = Leib(L). Every semisimple (respectively prime, simple or primary) Leibniz
algebra is D-semisimple (respectively D-prime, D-simple or D-primary).
The Leibniz algebras are very popular in physics. Many authors have investigated

derivations of Leibniz algebras in the context of geometric study of algebras (see e.g.
[59, 77, 88, 89, 90]) and representations of Leibniz algebras (see e.g. [46, 47, 65, 67]). For ex-
ample, A. Fialowski, A.Kh. Khudoyberdiyev and B.A. Omirov [46] have proved that a Leib-
niz algebra is nilpotent if and only if it admits an invertible Leibniz-derivation, B.A. Omirov
[77] , I.S. Rakhimov and A.-H. Al-Nashi [90] have studied derivation algebras of �liform
Leibniz algebras, M. Ladra, I.M. Rikhsiboev and R.M. Turdibaev [59] have proved that a
�nite-dimensional Leibniz algebra L with a nonsingular derivation is nilpotent, I.S. Rakhi-
mov, K.K. Masutova and B.A. Omirov [88] have proved, in particular, that any derivation
of a simple �nite-dimensional Leibniz algebra over a �eld of zero characteristic can be rep-
resented as sum of three derivations of special form. In this paper we study connections
between Leibniz algebras L, their derivation algebras DerL and generalized derivation alge-
bras GDerL. Our �rst result subject to these topics is the following

Proposition 5.1. Let L be a Leibniz algebra. Then the following hold:

(1) D is a simple Lie algebra if and only if L is a simple Leibniz algebra and D =
InnL = [D;D],

(2) if D is a prime (respectively semisimple or primary) Lie algebra, then L is a D-
prime (respectively D-semisimple or D-primary) Leibniz algebra.

We also prove an analogue of the result of S. Tôgô [100] that is a �nite-dimensional
Leibniz algebra L such that L 6= L2 and Z(L) 6= 0 has an outer derivation (see Proposition
6.5 below).
Obviously, a �nite-dimensional Leibniz algebra L is semisimple if its maximal solvable

ideal is equal to Leib(L). Semisimple Leibniz algebras have studied in [2, 37, 50, 88] and
others. In this way we prove the next result.

Theorem 5.2. If L is a D-prime (respectively D-semisimple or D-simple) Leibniz algebra,
then D=ADerL is prime (respectively semisimple or simple) Lie algebra, where ADerL :=
f� 2 DerL j �(L) � rannLg.

A linear mapping T : L! L is called a multiplier of a Leibniz algebra L if

T (xy) = T (x)y

for all x; y 2 L. The set of all multipliers of L we denote by M(L). Obviously that, for any
T 2 M(L), (T; 0) 2 IGDerL and so

M(L) � IGDerL � GDerL:
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Moreover, M(L) is an ideal of the Lie ring GDerL. We prove the following

Theorem 5.3. Let L be a Leibniz algebra. Then the following hold:

(1) if DerL=ADerL is a semisimple (respectively prime, simple or primary) Lie al-
gebra, then L= rannL is a G-semiprime (respectively G-prime, G-simple or G-
primary) Lie algebra,

(2) if InnL=AInnL, where AInnL = ADerL \ InnL, is a semisimple (respectively
prime, simple or primary) Lie algebra, then L= rannL is a semisimple (respectively
prime, simple or primary) Lie algebra.

For basic de�nitions and properties of Leibniz and Lie algebras we refer to [2, 7, 51, 52, 64].

6. Properties of derivation algebras

We �rst give some information about derivation algebras. If A � L, then

InnA L := fra j a 2 Ag

and, in particular, InnL = InnL L.

Lemma 6.1. Let L be a Leibniz algebra, A its ideal. Then the following hold:

(i) if A is a �-ideal of L, then InnA L is an ideal of D,
(ii) InnA L is an ideal of InnL,
(iii) InnA L = 0 if and only if A � rannL,
(iv) InnL = 0 if and only if L2 = 0,
(v) InnA L = InnL if and only if L = A+ rannL,
(vi) rannL is a D-ideal of L,
(vii) there is the Lie algebra isomorphism

InnL 3 ra 7! a+ rannL 2 L= rannL;

(viii) if � is an ideal of InnL, then

�� = fa 2 L j ra 2 �g

is an ideal of L,
(ix) if � is an ideal of D, then �� is a D-ideal of L,
(x) if B;C � L, then [InnB L; InnC L] = InnCB L.

Proof. By routine calculations. �

Lemma 6.2. Let A be a Leibniz algebra and � an ideal of D. Then we have:

(i) ADerL is an ideal of D,
(ii) [�; InnL] = 0 if and only if � � ADerL,
(iii) if � \ InnL = 0, then � � ADerL.

Proof. (i) Immediately.
(ii) Let � 2 � and a 2 L.
(() Since

(6.1) r�(a) = [�; ra]

and [�; ra] = 0, we deduce that �(a) 2 rannL.
()) Inasmuch r�(a) = 0, we conclude that the assertion holds in view of Eq. (6:1).
(iii) It follows from (ii). �

Corollary 6.3. Let L be a Leibniz algebra. Then InnL is a simple (respectively prime,
semisimple or primary) Lie algebra if and only if L is a simple (respectively prime, semisimple
or primary) Leibniz algebra.

Proof of Proposition 5.1. (1) ()) Let D be a simple Lie algebra. If InnL = 0, then
L2 = 0 and any endomorphism of the additive group L+ is a derivation of L. If p is a prime
and

Ep = f�m : L
+ ! L+ j �m(a) = ma; where a 2 L

and p is a divisor of an integer m; g
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then Ep is an ideal of D. Therefore Ep = D if the characteristic charK = 0 or Eq = D = Er
if the characteristic charK = p, where p; q; r are pair wise distinct primes. This leads to a
contradiction. Hence

0 6= InnL = D:

Then L= rannL is a simple Lie algebra by Corollary 6.3, L = L2 + rannL and

D = [D;D] = [InnL; InnL] = InnL:

(() By Corollary 6.3, InnL is a simple Lie algebra.
(2a) Let D be a prime Lie algebra and A;B be D-ideals of L such that

(6.2) AB � rannL:

Then

(6.3) [InnB L; InnA L] = 0

by Lemma 6.1(x) and, as a consequence, InnB L = 0 or InnA L = 0. This means that
B � rannL or A � rannL. Thus L is a D-prime Leibniz algebra.
(2b) If D is a semisimple Lie algebra, then we can obtain the assertion by the same

argument as in the part (2a).
(2c) Assume that D is a primary Lie algebra and A;B are D-ideals of L satisfying Eq.

(6:2). Then, as in (2a), we have Eq. (6:3) and so InnB L = 0 or InnA L is a nilpotent ideal
of D. Consequently B � rannL or An � rannL. Hence L is a D-primary Leibniz algebra.

�

Lemma 6.4. Let L be a Leibniz algebra, M its ideal of codimension 1. If 0 6= Z(L) � M ,
then Z(M) is an ideal of L and Z(M) 6= L � Z(M).

Proof. It is easy to see that L =M � aK is a direct sum of subspaces, where a 2 L. Since

m(ux) = 0; m(xu) = 0; (ux)m = 0; (xu)m = 0

for any x 2 L, m 2M and u 2 Z(M), we deduce that Z(M) is an ideal of L. Moreover,

la : Z(M) 3 u 7! au 2 Z(M)

is an endomorphism of the additive group Z(M)+. Since 0 6= Z(L) � Z(M), we see that
the kernel Ker la 6= 0 and so

dimZ(M) > dim(a � Z(M)):

Hence L � Z(M) 6= Z(M). �

Proposition 6.5. Let L be a �nite-dimensional Leibniz algebra. If Z(L) 6= 0 and L2 6= L,
then L has an outer derivation.

Proof. Since L2 6= L, we deduce that there exists a subspace M of codimension 1 of L such
that L2 �M and L =M � aK is a direct sum of subspaces for some a 2 L. Obviously that
M is an ideal of L. Suppose that 0 6= z0 2 L and there exists a linear map

� : L 3 m+ �a 7! �z0 2 L;

where � 2 K, �(a) = z0 and �(m) = 0 for any m 2 M . If, moreover, � = ru is an inner
derivation for some u 2 L, then 0 = �(M) =Mu and

(6.4) z0 = �(a) = ru(a) = au:

1) If Z(L) * M , z0 2 Z(L) nM and a 2 Z(L), then 0 6= � 2 DerL and z0 = au 2 M by
Eq. (6:4), a contradiction.
2) If Z(L) * L2 and z0 2 Z(L)nL2, then 0 6= � 2 DerL and z0 = au 2 L2, a contradiction.
3) Assume that Z(L) � L2 and so Z(L) � Z(M).
a) Suppose that Z(M) 6= Z(L) and z0 2 Z(M) n Z(L). Then 0 6= � 2 DerL. If

u = m0 + �0a for some m0 2M and �0 2 K, then

z0u = �0z0a; uz0 = �0az0

and
z0u+ uz0 = �0�(a

2) = 0:

This yields that uz0 = �z0u = 0 and consequently z0 2 Z(L), a contradiction.
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Now assume that Z(L) = Z(M).
b) If z0 2 Z(M)nL �rannM , then 0 6= � 2 DerL. Indeed, a

2 2M and therefore �(a2) = 0.
Then

�((m1 + �1a)(m2 + �2a)) = 0 = �1�2�(a
2) = �1�2�(a)a+ �1�2a�(a) =

= �1z0(m2 + �2a) + (m1 + �1a)�2z0 =
= �(m1 + �1a) � (m2 + �2a) + (m1 + �1a) � �(m2 + �2a)

for any m1;m2 2M and �1; �2 2 K. Moreover, z0 = au 2 L � rannM , a contradiction.
c) Now assume that Z(M) = L � rannM . In view of Lemma 6.4, Z(M) 6= L � Z(M) and

so Z(M) 6= rannM . If z0 2 Z(M) n rannM , then 0 6= � 2 DerL and z0 = au 2 rannM , a
contradiction.
From 1)� 3) it holds that � is an outer derivation of L. �

Corollary 6.6. If L is a �nite-dimensional nilpotent Leibniz algebra, then it admits an outer
derivation.

7. Generalized derivations

Lemma 7.1. Let L be a Leibniz algebra. Then:

(i) GDerL is a Lie ring with respect to the point-wise addition �+" and the point-wise
Lie multiplication �[�;�]" given by the rules

(H +K)(x) = H(x) +K(x)

and
[H;K](x) = H(K(x))�K(H(x))

for all x 2 L and H;K 2 GDerL,
(ii) if A is a D-ideal of L, then

IAGDerL = fF 2 GDerL j F is associated with some ra 2 InnA Lg

is an ideal of GDerL (in particular, IGDerL = ILGDerL and M(L) = I0GDerL),
(iii) GDerL = M(L) + DerL, where M(L) is an ideal of GDerL, and

M(L)
\
DerL � ADerL;

(iv) IGDerL = M(L) + InnL, where M(L) is an ideal of IGDerL, and

M(L)
\
InnL � ADerL;

(v) if (F; �); (F; d) 2 GDerL, then � +ADerL = d+ADerL.

Proof. Assume that (F; �); (K; d) 2 GDerL, T 2 M(L) and x; y 2 L.
(i) We see that (F �K; � � d) 2 GDerL,

[F;K](xy) = F (K(x)y + xd(y))�K(F (x)y + x�(y)) =
= [F;K](x)y + x[�; d](y)

and so ([F;K]; [�; d]) 2 GDerL.
(ii) Evident.
(iii) The equality

[F; T ](xy) = [F; T ](x)y

implies that [F; T ] 2 M(L) and, as a consequence, M(L) is an ideal of GDerL. From

(� � F )(xy) = �(x)y + x�(y)� F (x)y � x�(y) = (� � F )(x)y

it holds that � � F 2 M(L). If g 2 DerL \M(L), then

g(x)y = g(xy) = g(x)y + xg(y):

From this it follows xg(y) = 0 what forces that g(L) � rannL.
(iv) By the same argument as in the part (iii).
(v) If (F; �); (F; d) 2 GDerL for some �; d 2 DerL, then

x�(y) = xd(y)

and consequently x(� � d)(y) = 0. This means that (� � d)(L) � rannL. �

Lie algebras L with abelian derivation algebras DerL was studied by S. Tôgô [99].
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Lemma 7.2. Let L be a Leibniz algebra and (F; d) 2 GDerL. Then we have:

(i) if F = 0, then d 2 ADerL,
(ii) if d 2 ADerL, then F 2 M(L),
(iii) if GDerL is an abelian Lie algebra, then DerL is abelian,
(iv) if L 6= 0, then IGDerL 6= 0.

Proof. Assume that x; y 2 L.
(i) In fact,

0 = F (xy) = F (x)y + xd(y) = xd(y)

and so d(y) 2 rannL.
(ii) Since F (xy) = F (x)y, we deduce that F 2 M(L).
(iii) We have DerL � GDerL and therefore the assertion holds.
(iv) Straightforward. �

Lemma 7.3. Let L be a Leibniz algebra and (H; ra) 2 IGDerL. Then the following hold:

(i) if H = 0, then a 2 rannL,
(ii) if a 2 rannL, then H 2 M(L),
(iii) if IGDerL is an abelian Lie algebra, then L2 � rannL,
(iv) if L is abelian, then IGDerL = M(L).

Proof. It is easy to check by using the same argument as in the proof of Lemma 7.2. �

Let � � GDerL, � � DerL,

T� = fd 2 DerL j there is H 2 � that is associated with d 2 DerLg;

U� = fH 2 GDerL j H is associated with some d 2 �g

and

�� = fa 2 L j there is H 2 � that is associated with ra 2 InnLg:

Lemma 7.4. Let L be a Leibniz algebra. If � is an ideal of GDerL such that [�; IGDerL] =
0, then T� � ADerL (and so � � M(L)).

Proof. Indeed, if (F; d) 2 �, then rd(a) = [d; ra] 2 ADerL for any a 2 L and so d(a) 2
rannL. �

Lemma 7.5. Let L be a Leibniz algebra. Then the following hold:

(1) if � is an ideal of IGDerL (respectively GDerL), then �� is an ideal (respectively
a D-ideal) of L,

(2) if � is an ideal of DerL, then U� is an ideal of GDerL (in particular, U0 =
I0GDerL = M(L)),

(3) if � is an ideal of GDerL, then T� is an ideal of DerL.

Proof. (1) Let a; b 2 ��, t 2 L, (H; ra); (K; rb) 2 �, (S; rt) 2 IGDerL and (M; �) 2 GDerL.
Since

(H �K; ra�b); ([M;H]; r�(a)); ([H;S]; rta); ([S;H]; rat) 2 �;

we conclude that a� b; �(a); ta; at 2 �� and therefore �� is an ideal of L.
(2)-(3) By the same argument as in the part (1). �

Lemma 7.6. Let L be a Leibniz algebra and A its ideal. Then the following conditions are
equivalent:

(1) IAGDerL � M(L),
(2) A � rannL,
(3) InnA L = 0.

Proof. For proof, see Lemmas 6.1 and 7.1. �

Lemma 7.7. Let L be a Leibniz algebra and a 2 L. If L is D-semisimple, then ra 2 ADerL
if and only if a 2 rannL.
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Proof. We have that

La = ra(L) � rannL:

Moreover, L�n(a) � rannL for any � 2 D and a non-negative integer n. If l; t 2 L, then

0 = t(l�n(a)) = (tl)�n(a)� (t�n(a))l

and so (t�n(a))l 2 L�n(a). Hence

L0 := La+
1X

n=1

L�n(a)

is a D-ideal of L and L0 � L0 = 0. Consequently La = 0. �

Lemma 7.8. Let L be a Leibniz algebra and A its ideal. Then there exist Lie algebra
isomorphisms:

(1)

DerL=ADerL 3 d+ADerL 7! F +M(L) 2 GDerL=M(L);

where (F; d) 2 GDerL,
(2)

InnL=AInnL 3 ra +AInnL 7! H +M(L) 2 IGDerL=M(L);

where (H; ra) 2 IGDerL.

Proof. Straightforward. �

8. Proofs

Proof of Theorem 5.2. (a) Let L be a D-prime Leibniz algebra and 	;
 be ideals of D
such that [	;
] = 0. Then rannL = Leib(L). If

� := 	
\
InnL and � := 


\
InnL;

then

� = Inn��
L; � = Inn��

L and [�;�] = 0:

Lemma 6.1(x) and (iii) implies that

���� � rannL:

Since �� and �� are D-ideals by Lemma 6.1(ix), we deduce that

�� � rannL or �� � rannL

by the D-primeness of L. This gives that � = 0 or � = 0 by Lemma 6.1(iii). As a
consequence of Lemma 6.2(iii), the quotient Lie algebra D=ADerL is prime.
(b) If L is a D-semisimple Leibniz algebra, then we can obtain that D=ADerL is semi-

simple analogously as in (a).
(c) Assume that L is a D-simple Leibniz algebra and 	 is an ideal of D. Then rannL =

Leib(L). If � := 	 \ InnL, then �� is a D-ideal of L and so �� � rannL. By Lemma
6.1(iii), � = Inn�� L = 0 and 	 � ADerL by Lemma 6.1(iii). Thus D=ADerL is a simple
Lie algebra.

�

Proposition 8.1. Let L be a Leibniz algebra. Then the following hold:

(1) if GDerL=M(L) is a semisimple (respectively prime, simple or primary) Lie al-
gebra, then L= rannL is a G-semiprime (respectively G-prime, G-simple or G-
primary) Lie algebra,

(2) if IGDerL=M(L) is a semisimple (respectively prime, simple or primary) Lie al-
gebra, then L= rannL is a semiprime (respectively prime, simple or primary) Lie
algebra.
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Proof. (1a) Assume that GDerL=M(L) is a prime Lie algebra and A;B are G-ideals of L
such that AB � rannL. Then

(8.1) [IBGDerL; IAGDerL] � M(L)

and so IBGDerL � M(L) or IAGDerL � M(L) what forces that B � rannL or A � rannL
by Lemma 7.6. Hence L= rannL is a G-prime Lie algebra.
(1b) If GDerL=M(L) is a semisimple Lie algebra, then we can prove by the same argument

as in the case (1a).
(1c) Assume that GDerL=M(L) is a simple Lie algebra and A is a G-ideal of L. By

Lemma 7.1(ii), IAGDerL is an ideal of GDerL and so

GDerL = IAGDerL

or

M(L) = IAGDerL

what implies that L = A+rannL or A � rannL. Consequently L= rannL is a G-simple Lie
algebra.
(1d) Let GDerL=M(L) be a primary Lie algebra and A;B be G-ideals of L satisfying the

condition AB � rannL. Then (8:1) holds and so IAGDerL � M(L) or

[IBGDerL; : : : ; IBGDerL| {z }
m times

] � M(L)

for some positive integer m. Then A � rannL or Bm � rannL. Hence L= rannL is a
G-primary Lie algebra.
(2) By the analogues argument as in the proof of the part (1). �

Proof of Theorem 5.3. It holds from Proposition 8.1 and Lemma 7.8.
�

9. Supplement: The classical Poisson manifolds approach revisited

9.1. Poisson structures on noncommutative functional manifolds. It is interesting
to look at the construction of the Hamiltonian operators presented above and revisit it from
the standard point of view, considering them as those de�ned on the naturally associated
[1, 4, 23, 21, 75, 76, 86] cotangent space T �(M) to some linear functional manifold M

' eA� ' eA: Then, a Hamiltonian operator onM is de�ned [1] as a smooth mapping # :M !
Hom(T �(M);T (M)); such that for any �xed u 2M the bracket

(9.1) ff; gg := (rf(u); #(u)rg(u));

where f; g : M ! K are arbitrary smooth mappings from the functional space D(M) '

FeA(u); satis�es the Jacobi identity. The bracket (9.1) is determined on M by means of
the natural convolution (�; �) on the product T �(M)� T (M); and respectively, the gradient
rf(u) 2 T �(M) of a function f 2 D(M) is calculated as

(9.2) (rf(u); h) := df [u+ "h]=d"j"=0

for any h 2 T (M): It is well known [48, 63] that a linear operator #(u) : T �(M) ! T (M);
determined at any point u 2 M; is Hamiltonian i¤ the suitably de�ned [48] Schouten�
Nijenhuis bracket

(9.3) [[#(u); #(u)]] = 0

identically on M: Namely, this condition (9.3) was used in the investigations [48, 97] to for-
mulate criteria for the operator #(u) : T �(M)! T (M) to be Hamiltonian on the functional
manifold M: Yet these criteria appear to be very complicated and involve a large amount
of cumbersome calculations even in the case of fairly simple di¤erential expressions. So, we
have reanalyzed this problem from a slightly di¤erent point of view. First, recall that the
Jacobi identity for the bracket (9.1) is completely equivalent to the fact that the bracket
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operator de�ned as Df (g) := ff; gg for a �xed f 2 D(M) and arbitrary g 2 D(M) acts
as a derivation on the space (D(M); f�; �g) :

(9.4) Dffg; hg = fDf (g); hg+ fg;Df (h)g;

where g; h 2 D(M) are taken arbitrary. This can be easily reformulated as follows: take any
element ' 2 T �(M); such that the Fréchet derivative '0(u) = '0;�(u) at any u 2 M with
respect to the convolution (�; �) on T �(M) � T (M); and construct a vector �eld K : M !
T (M) as

(9.5) K(u) := #(u)'(u):

Then the derivation condition (9.4) can be equivalently rewritten [1, 75, 21, 76, 86] as the
strong Lie derivative

(9.6) LK# := #
0 �K � #K 0;� �K 0# = 0

along the vector �eld K(u) = #(u)'(u) 2 T (M) at any u 2 M for all �self-adjoint� ele-
ments ' 2 T �(M): Equivalently, a given linear skew-symmetric operator #(u) : T �(M) !
T (M); u 2 M; is Hamiltonian i¤ the Lie derivative (9.6) vanishes for all �self-adjoint� ele-
ments ' 2 T �(M): Moreover, as was observed in [68], it su¢ces to check the condition (9.6)
only on the subspace of elements ' 2 T �(M) satisfying the condition '0(u) = 0 for any
u 2M:
As an example, one can check that a skew-symmetric matrix-di¤erential operator on M

of the form

(9.7) #(u) := �(u)Dx +Dx�
|(u);

where, an n-dimensional square matrix �(u) := (
nP
s=1

us�
s
ij : i; j = 1; n; n 2 Z+); u 2 M;

satis�es the condition (9.6) i¤ the linearly independent elements from span
K

fej 2 A : j =

1; ng generate the �nite dimensional nonassociative Balinsky-Novikov algebra (4.4) and

satisfy the conditions ei � ej =
nP
s=1

�sijes for all i; j = 1; n: Similarly, one can verify that the

skew-symmetric inverse-di¤erential operator

(9.8) #(u) := �(u)D�1
x +D�1

x �(u)|;

where, as above �(u) := (
nP
s=1

us�
s
ij : u 2M; i; j = 1; n; n 2 Z+); the sign "|"means the usual

matrix transposition, is Hamiltonian i¤ the basic nonassociative algebra A : =span
K

fej : j =

1; ng coincides with the right Leibniz algebra (4.7) and the condition ei � ej =
nP
s=1

�sijes

holds for any i; j = 1; n . The skew-symmetric inverse-di¤erential operator (9.8) can be
naturally generalized to the expression

(9.9) #(u) := Dx�(u)D
�1
x �D�1

x �(u)|Dx;

which can be rewritten as

(9.10) #(u) = �(Dxu)D
�1
x +D�1

x �(Dxu)
| + �(u)� �(u)|:

The condition (9.6) for the operator (9.10) to be Hamiltonian reduces to the constraints
on the related nonassociative algebra A : =span

K

fej : j = 1; ng exactly coinciding with that

of (4.9), and analyzed in some detail in Section 3.
As it was already mentioned, based on the matrix representations of the right Leibniz

algebra (4.7) and the new nonassociative Riemann algebra (4.10), one can construct
many nontrivial Hamiltonian operators #(u) : LeA ! LeA on the associated weak Lie algebra
LeA; related with diverse types of nonassociative algebras A: These Hamiltonian operators
prove to be very useful [22, 84, 85] for describing a wide class of multicomponent hierarchies
of integrable Riemann type hydrodynamic systems and their various physically reasonable
reductions.
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9.2. Poisson structures on manifolds generated by associative noncommutative
algebras. Proceed now to a slightly generalized construction of Hamiltonian operators on a
phase space, generated by associative noncommutative algebra A-valued matrices, which was
�rst studied in [28, 39, 82, 86] in case of the noncommutative operator algebras and continued
later in [66, 56, 57, 58, 66, 71, 72, 73] in case of general associative noncommutative algebras.
This natural and simple generalization appeared to be very useful [5, 6, 20, 42, 66, 71, 72]
for describing a wide class of new Lax type integrable nonlinear Hamiltonian systems on
associative noncommutative algebras, interesting for diverse applications in modern quantum
physics.
We start here with a free associative noncommutative algebra A = K <u1; u2; :::; um >;

generated by a �nite set of elements fuj 2 A : j = 1;mg; and de�ne its "abelianization"
A\ := A=[A;A] and the projection � : A ! A\; where the space [A;A] := fuv � vu 2 A
: u; v 2 Ag: Consider now a naturally related with A n-dimensional matrix Lie algebra G :=
gl(n;A) over the �eld K with entries in A subject to the usual matrix commutator [a;b] :=
ab� ba for all a;b 2 G: Being �rst interested in the Lie-algebraic studying [23, 21, 43, 92] of
co-adjont orbits on the adjoint space G�; let us construct a bi-linear form < �j� >: G � G ! A\
on the Lie algebra G by means of the trace-type expression

(9.11) < ajb >:= �tr(a|b)

for any a;b 2 G: The following important lemma holds.

Lemma 9.1. The bilinear form (9.11) on G is symmetric, nondegenerate and ad-invariant.

Proof. Symmetricity : We have:

(9.12)

< ajb >=
P

i;j=1;n �(aijbij) =
P

i;j=1;n �(aijbij � bijaij)+

+
P

i;j=1;n �(bijaij) =
P

i;j=1;n �(bijaij) =< bja >

for any a;b 2 G:
Nondegeneracy : Assume that < ajb >= 0\ 2 A\ for a �xed a 2 G and all b 2 G: To state

that a = 0; let us put then b = a and obtain

(9.13) < aja >=
X

i;j=1;n

�(aijaij) = 0\:

Taking into account that the associative algebra is generated by the �nite set of elements
fuj 2 A : j = 1;mg; it is easy to deduce from n2 expansions of elements

aij := ck(i:j) =
X

js(1)j2Z+

X

�12�n

C

�
s
(1)
1 s

(1)
2 ::: s(1)

m

�

(k;�1(1);�1(2);:::;�1(m))

�
u
s
(1)
1

�1(1)
u
s
(1)
2

�1(2)
:::u

s(1)
m

�1(m)

�
+

+
X

js(1)j;js(2)j2Z+

X

�1;�22�n

C

�
s
(1)
1 s

(1)
2 ::: s(1)

m
;s
(2)
1 s

(2)
2 ::: s(2)

m

�

(k;�1(1);�1(2);:::;�1(m);�2(1);�2(2);:::;�2(m))

�
u
s
(1)
1

�1(1)
u
s
(1)
2

�1(2)
:::u

s(1)
m

�2(m)

�
�

�

�
u
s
(2)
1

�1(1)
u
s
(2)
2

�2(2)
:::u

s(2)
m

�2(m)

�
+ :::

(9.14)

from A that the sum

(9.15)
X

k=1;n

�(ckck) = 0\
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i¤ ck = 0 for all k = 1; n2: Really, the sum of (9.15) under the �-mapping can be now
rewritten, respectively, as
(9.16)

P
k=1;n2 (ckck) =

P
js(1)j2Z+

P
�12�n

D

�
s
(1)
1 s

(1)
2 ::: s(1)

m

�

(�1(1);�1(2);:::;�1(m))

�
u
s
(1)
1

�1(1)
u
s
(1)
2

�1(2)
:::u

s(1)
m

�1(m)

�
+

+
P

js(1)j;js(2)j2Z+

P
�1;�22�n

D

�
s
(1)
1 s

(1)
2 ::: s(1)

m
;s
(2)
1 s

(2)
2 ::: s(2)

m

�

(�1(1);�1(2);:::;�1(m);�2(1);�2(2);:::;�2(m))

�
u
s
(1)
1

�1(1)
u
s
(1)
2

�1(2)
:::u

s(1)
m

�2(m)

�
�

�

�
u
s
(2)
1

�1(1)
u
s
(2)
2

�2(2)
:::u

s(2)
m

�2(m)

�
+ :::

with some D-coe¢cients from K for all �j 2 Sn; depending quadratically on coe¢cients
of expansions, staying at uniform and symmetric basis elements of the algebra A: As the
�-mapping sends all of them, by de�nition, to zero, the resulting system (9.15) reduces to
the set of algebraic equations

(9.17) D

�
s
(1)
1 s

(1)
2 ::: s(1)

m

�

(�1(1);�1(2);:::;�1(m))
= 0; D

�
s
(1)
1 s

(1)
2 ::: s(1)

m
;s
(2)
1 s

(2)
2 ::: s(2)

m

�

(�1(1);�1(2);:::;�1(m);�2(1);�2(2);:::;�2(m))
; :::;

reducing successively for all �j 2 Sn to the condintions

(9.18) C

�
s
(1)
1 s

(1)
2 ::: s(1)

m

�

(k;�1(1);�1(2);:::;�1(m))
= 0; C

�
s
(1)
1 s

(1)
2 ::: s(1)

m
;s
(2)
1 s

(2)
2 ::: s(2)

m

�

(k;�1(1);�1(2);:::;�1(m);�2(1);�2(2);:::;�2(m))
; :::;

being equivalent to the equalities ck = 0 for all k = 1; n2: �

As a simple consequence from Lemma 9.1 one derives the next proposition.

Proposition 9.2. The construted Lie algebra G is ad-invariant and �-metrized.

Proof. Really, from the symmetry property (9.12) one easily obtains that

(9.19) < aj[b; c] >=< [a;b]jc >

modulo �-mapping for any elements a;b and c 2 G: As the bilinear form (9.11 is non-
degenerate, one has G� ' G; that jointly with the ad-invariance property (9.19) means that
the Lie algebra G is metrized. �

Being interested in constructing integrable noncommutative dynamical systems on the
algebra A; we need to introduce into our analysis a "spectral" parameter � 2 C; responsible
for the existence of in�nite hierarchies of the corresponding dynamical systems invariants,
guaranteeing their integrability. This wil be done in next Section, devoted to the Lie-
algebraic analysis on loop-Lie-algebras, related with the Lie algebra G; introduced above.
Consider now the Lie algebra fG; [�; �]g; constructed above, and the related loop Lie algebra

f ~G := G
Cf
�
�; ��1

	
g; [�; �]g of the corresponding G-valued Laurent series with respect to

the parameter � 2 C;

(9.20) ~G : = [N2Zf~a =
X

j�N

aj�
j : aj 2 G; j = 1; Ng;

and de�ne on it the corresponding to (9.11) modulo �-mapping bilinear form (�j�) : ~G � ~G !
A :

(9.21) (~aj~b) := res� < ~aj~b >

for any elements ~a; ~b 2 ~G: It is easy to observe that the bilinear form (9.21) is also symmetric
and non-degenerate. Thus, the following proposition holds.

Proposition 9.3. The loop Lie algebra ~G is ad-invariant and �-metrized.

As the loop Lie algebra ~G allows natural direct sum splitting ~G = ~G+� ~G� into two Lie

subalgebras ~G+ and ~G�; where

(9.22) ~G+ : = [N2Z+f~a =
X

j=0;N

aj�
j : aj 2 G; j = 1; Ng



HAMILTONIAN OPERATORS AND RELATED DIFFERENTIAL-ALGEBRAIC BALINSKY-NOVIKOV, RIEMANN AND LEIBNIZ TYPE STRUCTU

and

(9.23) ~G� : = [N2Z+f~a =
X

j2Z+

aj�
�(j+1) : aj 2 G; j 2 Z+g;

their adjoint spaces with respect to the bilinear form (9.21) split the adjoint loop space
~G
�
= ~G�+ � ~G�� and satisfy the equivalences ~G�+ ' ~G� and ~G�� ' ~G+:

Let now a linear endomorphism R : ~G ! ~G equal R = (P+�P�)=2; where, by de�nitions,

P� : ~G ! ~G� � ~G are the projections on the corresponding subspaces ~G� � ~G: It is a well
known property [23, 21, 43, 92] that the deformed Lie product

(9.24) [~a; ~b]R := [R~a; ~b] + [~a;R~b]

for any ~a; ~b 2 ~G satis�es the Jacobi condition and generates on the loop Lie algebra ~G a
new Lie algebra structure.
Within the classical Adler-Kostant-Symes Lie-algebraic approach, or its R-matrix struc-

ture generalization [23, 21, 43, 92], the adjoint loop space ~G� is then endowed with the
modi�ed Lie-Poisson structure

(9.25) f~l(~a);~l(~b)g\ := (~lj[~a; ~b]R);

for any basic functionals ~l(~a);~l(~b) 2 D( ~G�) subject to which the whole set

(9.26) I( ~G�) = f 2 D( ~G�) : (~lj[grad (~l); ~a]) = 0\; ~a 2 ~G�g

of smooth Casimir functionals on ~G� is commutative with respect to the deformed Lie-
Poisson structure (9.25) on ~G�; that is f; �g\ = 0\ 2 A\ for all ; � 2 I( ~G�) and, by

de�nition, (~qj grad (~l)) := d
d"
(~l + "~q)

���
"=0

: The latter makes it possible to construct inte-

grable Hamiltonian �ows on the associative algebra A as Poissonian �ows on the co-adjoint
orbits on the adjoint space ~G�; generated by suitable loop Lie algebra ~G Casimir gradient
elements. Namely, if an element ~l 2 ~G� is �xed, the corresponding Hamiltonian �ow on
~G� subject to the deformed Poisson bracket (9.25) and a Casimir funcrtional  2 I( ~G�)
possesses the well known Lax type [60, 70, 92] representation

(9.27) d~l=dt = [P+ grad (~l);~l];

where t 2 K is a related evolution parameter. The example of this construction and its Lie
algebraic properties are discussed in the next Subsection.

9.3. Kontsevich type integrable systems on unital �nitely generated free as-

sociative noncommutative algebras. Let a free unital �nitely generated associative
non-commutative algebra A := K < u�; v� > be the corresponding group algebra of
a group Gfu; vg; generated by two elements u; v 2 G: The algebra A is in�nite dimensional
with the countable basis LA < 1; u

jvs1�j ; vjus1�j ; ujvs2�juj�kvk�q; vjus2�jvj�kuk�q; ::: :
s1; s2; ::: 2 Z >; the related two-dimensional matrix loop Lie algebra ~G = G
Cff�; ��1gg;
G := gl(2;A); is metrized subject to the bi-li near product (9.21) and generated by a¢ne
elements

(9.28) ã =
X

j=0;3

�k
X

j�1

a
(k)
j �j

with four basis Pauli matrix elements �k 2 gl(2;K); k = 0; 3; and algebra components

a
(k)
j 2 A; j � 1; k = 0; 3: The corresponding Casimir functionals  2 I( ~G�) generate a

Hamiltonian �ow on points ~l 2 ~G� with respect to the Poisson bracket (9.25) in the Lax type
form (9.27). To analyze this �ow in detail, let us put, by de�nition, that the seed orbit

point ~l 2 ~G� is given by the following �-squared expression

(9.29) ~l =
X

j=0;3

X

k=0;2

�j�k�3u
(k)
j ;

where f�j 2 gl�(2;K) : tr(�j�k) = �jk; j; k = 0; 3g is the dual basis of the matrix space

gl�(2;K) ' gl(2;K) and elements fu(k)j 2 A : j = 0; 3; k = 0; 2g are coordinates of some
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A-algebra valued phase space M
(0j2)
A in a general position. In particular, we will choose the

following dual bases:

(9.30) �0 =

�
1 0
0 1

�
; �1 =

�
0 1
0 0

�
; �2 =

�
0 0
1 0

�
; �3 =

�
1 0
0 �1

�

in gl(2;K) and

�0 =

�
1=2 0
0 1=2

�
; �1 =

�
0 1
0 0

�
; �2 =

�
0 0
1 0

�
; �3 =

�
1=2 0
0 �1=2

�

in gl(2;K)�: Moreover, we also will assume that A-algebra valued coe¢cients of the phase

space M
(0j2)
A in (9.29) are representable subject to the basis of A as

(9.31)
�n� �0 �1 �2 �3

��3 u
(0)
0 = 1 u

(0)
1 = u u

(0)
2 = 0 u

(0)
3 = �1

��2
u
(1)
0 = v + v�1+

+u+ u�1 + v�1u�1
u
(1)
1 = v�1

u
(1)
2 = v�1u�1+
+u�1 + 1

u
(1)
3 = �v + v�1+

+u� u�1 � v�1u�1

��1 u
(2)
0 = 0 u

(2)
1 = 0 u

(2)
2 = v u

(2)
3 = 0

;

following the result obtained in [42].
As a �rst important task, we will calculate the corresponding Poisson structure on the

related A-algebra valued phase space M
(0j2)
A (~l); generated by coe¢cients, presented in the

expression (9.31). To do this, we need to take into account that the phase space M
(0j2)
A (~l);

being endowed with the R-modi�ed Poisson structure (9.25), is strongly reduced via the
Dirac scheme [43, 86] subject to the set

� : = f'1 = u
(0)
0 � 1 = 0; '2 = u

(2)
0 = 0;(9.32)

'3 = u
(0)
2 = 0; '4 = u

(2)
3 = 0; '5 = u

(0)
3 + 1 = 0g

of algebraic constraints, imposed on the phase space M
(0j2)
A : The latter means that the true

Poisson structure on the reduced phase space M
(0j2)
A (~l) := M

(0j2)
A =� coincides with the

corresponding Dirac type reduction of the R-modi�ed Poisson structure, de�ned on the full

phase space M
(0j2)
A : As a result of simple enough yet cumbersome calculations we arrive at

the following Poisson brackets

(9.33) fu; vg\ = �uv; fu; ug\ = 0\ = fv; vg\

on the reduced phase space M
(0j2)
A (~l) ' A := K hu�; v�i :

Having taken as a Hamiltonian operator h := res�2tr(~l2) 2 I( ~G�); one easily obtains the
following [56] nonlinear integrable Kontsevich dynamical system

(9.34)
du=dt := fh; ug\ = uv � uv

�1 � v�1

dv=dt := fh; vg\ = �vu+ vu
�1 + u�1

�
:= K(u; v)

on the reduced phase space A = K hu�; v�i :Moreover, owing to the Lax type representation
(9.25), the Kontsevich dynamical system (9.34) proves to be equivalent to the following
matrix commutator equation

(9.35) d~l=dt = [~l;p(~l)],

for any � 2 K in the Lie algebra ~G; where the A-valued matrix p(~l) = P+ gradh(~l)=2

= �0(v
�1�v+u+1)=2+�1�v+�2v

�1+�3(v
�1�v+u�1)=2 2 ~G : Taking as Hamiltonian

functions the algebraic expressions h(m;n) := res�mtr(~ln) 2 I( ~G�);m; n 2 Z; one can obtain
a complete set of �-commuting to each other conservation laws of the Kontsevich dynamical
system (9.34), thus proving its generalized integrability. Moreover, choosing both another

group algebra and orbit elements ~l 2 ~G�; one can construct the same way many other
integrable Hamiltonian systems on the associative noncommutative phase space A; that is
planned to be a topic of a next investigation.
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10. Conclusion

In this work we succeeded in formal tensor and di¤erential-algebraic reformulating the
criteria [48, 97, 68] for a given di¤erential expression to be Hamiltonian and developed an
e¤ective approach to classi�cation of the algebraic Poisson structures lying in the background
of the integrable multicomponent Hamiltonian systems. We have devised a simple algorithm
allowing to construct new algebraic structures within which the corresponding Hamiltonian
operators exist and generate integrable multicomponent dynamical systems. We also showed,
as examples, that the well known Balinsky-Novikov algebraic structure, obtained before in
[48, 16] as a condition for a matrix di¤erential expression to be Hamiltonian, appears within
the devised approach as a derivation on the adjacent Lie algebra, naturally associated with
a suitably constructed di¤erential loop algebra. By means of a direct generalization of
this example it is obtained new Lie algebraic relationships, whose background algebraic
structures coincide, respectively, with the right Leibniz algebra, introduced in [24, 25, 64] and
with a new Riemann type nonassociative algebra. The constructed Hamiltonian operators
describe a wide class of multi-component hierarchies [22, 84] of integrable multicomponent
hydrodynamic Riemann type systems. Their reductions appeared to be closely related both
to the integrable Camassa-Holm and with the Degasperis-Processi dynamical systems, and
are of special interest from the equivalence transformation point of view, devised recently in
[101].
Taking into account that the compatible Hamiltonian operators, important for studying

integrable multicomponent Hamiltonian systems on functional manifolds, are constructed
by means of suitable central extentions of the adjacent weak Lie algebras, determined by the
right Leibniz and Riemann type nonassociative and noncommutative algebras, the problem
of their description requires a detailed investigation both of their structural properties and
�nite-dimensional representations of the right Leibniz algebras de�ned by the corresponding
structural constraints. Subject to these important aspects we stoped in the work mostly on
the structural properties of the right Leibniz algebras, especially on their derivation algebras
and their generalizations. We added also a Supplement in which we revisted the classical
Poisson manifolds approach to Hamiltonian operators on functional noncommutative man-
ifolds, as well as presented it simple and natural realization, generated by associative non-
commutative group algebra. The latter appeared to be very useful for describing a wide class
of new Lax type integrable nonlinear Hamiltonian systems on associative noncommutative
algebras, interesting for diverse applications in modern quantum physics.
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