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A B S T R A C T

The so-called “dot-compartment” is conjectured in diffusion MRI to represent small spherical spaces, such as cell bodies, in which the diffusion is restricted in all
directions. Previous investigations inferred its existence from data acquired with directional diffusion encoding which does not permit a straightforward separation of
signals from ‘sticks’ (axons) and signals from ‘dots’. Here we combine isotropic diffusion encoding with ultra-strong diffusion gradients (240 mT/m) to achieve high
diffusion-weightings with high signal to noise ratio, while suppressing signal arising from anisotropic water compartments with significant mobility along at least one
axis (e.g., axons). A dot-compartment, defined to have apparent diffusion coefficient equal to zero and no exchange, would result in a non-decaying signal at very high
b-values (b ≳ 7000 s=mm2). With this unique experimental setup, a residual yet slowly decaying signal above the noise floor for b-values as high as 15000 s=mm2 was
seen clearly in the cerebellar grey matter (GM), and in several white matter (WM) regions to some extent. Upper limits of the dot-signal-fraction were estimated to be
1.8% in cerebellar GM and 0.5% in WM. By relaxing the assumption of zero diffusivity, the signal at high b-values in cerebellar GM could be represented more
accurately by an isotropic water pool with a low apparent diffusivity of 0.12 μm2=ms and a substantial signal fraction of 9.7%. The T2 of this component was estimated
to be around 61 ms. This remaining signal at high b-values has potential to serve as a novel and simple marker for isotropically-restricted water compartments in
cerebellar GM.
1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) (Le Bihan and Breton,
1985) probes structures at much smaller length-scales than the imaging
resolution by sensitising the signal to the random molecular motion of
water. Biophysical modelling of the contributions to this signal aims to
characterise tissue microstructure properties by carefully selecting model
compartments (typically multiple non-exchanging water pools) that have
a measurable impact on the signal (Stanisz et al., 1997). In healthy white
matter (WM), biophysical models typically include anisotropic extra- and
intra-axonal compartments (Alexander et al., 2010; Assaf and Basser,
2005; Fieremans et al., 2011; Jespersen et al., 2007; Kroenke et al., 2004;
Lampinen et al., 2019; Novikov et al., 2018b; Reisert et al., 2017;
Sotiropoulos et al., 2012; Stanisz et al., 1997; Zhang et al., 2012). The
inclusion of a so-called “dot-compartment” for WM-modelling is moti-
vated by the observation of an almost constant, non-attenuating signal at
very high b-values (e.g., b ≳ 7000 s=mm2). This has been hypothesised to
arise from the ubiquity of small isotropic spaces (e.g., glial cell-bodies)
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wherein the diffusion of water molecules is highly restricted in all di-
rections (Alexander et al., 2010; Stanisz et al., 1997), leading to a
near-zero apparent diffusivity. Amethod to measure the signal fraction of
such isotropically-restricted components accurately in vivo could thus
potentially provide a proxy for the density of cells and enable quantifi-
cation of cellular pathology in a wide range of neurological and psychi-
atric disorders (Palombo et al., 2019b).

Previous work investigating compartmental contributions to the
dMRI signal from conventional pulsed-gradient encoding – also called
Stejskal-Tanner encoding (Stejskal and Tanner, 1965) or linear tensor
encoding (LTE (Westin et al., 2016)) – showed that including a
dot-compartment provided a more complete description of the WM dMRI
signal, both ex vivo (Panagiotaki et al., 2012) and in vivo (Ferizi et al.,
2014; Zeng et al., 2018). However, a dot-compartment is not generally
included in WM biophysical models, e.g. (Assaf and Basser, 2005; Beh-
rens et al., 2003; Jespersen et al., 2007; Kroenke et al., 2004; Novikov
et al., 2018b; Zhang et al., 2012). Moreover, a recent study of the dMRI
signal in WM at b-values up to 10000 s=mm2 on a clinical MRI system
d 9 January 2020
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suggested that the WM dot-signal-fraction is negligible (Veraart et al.,
2019).

Probing the dot-compartment in anisotropic tissue is challenging with
conventional LTE, due to the strong relationship between encoding-
direction and orientation-distribution of anisotropic tissue microenvi-
ronments. Even when measuring along the dominant axis of a fibre
bundle in which there is orientation dispersion, a slow diffusing
component can be observed (due to the gradient direction not being
perfectly parallel to all of the fibres); it is therefore challenging to
disentangle this from the scenario in which a dot-compartment is present
(Fig. 1a). Here, we address this problem by the use of spherical tensor
encoding (STE, also called isotropic diffusion encoding) to render signals
insensitive to orientation and anisotropy (Eriksson et al., 2013; Lasi�c
et al., 2014; Mori and Van Zijl, 1995; Westin et al., 2016; Wong et al.,
1995). STE at high b-values can suppress the dMRI signal from water
pools that are mobile along at least one axis (Fig. 1a). At sufficiently high
b-values only the signal from compartments with very low or zero
diffusivity in all directions would remain.

Previous work using STE obtained by a series of pulsed gradients on a
clinical system concluded that the dot-signal-fraction is likely lower than
2% inWM, and therefore has a negligible contribution to the dMRI signal
Fig. 1. a) Simulations of LTE and STE data for two different scenarios (schematicall
extra-axonal space (top, blue surround), vs dots þ dispersed sticks surrounded by extr
simulate a stick orientation dispersion (OD) of 0.7 and fdot ¼ 0 (blue), and OD ¼ 0.5 a
μm2=ms for the stick compartment, and the extra-cellular compartment consisted of n
parallel and perpendicular diffusivities of 1.9 and 0.8 μm2=ms, respectively. The two
can be disentangled better at high b-values with STE. A linear y-scale is chosen here to
(a) but with varying fdot , at different SNR levels. The dashed-dotted line represents
deviation over 5000 noise realisations. A logarithmic y-scale is chosen here to impr

2

(Dhital et al., 2018). However, the gradient amplitude available on
clinical MRI scanners (40–80 mT/m) limits the maximal b-value per unit
signal-to-noise ratio (SNR) – needed for reliable quantification of the
dot-signal-fraction – whereas ultra-strong gradients (e.g., 300 mT/m)
allow much higher b-values per unit SNR (Jones et al., 2018; Setsompop
et al., 2013). Furthermore, the previous implementation of STE used
waveforms with exceedingly low efficiency (Sj€olund et al., 2015). In this
work, we leverage the power of ultra-strong gradients and optimised
asymmetric STE gradient waveforms to reduce the echo time (TE)
significantly, thereby increasing SNR. This allows signal decays to be
examined in the living human brain over a much larger range of b-values
and TEs typically unachievable using clinical MRI scanners (Tax et al.,
2017), and thus provides a more reliable assessment of signal fractions
which could result from isotropically-restricted compartments. In addi-
tion, we extend the analysis to tissue types beyond cerebral WM,
including deep grey matter (GM) and the cerebellum.

2. Theory

Assuming Gaussian diffusion within a compartment, the signal Si
arising from the ith compartment, represented by diffusion tensor Di and
y represented in the middle): dispersed sticks representing axons surrounded by
a-axonal space (bottom, green surround). Here, we used a Watson distribution to
nd fdot ¼ 0:02 (green). In both simulations, the parallel diffusivity was set to 2.1
on-exchanging Watson-distributed ‘zeppelins’ with the same OD as the sticks and
scenarios result in very similar signals for LTE across a wide b-value range, and
not make small differences seem disproportionally large. b) STE simulated as in
the rectified noise floor, and the error bars represent the mean and standard

ove the visualisation for different fdot . b is given in s=mm2.



C.M.W. Tax et al. NeuroImage 210 (2020) 116534
which contributes a relative signal fraction fi to the signal, probed by
symmetric b-tensor B can be described by

SiðBÞ¼ Sð0Þ fi expð�TrðBDiÞÞ: [1]

The total signal is then the sum of the signals from the individual
compartments, with fi summing to one. The b-tensor is a positive semi-
definite tensor which we here design to be axially symmetric; it can
then be characterised by its trace b ¼ TrðBÞ ¼ ðbk þ2b?Þ – better known
as the b-value - and its anisotropy bΔ ¼ ðbk �b?Þ=ðbk þ2b?Þ (Eriksson
et al., 2013; Topgaard, 2017;Westin et al., 2016), where bk and b? are the
eigenvalues corresponding to the eigenvectors along and perpendicular
to the symmetry axis, respectively. Sð0Þ represents the signal at b ¼ 0 s=
mm2, and TrðBDÞ denotes the trace of the matrix product between the
tensors.

In the case of STE, the b-tensor is isotropic and thus bk ¼ b? and bΔ ¼
0. For n non-exchanging Gaussian compartments, the STE-signal sim-
plifies to

SðbÞ¼ Sð0Þ
�Xn

i¼1

fi exp
�
� b TrðDiÞ

3

��
¼ Sð0Þ

�Xn

i¼1

fi expð�bDiÞ
�
; [2]

where Di ¼ TrðDiÞ=3 is the mean apparent diffusivity of each compart-
ment.

An isotropically restricted compartment typically exhibits a very low
mean apparent diffusivity. If we index this compartment as i ¼ 1 and
assume D1 ≪ Di; i ¼ 2; …; n, then the only remaining signal when
approaching high b-values (beyond a certain b-value, bs) is that arising
from the isotropic restricted compartment:

SðbÞ � Sð0Þf1 expð�bD1Þ; b � bs [3]

For example, for a two-compartment system with D1 ¼ 0:1 μm2=ms
and D2 ¼ 0:8 μm2=ms, the signal from the second compartment is
reduced to 0.1% for bs ¼ 8500 s=mm2, while the signal from the first
compartment is only reduced to 42%. This means that the behaviour of
SðbÞ at increasing b-values is increasingly dominated by compartments
with lower apparent diffusivity.

In the case of a dot-compartment with zero mean apparent diffusivity,
i.e. Ddot ¼ 0, Eq. [3] simplifies to

fdot � SðbÞ=Sð0Þ; b � bs [4]

such that the dot-signal-fraction is equal to the relative signal that re-
mains at high b-values. Fig. 1b shows the simulated signal in the case of
non-exchanging compartments of which one is a dot-compartment. Even
if the signal does not yet exhibit a plateau, the relative signal at the
highest b-value can serve as an upper limit of fdot ; because fdot � SðbmaxÞ=
Sð0Þ. The accuracy of this limit is affected by the presence of the rectified
noise floorσ

ffiffiffiffiffiffiffiffi
π=2

p
, with σ standard deviation of the Gaussian noise added

to each of the real and imaginary channels (Jones and Basser, 2004)
(Fig. 1b).

3. Methods

3.1. Data

Five healthy adult volunteers were included in the study (3 female),
which was approved by the Cardiff University School of Medicine ethics
committee. Written informed consent was obtained from all participants.

Participants were scanned on a 3T Connectom MRI system (Siemens
Healthcare, Erlangen, Germany) with an ultra-strong 300 mT/m gradient
set. The acquisition protocol included a structural MPRAGE (Magneti-
zation Prepared RApid Gradient Echo) (de Lange et al., 1991) with voxel
size 1 � 1 � 1 mm3 and dMRI sequences. The dMRI data were acquired
using a prototype spin-echo sequence with an echo-planar imaging (EPI)
readout, that enables user-defined gradient waveforms to be used for
3

diffusion encoding (Szczepankiewicz et al., 2019a). For STE we used b ¼
[250, 1500, 3000, 4500, 6000, 7500, 9000, 10 500, 12 000, 13 500, 15
000] s=mm2, repeated [6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36] times,
respectively. The b-values and repetitions were interleaved over volumes
to reduce the impact of system drift (Hutter et al., 2018; Vos et al., 2016).
For LTE, the b-tensor principal eigenvectors were distributed over the
unit sphere for each b-shell. b ¼ 0 s=mm2 (b0) images were acquired
every 15th image for monitoring and correction of subject motion.
Additional b0 images with reversed phase-encoding were acquired to
correct for susceptibility distortions (Chang and Fitzpatrick, 1992). No
in-plane acceleration was used, and imaging parameters were: voxel size
¼ 4 � 4 � 4 mm3, matrix ¼ 64 � 64, 34 slices, TR ¼ 4300 ms, parti-
al-Fourier ¼ 6/8, bandwidth ¼ 1594 Hz/pixel.

The waveforms used for STE and LTE are shown in Fig. 2, and were
optimised numerically (Sj€olund et al., 2015) to be Maxwell-compensated
(Szczepankiewicz et al., 2019b) and enable a TE as short as 88 ms. These
waveforms render superior encoding efficiency due to their optimised
asymmetric trajectory in q-space compared to standard 1-scan-trace im-
aging (which requires TE ¼ 270 ms for b ¼ 15000 s=mm2).

Two of the volunteers were additionally scanned with the STE
sequence using different TE ¼ [88 115 140 165] ms, to obtain estimates
of T2. Note that the timings of the waveforms did not change.

3.2. Preprocessing

The dMRI data were corrected for Rician noise bias (Koay et al.,
2009a; St-Jean et al., 2016) using an estimate of the Gaussian noise
standard deviation from PIESNO (Koay et al., 2009b) and an estimate of
the true underlying Rician signal from denoising (Veraart et al., 2016), to
determine whether or not any plateau arising in the signal decay curve
could be attributed to the effects of the noise floor. We proceeded with
the debiased (but not denoised) data in further processing. The data were
checked for signal intensity errors including slice-wise outliers (Sairanen
et al., 2018). The STE data were corrected for subject motion by regis-
tering the interleaved b0 images to the first b0 image and applying the
corresponding transformations to the diffusion-weighted images (DWIs).
The LTE data were corrected for subject motion and eddy-current
geometrical distortions using FSL EDDY (Andersson and Sotiropoulos,
2016). Susceptibility geometrical distortions were corrected using
TOPUP (Andersson et al., 2003) and for geometrical distortions due to
gradient nonlinearities using code kindly provided by colleagues at the
Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts
General Hospital (Glasser et al., 2013; Jones et al., 2018; Rudrapatna
et al., 2018; Setsompop et al., 2013).

The MPRAGE image was segmented into regions using Freesurfer
(Fischl et al., 2002) and affinely-registered to the corrected b0 image
using FSL FLIRT (Jenkinson et al., 2012). The resulting WM, GM, deep
GM (dGM), cerebellar WM (cWM) and cerebellar GM (cGM) segmenta-
tions were then used to guide the delineation of regions-of-interest (ROIs)
for further analysis. Only voxels in which the tissue probability derived
from the Freesurfer segmentations was larger than 90%were considered,
and the ROIs were drawn manually to avoid including signal artefacts.
For WM, two separate regions were considered: ROIs were drawn on
coronal slices in medial WM lateral to the midbody of the corpus cal-
losum (denoted by mWM), and in the occipital regions (denoted by
oWM), see Fig. 4.

3.3. Quantitative characterisation of the STE signal at high b-values

Eq. [3] was fitted to the data with bs ¼ 10 000 s=mm2, (thus including
b ¼ [10 500, 12 000, 13 500, 15 000] s=mm2) using a nonlinear least-
squares trust-region-reflective algorithm implemented in MATLAB (The
MathWorks, Natick, USA). The fit was randomly initialised 10 times
within bounds [0 max(Sð0Þ)] and [0 0.3] for Sð0Þ and f1 respectively (the
fit was constrained within bounds [0∞] and [0 1]), and the solution with



Fig. 2. Linear tensor encoding (LTE) and spherical tensor encoding (STE) waveforms for b ¼ 15000 s=mm2, and the corresponding power spectra of the dephasing
vector q. Timings for the first waveform, temporal gap (180� pulse), and second waveform were [28.6, 6.9, 28.6] ms for LTE and [35.5, 6.9, 25.6] ms for STE. The
maximum gradient amplitudes along a single axis were 131 and 240 mT/m for LTE and STE, respectively.
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the lowest residual norm was selected. In addition, an estimate of ~Sð0Þ
was obtained from the two lowest b-value DWIs, to reduce contribution
from CSF (Baron and Beaulieu, 2015). From this, the ‘tissue signal frac-
tion’ ~f 1 was estimated (Eq. [3]). Finally, from ~SðbmaxÞ and ~Sð0Þ an upper
limit ~f dot was derived (Eq. [4]).

An estimate of T2 was obtained by fitting
SðTE; bÞ ¼ C expð�TE =T21Þexpð�bD1Þ to the high b-value data with a
similar fitting procedure as described before, and initialising and con-
straining T21 between [0 300]ms. For all fits, gradient-nonlinearities were
Fig. 3. a) STE signal as a function of b-value (in s=mm2), with the Freesurfer tissue
cerebellar WM and blue ¼ cerebellar GM. b) Relative STE signal change.

4

taken into account by considering the voxel-wise effective B-tensor
computed from the spatially-varying coil tensor (Bammer et al., 2003).

4. Results

4.1. ROI delineation

Fig. 3 shows the Freesurfer segmentation results overlaid on indi-
vidual diffusion-weighted images of one participant. Fig. 4 shows results
segmentations indicated in red ¼ WM, yellow ¼ GM, cyan ¼ deep GM, green ¼



Fig. 4. STE signal decay for 5 healthy subjects (mean and standard deviation in each ROI), in ROIS in the mWM (red), oWM (orange), cWM (green), dGM (cyan), and
cGM (blue); examples of the ROIs are shown for Subject 1. The left column shows the signal before Rician-bias correction plotted with a logarithmic y-scale, to better
visualise deviations from mono-exponential behaviour, with a close-up at high b-values. The right column shows the signal after Rician-bias correction plotted with a
linear y-scale to be able to visualise negative values. b is given in s=mm2. The dotted line represents the mean of the estimated noise floor in each ROI (Koay et al.,
2009b); the lines of each ROI visually overlap.
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of the manually delineated ROIs visualised for one of the healthy sub-
jects. The mWM, oWM, cWM, cGM, and dGM ROIs include on average
59, 58, 39, 199, and 52 voxels across participants, respectively. The GM
5

segmentations only include a few voxels that are classified as> 90% GM,
which are sparsely distributed. We therefore only consider data in the
mWM, oWM, cWM, cGM, and dGM ROIs.
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4.2. STE signal decay across all b-values

Fig. 3a shows the signal of the image intensity in individual DWIs as a
function of b-value in a healthy brain. The signal intensity in most of the
cerebral WM has decayed substantially at 2b > 10000 s=mm2. However,
the cerebellar GM retained a remarkably high signal at these high b-
values, remaining well above the noise floor even at b ¼ 15000 s=mm2.
Fig. 3b shows the signal in a more quantitative fashion; regions with
lower intensity have a higher relative signal change compared to the Sð0Þ
signal. The cerebellar GM persistently has a high intensity compared to
other regions and thus the lowest relative signal change.

Fig. 4 shows the signal decay for each ROI in the five healthy subjects.
Both the original and Rician-bias-corrected signal decay curves are
shown, accompanied by an estimate of the noise floor. At
b > 10000 s=mm2, the signals from mWM and dGM clearly approach the
noise floor. In contrast, oWM, cWM, and cGM exhibit a mean-signal that
is above the noise floor for all five subjects. After Rician-noise-bias-
correction, the signal is still above zero albeit it can be seen that it con-
tinues to decay.
4.3. STE signal characterisation at high b-values

Table 1 gives quantitative features related to the STE signal decay at
high b-values. For each parameter the median of the voxel-wise fits in
each ROI is given, and 10th – 90th percentiles are reported within
brackets. The third column presents estimates of the relative rectified
noise floor, derived from estimates of the noise standard deviation and b0
signal (i.e. ~σ and ~Sð0Þ). An estimate of the relative noise floor of 0.5%
Table 1

Parameter estimates (median of the voxel-wise fits in each ROI and 10–90 percentil

μm2=ms. No estimates of ~f 1 and ~D1 are given for dGM and mWM as these signals are

Region Subject ~σ
ffiffiffiffiffiffiffiffi
π=2

p
=~Sð0Þ � 100% SNR tSNR

mWM 1 0.6 220 115
2 0.4 285 155
3 0.5 272 140
4 0.5 246 100
5 0.5 232 168

0.5 251 136

dGM 1 0.9 139 63
2 0.8 157 61
3 0.8 158 54
4 0.0 145 46
5 1.1 114 64

0.9 143 58

oWM 1 0.3 404 72
2 0.3 404 81
3 0.3 432 89
4 0.3 417 93
5 0.3 417 96

0.3 415 86

cWM 1 0.4 306 96
2 0.5 236 79
3 0.6 216 50
4 0.5 236 45
5 0.6 216 65

0.5 242 67

cGM 1 0.2 570 78
2 0.3 448 73
3 0.3 418 51
4 0.3 432 41
5 0.3 392 62

0.3 452 61

6

indicates that an SNR of about 250 on the b0 signal could be achieved
(SNR estimates are presented in the fourth column of Table 1). The fifth
column gives an estimate of the temporal SNR (tSNR), defined by the
temporal mean of the Sð0Þ images divided by their temporal standard
deviation (see also Supplementary Fig. 3). The sixth column presents
estimates for the dot-signal-fraction ~f dot (Eq. [4]) and the last two col-
umns present estimates in the case of an isotropically-restricted
compartment with non-zero diffusivity (Eq. [3], i.e. ~f 1, and ~D1). All es-
timates are obtained after Rician bias-correction to reduce bias from the
least-squares fitting. We will describe characteristics of these features for
the different ROIs in the following paragraphs.

For the mWM and dGM ROI, the mean signal at high b-values con-
verges to the noise floor (Fig. 4). We estimate an upper limit of fdot of
0.5% and 0.9% respectively.

For the oWM and cWM ROI, the estimated upper limits of fdot are
0.3% and 0.5% respectively. The signal at high b-values is still decaying,
and can thus be better explained by the presence of a compartment with
non-zero apparent diffusivity with estimated signal fractions of 2.6% and
5.4%, and estimated apparent mean diffusivities of 0.16 and 0.23 μm2=

ms for oWM and cWM, respectively. Fig. 5a shows scatter plots of these
estimates, showing that the spread is large (see also the percentiles in
Table 1).

For the cGM ROI, we find an upper limit of fdot of 1.8%, with a re-
sidual signal that is well above the noise floor. Per Eq. [3], we estimate an
average apparent mean diffusivity of 0.12 μm2=ms and an average signal
fraction of 9.7%. In some areas, the signal fraction is estimated as high as
15.7%. These estimates are consistent across healthy subjects (Fig. 5a).
When visualising the estimates in the cerebellar GM one can observe that
e) for the standard deviation ~σ, ~f dot , ~f 1 and ~D1, in different ROIs. D has units of

hitting the noise floor.

~f dot � 100% ~f 1 � 100% ~D1

0.0 (�0.2–0.2)
0.0 (�0.1–0.2)
0.1 (�0.1–0.2)
�0.1 (�0.1–0.1)
0.0 (�0.2–0.2)

0.2 (-0.1–0.2)

�0.2 (�0.5–0.1)
�0.2 (�0.5–0.0)
�0.2 (�0.5–0.0)
�0.3 (�0.5–0.1)
�0.3 (�0.6–0.0)

¡0.2 (-0.5–0.1)

0.2 (0.1–0.4) 2.7 (0.9–7.2) 0.16 (0.09–0.27)
0.2 (0.1–0.4) 2.7 (1.1–22.1) 0.18 (0.10–0.37)
0.2 (0.1–0.3) 3.2 (1.1–8.4) 0.16 (0.11–0.27)
0.2 (0.1–0.3) 2.6 (1.0–9.0) 0.17 (0.11–0.31)
0.2 (0.1–0.4) 2.2 (1.1–9.6) 0.14 (0.09–0.31)

0.2 (0.1–0.4) 2.6 (1.1–9.8) 0.16 (0.09–0.31)

0.4 (0.1–0.8) 5.4 (0.9–13.5) 0.18 (0.02–0.35)
0.1 (�0.2–0.4) 5.6 (0.9–62.6) 0.24 (0.00–0.87)
0.1 (�0.3–0.4) 5.6 (0.3–28.4) 0.24 (0.09–0.77)
0.2 (�0.1–0.5) 4.8 (0.1–83.7) 0.24 (0.09–1.00)
0.1 (�0.1–0.4) 7.4 (0.2–50.7) 0.27 (0.10–0.74)

0.2 (-0.1–0.6) 5.4 (0.2–46.9) 0.23 (0.07–0.68)

2.0 (1.5–2.3) 10.9 (8.4–15.7) 0.14 (0.12–0.17)
1.6 (1.2–1.8) 9.6 (7.9–12.3) 0.13 (0.11–0.16)
1.5 (1.2–1.8) 9.2 (7.2–11.7) 0.12 (0.10–0.15)
1.8 (1.3–2.1) 9.8 (8.0–12.4) 0.12 (0.10–0.14)
1.7 (1.4–2.0) 9.1 (7.2–11.6) 0.12 (0.10–0.14)

1.8 (1.4–2.2) 9.7 (7.7–12.8) 0.12 (0.10–0.16)



Fig. 5. a) Parameter estimates ~f 1 and ~D1, in the oWM (orange), cWM (green), and cGM (blue) ROIs, where each point represents a voxel. b-c) Map of the fits of Eqs. [3]
(not assuming zero apparent diffusivity) and [4] (assuming zero apparent diffusivity) in an axial slice of the cGM, respectively; the cerebellar WM is masked out. D has
units μm2=ms.
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they are spatially heterogeneous (Fig. 5b). As a comparison, we show the
spatial variability of fdot in Fig. 5c.

4.4. Comparison of LTE and STE signals

In Fig. 6 one can readily appreciate the difference between b0-
normalised STE and directionally-averaged LTE signals in the different
tissue types. These diffusion weightings also give complementary infor-
mation in GM, where the STE encoding at high b-values has suppressed
signal arising from compartments that are mobile along at least one axis
(e.g., ‘sticks’ that could represent axons). The overlap of the signal decay
curves is high between the healthy controls.

4.5. Characterisation of T2 at high b-values

Fig. 7a shows estimates of T2 and D for the two healthy controls that
were scanned with STE at different TE. The T2 estimates are consistent
between the two subjects and range between 57 and 69 ms (10–90
percentile) with a median of 61 ms. Fig. 7b shows the estimated f1 as a
function of TE for both subjects (median and 10–90 percentile). A
decreasing trend is observable, and the difference between the highest
and lowest TE is found to be significant in both subjects using a paired-
sample t-test (p < 1.15e-6).
7

5. Discussion

In this study we report a clear depiction in vivo from an isotropically-
restricted compartment in dMRI. This compartment is present particu-
larly in the cerebellar GM, but support for its existence can also be found
in the WM. Our observations were enabled by ultra-strong gradient
hardware (Jones et al., 2018; Setsompop et al., 2013) and recent de-
velopments for tensor-valued diffusion encoding (Sj€olund et al., 2015;
Szczepankiewicz et al., 2019b). STE provides essential complementary
information to LTE, but the waveforms generally take up more time than
Stejskal-Tanner LTE encoding, leading to long TEs and thereby inferior
SNR. With the help of ultra-strong diffusion gradients (240 mT/m along a
single axis, Fig. 2), a TE as short as 88 ms could be achieved even for a
b-value of 15 000 s=mm2. As a result, the SNR was such that we could
clearly observe signal amplitudes well above the noise floor.

A plateau of the diffusion-weighted signal (i.e., region of no further
signal decay with increasing b-value), even at high b-values, was not
observed in any region of interest. This makes the significant contribu-
tion of water residing in a dot-compartment with zero apparent diffu-
sivity and no exchange unlikely, in agreement with previous work (Dhital
et al., 2018; Veraart et al., 2019). Such a compartment would reflect a
spherical compartment with radius r that is negligible compared with the
diffusion length l � ffiffiffiffiffi

Dt
p

where D is the ‘bulk’ diffusion coefficient and t



Fig. 6. a) Signal upon LTE and STE (b ¼ 15000 s=mm2) with the same intensity scale. b) LTE (dashed lines) and STE (solid lines) signals, with b in s=mm2. Colours
correspond to Fig. 4.

Fig. 7. a) Parameter estimates fT21 and ~D1, in the cGM ROI. D has units μm2=ms and T2 has units ms. b) Parameter estimates ~f1 in the cGM ROI (median and 10–90
percentile) as a function of TE. The dotted errorbars represent the median and 10–90 percentile, and the solid (very narrow) errorbars the mean and standard error of
the mean. TE has units ms.

C.M.W. Tax et al. NeuroImage 210 (2020) 116534

8



C.M.W. Tax et al. NeuroImage 210 (2020) 116534
the effective diffusion time. This results in an apparently zero diffusion
coefficient, a similar assumption underlying the perpendicular diffusivity
of a ‘stick’ compartment (Novikov et al., 2018a; Veraart et al., 2019).
Nevertheless, a slowly decaying STE signal was observed in the cerebellar
GM and some WM regions.
5.1. Signal characterisation and implications

The observation of a slowly decaying STE signal can be supported by
two hypotheses: (i) a zero-apparent-diffusivity compartment exists but is
not observed as such because it is in exchange with its surroundings; or
(ii) the compartment exhibits a low but non-zero apparent diffusivity.
The effect of the first hypothesis is illustrated in Supplementary Fig. 1,
which shows the noiseless signal decay for different exchange times using
a two-compartment K€arger model (K€arger, 1971; Nilsson et al., 2010). At
infinite exchange times, the estimated dot-signal fraction approaches its
true value. However, at exchange times of e.g. 500 ms the signal does not
exhibit a plateau and the estimated upper limit of fdot is negatively biased.
This figure should be interpreted as an illustration of how exchange could
affect the signal in a simple scenario with a well-defined effective
diffusion time; however free-waveforms give rise to a diffusion-time
spectrum and representing the interaction with exchange will be more
complex. This is subject to future work.

Regarding the second hypothesis, a slow-diffusing component has not
been observed previously in STE data. Previous work has characterised
mean apparent diffusivities derived from STE data up to b �
6000 s=mm2 by using a regularised inverse Laplace transform (Avram
et al., 2019) or by fitting a finite series of exponentials that could
represent different compartments and comparing the fits of the models
through the Akaike Information Criterion (AIC) (Dhital et al., 2018).
These works showed little deviation from mono-exponential behaviour
in WM and single-peak diffusivity distributions in brain parenchyma in
the range of b-values used. However, in the logarithmic plots in Fig. 4 one
can clearly observe that the signal decay starts deviating from
mono-exponential behaviour for b ≳ 5000 s=mm2 in most tissue types,
which could explain why this component has not been reported previ-
ously. Rather than quantifying the signal across the entire range of
b-values and comparing the fit of models with different numbers of
compartments, we focus here on quantifying the STE signal at high
b-values. Using data from the whole range of b-values, the “cut-off”
b-value bs was visually determined as the lowest b-value beyond which
the signal decay approaches again a straight line in a logarithmic plot
(Fig. 4). The strategy of working in a regime where the signal of some of
the compartments is compressed has been adopted in other studies to
focus on the intra-axonal signal with LTE (Kleban et al., 2019; McKinnon
and Jensen, 2019; Veraart et al., 2019). The advantage is that the regime
of interest can be studied into greater detail, that the number of pa-
rameters is reduced, and the fit is not biased by potentially wrongful
assumptions about the other compartments. Similarly, we have used STE
at high b-values here to suppress signal from compartments with sig-
nificant mobility in at least one direction.

Using a simple representation based on the often-adopted assump-
tions of Gaussian diffusion and no exchange, the results provide support
for the presence of an isotropic water pool with low diffusivity in the
oWM, cWM, and cGM ROIs. In WM, Dhital et al. (2018) found that for a
hypothetically small, yet finite, diffusivity of D1 ¼ 0:1 μm2= ms, the
relaxed upper limit of the signal fraction was 2.7%. In the present study,
we found a similarly low signal fraction, but the diffusivity was estimated
to be twice as high (0:2 μm2=ms) in the oWM and cWMROIs, albeit with a
high variability across voxels (Table 1). In the medial WM the signal
converged to the noise floor; this could be caused by the larger distance
to the RF receiving coils (and thus lower SNR), or a genuinely lower
density of slow-diffusing components compared with the occipital WM,
or both.

In the cGM ROI, the signal fraction of the slowly diffusing isotropic
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water pool was estimated to be as large as 15%, and this component thus
makes a significant contribution to the signal. Linking this finding to
tissue microstructure derived from histology or realistic numerical sim-
ulations of brain cells (Palombo et al., 2019a) is the subject of future
work. It has been suggested previously that in cortical GM, the abun-
dance of cell bodies has a significant impact on the LTE signal at high
b-values (Palombo et al., 2019b). In that work, the LTE signal at high
b-values was considered to be arising from non-exchanging sticks rep-
resenting neurites, and spheres with a finite radius representing cell
bodies. Following this picture, STE at high b-values would nullify the
stick-signal and only the signal specific to the cell bodies would remain.
Fig. 8a shows simulated signal decays for the STE protocol used in this
study, for spherical compartments with different diffusivities Ds and radii
rs. The signal resulting from a sphere acquired with arbitrary waveforms
was derived by (Codd and Callaghan, 1999) using the matrix formalism
(Callaghan, 1997), and we have used the implementation in the MISST
toolbox (Drobnjak et al., 2011, 2010; Ianuş et al., 2013) to generate these
results. From the signal patterns it becomes apparent that disentangling
Ds and rs will be challenging. Adopting the same strategy as in (Palombo
et al., 2019b), we have explored the fitting with Ds fixed to 3 μm2=ms, cf.
Fig. 8b. Specifically, a spherical compartment was fitted to the data with
bs ¼ 10 000 s=mm2, (thus including b¼ [10 500, 12 000, 13 500, 15 000]
s=mm2) using the same nonlinear least-squares trust-region-reflective
algorithm as was used for other experiments. The fit was constrained
within bounds [0 ∞] and [0 20] μm for Sð0Þ and rs, respectively. Esti-
mated values for rs were found to be around 4.5 μm, which seems to be
lower than can be visually derived from (Palombo et al., 2019b). The
estimates were consistent across the cerebellar GM and across subjects.
Note that the waveforms used here were not optimised for size estimates
and for avoiding regimes of exchange. For example, the b-value regime
and waveforms used here were such that large spherical compartments
with high intra-cellular diffusivity become suppressed. Interestingly,
Fig. 8a suggests that the remaining signal could both reflect the existence
of an additional compartment with smaller effective radius than reported
in Palombo et al., or with a larger radius but more hindered intra-cellular
diffusion than previously assumed.

The use of pulsed-gradients allows a more precise definition of the
time-scale of diffusion. The STE waveforms in Fig. 2 have broader fre-
quency spectra, affecting the way time-dependent diffusion is encoded
(Jespersen et al., 2019; Lundell et al., 2019). Under the assumption of
Gaussian (and thus time-independent) diffusion in each compartment (as
in Section 2), the net signal becomes non-monoexponential but remains
time-independent; as such the signal decay arising from two sets of
waveforms with the same B-tensor, but different frequency spectra,
would look identical. However, the assumption of compartmental
Gaussian diffusion is theoretically only valid for sufficiently short or long
diffusion times or low diffusion weightings; beyond these regimes
time-dependent diffusion will be encoded differently by waveforms with
different frequency spectra. The use of different LTE waveforms with
different frequency characteristics and b-values up to 5000 s=mm2 has
previously revealed a strong contrast in the cerebellum (Lundell et al.,
2017, 2015). In the specific case of STE as studied here, several works (de
Swiet and Mitra, 1996; Jespersen et al., 2019; Lundell et al., 2019) have
shown that non-Gaussian diffusion within each compartment can lead to
anisotropic time-dependence, i.e., probing different time-dependence in
different directions. This means that for anisotropic pores, such as cyl-
inders and ellipsoids, the signal decay in STE at lower b-values still de-
pends on the orientation and dispersion of the pores (or the rotation of
the waveforms). In the present study, we focused on the high b-value
regime to completely suppress the signal from anisotropic compartments
that have significant mobility along at least one axis. Therefore, the
remaining signal is expected to come from restricted isotropic compart-
ments only, and is as such expected to be rotationally invariant.
Non-Gaussian diffusion within these isotropic compartments becomes a
contributing factor if one for example tries to estimate the variance of the



Fig. 8. a) Left: STE signal simulation of a spherical compartment for different values of Ds and rs. rs is given in μm. Right: estimates of D1 in μm2=ms (Eq. [3]) for
different values of Ds and rs. b) Estimates of fs and rs in the cerebellar GM of five healthy controls, assuming Ds ¼ 3 μm2=ms.
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highly restricted isotropic diffusivities (Jespersen et al., 2019), which is
beyond the aim of this study.

In summary, to disentangle the microstructural origins of the slowly
decaying STE signal at high b-values (i.e. it being exchange and/or the
length scale of the restrictions), additional and independent measure-
ments with different time-characteristics are necessary. Supplementary
Fig. 1 (exchange) and Fig. 8 (restrictions) suggest that for the experi-
mental data as presented in this study multiple degenerate solutions
could exist, and at this stage the data can be adequately represented by
the simple representation used.

The T2 of the low-diffusivity component in cerebellar GM was esti-
mated to be around 61ms, which is shorter than typical values reported for
white matter and greymatter at 3T (Wansapura et al., 1999). The decrease
in ~f 1 suggests that the T2 of the remaining compartments are longer; this is
illustrated by a simple bi-exponential simulation in Supplementary Fig. 4.
The relatively short T2 highlights the importance of achieving a short TE to
be able to detect the signal arising from this component.

The cerebellum has an important role in motor coordination, but it is
becoming increasingly apparent that it also has an active role in cognition
and emotion (O’Halloran et al., 2012; Tedesco et al., 2011). The neurons
in the cerebellar cortex are highly organised, consisting of
densely-packed granule cells and larger Purkinje cells with a cloud of
dendritic spines. The cell bodies of the Purkinje cells are quite large,
about 25–40 μm (Herndon, 1963), whereas the granular cell bodies are
much smaller (7–10 μm (Stuart et al., 2016)) yet larger than the typical
diameter of axons. One can speculate that the isotropically-restricted
signal comes from within small spaces that may be intra-cellular (e.g.
granule cell soma with low intra-cellular diffusivity or dendritic spines)
or extra-cellular (e.g. between densely packed granule cells) or both. To
elucidate the biological underpinnings of the observed signal, our cur-
rents efforts focus on studying the signal in patients with known
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cerebellar cell loss, such as spinocerebellar ataxia type 2 (SCA2) which
affects granule- and Purkinje cells (Tada et al., 2015). Our preliminary
results show that parameter estimates of the simple representation used
in this study (Eq [3], Fig. 5). are affected beyond the inter- and
intra-subject variability in healthy controls, placing some confidence in
the use of this representation as a biomarker. Furthermore, future work
could correlate changes in the STE signal with cell loss quantified by
histology in cerebellar knockout mice. Altogether, studying the STE
signal provides exciting avenues for gaining further insight into changes
in tissue microstructure in disorders associated with the cerebellum, in
addition to the suite of existing dMRI contrasts. dMRI studies have
already shown changes in ataxia (Dayan et al., 2016; Salvatore et al.,
2014), Parkinson’s disease, and Alzheimer’s disease (Mormina et al.,
2017), where metrics such as mean diffusivity and diffusion-tensor
(DT)-derived fractional anisotropy (FA) were studied. These studies
mostly focused on cerebellar WM (e.g. peduncles). Recently, measures
beyond the DT have been derived in cerebellar WM and GM, with the aim
of being more specific to different compartments and the underlying
neurobiology (Savini et al., 2018). Fig. 5b shows spatial variability in the
estimated parameter maps. In future work we aim to look at the vari-
ability across and within different lobules, by registration to atlases
(Diedrichsen et al., 2009).
5.2. SNR and spatial resolution

The spatial resolution used here to achieve the necessary SNR (i.e.
voxel size 4 � 4 � 4 mm3) is relatively coarse, especially if one tries to
study highly curved structures such as the cerebellum grey matter. We
have aimed to reduce the effect of partial voluming in two ways: 1)
registering the T1 segmentation to the diffusion data, and discarding
voxels in which the tissue fraction was below 90%, and 2) further
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reducing partial volume effects with CSF by estimating the S(0) signal
from diffusion-weighted images, a strategy proposed by (Baron and
Beaulieu, 2015). We note that ‘conventional’ resolutions in diffusionMRI
(e.g. 2 mm isotropic) are already too large to capture the fine folding in
the cerebellum grey matter, and we therefore focus our efforts on
achieving high SNR. In addition to coarse voxels, the SNR was further
increased (e.g. compared to the study of Dhital et al., which used the
same spatial resolution) by shortening TE. Super-resolution and
gSlider-SMS (Setsompop et al., 2018) diffusion acquisitions provide
exciting future avenues for increasing the spatial resolution while
maintaining sufficient SNR. Compared with LTE super-resolution
reconstruction, which has been extended recently to incorporate the
angular relation between different diffusion measurements (Van Steen-
kiste et al., 2016), STE super-resolution would theoretically be more
straightforward as the need to vary the orientation of the principal ei-
genvectors of the B-tensor is obviated.

5.3. Pre-processing

The low SNR of the STE data at high b-values made the pre-processing
of the data challenging. dMRI pre-processing pipelines typically include
motion correction and geometric distortion correction. The geometric
distortions generally include those resulting from eddy currents and
susceptibility differences, and the use of strong gradients requires an
additional step to correct for any possible geometric distortions arising
from gradient nonlinearities. Subject motion and eddy-current geometric
distortions in high b-value data are often corrected for using a prediction-
based framework (Andersson et al., 2017; Ben-Amitay et al., 2012); high
b-value images are predicted from the corrected low b-value images, and
the acquired high b-value images are subsequently registered to the
predicted images. Strategies to predict high b-value data with different
B-tensors from low b-value data are available (Nilsson et al., 2015), but
the deformations allowed at high b-values have to be fairly constrained
because only a relatively low signal can be observed in only few regions.
When applying tools optimised for LTE images and/or moderate b-value
STE images, we observed suspiciously large deformations in the high
b-value STE data that could not be verified. In this study, we therefore
opted for a conservative strategy where we acquired interleaved b0 im-
ages (every 15th image) to correct for subject motion in STE data. This
necessarily led to differences in the processing of LTE and STE data; i.e.,
the STE data were only corrected with a rigid transformation which
cannot account for higher order deformations e.g., due to eddy currents.
While, theoretically, the eddy current deformations between STE images
of the same b-value should be similar, future work should be attributed to
optimising the processing of high b-value STE data. Future work will
furthermore focus on collecting complementary information by means of
real-time motion tracking (Maclaren et al., 2012; Zaitsev et al., 2006) –
e.g. optical tracking (Qin et al., 2009)) and dynamic field measurements
(De Zanche et al., 2008) – to provide robust correction for subject motion
and geometrical distortions in these data.

In this work we corrected the images for geometric distortions arising
from gradient nonlinearities, but gradient nonlinearities additionally
cause spatiotemporally varying B-tensors. Strategies have been devel-
oped to take this into consideration, which were mostly evaluated on
data acquired with Stejskal-Tanner encoding (Bammer et al., 2003;
Glasser et al., 2013; Jones et al., 2018; Rudrapatna et al., 2018). Here we
have taken gradient nonlinearities into account by computing the
voxel-wise effective gradients (Fig. 8) and the corresponding effective
B-tensor (Figs. 5 and 7, and Table 1) (Bammer et al., 2003). Future work
will be attributed to more thoroughly investigating the effect of gradient
nonlinearities on the signal arising from free waveforms.

Correcting for the Rician noise bias is of importance here to obtain
accurate estimates of the parameters in Eqs. [3–4] when using least-
squares optimisation. The data was reconstructed using adaptive
combine, which has shown to approach an effective number of coils of 1
(Sakaie and Lowe, 2017). Supplementary Fig. 3b shows an example of the
11
background signal distribution in one subject before and after debiasing,
which approximate Rician and Gaussian distributions respectively. The
PIESNO method of (Koay et al., 2009b) for noise estimation identified
background voxels that were minimally affected by sources of signal
instabilities (e.g. ghosting). For debiasing we used the approach of Koay
et al. (2009a) which relies only on magnitude data. When phase data are
available, this can alternatively be leveraged to obtain
Gaussian-distributed data (Eichner et al., 2015; Pizzolato et al., 2016).
The process of Rician debiasing can yield signal estimates below the
noise floor. To evaluate the accuracy and precision of this approach, we
applied the same debiasing step as described in Section 3.2 to the
simulated data of Fig. 1 (using the same acquisition protocol as in the in
vivo data). Supplementary Fig. 2 shows estimates of fdot for different SNR,
before and after Rician debiasing. Indeed, estimation before Rician
debiasing results in overestimation of fdot . The expectation value of the
error term in the case of nonlinear least squares and Rician-distributed
data has been shown to converge to zero relatively slowly as a function
of SNR (Veraart et al., 2013), which means that estimates can still be
biased even if the SNR is larger than 2. After debiasing, our simulations
indicate that signal estimates below the noise floor likely have a negative
bias, resulting in a slight underestimation of fdot . This, together with
other potential inaccuracies in the signal and noise estimates (e.g. if the
noise is non-stationary) could have caused the negative dot fraction es-
timates in e.g. the dGM (Table 1). The bias from the Rician debiasing
step, however, converges to zero faster than the bias if no Rician
debiasing would be performed. The noise floor estimates are reported as
an upper limit on the estimated dot fraction in Table 1.

In addition to noise, other factors can cause signal variations across
DWIs. For example, Nyquist ghosting, incomplete chemical shift sup-
pression, or Gibbs ringing can produce signal errors. While in this study
we aimed to correct for Gibbs ringing, other sources of variance may still
have affected the signal. In the process of drawing the ROIs, we have
carefully avoided regions of ghosting and incomplete chemical shift
suppression to minimise their effects on the estimates. The tSNR in
Table 1 reflects variability across the b0 images. This variability may be
amplified by contributions from e.g. perfusion, subject motion, and
physiological pulsations, which are in turn exacerbated in acquisitions
with partial Fourier encoding. This may explain the difference between
tSNR estimates in the brain and SNR estimates from the background
(Table 1). In addition, non-stationarity of the noise may further
contribute to this difference; although estimating the noise standard
deviation at different spatial neighborhoods in the background did not
reveal a strong variation in the estimated noise. The estimation of non-
stationary noise is challenging but developments in this field can yield
more accurate upper bounds on the dot fraction.

6. Conclusion

In this work, we combined ultra-strong gradients and efficient
spherical tensor encoding to study the isotropic dMRI signal at ultra-high
b-values, targeting the dot-compartment. Ultra-strong gradients allowed
us to significantly reduce the TE, and therefore increase SNR, when
acquiring data at high b-values. We further optimised encoding efficiency
and TE by using asymmetric gradient waveforms instead of pulsed-
gradients. A dot-compartment with zero diffusivity and no exchange
would result in the signal plateauing for sufficiently high b-values;
however, we found a signal significantly deviating from zero, yet still
decaying across different WM regions and in the cerebellar GM. This
observation is not in line with a spherical compartment of negligible size
compared to the diffusion length and negligible exchange. We further
studied the apparent diffusivity and signal fraction in the cerebellar GM
assuming Gaussian diffusion and no exchange, finding these to be
remarkably consistent across healthy controls. Future work will investi-
gate the link between this hypothesised compartment and tissue micro-
structure, and investigate its potential as a biomarker in pathology
affecting the cerebellar GM.
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