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Abstract: Accurate estimation of evapotranspiration is generally constrained due to lack of 

required hydro-meteorological datasets. This study addresses the performance analysis of 

Reference Evapotranspiration (ETo) estimated from NASA/POWER, National Center for 

Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling 

through the Weather Research and Forecasting (WRF) model. The state of the art Hamon’s and 

Penman-Monteith methods were utilized for the ETo estimation in the Northern India. The 

performances indices such as Bias, Root Mean Square Error (RMSE) and correlation(r) were 

calculated, which showed the values 0.242, 0.422 and 0.959 for NCEP data (without downscaling) 

and 0.230, 0.402,0.969 for the downscaled data respectively. The results indicated that after WRF 

downscaling, there was some marginal improvement found in the ETo as compared to the without 

downscaling datasets. However, a better performance was found in the case of NASA/POWER 

datasets with Bias, RMSE and correlation values of 0.154 0.348 and 0.960 respectively. In overall, 



the results indicated that the NASA/POWER and WRF downscaled data can be used for ETo 

estimation, especially in the ungauged areas. However, NASA/POWER is recommended as the 

ETo calculations are less complicated than those required with NASA/POWER and WRF. 
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1. Introduction 

Evapotranspiration defined as the "combined loss of water from a given area, and during a 

specified period of time by evaporation from the soil surface and by transpiration from plants” 

(Thornthwaite 1948). It is considered as one of the most important components of the hydrological 

cycle (Mall and Gupta 2002; Srivastava et al. 2016). On the Earth surface, it has very important 

role in the context of water and energy balances as well as required in the irrigation and agriculture 

practices (Nag et al. 2014). In addition, evapotranspiration is required in many scientific 

disciplines to understand the underlying hydrological processes (Petropoulos et al. 2015; 

Petropoulos et al. 2016). However, in spite of the several efforts made by many government 

agencies, there are still lack of sufficient meteorological stations for measurement of reliable and 

accurate datasets for ETo estimation. 

Previously, indirect approaches are generally used for ETo measurements (Srivastava et al. 

2017). One means of estimating ETo is through the use of a Lysimeter which determines the 

evapotranspiration by recording the amount of precipitation an area receives and how much is lost 

through the soil. However due to high maintenance cost, time consumption and lack of precise 

instrumentation, its implementation is not easy, especially for larger areas (Pandey et al. 2016). 

Nevertheless there are a number of other methods developed in past decades which quantify ETo 

(Alkaeed et al. 2006; Djaman et al. 2015; Lang et al. 2017). Among them, the simplest approach 

was developed by Hamon (Hamon 1960), which requires only temperature data for ETo 



calculation. In (2015), McCabe et al. used the monthly calibrated coefficient values to calculate 

the ETo and found that the mean monthly ETo (using Hamon’s method) were close to the mean 

monthly free-water surface evaporation.  

From many studies, the FAO-56 Penman Monteith (PM) method is considered to be the  

most suitable indirect method for estimation of reference Evapotranspiration (ETo). Cai et al in 

(2007) used the daily real-time ETo in the field of water resources management. They found that 

by using the public daily weather forecast messages to calculate ETo predictions to be an 

appropriate method for real-time water allocation and irrigation management. Kar et al in (2016) 

compared the ETo, computed by eight different methods for the dry sub-humid agro-ecological 

region. They found that the estimated ETo  calculated via the Penman-Monteith method to be a 

better estimate  of ETo compared to all the other methods. However, a major drawback of the PM 

method is that it demands several meteorological parameters (wind speed, humidity, sunshine hour 

etc), which may not be often available everywhere (Chen et al. 2005), due to  the lack of  

availability of stations or  missing values due to station poor maintenance (Pandey et al. 2016). 

There were very few studies focused on the ETo estimation using the mesoscale model like 

MM5 (Mesoscale modelling system 5), Weather Research and Forecasting model combined with 

NASA/POWER datasets etc. Some studies reported on the use of mesoscale models for estimation 

of ETo in different parts of the world (Falk et al. 2014; Lin et al. 2018; Srivastava et al. 2016; 

Srivastava et al. 2013). (Ishak et al. 2010) has estimated the ETo over Brue catchment, 

southwestern England using the ECMWF ERA-40 reanalysis downscaled data through MM5 

model. (Silva et al. 2010) has investigated the potential use of numerical weather forecast obtained 

from MM5, as a proxy for surface meteorological data with specific objective to use it in the 

estimation of ETo over Maipo river basin. Later, (Srivastava et al. 2013; Srivastava et al. 2016) 



used the WRF model to downscale the ECMWF and NCEP reanalyzed datasets over the Brue 

catchment and reported a better performance of ECMWF than NCEP downscaled datasets.  

Despite the high importance of ETo in the field of hydrology and climatological studies, 

there are only a few studies available in the technical literature domain, which demonstrate the 

accuracy and performance of the ETo derived from the WRF model and NASA/POWER datasets, 

especially for the Indian regions. Therefore, this paper provides a detailed cross comparison of 

ETo estimated from different existing datasets--NCEP, WRF downscaled NCEP and 

NASA/POWER over cropland by using the Hamon’s and Penman Monteith’s methods in the 

Northern India. Further detailed analysis with respect to seasonality is also provided to determine 

the appropriateness of these methods of deriving ETo with regards to seasonal variability. The 

outcomes of the study can be used by the agricultural, meteorological and hydrological 

departments to improve their forecast ability.  

2. Materials and methodology 

2.1. Study area 

The study area consists of agricultural landscape, geographically lies between 25º 14' 54.94"N to 

25 º17’ 06.57” N and 82º58'30" E to 83º00' 35” E in the Northern India , considered as food bowl 

of the country. Topographically, it is located on higher ground with mean elevation of 80.71 m 

(Cai et al. 2009). Being situated in the Indo-Gangetic plain, the land is composed of very fertile 

alluvial soil deposited by Rivers Ganga and Varuna. Climatically the area is Sub humid type, 

characterized by hot summer, cold season and pleasant monsoon. The temperature varies from 22º 

C to 46º C in summer and may drop below 5ºC in winter season. June is the hottest month with 

the mean temperature around 35º C and mid-December to January is the coldest month (<5 ºC). 



The mean annual rainfall is 1036 mm whereas, about 90% of the total rainfall takes place in 

monsoon season from June to September. Geologically the study area is characterized by Gangetic 

alluvium formed by the deposition sediment by river Ganga and its tributaries. The observational 

temperature dataset (2009-2016) is used for the estimation of ETo provided by Department of 

Agriculture, Banaras Hindu University, India. In addition, three sets of reanalyzed data sets-- 

NCEP, WRF downscaled NCEP (hereafter WRF-NCEP) and NASA-POWER were collected and 

used for the estimation of ETo for the time period 2009-2016 and compared with the observed 

ETo. An overview of the methodology used in present study is shown in Figure 1. 



 

Figure.1 Flowchart of the methodology 

 



2.2. Weather Research and Forecasting model 

The WRF model was developed by scientists at the National Center for Atmospheric Research 

(NCAR), National Centers for Environmental Prediction (NCEP), the National Oceanic and 

Atmospheric Administration (NOAA), the Naval Research Laboratory, the Earth System Research 

Laboratory, the University of Oklahoma, the U.S. Air Force, and the Federal Aviation 

Administration (FAA). . The Weather Research Forecasting (WRF) is a next- generation, non-

hydrostatic and mesoscale modelling system. This numerical weather prediction model and data 

assimilation system are used in atmospheric research and operational application (Skamarock et 

al. 2001). WRFI is useful for various applications such as assimilation of meteorological datasets, 

air quality modelling, downscaling climate simulations as well as the atmosphere research (Mohan 

and Sati 2016).  It comprises of ARW (Advance Research WRF) and NMM (Non- Hydrostatic 

Mesoscale model ) cores (Schwartz et al. 2009; Srivastava et al. 2016).  In this study, WRF is used 

to downscale the NCEP data over the selected region in Northern India. Meteorological data 

downscaled from the WRF model was used for calculation of ETo. Derived ETo is compared with 

the observed dataset obtained from the station. For microphysics, we used WSM 6 - class graupel 

scheme inbuilt with ice, snow and graupel processes. The Graupel scheme is highly suitable for 

high- resolution simulations and developed at the National Center for Atmospheric Research 

(NCAR)  (Hong and Lim 2006).  The long-wave radiation RRTM (Rapid Radiative Transfer 

Model) scheme is used because of its high efficiency (Mlawer et al. 1997). The Dudhia scheme is 

used as it is efficient for cloud and clear-sky absorption and scattering (Dudhia 1988). In surface 

layer option, Monin-Obukhov similarity scheme is used. YSU scheme is selected to constitute near 

surface weather operations (Kim and Wang 2011).  

 



 

2.3 NASA/POWER and NCEP datasets 

In this study, the hydrometeorological variables were estimated using the NCEP data directly, after 

downscaling of NCEP using WRF (WRF-NCEP), NASA/POWER as well as from ground-based 

station. The Worldwide Energy Resources (NASA/POWER) project was initiated in 2003, which 

is an upgrade to the Surface meteorology and Solar Energy (SSE) project. The NASA/POWER 

Release-8 provides the meteorological data on a global grid scale with spatial resolution of 0.5° × 

0.5°. The NASA/POWER data was developed by using the satellite, ground observation, 

windsondes, modeling and data assimilation techniques. The Meteorological data sets are taken 

from NASA Modern Era Retro-Analysis for Research and Applications (MERRA-2) assimilation 

model and from Goddard Earth Observing System Model, version 5.12.4 (GEOS) assimilation 

model. GEOS is a system of models integrated using the Earth System Modeling Framework 

(ESMF) being developed in the GMAO (Global Modeling and Assimilation Office) to support 

NASA’s earth science research in data analysis, climate and weather prediction and basic research. 

In this study, the meteorological variables were downloaded from the NASA/POWER website 

(https://power.larc.nasa.gov/) for the time span of 2009-2016. In addition, the global NCEP FNL 

(Final) reanalysis dataset from 2009 to 2016 were used for the estimation of ETo. The NCEP-

NCAR global reanalysis data set is an assimilated dataset developed using a state of art analysis 

forecast system (Kalnay et al. 1996). The NCEP datasets with 1º×1º grids are available at every 6h 

and can be downloaded from the website (http://rda.ucar.edu/). The NCEP data is available from 

1948 to present and updated continuously. 

2.4. Evapotranspiration estimation 

https://power.larc.nasa.gov/
http://rda.ucar.edu/


2.4.1 Hamon’s method 

In this study, Potential Evapotranspiration (PET) is calculated using the Hamon’s equation. Hamon 

equation uses only the temperature and is a simple and robust method for calculating 

Evapotranspiration (McCabe et al. 2015). PET is calculated using downscaled and non-

downscaled NCEP reanalysis data and compared with the observed ETo. As the area under 

consideration is cropland and there is adequate availability of water, the ETo values can be 

considered closer to the PET values. 

Hamon equation can be expressed as follows: 
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where PET is in (mm day-1); K is the proportionality coefficient; N is the daytime length (x/12 

hours); es is the saturation vapor pressure  (hPa) and T is the average monthly temperature. 
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2.4.2 Penman-Monteith method 

The Food and Agricultural Organization-56 (FAO) Penman-Monteith method was considered to 

estimate daily ETo (Monteith 1965; Penman 1956). The FAO-56 PM method is recommended as 

the best method for ETo estimation for all types of climates (Allen et al. 1998) and the equation 

for estimation of daily ETo can be expressed as: 
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where ETo rate is in (mm d-1), Rn is net radiation at the crop surface (MJ m-2 day-1), T= mean air 

temperature (ºC), u2= wind speed (m s-1) at 2 meter above the ground, es is saturation vapour 

pressure [kPa], ea is actual vapour pressure, es-ea is saturation vapour pressure deficit [kPa], Δ is 

slope vapour pressure curve [kPa °C-1], γ is psychrometric constant [kPa °C-1) and G is soil heat 

flux density[MJ m-2 day-1]. 
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where T= air temperature, e = 2.7183 (base of natural logarithm). 

For the calculation of Rn (net radiation), Ra (extraterrestrial radiation) value is required. Ra can be 

calculated using the equation. 

( ) ( ) ( )  
 ssrsca dGR sincoscossinsin
6024

+=        (5) 

where Ra extraterrestrial radiation [MJ m-2 day-1], Gsc solar constant = 0.0820 MJ m-2 min-1, dr 

inverse relative distance Earth-Sun, ws sunset hour angle [radian],  j = latitude [radian] , d = solar 

decimation [radian] (Zotarelli et al. 2010). 

2.5 Angstrom-Prescott Model 

Since, solar radiation is not available for the study area, to avoid this difficulty the FAO56 

suggested Angstrom-Prescott (AP) equation, which is a simple straightforward method to predict 



the daily global solar radiation and therefore considered here to calculate the monthly daily 

extraterrestrial radiation (Podder et al. 2014). The equation is given as follows: 
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where H0= solar radiation, Gsc solar constant (1.361 kW/m2), n= daily maximum sunshine duration 

in hour,  =latitude in degree, 𝛿=solar declination in degree,   s = sunset hour angle in degree. 

3. Results & Discussion 

3.1. Evaluation of Hydro-meteorological variables 

From NCEP, WRF-NCEP and NASA/POWER data sets, weather variables were extracted for  

ETo estimation. Temporal variations of temperature are shown in Figure 2, while combined 

(pooled) performance statistics are shown in Figure 3. The three statistical indices correlation (r), 

RMSE and Bias are calculated between NCEP, WRF-NCEP and NASA/POWER estimated 

temperature and compared with the ground-based observations.  As shown in the Figure 3, we can 

observe a gradual increment in the temperature data, when proceeding from the winter to summer 

seasons. Among three datasets the WRF-NCEP data has the highest correlation (r = 0.976), 

followed by NCEP (r = 0.971) and NASA/POWER (0.969), which indicates a close agreement of 

temperature with ground observations. However, in terms of RMSE and Bias the NASA/POWER 

has shown a better performance followed by WRF-NCEP and NCEP estimated temperatures 

(Table.1). Some outliers can be seen figure 3, a detailed investigation revealed that during those 

days sporadic rainfall occur in the area, which is well captured by the meteorological station but 

not detected in any of the simulated products. These scattered or isolated rainfall in the summer 

season, caused a sudden cooling down of the land surface and leads to lowering of the temperature 



during those days. Other localized factors such as irrigation practices at specific intervals in the 

area, also caused a reduction in the temperature, but not detected in the global reanalysis products 

used in this study. These sharp variations are not properly captured by NASA/POWER, NCEP, 

WRF-NCEP, and thus an overestimation can be seen in the Figure 3.  Further, Figure 4 showed 

the performance of estimated temperature on a seasonal basis and with observed dataset. From the 

figure 2, temperature estimated from different sources showed a close agreement with the ground-

based observations. In winter, in terms of correlation the NCEP temperature (0.948) has shown a 

good performance as compared to the WRF-NCEP (0.940) and NASA/POWER (0.934) datasets. 

 

 

Figure 2. Temporal plot for WRF-NCEP, NCEP, NASA/POWER daily temperature with 

observed datasets. 



 

Figure 3. Scatter plot representing the variations among WRF-NCEP, NCEP and 

NASA/POWER temperature with observed datasets. 

However, in terms of Bias and RMSE the WRF-NCEP downscaled temperature reveals  better 

results than the other datasets. As compared to winter, in summer the estimated temperature is 

overestimating most of the time. Interestingly in summer, the NASA/POWER estimated 

temperature has the highest correlation (r=0.966) followed by WRF-NCEP (r=0.957) and NCEP 

(0.930). In the WRF-NCEP estimated temperature a comparatively smaller RMSE and Bias were 

obtained then the other datasets. During the monsoon periods,  a poor performance was observed 

in estimated temperature especially in the WRF-NCEP and NCEP compared to the observations, 

while the NASA/POWER showed a better result. The frequent and abrupt changes in the weather 

variables in monsoon season due to rainfall, especially in the Indian continents could be one of the 

reasons for the poor performance of estimated temperature in the monsoon season. Finally, the 

post monsoon season reflects a better performance in terms of both r and Bias when compared to 

the summer and monsoon periods. Overall, in winter and summer the WRF-NCEP has shown the 



best results followed by NCEP and NASA/POWER, however in monsoon and post-monsoon 

seasons, NASA/POWER has a much better performance as compared to the WRF-NCEP and 

NCEP datasets. 

 

 

Figure 4. Scatter plot representing the seasonal variations in temperature estimated from 

NCEP, WRF-NCEP, NASA/POWER and observed data.  

The seasonal analysis of temperature over the study area is shown in Figure.5. The box and 

whisker diagrams are used to show the overall distribution of the datasets. The main advantage of 

the box and whisker plot is that it represents the distribution of data in terms of maximum, 



minimum, median and both the upper and lower quartile in a single plot. The line cross across the 

box represents the median, while the whisker of the box showed the range of the given data sets. 

The winter WRF-NCEP downscaled data shows a close agreement with the observed temperature, 

while the NCEP and NASA/POWER show an overestimation.  During the monsoon season 

NASA/POWER has a good agreement with the observed median temperature.  Outside this period 

it is the WRF-NCEP data is in  closer agreement to the observations.  

 

 

Figure 5. Seasonal distribution of temperature over the study area. 

Table 1. Performance statistics of the seasonal and pooled daily temperature  



 

 

Variables 

 

NCEP 

 

WRF-NCEP 

 

NASA/POWER 

r RMSE Bias r RMSE Bias r RMSE Bias 

Pooled 

Temperature 

0.971 2.233 1.333 0.976 2.134 1.210 0.969 1.914 0.826 

Winter 

Temperature 

0.948 1.236 0.926 0.940 0.830 0.320 0.934 1.457 1.175 

Summer 

Temperature 

0.930 3.249 2.829 0.957 2.429 2.010 0.966 2.655 2.402 

Monsoon 

Temperature 

0.883 2.284 1.572 0.807 2.697 2.290 0.888 1.850 0.605 

Post- Monsoon 

Temperature 

0.962 1.156 -0.215 0.947 1.449 -0.430 0.965 1.263 -0.682 

 

3.2. Comparative assessment of evapotranspiration products 

To understand the performance statistics of NCEP, WRF-NCEP and NASA/POWER estimated 

ETo over the study area, the relative plot of the pooled dataset with the observed ETo is shown in 

the Figure. 6. Results indicated that the NCEP and NASA/POWER data showed an overestimation 

most of the time. Higher ETo was observed for April to July months, this is due to the very high 

temperature in these months. According to correlation statistics, the WRF-NCEP has a marginal 

high correlation of 0.969 followed by NASA/POWER and NCEP with r value of 0.960 and 0.959 

respectively. On the other hand, a high bias has been observed in the case of NCEP (0.241) 

followed by WRF-NCEP (0.230), and least in the case of NASA/POWER data (0.154). Even in 

terms of RMSE, as compared to the NCEP (0.422) and WRF-NCEP (0.402), the NASA/POWER 



showed a better performance with a value of 0.348. Both NCEP and WRF-NCEP estimated ETo 

showed an overestimation when compared with the ground data, whereas in case of 

NASA/POWER it is underestimating most of the time. Overall, the NASA/POWER data showed 

a small discrepancy in estimation of ETo (Figure 7). 

 

Figure 6:  Temporal plots representing the variations among NCEP, WRF-NCEP and 

NASA/POWER daily ETo (estimated using Hamon’s method) with observed data 

 



 

Figure 7. Scatter plots of NCEP, WRF-NCEP and NASA/POWER daily ETo with observed 

data  

 

3.4 Seasonality assessment of ETo 

The seasonal distribution of ETo were explained using the Box-whisker plots as shown in 

Figure.8. As it can observed from the figures, in comparison to the other datasets, the WRF-NCEP 

showed a good performance with the observed ETo. Further among the four seasons, the post-

monsoon season (October, November and December) has less variations as compared to the 

observed data. In the summer and monsoon seasons, the ETo is generally over-estimating, while 

in case of post monsoon it shows an underestimation. In post-monsoon the WRF-NCEP analyzed 

data showed a good agreement with the observational data. Even though the overall results are 

good, the output indicated poor simulation of higher ETo values throughout the period under 



consideration, whereas the simulation of lower ETo values are reasonably good. In the Hamon’s 

method, as temperature is the prime factor for the ETo calculation, the differences in the ETo value 

could be due to the poor quality of the temperature datasets.  

 

Figure 8. Seasonal distribution of ETo over the study area. 

The scatter plot representing the seasonal variations in ETo derived from NCEP, WRF-NCEP, 

NASA/POWER and observed datasets is shown in Figure 9. The performance statistics are also 

calculated for the seasonal ETo and presented in Table 2. A considerable difference was found 

between the NASA/POWER, NCEP and WRF-NCEP for all the four seasons. For the winter 

season, the values of r, Bias and RMSE were reported as 0.945, 0.089 and 0.121 for NCEP 

respectively, while for WRF-NCEP the values of r=0.947, Bias=0.026 and RMSE=0.070 were 

obtained. On the other hand, for NASA/POWER, values of 0.940, 0.112 and 0.139 respectively 

were obtained for r, Bias and RMSE respectively. The results in the winter season indicated that 



the WRF-NCEP is performing better than the other dataset in this season. In the summer season r, 

Bias and RMSE were found as 0.908, 0.523 and 0.628 for NCEP respectively, while the WRF-

NCEP revealed values of 0.936, 0.373 and 0.480 for r, Bias and RMSE respectively. Similarly, for 

NASA/POWER, the values of r=0.949, Bias=0.439 and RMSE=0.511 were obtained, which 

indicated that the WRF-NCEP can simulate a better ETo than the NASA/POWER and NCEP 

datasets. For monsoon season r, Bias and RMSE (in the order) were reported as 0.896, 0.311 and 

0.461 for NCEP, 0.902, 0.442 and 0.535 for WRF-NCEP and 0.904, 0.136 and 0.373 for 

NASA/POWER estimated ETo respectively. Analysis revealed that during the Monsoon season, 

NASA/POWER was found much better than the other datasets for ETo estimation.  For post-

monsoon season r, Bias and RMSE were reported as (in the order) 0.956, -0.034 and 0.143 for 

NCEP, 0.949, -0.063 and 0.167 for WRF-NCEP, 0.960, -0.081 and 0.153 for NASA/POWER data 

respectively. The results indicated that the during post-monsoon season there is no improvement 

after downscaling or by using the NASA/POWER dataset as NCEP itself is giving better 

performance than the other two datasets. This indicate that a better parametrization scheme or 

combination of different parametrization schemes are needed in WRF for simulation of 

temperature during post-monsoon season. In the seasonal analysis, for summer and winter seasons, 

the WRF-NCEP estimated ETo yields a lower RMSE than the NCEP and NASA/POWER data 

and show a very close agreement with the observed dataset. However, due to better capture of 

physics especially by WRF during monsoon season, a more accurate ETo simulation was obtained, 

as a high performance was obtained in the pooled dataset. The results indicated that as the 

performances of WRF-NCEP and NASA/POWER based ETo are very close, therefore, any of 

them can be used for the ETo estimation. However, as WRF-NCEP requires high performance 



computing facility and based on complex physics, NASA/POWER could be a better choice for 

different applications, as it can be directly obtained from the provider.  

 

 

Figure 9. Scatter plots representing seasonal variations in ETo estimated from NCEP, 

WRF-NCEP, NASA/POWER and observed data.  

Table 2. Performance statistics for the seasonal and pooled daily ETo 

 

ETo 

NCEP WRF-NCEP NASA/POWER 

r RMSE Bias r RMSE Bias r RMSE Bias 

Pooled 0.959 0.422 0.241 0.969 0.402 0.230 0.960 0.348 0.154 



Winter 0.945 0.121  0.089 0.947 0.070 0.026 0.940 0.139 0.112 

Summer 0.908 0.628  0.523 0.936 0.480 0.373 0.949 0.511 0.439 

Monsoon 0.896 0.461 0.311 0.902 0.535 0.442 0.904 0.373 0.136 

Post- Monsoon 0.956 0.143 -0.034 0.949 0.167 -0.063 0.960 0.153 -0.081 

 

3.5 Comparison with the Penman Monteith estimated ETo 

For calculation of ETo using the Penman Monteith method, the dataset of wind speed, solar 

radiation, relative humidity and air temperature were taken into account, obtained from the ground 

based meteorological station. Penman Monteith method is now globally accepted method for 

calculation of ETo and can be used here to check the performances of different ETo products. The 

ETo obtained from Penman Monteith method is used as benchmark to evaluate the results of the 

WRF-NCEP, NASA/POWER and NCEP based ETo calculated using the Hamon’s method and 

the results are shown through the Taylor diagram (Fig.10). Taylor diagram is an integrated way of 

showing the performances in terms of correlation, deviation and RMSE using a single diagram. 

The circle mask in the x-axis is the reference point, represent the ETo estimated from the Penman 

Monteith’s methods, whereas the position of the different labels reflects the statistical 

characteristics of the different model data with the observed one. In the figure, it showed that the 

NASA/POWER has maximum agreement with the observed data in terms of correlation, RMSE 

and deviation followed by WRF-NCEP, and NCEP. Therefore, from the overall performance, the 

NASA/POWER has shown the skillful results in estimation of ETo over the study area. 



 

Fig.10 Performance of the NASA_POWER, NCEP and WRF-NCEP estimated ETo with 

the Penman Monteith based ETo as benchmark 

4. Conclusions 

Despite the prime importance of evapotranspiration in various hydrometeorological application, it 

is not often possible to assess evapotranspiration from ground-based weather station. An 

alternative to this is the use of various reanalysis global datasets and use of mesoscale model for 

downscaling the global reanalysis data for ungauged sites to estimate ETo. However, there are not 

many well documented studies available in the literature to show the performance of the NCEP 

(with WRF downscaling), NASA/POWER for ETo estimation, especially for the Indian regions. 

In this study, an attempt has been made to evaluate the performance of various global reanalysis 

datasets and the capability of WRF model in estimating evapotranspiration over an agricultural 

field. Therefore, this paper provides a detailed cross comparison of ETo estimated from different 



existing datasets--NCEP, WRF downscaled NCEP and NASA/POWER over cropland by using 

the Hamon’s and Penman Monteith’s methods. In order to check the performances of different 

datasets, the WRF model was used to downscale the global NCEP data into much finer resolution. 

The accuracy and seasonal performance of ETo estimated from three globally products NCEP 

global reanalysis and WRF downscaled and NASA/POWER were compared with the ground-

based measurements. The temperature variable is used for the estimation of ETo using the 

Hamon’s method on both annual and seasonal basis. Based on the results, the NASA/POWER and 

WRF-NCEP estimated ETo using Hamon’s method is giving accurate result and showed a close 

match with the ground-based dataset. The ETo values calculated using the different datasets and 

Hamon’s method were compared against the Penman-Monteith method as well, which also showed 

a close agreement of the ETo calculated from different global dataset with the observed one. 

Overall, the NASA/POWER showed a close agreement with the observed dataset in terms of Bias 

and RMSE, which indicates that the NASA/POWER is good to use for different applications as it 

needs less calculation in comparison to WRF that needs sophisticated schemes and require high 

power computing system. The outcomes of the study could be helpful in assessing the reliability 

of the NCEP, WRF downscaled NCEP and NASA/POWER data for various hydrometeorological 

applications. Further, this study can improve forecasting application and effectiveness of hydro-

meteorological modelling especially for the ungauged areas.  
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