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Abstract

Intra-Subject Variability (ISV), a potential index of catecholaminergic regulation, is elevated 

in several disorders linked with altered dopamine function. ISV has typically been defined as 

reaction time standard deviation. However, the ex-Gaussian and spectral measures capture 

different aspects and may delineate different underlying sources of ISV; thus reflecting 

different facets of the construct. We examined the impact of factors associated with dopamine 

metabolism, namely, Catechol-O-Methyltransferase Val158Met (COMT) genotype and 

Working Memory (WM) and response-switching on ISV facets in young healthy adults. The 

Met allele was associated with overall increased variability. The rather exclusive sensitivity of 

ex-Gaussian tau to frequencies below 0.025Hz and the quasi-periodic structure of particularly 

slow responses support the interpretation of tau as low frequency fluctuations of neuronal 

networks. Sigma, by contrast, may reflect neural noise. Regarding cognitive demands, a WM 

load-related increase in variability was present for all genotypes and all ISV facets. 

Contrastingly, ISV facets reacted differently to variations in response-switching as, across 

genotypes, sigma was elevated for rare target trials whereas tau was elevated for frequent 

standard trials, particularly for Met homozygotes. Our findings support the significant role of 

COMT in regulating behavioural ISV with its facetted structure and presumed underlying 

neural processes. 
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1. Introduction

Intra-subject variability (ISV) refers to within-person variations in performance over 

short periods of time. ISV of reaction times (RTs) is elevated in schizophrenia (Kaiser et al., 

2008; Smyrnis et al., 2009; Rentrop et al., 2010), methamphetamine psychosis (Fassbender et 

al., 2015), bipolar disorder (Brotman, Rooney, Skup, Pine & Leibenluft, 2009), attention-

deficit/hyperactivity disorder (ADHD; Klein, Wendling, Huettner, Ruder & Peper, 2006) and 

Parkinson’s disease (Burton, Strauss, Hultsch, Moll, & Hunter, 2006), which have all been 

associated with altered dopaminergic function. Contrastingly, for depression (Schwartz et al., 

1989), obsessive-compulsive disorder (Damilou et al., 2016) or autism (Adamo et al., 2014), 

ISV was not found to be elevated. In ADHD literature, increased ISV of RTs is amongst the 

most consistent findings (Kofler et al., 2013) and considered to reflect underlying neural 

aetiology (Kuntsi & Klein, 2012). As ADHD patients demonstrated greatly elevated reaction 

time standard deviation (RTSD) after accounting for mean RT, but slower mean RT was no 

longer detectable after accounting for elevated RTSD (Klein et al., 2006), ISV is unlikely to be 

a consequence of response slowing and must be studied as an independent construct. 

ISV is considered to be modulated by catecholaminergic activity in the prefrontal 

cortex (PFC) (Winterer et al., 2006a, 2006b). The action of dopamine (DA) released in the 

synaptic cleft is terminated either by DA transporters (DAT) reuptake, diffusion out of the 

synapse or by catabolism of the Val158Met polymorphism (rs4680) of the Catechol-O-methyl-

transferase (COMT) enzyme (Slifstein et al., 2008). The COMT genotype plays a particularly 

important role in catabolism of extracellular DA in the PFC (Turnbridge et al., 2004) due to 

that lower concentration of DAT here than in the striatum (Lewis et al., 2001; Sesack et al., 

1998). The substitution of the Met allele by the Val allele leads to a three-to-four-fold 

increase in enzymatic activity, resulting in lower DA signalling (Lachman et al., 1996). COMT 

is therefore a promising gene for the study of mechanisms underlying differences in ISV.
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Previous work examining the link between the COMT gene and ISV is limited and has 

produced contradicting results. The Val allele was linked with higher ISV of RTs following 

target trials in a continuous performance task (Stefanis et al., 2005) and with higher ISV of RT 

and P3b latencies of unfamiliar faces compared to familiar faces in a face-recognition task 

(Rostami et al., 2017). Contrastingly, the Met allele was associated with higher ISV of anti-

saccade latency (Haraldsson et al., 2010). While each of these studies is highly suggestive of a 

link between COMT and ISV in various cognitive tasks, they all confined the measurement of 

variability to RTSD, a sensitive but non-specific global measure of ISV. 

Given that variability of biological systems rarely exhibits absolute stochastic or 

strictly periodic patterns (Billman, 2011) but rather combines elements of both types of 

processes (Auffray et al., 2003), RTSD likely represents the amalgamation of various types of 

ISV (e.g. (non-)linear, (non-)periodic). In this regard, the use of distributional (e.g. ex-

Gaussian, see below) and time-series (e.g. frequency-spectral measures to capture periodicity 

of RTs) measures may characterize and unmask potentially unique neural sources of 

variability; and thus collectively reflect different “facets” of ISV. The ex-Gaussian model 

describes the shape of individual RT distributions with mu and sigma describing the mean and 

standard deviation of a Gaussian RT component, respectively, and tau, describing the mean 

and standard deviation of the ex-Gaussian RT component. 

Ex-Gaussian tau is proposed to reflect lapses of attention (Leth-Steensen et al., 2000) 

which are considered to emerge due to poor suppression of the default mode network (DMN) 

in ADHD (Fassbender et al., 2009). Using Fast Fourier Transform (FFT) based filtering 

techniques on distributional measures, we have shown that tau is rather exclusively 

characterised by ultra-slow quasi-periodic RT fluctuations in ADHD children (Feige et al., 

2013); a spectral signature that corresponds directly with that of electrophysiological 

fluctuations linked with the DMN (Ko et al., 2011). A replication of this finding in a larger 
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healthy sample would further support the interpretation of elevated tau as recurrent lapses of 

attention due to DMN interference (Sonuga-Barke & Castellanos, 2007). With regard to the 

Gaussian potion of RT distributions, the consensus on a psychological interpretation is less 

clear that for tau. Yet, as the Gaussian mean, mu, has been linked with rather “basic” internal 

processes such as neural transmission or sensory and motor processes (see review by Matzke 

& Wagenmakers, 2009); sigma may index neural noise. Based on previous COMT studies in 

which Val allele carriers appropriately deactivated DMN-related regions (Stokes et al., 2011; 

Ettinger et al., 2008) and had increased prefrontal “noise” while performing various cognitive 

tasks (Egan et al., 2001; Winterer et al., 2006a, 2006b), it is plausible that ISV for these 

carriers is characterized by generally lower tau and elevated sigma. Yet, results may vary 

largely depending on task requirements.

Based on the tonic-phasic theory, variations in levels of DA via COMT may be 

beneficial or detrimental for performance depending on the cognitive demands of the task at 

hand (Bilder et al., 2004). The Met allele, associated with high tonic DA transmission and 

cortical D1 stimulation, is linked with higher cognitive stability. Conversely, the Val allele, 

linked with high phasic DA transmission and subcortical D2 stimulation, is related with higher 

cognitive flexibility. The critical association between DA and cognitive demands may 

underlie the contradiction in previous COMT studies on ISV (Stefanis et al., 2005; Rostami et 

al., 2017; Haraldsson et al., 2010). As such, a more detailed examination of the demands of 

working memory (WM) and response-switching and their interactions with COMT on ISV 

facets is warranted. 

WM refers to the storage of information in the context of processing, and coordination 

of elements into new structures (Oberauer et al., 2003). Concerning the impact of WM on ISV 

facets, a strong negative association between WM and ex-Gaussian tau, suggesting that 

improved WM performance was related to smaller tau, has previously been reported 

(Schmiedek et al., 2007). If this association is stronger than that of other ISV facets, altering 
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WM loads would have a greater impact on tau than the others; but a systematic examination of 

the impact of these task effects on ISV facets is required to clarify whether this is the case.  

Additionally, it is intriguing whether the modulation of ISV facets by WM differs for the 

COMT genotypes as WM relies on, both, cognitive stability and cognitive flexibility (Bilder et 

al., 2004), and as the possibility that WM modulating increased ISV in ADHD (Klein et al., 

2006) may be related to the involvement of the COMT gene in the disorder (Bellgrove et al., 

2005). In this context, Val allele carriers may have a lower load-related increase in tau given 

that they better suppressed DMN-related neural activity than in Met allele carriers while 

performing an n-Back task (NBT) of WM (Stokes et al., 2011).

Response-switching involves the ability to shift between responding to frequent and 

rare stimuli; thus, requiring cognitive flexibility. Based on the tonic-phasic theory, Val allele 

carriers with high phasic dopaminergic state can be considered to be at an advantage here 

(Bilder et al., 2004). Indeed, previous work has shown that these carriers were more accurate 

(Nolan et al., 2004) and had lower switch costs (Colzato et al., 2010) in tasks demanding high 

cognitive flexibility. Although little is known about the impact of response-switching or its 

interaction with COMT on ISV facets, it is possible that Val homozygotes have lower tau 

when responding to less-frequent trials as they better suppressed DMN-related activity during 

performance of tasks with high demands of cognitive flexibility (Stokes et al., 2011; Ettinger 

et al., 2008). 

Based on the considerations that inter-individual (or group) differences of reaction 

times should be described in terms of various ISV measures, we examined the impact of (i) 

COMT, (ii) cognitive demands of WM and response-switching, and their interactions with 

COMT, on ISV facets in healthy young adults. Alongside, spectral features of distributional 

ISV measures were studied to verify the plausibility of the assumption that ex-Gaussian tau 

reflects low frequency fluctuations of the DMN. 
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2. Methods

All procedures were in line with the Declaration of Helsinki and were approved by the 

ethics committee at the School of Psychology, Bangor University. Written informed consent 

was given by all participants before the study. 

2.1 Participants

The present study is part of a previous ERP study that has been published elsewhere 

(Saville et al., 2014). Participants were mainly students or staff members at Bangor University 

recruited from a panel of Caucasian Western European genotyped volunteers. The exclusion 

criteria were personal or family history of psychiatric, neurological, genetic disorders or 

major systemic illnesses. Data for 70 participants consisting of 16 Met/Met carriers (age 

20.1±1.8 years, 63% females, 81% right-handed), 36 Val/Met carriers (age 21.4±2.8 years, 

61% females, 94% right-handed) and 18 Val/Val carriers (age 21.5±2.9 years, 39% females, 

89% right-handed) were available for statistical analysis. 

2.2 Apparatus and Materials

The experiment was conducted in a sound-attenuated Faraday cage and stimuli were 

presented on a 17” LCD monitor with an electrically shielded power source. DNA was 

obtained using saliva samples. ‘Illumina BeadXPress Golden Gate assay’ was used to identify 

96 SNPs, one of which was the COMT Val158Met genotype. ‘Pico Green assay’ was used to 

examine nucleic acid quality and concentration levels. Default settings were used for 

genotype calling and annotation using ‘GenomeStudio assay’ (all Illumina, San Diego, USA). 

2.3 Stimuli and Procedure

We administered three NBTs: 0-back task (0BT), 1-back task (1BT) and 2-back task 

(2BT). In all tasks, a series of 280 letters was presented on the computer screen and 
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participants were instructed to respond to each letter by pressing one key if the letter was a 

standard trial (75% probability) and another key if the letter was target (25% probability). 

Targets were defined differently for each task: the letter ‘E’ for the 0BT, the letter matching 

the one preceding it for the 1BT, and a letter matching the previous-but-one for the 2BT.  

Response-switching demands were considered to be higher when responding to rare targets 

than to frequent standards. Although ours is not a state-of-the-art set-shifting paradigm, the 

switch required to respond to rare trials may represent this component. Participants were 

instructed to respond as quickly and accurately as possible. Participants completed one block 

of each task (0BT, 1 BT, 2BT) in an order that was a counterbalanced across the sample; and 

then a second block of each task in the same order. Between the blocks two and three, and 

four and five, resting state EEG was recorded for 5 minutes. The stimuli were white Arial 

letters presented on a black background at a visual angle of ~3°. Stimulus duration was 

1000ms and the stimulus onset synchrony was varied between 1,950ms and 2,050ms in steps 

of 25ms, with a mean of 2000ms. E-Prime V1.2 software was used for presenting the stimuli.

2.4 Data Analysis

In order to visualize differences between groups for RT distributions, the total number 

of correct (upwards) vs. incorrect responses (downwards) were plotted in bins of 25ms 

separately for the three groups for the entire response period of 0-1500ms (Figure 1a). 

Incorrect responses were those in which participants responded with the wrong key – falsely 

classifying a target as a standard trial or vice versa. RTs 200ms or faster were considered to be 

anticipations and excluded from further analyses. The significant effects of WM LOAD 

(0BT/1BT/2BT), TRIALTYPE (targets/standards), RUN (first/second) and time-on-task (by 

including the onset-time of each trial as a covariate for linear trends e.g. fatigue) were 

subtracted from the RTs resulting in “residualised” RT. This procedure was done to “extract” 
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the endogenous Type I (except time-on-task) and Type II types of RT-ISV (Fiske & Rice, 

1955).

Subsequently, different ISV estimates including Reaction Time Standard Deviation 

(RTSD), Consecutive Standard Deviation (CSD), Coefficient of Variation (CoV; RTSD/mean 

RT) and ex-Gaussian measures, sigma and tau, were computed. CSD or trial-to-trial variability 

was derived using the following formula: sqrt(∑(RTi-RTi+1)2/(n-1)); i=trial number; 

n=number of trials. Spectral power was examined by resampling residualised RTs to 1 Hz 

using linear interpolation and then performing FFT in bins of 0.004Hz for the range of 0-

0.25Hz on RT data for each participant and each block separately. 

To determine whether tau is exclusively sensitive to low frequencies, we examined the 

contribution of spectral bands to various distributional ISV measures. Extraction filters (filter 

out all but the specified band) were applied to the time series data for each block of each 

participant and consequently scores of RTSD, CSD, sigma and tau were recomputed (see Feige 

et al., 2013). The extraction and suppression filters were applied in bands of width 0.025Hz 

for the range of 0-0.25Hz.  

From a time series perspective, a low spectral characteristic for tau would suggest that 

particularly slow responses have a quasi-periodic occurrence within a background of 

generally faster responses. To test whether particularly slow RTs that significantly contribute 

to tau tend to emerge from slow RT-phases of background fluctuations, we proceeded to 

employ the following procedures (as introduced by Feige et al., 2013). Particularly slow or 

fast RTs were defined as the theoretical 1%-threshold of the Gaussian distribution 

(median±2.33SD; SD=IQR/1.349, IQR=Inter-Quartile Range) of the residualised RT data of 

each task block. For all the remaining RTs, “background fluctuation” was computed using a 

running median of 20 seconds (time window corresponding with one half of a cycle for the 

lowest frequency band of 0-0.025Hz). The “background fluctuation” was consequently 
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separated into three classes based on whether the given RT was positioned in the lower, 

middle or upper tertile of the overall RTs. We then statistically compared the total number of 

occurrences of particularly slow and particularly fast RTs as well as omission errors within the 

upper, middle and lower tertiles using chi² tests.

Finally, to complete our systematic comparisons, measures of speed (mean RTs, median RTs 

and mu) and accuracy (percentages of incorrect responses, omission errors (no response key 

pressed) and anticipation errors) were also examined. 

2.5 Statistical analysis

ANOVAs were used to examine measures of ISV (RTSD, CSD, sigma, tau, spectral 

power of <0.1Hz; CoV), speed (mean RTs, median RTs, mu) and accuracy (percentages for- 

anticipation errors, incorrect responses, omission errors) with between-subject factor 

GENOTYPE (Val/Val, Met/Met, Val/Met) and within-subject factors LOAD (0BT, 1BT, 2BT) 

and TRIALTYPE (targets, standards; for all measures except CSD and spectral power). All 

ANOVAs were computed using the ezANOVA command of the ‘ez’ package (Lawrence, 

2016) in R (R Core Team, 2017). Follow-up ANOVAs were used for post-hoc analyses. 

Greenhouse-Geisser corrected p-values were reported for all main effects of WM and 

interaction effects of WM*GENOTYPE due to violation of the assumption of sphericity.

3. Results

****************************Insert Table 1 about here***************************
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3.1 What is the impact of COMT on ISV facets?

Probability density plots show that RT distributions were flatter and broader for 

carriers with a higher number of Met alleles (Figure 1a). As can be seen from the descriptive 

statistics in Table 1, there was a clear ordinal relationship between number of Met alleles and 

ISV, showing that RT performance became more variable with increasing numbers of Met 

alleles. The corresponding GENOTYPE main effects underline the statistical significance of 

these group differences found for RTSD, CSD, sigma, spectral power of RTs (<.1Hz; also see 

Figure 1b), marginally for CoV, but not for tau (but see significant GENOTYPE*TRIALTYPE 

effect in section 3.2). Effect sizes highlight that group differences for all ISV measures emerged 

primarily from the comparison of the homozygous groups. 

Examining the spectral composition of tau (Figure 1c) reveals that, unlike the fast RT 

variability measures (Figures 1d, e, f), it was the low frequency 0-.025Hz band in particular 

that contributed most to the ex-Gaussian measure. Overlapping confidence intervals indicate 

that the COMT genotypes did not differ in terms of the impact of this low spectral band on tau. 

A successive examination of RTs within the time domain revealed that the number of 

particularly slow responses was significantly higher in the slow RT tertile (Val/Val: 

χ²(2)=193.89, p<.001; Met/Met: χ²(2)=188.39, p<.001; Val/Met: χ²(2)=472.74, p<.001) whereas 

the number of particularly fast RTs was significantly higher in the fast RT tertile (Val/Val: 

χ²(2)=18.07, p<.001; Met/Met: χ²(2)=18.85, p<.001; Val/Met: χ²(2)=46.59, p<.001) for all 

genotypes; but the Val/Met group in particular. Contrastingly, omission errors were not 

preferentially associated with any tertile in Val allele carriers (Val/Val: χ²(2)=0.45, p=.798; 

Val/Met: χ²(2)=2.99, p=.225) but preferentially emerged from the slow RT tertile in Met/Met 

carriers (χ²(2)=16.58, p<.001). 
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****************************Insert Figure 1 about here**************************

3.2 What impact cognitive demands have on ISV facets? If present, does this 

impact differ across the COMT genotypes?

Inferential statistics for main effects for WM, TRIALTYPE and their respective 

interactions with GENOTYPE can be found in Table 2. The main effects of WM were 

significant for all ISV measures since variability increased from 0BT to 1BT (23F84, 

p.001, .04Gη².13 with effect sizes in the following descending order: CSD, RTSD, CoV, 

tau,<.1Hz, sigma) and even more so from 1BT to 2BT (64F344, p.001, .14Gη².42 with 

effect sizes in the following descending order: CSD, RTSD, <.1Hz, CoV, tau, sigma); a pattern 

that was uniform in all genotypes (all WM*GENOTYPE interactions: p.055; Gη²≤.019).

Significant main effects for TRIALTYPE reflected higher RTSD, tau and CoV for 

standards than targets; but higher sigma for targets than standards. These effects were uniform 

across genotypes for RTSD, CoV and sigma, but not for tau (GENOTYPE*TRIALTYPE) since 

Met/Met carriers had higher tau than Val/Val carriers for frequent standards (GENOTYPE: 

F(1,32)=6.13, p=.002, Gη²=.133), but not for rare targets (GENOTYPE: F(1,32)=0.81, p=.374, 

Gη²=.011). The WM*TRIALTYPE*GENOTYPE interactions were non-significant (p.113; 

Gη²≤.011) for all ISV facets.

****************************Insert Table 2 about here**************************
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3.3 Additional results

3.3.1 The impact of COMT on speed or accuracy

RTs became slower with increasing copies of the Met allele, indicating an ordinal 

pattern between the number of Met alleles and response speed. Relatedly, the GENOTYPE 

effects were significant for mean and median RTs, but not mu; and the significant effects were 

tendered by the comparison of the homozygous groups (see Table 1). Regarding accuracy, 

groups did not differ for anticipations or omission errors, but a significant GENOTYPE effect 

reflected more incorrect responses by Met/Met carriers than Val/Met carriers (Table 1).

3.3.2 The impact of cognitive demands and their interactions with COMT on speed 

and accuracy 

Table 2 shows that significant main effects of WM on response time measures 

indicated response slowing from 0BT to 1BT (7F53, p.006, .011Gη².061) and 1BT to 

2BT (41F178.5, p.001, .107Gη².284) for mean RTs>median RTs>mu; a pattern that 

was consistent across genotypes (WM*GENOTYPE). The number of anticipations did not 

differ with increasing WM loads. By contrast, significant main effects of WM indicated an 

increase in incorrect responses from 0BT to 1BT (F(1, 67)=30.04, p<.001, Gη²=.031) and from 

1BT to 2BT (F(1, 67)=211.23, p<.001, Gη²=.180); and for omission errors from 1BT to 2BT (F(1, 

67)=4.40, p=.040, Gη²=.028), but not from 0BT to 1BT (F(1, 67)=1.06, p=.307, Gη²=.002). The 

impact of load was uniform across genotypes for omission errors but not for incorrect 

responses (WM*GENOTYPE in Table 2; see below).

Response speed was significantly longer for targets than standards (TRIALTYPE) in all 

genotypes (TRIALTYPE*GENOTYPE in Table 2). The proportion of anticipation errors was 
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overall consistent across trials but incorrect responses and omission errors were significantly 

higher following targets than standards (TRIALTYPE). This pattern was uniform across 

genotypes for omission errors, but not incorrect responses (TRIALTYPE*GENOTYPE in 

Table 2; see below). Of all the response speed and accuracy measures, the interaction of 

WM*TRIALTYPE*GENOTYPE was significant for incorrect responses alone. The significance 

of this interaction, and that of WM*GENOTYPE or TRIALTYPE*GENOTYPE, reflect a 

disproportionately greater load-related increase in incorrect responses for Met/Met carriers 

than Val allele carriers (WM*GENOTYPE for Met/Met vs. Val/Met: F(1.8,88.6)=11.06, p<.001, 

Gη²=.023; Met/Met vs. Val/Val: F(1.6,51.4)=7.67, p=.002, Gη²=.027; Val/Val vs. Val/Met: 

F(1.2,64.4)=0.61, p=.496, Gη²=.001) following targets (WM*GENOTYPE x: F(3.3,222.6)=6.22, 

p<.001, Gη²=.042) but not standards (WM*GENOTYPE: F(2.5,169.8)=0.63, p=.570, Gη²=.009).

4. Discussion

4.1 What is the impact of COMT on ISV facets?

This is the first study to investigate facets of ISV across variants of the COMT gene 

which revealed that the Met-allele is characterized by elevated scores for RTSD, low spectral 

power (<0.1Hz), trial-to-trial variability (CSD), sigma and, only for frequent standard trials, 

tau. Compared to Val homozygotes, Met homozygotes had elevated CoV suggesting that 

greater variability of these carriers was unrelated to their longer mean responding. The 

“headline” ISV finding of elevated RTSD in Met homozygotes (Saville et al., 2014) is in line 

with some (Haraldsson et al., 2010) but not all previous work (Stefanis et al., 2005; Rostami 

et al., 2017). 

A characterization of the distributional ISV measures by their spectral characteristics 

to provide a more-informed psychological interpretation for them revealed that, unlike other 
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ISV facets, tau had an ultra-slow quasi-periodic structure (<.025Hz; i.e., 40s cycle) – 

corresponding with the temporal dynamics of the DMN interferences during task performance 

(<.1 Hz; Ko et al., 2011). If tau and low frequencies are indeed associated with DMN 

interferences, then, within the time-domain, particularly slow responses should occur quasi-

periodically within slow RT phases. Indeed, we found that across all genotypes, particularly 

slow responses accumulated preferentially in the slow phases whereas particularly fast 

responses accumulated preferentially in the fast phases of ultra-slow background RT 

fluctuations. Omission errors, by contrast, did not generally accumulate in any background 

tertile suggesting that they may represent different type of attentional lapses than tau, possibly 

with a unique temporal structure. Taken together, the present study thus provides a replication 

of our previous work on ADHD in childhood (Feige et al., 2013) in a sample of healthy young 

adults, producing further evidence to support the interpretation of tau as attentional lapses 

(Leth-Steensen et al., 2000) due to poor suppression of the DMN interferences (Weissman et 

al., 2006; Sonuga-Barke & Castellanos, 2007). Also, the stronger association of trial-to-trial 

variability (CSD) with tau (r=.90) than sigma (r=.56) may be related to particularly slow 

responses occurring quasi-periodically rather than consequently in a time series. It is likely 

that the larger number of particularly slow responses (tau) following frequent standard trials 

contribute largely to a higher mean RT in Met homozygotes, since these carriers are not 

overall slower (mu).  

The finding of elevated tau in Met homozygotes for frequent standard trials is 

consistent with the hypothesis that low frequency fluctuations in neuronal activity are 

modulated by catecholaminergic activity (Castellanos et al., 2005) and with previous studies 

in which these carriers showed reduced deactivations of neural structures associated with the 

DMN during an anti-saccade task (Ettinger et al., 2008) and in 2BT (compared to rest) or No-

Go trials (compared to Go trials) (Stokes et al., 2011); possibly due to unfavorably high 
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prefrontal DA receptor stimulation. However, as Met homozygotes have shown appropriate 

deactivation of DMN-related regions during a pro-saccade task, the association of COMT with 

functional activity may be mediated by task demands (Ettinger et al., 2008, also see section 

4.2).  

Sigma, on the other hand, may be an index of neuromodulation, which according to 

computational models, relies on the efficiency of catecholaminergic functioning (Li, 

Lindenberger & Frensch, 2000). The present findings of elevated sigma in Met homozygotes 

may contradict studies wherein Val homozygotes had greater prefrontal “noise” (Winterer et 

al., 1006a, 2006b, Egan et al., 2001). However, our results are in line with evidence that 

underlines the significant role of extra-striatal neural regions and D2 receptors for ISV. An 

functional MRI (fMRI) study by van Belle et al. (2015) found that in a sample of children and 

young healthy controls, but not ADHD patients, an age-related decrease in sigma was 

associated with increased activity in the dorsal anterior cingulate gyrus. In a sample of 

otherwise healthy adults, reduced DA D2 receptor bindings in extra-striatal regions, 

particularly in the anterior cingulate cortex, was associated with elevated ISV considered to 

reflect poor signal-to-noise ratio of neural information (MacDonald et al., 2009). It is possible 

that elevated sigma in Met homozygotes is an index of poor neuromodulation due to high 

tonic and, reciprocally, low phasic DA D2 actions in subcortical regions (Bilder et al., 2004).

4.2 What impact do cognitive demands have on ISV facets? If present, does this 

impact differ across the COMT genotypes?

Greater “taxing” of WM functions led to an increase in ISV, an effect that is in 

principle in line with correlated individual differences in WM proficiency and ISV 

(Schmiedek et al., 2007). As in Schmiedek and colleagues’ study and when considering effect 
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the sizes of the ex-Gaussian parameters, this relationship was somewhat greater for tau than 

for sigma. The magnitude of this load-related increase in ISV was, however, greater for CSD, 

RTSD, and, at a high WM load, also for low spectral power than for the two ex-Gaussian ISV 

parameters. Contrary to the assumption that Val allele carriers may have lower load-related 

increase in tau as they have previously shown better suppression of DMN activity during an 

NBT (Stokes et al., 2011), the load-related increase in ISV was uniform across genotypes for 

all measures. However, there was a disproportionate load-related increase in incorrect 

responses was found for Met/Met carriers which may be related to too much prefrontal DA D1 

receptor stimulation associated with poor WM performance (Vijayraghavan et al., 2007). 

Hence, the critical impact of frontal DA availability on WM performance may be unrelated to 

ISV. In the context of the potential involvement of COMT in ADHD (Bellgrove et al., 2005), 

our findings do not support the notion that WM disproportionately increases ISV in the 

disorder (Klein et al., 2006; Kofler et al., 2014), but are in line with some recent studies 

(Feige et al., 2013; Salunkhe et al., 2018). 

Shifting responding from frequent standard trials to rare targets led to an overall 

decrease in RTSD, CoV and tau, but an increase in sigma. With regard to the ex-Gaussian 

measures in particular, previous empirical work discouraged the interpretation of these 

measures as psychological processes as they did not correspond uniquely with diffusion 

model parameters (Matzke & Wagenmakers, 2009). In this regard, the differential reactivity 

of sigma and tau to response-switching demands argues in favor of, at least, a dissociation of 

these parameters. Variations in response-switching were also sensitive to genotypic 

differences in tau and incorrect responses, but none of the other examined measures, as 

Met/Met carriers had disproportionally higher tau for standard trials only and made more 

incorrect responses with increasing load for target trials only. For rare target trials, the 

unexpected lack of group differences in tau (a measure of above average slow responses) may 
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be related to the overall greater response slowing for this condition in all genotypes, and the 

higher number of incorrect responses by Met/Met carriers potentially due to a dopaminergic 

state that is non-conducive to cognitive flexibility (Bilder et al., 2004).  It is also noteworthy 

that the interaction of COMT and response-switching, previously shown to modulate accuracy 

(Nolan et al., 2004), may also modulate specific aspects of ISV like tau. Based on our results, 

the contradiction in literature regarding the role of COMT on ISV (Stefanis et al., 2005; 

Haraldsson et al., 2010; Rostami et al., 2017) may be related to different task or cognitive 

demands that have a significant impact on the faceted structure of this construct.

The present study is not without limitations. Firstly, the modest sample size and its 

composition (mainly students) limit the generalizability of our findings. Secondly, while the 

administered NBT is suited to examine the impact of increasing WM loads on ISV measures, 

the examination of cognitive flexibility may be better studied using more state-of-the-art 

paradigms such as the Competing Programs Task (Nolan et al., 2004) or the Task-Switching 

Task (Colzato et al., 2010). Nevertheless, our findings contribute to a better understanding of 

the nature of increased ISV in Met homozygotes with the use of facets that differ in their 

spectral characteristics and reactivity to cognitive demands. 
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Figures (Title and caption for Fig1.pdf)

Figure 1 – RT analyses for COMT genotypes

A) RT density plots for correct (above) and incorrect responses (below). B) Spectral power density plots with uncorrected- pointwise significance (p<.05) markings for 
comparisons between pairs of genotypes are plotted below the frequency bands (Orange: Val/Val vs. Met/Met; Purple: Met/Met vs. Val/Met; Red: Val/Met vs. Val/Val). 
Extraction filters for C) tau, D) sigma, E) RTSD and F) CSD; with confidence intervals along the margin of the y-axis.

Tables

Table 1 – Descriptive statistics and Main effect of GENOTYPE

Descriptive statistics Omnibus Model

df(2,67)

Val/Val vs. 
Met/Met
df(1,32)

Val/Val vs.
Val/Met
df(1,52)

Val/Met vs. 
Met/Met
df(1,50)

Val/Val Val/Met Met/Met F p Gη² F p Gη² F p Gη² F p Gη²
RTSD 100.6±38.3 111.6±39.4 125.4±44.4 5.01 .009 .094 7.18 .012 .142 4.09 .048 .046 3.76 .058 .051
CSD 128.9±49.5 140.7±50.3 161.6±57.1 5.54 .006 .115 7.71 .009 .164 3.05 .087 .040 5.23 .026 .079
Tau 79.1±43.1 89.8±44.6 96.5±50.7 2.49 .090 .033 3.69 .064 .053 3.54 .066 .027 0.83 .367 .008
Sigma 49.4±24.1 56.3±24.4 65.8±32.5 4.88 .010 .054 7.07 .012 .090 3.60 .063 .024 3.91 .054 .029

ISV

FB <.1 Hz 37.3±14.6 41.9±14.5 46.7±17.7 3.89 .025 .086 5.47 .026 .127 4.19 .042 .055 2.35 .132 .038
CoV .201±.06 .215±.06 .228±.06 3.05 .054 .049 4.29 .047 .079 2.66 .108 .026 2.14 .150 .023
Mu 411.6±79.1 419.5±67.8 437.0±70.0 1.61 .207 .025 2.72 .109 .041 0.37 .544 .004 2.43 .125 .022
Mn. RTs 491.0±89.3 510.7±85.0 539.5±78.6 3.68 .030 .069 6.82 .014 .125 1.66 .203 .021 3.64 .062 .046Speed
Md. RTs 473.8±86.6 493.0±81.3 520.7±78.1 3.67 .031 .066 6.66 .015 .118 1.67 .202 .020 3.70 .060 .045
%Anticipations 0.10±0.25 0.29±1.08 0.12±0.28 0.58 .561 .013 0.09 .766 .001 0.68 .413 .010 0.50 .481 .008
%Incorrect 8.40±10.43 7.62±9.45 11.73±15.0 4.98 .001 .057 3.59 .067 .045 0.50 .482 .004 9.69 .003 .075Accuracy
%Omission 0.67±3.31 0.42±0.84 0.57±0.98 0.32 .725 .004 0.04 .852 .004 0.51 .479 .004 0.59 .446 .007

Note: RTSD: Reaction time standard deviation; CSD: consecutive standard deviation; FB: Frequency Bands; CoV: Coefficient of Variation; Mn. RTs: mean RTs; Md. RTs: 
median RTs; %Anticipations: percentage of responses with latency 200ms or faster; %Incorrect: percentage of incorrect responses; %Omission: percentage of omission errors.
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Table 2 –Inferential statistics for cognitive demands and GENOTYPE-related interactions

WM
df(2, 134)

WM*GENOTYPE
df(4,134)

TRIALTYPE
df(1,67)

TRIALTYPE*GENOTYPE
df(2,67)

F p Gη² F p Gη² F p Gη² F p Gη²
RTSD 368.83 <.001 .492 1.81 .138 .009 42.38 <.001 .033 0.54 .584 <.001
CSD 345.48 <.001 .526 1.76 .148 .010 - - - - - -
Tau 132.75 <.001 .336 2.58 .055 .019 93.76 <.001 .124 3.40 .039 .010
Sigma 78.00 <.001 .223 1.31 .275 .010 16.31 <.001 .032 1.78 .176 .007

ISV

FB <.1 Hz 308.21 <.001 .466 1.29 .278 .007 - - - - - -
CoV 187.66 <.001 .363 1.52 .201 .009 110.04 <.001 .174 0.69 .505 .003
Mu 43.79 <.001 .141 0.13 .930 .001 152.77 <.001 .234 0.50 .610 .002
Mn. RTs 199.98 <.001 .372 0.76 .515 .004 87.10 <.001 .101 0.17 .842 <.001Speed
Md. RTs 153.42 <.001 .325 0.47 .693 .003 110.38 <.001 .134 0.41 .665 .001
%Anticipations 0.89 .399 .001 0.55 .668 .002 0.01 .941 <.001 0.54 .583 <.001
%Incorrect 183.10 <.001 .247 6.24 <.001 .022 220.45 <.001 .536 4.88 .011 .049Accuracy
%Omission 4.65 .033 .037 1.04 .360 .017 18.60 <.001 .006 0.59 .556 <.001

Note: RTSD: Reaction time standard deviation; CSD: consecutive standard deviation; FB: Frequency Bands; CoV: Coefficient of Variation; Mn. RTs: mean RTs; Md. RTs: 
median RTs; %Anticipations: percentage of responses with latency 200ms or faster; %Incorrect: percentage of incorrect responses; %Omission: percentage of omission errors, 
WM: Working Memory. TRIALTYPE was not included as a factor for CSD or for the FBs. For the main effect of WM and interaction effect of WM*GENOTYPE, Greenhouse 
Geisser corrected p-values are shown due violation of sphericity; degrees of freedom in the table are uncorrected.
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