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Resonant-state expansion applied to three-dimensional open optical systems:
Complete set of static modes

S. V. Lobanov,* W. Langbein , and E. A. Muljarov†

School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

(Received 17 July 2019; published 6 December 2019)

We present two alternative complete sets of static modes of a homogeneous dielectric sphere, for their use in
the resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics. Physically, these modes
are needed to correctly describe the static electric field of a charge redistribution within the optical system due
to a perturbation of the permittivity. We demonstrate the convergence of the RSE toward the exact result for
a perturbation describing a size reduction of the basis sphere. We then revisit the quarter-sphere perturbation
treated by Doost et al. [Phys. Rev. A 90, 013834 (2014)], where only a single static mode for each angular
momentum was introduced, and show that using a complete set of static modes leads to a small though non-
negligible correction of the RSE result, improving the agreement with finite-element simulations. As another
example of applying the RSE with a complete set of static modes, we calculate the resonant states of a dielectric
cylinder, also comparing the result with a finite-element simulation.
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I. INTRODUCTION

The resonant-state expansion (RSE) is a powerful theoret-
ical method, recently developed in electrodynamics [1] for
accurate calculation of resonant states (RSs) of an arbitrary
open optical system. The concept of RSs presents a mathe-
matically rigorous way of describing physical resonances of
an open system, seen in its optical spectra, for example, in
the scattering cross section. Using the Mittag-Leffler theorem,
one can determine these spectra by expanding them into
the RSs of the system [2]. The RSs thus contain the full
information about the system and ideally present a complete
set of functions suited for expansion of any vector field within
the volume of the optical system. This completeness of the
RSs as well as the Mittag-Leffler expansion of the Green’s
diadic are at the heart of the RSE, which allows one to
accurately calculate the RSs of an optical system, using as
basis the RSs of an unperturbed system which differs from the
system of interest by a perturbation of, e.g., its permittivity
[3]. To determine a complete set of RSs, it is advantageous
to choose the basis system to be exactly solvable, such as
a homogeneous dielectric sphere in vacuum, for which the
analytical solutions in the form of Mie resonances are well
known in the literature [3,4].

When applying the RSE to three-dimensional (3D) open
optical systems [3], it has been recognized that in addition to
the RSs En(r) describing physical resonances and satisfying
Maxwell’s wave equations

∇ × ∇ × En = k2
nε̂εε(r)En (1)
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with outgoing boundary conditions, one needs to include in
the basis for the RSE also the zero-frequency modes ES

λ(r),
satisfying the static Maxwell’s equation

∇ × ES
λ = 0. (2)

Here, index n is used to label RSs, λ to label static modes,
kn = ωn/c is the RS wave number in vacuum, ωn is the RS
eigenfrequency, ε̂εε(r) is the permittivity tensor, and the per-
meability is assumed to be μ = 1 for simplicity. The electric
fields ES

λ of the static modes do not satisfy the full set
of Maxwell’s equations and therefore do not represent any
physical states of the system. However, they are required for
the Mittag-Leffler expansion of the Green’s function, playing
a role similar to that of the cut poles included for completeness
into the RSE of 2D systems, for which the Green’s function
has cuts in the complex frequency plane [5]. In recent work
[3], a single static longitudinal electric mode was added for
each angular momentum. The added modes satisfy Maxwell’s
equation

∇ · D = 0 (3)

both within and outside a dielectric sphere but violate
Maxwell’s boundary condition of the continuity of the normal
component of the displacement D across the sphere boundary.
Adding only these modes to the basis for the RSE was
suitable for describing a homogeneous perturbation of the
sphere permittivity and only required for transversal magnetic
modes which have a finite electric field normal to the inter-
face. However, we found that adding only these static modes
was insufficient to treat another simple perturbation of the
dielectric sphere: reducing its size.

In general, the RSs of any optical system satisfy Eq. (3)
at any point in space. This implies, in particular, that their
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electric fields have a nonzero divergence

∇ · E = −E · ∇ε

ε
�= 0 (4)

in the regions of inhomogeneity of the permittivity ε(r).
Obviously, this nonzero divergence cannot be reproduced by
the RSE if all basis RSs respect

∇ · En = 0 (5)

inside the system. This is the case, however, for the RSs of
a homogeneous sphere, which are known in the literature as
transverse-electric (TE) and transverse-magnetic (TM) modes
responsible for the resonant behavior in Mie scattering [6].
Indeed, because of Maxwell’s equation ∇ × Hn = −iknεEn,
Eq. (5) holds everywhere except the sphere boundary. The
static modes introduced in Ref. [3] also have this prop-
erty. One therefore needs additional modes in the basis with
∇ · ES

λ �= 0, which can only be static modes, having kS
λ = 0.

In this paper, we present in Sec. II a general formulation
of the problem of static modes of an open optical system and
then introduce in Sec. III two sets of longitudinal electric static
modes of a dielectric sphere in vacuum, both suited for a cor-
rect treatment of an arbitrary perturbation of its permittivity.
One such set of modes is complementing the static modes
already introduced in Ref. [3]. Physically, these modes carry
both volume charges within the sphere and surface charges on
its boundary, so we call them volume-surface charge (VSC)
modes. The other set introduces only volume charges, as they
satisfy Maxwell’s boundary condition for D on the sphere
boundary, and are therefore called volume-charge (VC) static
modes. Note that for treating perturbations of the permeability
μ, similar sets of longitudinal static modes can be introduced
for the magnetic field. In Secs. IV A and IV B, we test both
sets on the exactly solvable cases of, respectively, strength and
size perturbations of a homogeneous sphere, also studying the
convergence of the RSE toward the exact solution. We then
revisit in Sec. IV C the quarter-sphere perturbation and com-
pare results with the previous calculation [3] and with finite-
element method (FEM) simulations. Finally, in Sec. IV D,
we use the RSE with static modes for calculating the RSs
of a dielectric cylinder, also comparing results with a FEM
simulation.

II. STATIC MODES OF AN ARBITRARY
OPEN OPTICAL SYSTEM

We first consider an arbitrary finite open optical system in
vacuum or in a homogeneous medium. Static modes ES

λ of this
system satisfy Eq. (2) and therefore can be written as

ES
λ(r) = −∇ψλ(r) . (6)

Considering only square integrable solutions, the proper nor-
malization of static modes, as it was derived in Ref. [3], takes
the form ∫

ES
λ(r) · DS

λ(r)dr = 1, (7)

where DS
λ(r) = ε̂εε(r)ES

λ(r), and the integration is performed
over the entire 3D space. Note that the factor of 2 difference

compared to Eq. (7) of Ref. [3] was introduced in a general-
ized formulation of the RSE [7], which we use in the present
work. Here, we assume a frequency-independent permittivity;
a generalization of Eq. (7) for systems with frequency disper-
sion can be found in Ref. [7]. We note that a zero-frequency
pole in the permittivity of a conductive material results in
vanishing amplitudes of the normalized static modes and thus
in their vanishing contribution to the RSE.

Let us now consider an expression similar to Eq. (7) for two
static modes, λ and λ′, including the case of the same mode
λ = λ′,

Iλλ′ =
∫

V
ES

λ · DS
λ′dr = −

∮
SV

ψλDS
λ′ · dS +

∫
V

ψλ∇ · DS
λ′dr,

(8)

where V is an arbitrary (finite or infinite) volume which
includes all the inhomogeneities of the optical system, and
SV is its boundary. The right-hand side of Eq. (8) is obtained
by using Eq. (6) and the divergence theorem. If we require, as
boundary condition for the static modes, that ψλ is vanishing
on the surface SV ,

ψλ|SV
= 0, (9)

and outside it, for any state λ, then the surface term on the
right-hand side (RHS) of Eq. (8) vanishes, and the volume
term can be seen as a scalar product which introduces a linear
operator L̂ such that

L̂ψ (r) = −∇ · ε̂εε(r)∇ψ (r) = ∇ · D(r) = ρ(r) . (10)

The above quantity has the physical meaning of the free-
charge density ρ(r) described by the electrostatic potential
ψ (r). Assuming these free charges can exist only within the
system volume V0 (included in V ), results in the eigenvalue
equation

L̂ψλ(r) =
{
�ψλ within V0

0 otherwise, (11)

where � is the eigenvalue of the operator L̂ corresponding to
the eigenstate ψλ. Equation (11) together with the boundary
condition Eq. (9) thus form a generalized Sturm-Liouville
problem. We note that by its physical meaning, the elec-
trostatic potential ψλ must be continuous across the system
boundary. However, its spatial derivative does usually have
a break across the system boundary which may lead to a
presence of surface charges on the boundary, as discussed in
detail in Sec. III below.

From Eq. (11) follows the orthonormality of static modes,

Iλλ′ =
∫

V
ψλL̂ψλ′dr

= �

∫
V0

ψλψλ′dr = �′
∫

V0

ψλψλ′dr = δλλ′ , (12)

where δλλ′ is the Kronecker delta, since � �= �′ for different
modes, or in case of degeneracy the modes can be made
orthogonal by symmetry. Furthermore, taking the same scalar
product with the wave functions of the RSs, we see that static
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modes are orthogonal to all of the RSs of the optical system:∫
V

ES
λ · Dndr = −

∮
SV

ψλDn · dS +
∫

V
ψλ∇ · Dndr = 0,

(13)

due to the boundary condition Eq. (9) for static modes and
∇ · Dn = 0 for the RSs. Note that this argument is valid for a
finite volume V only. For V → ∞, the integral Eq. (13) may
diverge. However, a proper orthogonality condition for this
case, involving surface integrals, is provided in Ref. [3].

Finally, we note that in addition to the volume charge
density of a static mode λ, given by

ρλ(r) = �ψλ(r), (14)

which is present only within the system volume V0, there is a
surface charge density

σλ = −DS
λ

∣∣
S−

V
(15)

on the inner side of the boundary SV , which is due to the
fact that the normal component of the displacement Dλ is
discontinuous across the boundary, owing to the boundary
condition Eq. (9). The volume V can be any, and if it coincides
with the system volume V0, there is a surface charge density
on the system boundary, associated with each static mode. If
instead V → ∞, the surface charge density σλ → 0, due to
DS

λ vanishing quickly enough at r → ∞. Below, we consider
these situations in detail for the analytically solvable case of a
dielectric sphere.

III. STATIC MODES OF A DIELECTRIC
SPHERE IN VACUUM

Consider a dielectric sphere in vacuum, having radius R
and permittivity ε. The system is described by the permittivity
tensor ε̂εε(r) = ε(r)1̂, where

ε(r) = (ε − 1)�(R − r) + 1, (16)

r = |r|, and �(x) is the Heaviside step function. Let us
initially take the volume V in Eq. (8) to be the infinite volume
of the full 3D space. Owing to the spherical symmetry of the
system, we can make the ansatz

ψλ(r) = fλ(r)Ylm(�), (17)

where Ylm(�) are spherical harmonics; for definition, see
Appendix A. For a given fixed angular momentum l , the
eigenvalue problem Eq. (11) then takes the form(∇2

r + λ2
)

fλ(r) = 0 for r < R (18)

and

∇2
r fλ(r) = 0 for r > R, (19)

where

∇2
r = d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
(20)

and l is the angular momentum. Here, we have redefined for
convenience the eigenvalue according to � = ελ2.

Using the boundary conditions that the electrostatic po-
tential ψλ(r) is continuous everywhere, finite at r → 0, and

vanishing at r → ∞, we find the solution of the radial
equations (18) and (19) with the permittivity Eq. (16) in the
following form:

fλ(r) = Aλ ×
{

jl (λr) r < R

jl (λR)(R/r)l+1 r > R,
(21)

where jl (x) is the spherical Bessel function of order l and Aλ

is the normalization constant.
To find the secular equation determining the eigenvalues λ,

we require that the scalar product Eq. (8) between different
static modes λ �= λ′ is vanishing: Iλλ′ = 0. For the potentials
Eq. (17), we obtain

ES
λ(r)=−∇ψλ(r) = − fλ(r)∇Ylm(�)−Ylm(�)∇ fλ(r)

= −
√

l (l+1)
fλ(r)

r
Y2lm(�)− dfλ(r)

dr
Y3lm(�), (22)

where Yilm(�) are the vector spherical harmonics; for their
definition and properties, see Ref. [2] and Appendix A. Using
their orthonormality, we obtain

Iλλ′ =
∫

ε̂εε(r)∇ψλ(r) · ∇ψλ′ (r)dr

=
∫ ∞

0
ε(r)r2dr

[
dfλ
dr

dfλ′

dr
+ l (l + 1)

fλ
r

fλ′

r

]
= εr2 λ2 fλ f ′

λ′ − λ′2 f ′
λ fλ′

λ2 − λ′2

∣∣∣∣R

0

+ r2 fλ f ′
λ′
∣∣∞
R

= R

λ2 − λ′2 (FλGλ′ − Fλ′Gλ) = 0, (23)

where

Fλ = Aλλ
2 jl (λR), (24)

Gλ = Aλ[ελR j′l (λR) + (l + 1) jl (λR)], (25)

and j′l (x) is the derivative of the spherical Bessel function; for
derivation, see Appendix B.

The secular equation (23) determines the eigenvalues λ

of the static modes. Obviously, it is fulfilled if Fλ = 0 or
Gλ = 0. As we show in Secs. III B and III A below, these
two conditions generate, respectively, the VSC and VC static
mode sets. A more general solution of Eq. (23) is given by

αFλ + βGλ = 0 (26)

with arbitrary λ-independent constants α and β. The condition
Eq. (26) can also be written as

αλ2 fλ(R) − βR

[
ε(r)

dfλ(r)

dr

]R+

R−
= 0, (27)

where R± = R ± 0+ with a positive infinitesimal 0+.
Finally, the normalization constants Aλ are found from the

diagonal elements Iλλ, defined by Eq. (8), which have the
following explicit form,

Iλλ = R

λ2
FλGλ + ελ2

∫ R

0
f 2
λ (r)r2dr = 1, (28)

with an analytical integral in the second term.
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A. Volume-charge (VC) static modes

The set of VC static modes is generated by the condition

Gλ = 0 (29)

with Gλ given by Eq. (25), which determines the eigenvalues
λ. This condition physically implies that Maxwell’s bound-
ary condition of the continuity of the normal component of
the displacement Dλ across the sphere boundary is fulfilled,
meaning that there are no free surface charges carried by the
static modes. This can be easily seen from Eq. (27) used for
α = 0 and β = 1. The (volume) charge density is given by
Eq. (14):

ρλ(r) = ελ2ψλ(r)�(R − r), (30)

where ψλ(r) is provided by Eqs. (17) and (21). We therefore
call this set of static modes the volume-charge (VC) basis. The
normalization condition Eq. (28) reduces to the second term
only, and the normalization constants are given by

A2
λ = 2

ελ2R3

[
j2
l (λR) − jl−1(λR) jl+1(λR)

]−1
. (31)

B. Volume-surface charge (VSC) static modes

The set of VSC static modes is generated by the condition

Fλ = 0 (32)

with Fλ given by Eq. (24), determining another set of eigen-
values λ. This condition, in turn, splits into two cases:

jl (λR) = 0 and λ = 0 . (33)

The first one determines a countable infinite set of modes with
λ �= 0 found from the zeros of the Bessel function jl (x), and
the corresponding wave functions are given by

ψλ(r) = Aλ jl (λr)�(R − r)Ylm(�) . (34)

The second one is nothing else than the single static mode
introduced in Ref. [3] for each l . Its wave function can be
obtained by taking the limit λ → 0 in Eq. (21), which gives

f0(r) = Ã0 ×
{

(r/R)l r < R

(R/r)l+1 r > R .
(35)

Both type of modes, λ = 0 and λ �= 0, violate Maxwell’s
boundary condition for Dλ at r = R, which implies the pres-
ence of a free surface charge for each static mode at the sphere
boundary. The electric charge density in this case is given by

ρλ(r) = ελ2ψλ(r)�(R − r) + ε
∂ψλ(r)

∂r

∣∣∣∣
R−

δ(R − r), (36)

where the first term, having the same form as in Eq. (30),
corresponds to the volume charge, while the second term
describes the surface charge. We therefore call this set of
modes the volume-surface charge (VSC) basis.

For λ �= 0 modes, the normalization is given by Eq. (31),
which can be simplified, using Eq. (33), to

A2
λ = − 2

ελ2R3 jl−1(λR) jl+1(λR)
. (37)

The λ = 0 mode normalization is instead given by

Ã2
0 = 1

R(εl + l + 1)
, (38)

which is produced by the surface term in Eq. (28), evaluated
at λ → 0. Using these normalization constants allows us to
obtain explicit expressions for the surface charge density

σλ(�) ≡ ε
∂ψλ(r)

∂r

∣∣∣∣
R−

, (39)

which appears in Eq. (36):

σλ(�) =
√

2ε

R3
Ylm(�) for λ �= 0,

σ0(�) =
√

εl + l + 1

R3
Ylm(�) for λ = 0 .

We see that all λ �= 0 modes are zero outside the volume V0 of
the dielectric sphere and produce volume and surface charges,
while the λ = 0 mode is nonzero in all space and produces
only a surface charge on the sphere surface SV0 .

As shown in Ref. [3], to use merely the λ = 0 modes, hav-
ing only the surface free charge as it is clear from Eq. (36), is
sufficient for treating a homogeneous perturbation across the
sphere with a step at r = R, which creates effective charges
only at the sphere surface. Since this step is present in most
perturbations when using the homogeneous sphere as basis,
it is expected to be more computationally efficient to use the
VSC basis of static modes, as they provide a surface charge
density on the surface of the basis sphere, which in the VC
basis is harder to reproduce.

IV. APPLICATION TO SYSTEMS WITH SCALAR
DIELECTRIC SUSCEPTIBILITY

In this section, we consider the application of the RSE with
both VS and VSC sets of static modes to various perturbations
of a dielectric sphere. The perturbed system is described by
a scalar permittivity, ε̂εε(r) + �ε̂εε(r) = 1̂[ε(r) + �ε(r)], with
�ε(r) being the perturbation of the dielectric constant. As
basis system, we use a homogeneous dielectric sphere of
radius R and ε = 4. We consider several types of perturba-
tions, namely, a homogeneous increase of the permittivity of
the sphere in Sec. IV A, a size reduction of the sphere in
Sec. IV B, a quarter-sphere perturbation in Sec. IV C, and a
deformation of the sphere into a cylinder in Sec. IV D.

We use the standard formalism of the RSE, as described
in Refs. [1–3,5,7,8]. Some details of the technical implemen-
tation and optimization of the inclusion of a large number of
static modes are given in Appendix C.

A. Homogeneous sphere perturbation

The perturbation we consider here is a homogeneous
change of the permittivity over the whole sphere, given by

�ε(r) = �ε �(R − r) (40)

with the strength of �ε = 5 used in the numerical calculation.
This perturbation is spherically symmetric, so that RSs of
different angular quantum numbers (l, m) and different trans-
verse polarization (TE or TM) do not mix and are degenerate
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r

FIG. 1. TM RSs with l = 5 and a fixed m for a homogeneous
perturbation Eq. (40), from the basis sphere with ε = 4 to the
perturbed sphere with ε + �ε = 9. (a) Perturbed RS wave numbers
calculated using the RSE with Rkmax = 4096 without static modes
(blue crosses), as well as using the exact secular equation or the
full RSE (red circles with dots). The RS wave numbers of the basis
system are shown as black circles with dots. Inset: Dielectric constant
profile of the basis system (black dashed line), perturbed system
(blue line), and the perturbation (red line). (b) Error in the perturbed
wave numbers calculated with no static modes (crosses), with VSC
modes (triangles), and with VC modes (squares), for different kmax as
labeled and color coded, as well as extrapolated using Rkmax = 4096.

in m, making the RSE problem effectively one dimensional
(1D). We show in Fig. 1, for illustration, RSs with l = 5,
as in Ref. [3]. Spherically symmetric perturbations do not
couple static modes to TE RSs, since for the latter only the
Y1lm component is nonvanishing in the basis of the vector-
spherical harmonics (see Ref. [2] for details), while the static
modes have the Y1lm component vanishing; see Eq. (22). We
therefore show here only the TM RSs, which couple to the
static modes by a spherically symmetric perturbation, as both
types of fields have a nonvanishing radial component. For the
VSC set, only the λ = 0 mode couples to the TM RSs by the
perturbation Eq. (40). Indeed, the matrix elements between
TM RSs and all other statics modes are proportional to the

volume integral in Eq. (13) and thus vanish. For the VC set
instead, all static modes are coupled to the TM RSs. The
perturbed TM RSs obey the same secular equation as the basis
system (see Eq. (31) in Ref. [3]) with the perturbed permit-
tivity of the sphere ε + �ε = 9, so that the perturbed wave
numbers k calculated using the RSE can be compared with
the exact values k(exact) obtained from that secular equation.

Without any static modes, the error in the wave numbers Rk
of the perturbed RSs remains large, in the 10−1 to 10−2 range,
see Fig. 1(b), consistent with the results shown in Ref. [3].
Using the VSC set, the error of Rk is reduced to values below
10−7 for Rkmax = 4096. We find that as we increase N , the er-
ror |k − k(exact)| scales as k−3

max. Figure 1(a) shows the resulting
perturbed wave numbers k and Fig. 1(b) shows their errors for
Rkmax = 64, 256, 1025, 4096 (corresponding to N1 = 40, 164,
652, 2608, respectively) and RkS

max = 397, 1586, 6344, 25377
(corresponding to N2 = 124, 503, 2017, 8076, respectively);
see Appendix C for details. Note, however, that the only static
mode relevant for this perturbation is λ = 0, as explained
above (but technically we include here for consistency the
full VSC set). Following the procedure described in Ref. [8],
we extrapolate the perturbed wave numbers to infinite kmax,
yielding k(∞). We find that this extrapolation provides one to
two orders of magnitude further reduction of the error; see
Fig. 1(b).

Using instead the VC static modes (with RkS
max = 430,

1718, 6873, 27 492, corresponding to N2 = 134, 544, 2185,
8748, respectively), the error of Rk, especially for RSs with
small wave numbers [see Fig. 1(b)] is reduced to only 10−4.
Again, the extrapolation to k(∞) provides one to two orders
of magnitude reduction of the error. We find that the error for
small |Rk|, which is dominated by the static modes, scales as
k−1

max, much more slowly than with the VSC basis. This is a
consequence of the slow convergence in the description of the
effect of a surface charge induced by the perturbation [repre-
sented by a delta function δ(R − r)] when no surface charges
are present in the basis, which is the case of the VC set.

B. Size perturbation of a sphere

We now consider a perturbation amounting to a size reduc-
tion of the sphere by 20%, given by

�ε(r) = (1 − ε)�(R − r)�(r − 0.8R) . (41)

This perturbation is also spherically symmetric, and we again
show l = 5 TM RSs in Fig. 2. The perturbed RSs obey the
same secular equation for a sphere (Eq. (31) in Ref. [3]),
with the radius reduced to 0.8R, so that the perturbed wave
numbers k calculated using the RSE can be again compared
with the exact values k(exact). The RSE wave numbers for
Rkmax = 4096 are shown in Fig. 2(a). Without static modes,
the error stays large, above 10−2, similar to the homogeneous
perturbation. Adding either the VSC or the VC set, the error
of Rk is reduced to below 10−4, and the extrapolation to k(∞)

provides one to two orders of magnitude further reduction
of the error. We find that for large kmax, the relative error
scales as (kS

max)−1 in both cases. This is due to the step of
the perturbation at r = 0.8R, which leads to a surface charge
inside the basis sphere which is not provided by a single
state in both sets. Notably, the error using the VC set shows
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r

FIG. 2. As Fig. 1 but for the size perturbation Eq. (41) to a sphere
with the radius of 0.8 R.

oscillations versus Re(Rk), which are absent for the VSC
set. This is attributed to the contributions of the two surface
charges at r = R and r = 0.8R, which lead to an interference
in the matrix elements in the VC set. For the VSC set instead,
the surface charge at r = R is coupling only to the λ = 0
mode, and the surface charge at r = 0.8R is coupling only to
the λ �= 0 modes, so that no interference is present.

C. Quarter-sphere perturbation

We now revisit the example of the quarter-sphere per-
turbation treated in Ref. [3]. This perturbation breaks the
continuous rotational symmetry for both spherical angles θ

and ϕ and is thus not reducible to an effective one- or two-
dimensional system. The perturbation is given by

�ε(r) = �ε�(R − r)�

(
π

2
− θ

)
�

(
π

2
− |ϕ|

)
(42)

and corresponds physically to a uniform increase of the dielec-
tric constant in a quarter-sphere volume, as sketched in Fig. 3.
For the results shown here, we use �ε = 1, as in Ref. [3].
The calculation of the matrix elements requires numerical
integration, as detailed in Ref. [3]. The perturbation mixes

FIG. 3. (a) Wave numbers of the basis RSs (black circles with
dots) and the perturbed RSs (blue circles) for a quarter-sphere
perturbation given by Eq. (42) with �ε = 1, calculated by the RSE
with Rkmax = 40 using VSC static modes. A sketch of the structure
is shown. (b) Enlargement of panel (a) showing the splitting due
to the perturbation of 2l + 1 degenerate basis WGMs with l = 7.
The results of FEM simulations using 200 000, 100 000, 50 000, and
25 000 finite elements are shown for comparison. The insets show
further enlargements around individual RSs, containing additionally
data from extrapolated FEM, extrapolated RSE, RSE using only the
λ = 0 static modes, and no static modes, as labeled. (c) Error of
the RSE wave numbers using the extrapolated RSE as reference, as
function of Re(Rk), calculated by the RSE with different Rkmax as
labeled, for the RSs shown in panel (b).

RSs of different l , m, and polarization. The remaining mirror
symmetry ϕ → −ϕ of the system decouples m � 0 TE and
m < 0 TM RSs, having fields of odd parity (−), from m < 0
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FIG. 4. (a) RS wave numbers of a dielectric cylinder with radius a and height 2a, with azimuthal quantum numbers m = 0, 1, and 7, and
parity + and − as labeled, calculated using the RSE with Rkmax = 75 (R = a

√
2). The leaky RS having −Im(Rk) > 1.5 are separated by a

gray shadow. (b) Error of the RS wave numbers for Rkmax = 20 and 41, using the values for Rkmax = 75 as reference, not showing results for
the leaky modes.

TE and m � 0 TM RSs, having fields of even parity (+). For
this calculation, we use the VSC basis, split according to the
parity of the fields, with the same selection rules as for TM
RSs.

The lifting of the m degeneracy of the perturbed RSs
provides a splitting of resonances in Figs. 3(a) and 3(b). An
analytic solution for this perturbation is not available, so that
we estimate the error using as exact solution the extrapolated
values of the largest kmax. A convergence with a power law
around (kmax)−3 is observed, resulting in relative errors in
the 10−4 to 10−5 range. The irregular arrangement of the
perturbed whispering-gallery modes (WGMs) in the right-
bottom part of Fig. 3(a) is due to this remaining small error
which manifests itself in fluctuating Im k well seen in the log
scale used.

Exactly the same system was treated in Ref. [3], using
only the λ = 0 static modes, and was compared with FEM

calculations using the commercial solver COMSOL; see Fig. 4
of Ref. [3]. These COMSOL results are also shown in the
present Fig. 3 with NG = 25 000, 50 000, 100 000, and
200 000 finite elements. With increasing NG, the COMSOL

wave numbers converge, with an error scaling approximately
as N−1

G . However, it was found in Ref. [3] that when increasing
the precision of the RSE and COMSOL, a relative difference
remained in the few times 10−4 range. One possible origin
of this systematic deviation could be due to the incomplete
static-mode basis used in Ref. [3]. We have therefore repeated
the RSE calculation using the VSC basis, as shown here. We
have extrapolated both the COMSOL and the RSE results, as
shown in the insets of Fig. 3(b). We find that the remaining
relative difference between the extrapolated COMSOL and RSE
results is in the 10−4 range, which is still somewhat larger that
the estimated error of the extrapolations shown in Fig. 3(c).
Nevertheless, the deviation between FEM and RSE results
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reported in Ref. [3] was partly due to the incomplete basis
used in that work. To explicitly identify the role of the static
modes, we show in the insets of Fig. 3(b) also the RSE results
using no static mode, or using only the λ = 0 static modes as
in Ref. [3]. We see that the full effect of the static modes on
the perturbed RSs shown is about 5×10−4 relative change.

D. Sphere to cylinder perturbation

We consider here a perturbation which transforms a sphere
into a cylinder of a height 2h equal to its diameter 2a. It retains
axial symmetry and inversion symmetry, and thus represents
an effective 2D system. The perturbation is given by

�ε(r) = �ε�(R − r)[�(r| cos θ | − h) + �(r sin θ − a)],

(43)

with R = √
h2 + a2 being the radius of the basis sphere. Ow-

ing to the axial symmetry and the mirror symmetry, the RSs
of the cylinder have well defined m and parity (+,−) of the
field under the z → −z mirror imaging. The full perturbation
matrix of the RSE is thus separated into blocks corresponding
to these quantum numbers, significantly reducing the size of
the eigenvalue problem. Also note that the RSs of m and −m
are degenerate due to the mirror symmetry ϕ → −ϕ.

The basis sphere of radius R has the same permittivity
and just encloses the cylinder. To calculate the values of the
symmetry-allowed matrix elements of the perturbation, we
discretize the integrals into shell segments. Shells of radial
thickness R/s are used, where s is the number of shells.
The polar angular ranges for each shell are then determined
using the intersection of the center radius of the shell with
the cylinder surface. The number of shells is chosen using
the Nyquist criterion of sampling, with two shells per period
of kmax, s = √

εkmaxR/π . This choice ensures that with in-
creasing kmax, the spatial sampling of the structure is refined
according to the spatial resolution of the basis RSs.

The resulting RSs with m = 0, 1, and 7, and parity +
and − are displayed in Fig. 4(a) for the largest basis size
considered, Rkmax = 75 and RkS

max = 258. The RSs with large
losses, −Im(Rk) > 1.5, are called leaky modes. For the other
RSs, we see that for small m values (m = 0 and 1), the losses
−Im(Rk) are in the 0.1 range, increasing with k their spread
toward smaller losses and reaching Q factors above 1000,
where Q = −Re k/(2Im k). The low-loss RSs for these small
values of m can be formed at large k by a field localized
away from the edges and experiencing total internal reflection
at the surfaces (center top and bottom, and center of the
cylinder side wall). For the larger m = 7 instead, we find that
the lowest-frequency RSs have the character of WGMs, with
−Im(Rk) < 10−3 and Q factors around 104. The error of the
wave numbers, defined as the absolute difference to the values
obtained for Rkmax = 75, are given in Fig. 4(b), not including
the leaky modes. We find that RSs with |Rk| � 5 have errors
in the 10−2 range for Rkmax = 20, and in the 10−3 range for
Rkmax = 41, thus scaling approximately as k−3

max, similar to the
example with the quarter-sphere perturbation discussed above.
Notably, as known about the RSE [1], for a given kmax, the
error is increasing with increasing RS wave number, limiting
the range of small error to RSs with |k| � kmax/4. We can see

FIG. 5. Convergence of the wave number for a selected RS of
a cylinder, with m = 1 and parity −. Results by the RSE with
different Rkmax as labeled (close to the symbol), both for the VSC
(black squares) and VC (red open circles) sets of static modes.
The extrapolated values for the RSE and the value calculated using
COMSOL [9] are also shown, along with their estimated errors.

that within this range, the RSE is determining a large number
of RS simultaneously, a few hundred for Rkmax = 75.

To verify the wave numbers obtained for the cylinder
using the RSE with static modes, we concentrate on the RS
with m = 1 and odd parity which has been calculated in
Ref. [9] using COMSOL, with a resonance wave number of
Rk = 4.16275 − 0.24382i and an estimated error of 0.002 in
real and imaginary parts. We show in Fig. 5 the wave number
of this RS, and compare it with the results of the RSE using
the VSC or the VC basis, as functions of kmax, as well as
with their extrapolated values including errors (see Ref. [8]
for the extrapolation procedure). We find that the convergence
is somewhat different for the VC and VSC static basis, but
the extrapolated values are equal within the estimated errors.
The COMSOL result is in agreement with the extrapolated RSE
within the estimated error, indicating that including the VC or
VSC sets of static modes indeed provides a complete basis for
general 3D geometries.

V. SUMMARY

In summary, we have introduced a general procedure for
determining a full set of static modes for an arbitrary open
optical system, supplementing the set of RSs, in order to form
a complete basis for the RSE. Including this set is required
to achieve high accuracy in the RSE in most cases, and
specifically for general three-dimensional perturbations. We
have shown in particular that static modes are required to treat
perturbations which have a gradient of the permittivity in the
direction of the RS electric field, thus creating effective free
charges which are incompatible with Maxwell’s equations for
the basis system, and therefore not described by the RSs alone.

We have illustrated our approach on two exactly solvable
examples of homogeneous permittivity and size perturbation
of a dielectric sphere in vacuum and on two other exam-
ples which are not exactly solvable: a quarter sphere and
sphere-to-cylinder perturbation. In all four cases, there are
gradients of the permittivity perturbation in the form of δ
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functions on the surfaces of the unperturbed and perturbed
systems.

Two alternative sets of static modes have been introduced
for a dielectric sphere in vacuum, with one of them including
free charges on the surface of the sphere, and thus being
somewhat advantageous when treating perturbations with a
permittivity step at the sphere surface. Using this complete
basis in the RSE was then shown to result in convergence
toward the analytical RSs of a reduced-size sphere and toward
the numerically determined RSs of a cylinder and a sphere
with a quarter-sphere perturbation. Using the RS basis ex-
tended by including either of the two static mode sets, the
RSE is expected to be numerically exact for general three-
dimensional confined geometries.
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APPENDIX A: SCALAR AND VECTOR
SPHERICAL HARMONICS

Following Ref. [3], we define the scalar spherical harmon-
ics Ylm(�) as real functions:

Ylm(�) =
√

2l + 1

2

(l − |m|)!
(l + |m|)!P|m|

l (cos θ )χm(ϕ), (A1)

where � = (θ, ϕ) in the spherical coordinate system, Pm
l (x)

are the associated Legendre polynomials, l and m are the
spherical quantum numbers, and

χm(ϕ) =

⎧⎪⎨⎪⎩
π−1/2 sin(mϕ) for m < 0

(2π )−1/2 for m = 0

π−1/2 cos(mϕ) for m > 0 .

(A2)

This is done in order to satisfy the orthonormality condition
without using the complex conjugate:∫

Ylm(�)Yl ′m′ (�)d� = δll ′δmm′ , (A3)

where d� = sin θdθdϕ.
The vector spherical harmonics are defined following

Ref. [2] as

Y1lm(�) = 1√
l (l + 1)

r × ∇∇∇Ylm(�), (A4)

Y2lm(�) = 1√
l (l + 1)

r∇∇∇Ylm(�), (A5)

Y3lm(�) = r
r

Ylm(�) . (A6)

They satisfy the following orthonormality condition:∫
Yilm(�) · Yi′l ′m′ (�)d� = δii′δll ′δmm′ . (A7)

APPENDIX B: DERIVATION OF Eq. (23)

To derive Eq. (23), let us first split the orthonormality
integral Iλλ′ into two parts, one for integration within the

sphere, the other outside it:

Iλλ′ = I (1)
λλ′ + I (2)

λλ′ . (B1)

For the first part, we obtain integrating by parts

I (1)
λλ′ =

∫ R

0
ε(r)r2dr

[
dfλ
dr

dfλ′

dr
+ l (l + 1)

fλ
r

fλ′

r

]
= εr2 fλ f ′

λ′
∣∣R

0 + λ′2ε
∫ R

0
r2 fλ fλ′dr

= εr2 f ′
λ fλ′

∣∣R

0 + λ2ε

∫ R

0
r2 fλ fλ′dr, (B2)

where we have also used Eq. (18) for the region within the
sphere, which can be written more explicitly as

f ′′
λ + 2

r
f ′
λ − l (l + 1)

r2
fλ + λ2 fλ = 0 . (B3)

Combining the two results provided for I (1)
λλ′ in Eq. (B2), we

find an analytic value for the integral
∫ R

0 r2 fλ fλ′dr and hence
for I (1)

λλ′ itself:

I (1)
λλ′ = εr2 λ2 fλ f ′

λ′ − λ′2 f ′
λ fλ′

λ2 − λ′2

∣∣∣∣R

0

. (B4)

For the second part, we find

I (2)
λλ′ =

∫ ∞

R
ε(r)r2dr

[
dfλ
dr

dfλ′

dr
+ l (l + 1)

fλ
r

fλ′

r

]
= r2 fλ f ′

λ′
∣∣∞
R = r2 f ′

λ fλ′
∣∣∞
R , (B5)

now using Eq. (19) for the region outside the sphere, which
can also be written as

f ′′
λ + 2

r
f ′
λ − l (l + 1)

r2
fλ = 0 . (B6)

This brings us to the third line of Eq. (23). The final expression
is then obtained by using the explicit form of functions fλ
provided in Eq. (21), which yields

I (1)
λλ′ = εR2AλAλ′

λ2λ′ jl (λR) j′l (λ
′R)−λλ′2 j′l (λR) jl (λ′R)

λ2 − λ′2 ,

I (2)
λλ′ = (l + 1)RAλAλ′ jl (λR) jl (λ

′R) .

APPENDIX C: RSE WITH STATIC MODES

In Ref. [3], the RSE equation given by Eq. (13) therein was
used to take into account the longitudinal electric (LE) (λ = 0)
static mode, using a nonzero wave vector Rk = 10−7, since it
was numerically more efficient than solving the generalized
eigenvalue problem given by Eq. (12) therein. As we are now
dealing with a large number of static RS, we instead follow a
different approach, exploiting the zero wave vector of all static
modes. We start with the generalized eigenvalue problem,
given by Eq. (12) of Ref. [3], written in matrix form as [2]

kc = κMc, (C1)

where k is a diagonal matrix containing the wave numbers
of the basis RSs and static modes, M = 1 + V with 1 being
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the unit matrix and V being the perturbation matrix. κ and
c are, respectively, the eigenvalue and the eigenvector of a
perturbed RS. The matrix elements of the perturbation matrix
V are given by

(V )i j =
∫

V0

Ei(r) · �ε̂εε(r)E j (r)dr, (C2)

with i and j labeling both the RSs and the static modes of the
unperturbed system. The RSs are normalized in accordance
with Ref. [7], with the already mentioned factor of 2 differ-
ence compared to the earlier used normalization.

We now separate the notation explicitly into the N1 RSs and
N2 static modes, so that the matrices k and M split into four
submatrices, with N1-dimensional square top-left submatrices
k1 and M11 corresponding to the RSs. The eigenvector c
also splits into two subvectors, with an N1-dimensional top
subvector c1 corresponding to the RSs and N2-dimensional
bottom subvector c2 corresponding to the static modes. The
matrix equation (C1) then reads(

k1 0
0 0

)(
c1

c2

)
= κ

(
M11 M12

M21 M22

)(
c1

c2

)
, (C3)

where M12 is the transpose of M21. The above matrix equa-
tion then splits into a pair of matrix equations,

k1c1 = κ(M11c1 + M12c2), (C4)

0 = M21c1 + M22c2, (C5)

which can be written as an N1×N1 eigenvalue problem for the
RSs,

k1c1 = κM̃11c1 (C6)

with the effective perturbation matrix

M̃11 = M11 − M12M
−1
22 M21, (C7)

and an auxiliary equation for the static mode amplitudes

c2 = −M−1
22 M21c1 . (C8)

The reduced generalized eigenvalue problem Eq. (C6) for
the RSs can be further modified to the standard eigenvalue
problem solved by matrix diagonalization, as was done in
Refs. [1,3]. Calculating the effective perturbation matrix M̃11

requires inversion of a N2×N2 matrix M22 that results in the
computation time of about T inv = T inv

0 (N1N2)3/2, and we find
using MATLAB 2017a on 16 CPU cores (dual Intel E5-2640 v3)
the value T inv

0 = 7.5 ps. Solving Eq. (C6) involves a matrix
diagonalization, which requires a computation time of about

TABLE I. Scaling parameters C1 (C2) of the number of basis RSs
(static modes) for ε = 4 and different dimensionalities.

Dim. 1D 2D 3D

CTE
1 0.3125 0.1141 0.04258

CTM
1 0.325 0.1144 0.04287

VC C2 6.712 3.434 1.945
VSC C2 6.196 3.276 1.857

T dia = T dia
0 N3

1 , with T dia
0 = 115 ps. For an equal number of

RSs and static modes, the treatment of the static modes is thus
about 15 times faster.

Now consider that the influence of static modes on a given
κ is decreasing with increasing λ only due to a reduction of
the overlap matrix elements in M, owing to the increasing
spatial frequency of the static RSs; see Eq. (C2). For the RSs
instead, there is additionally an increase of the wave number
difference |kn − κ|, helping to reduce their influence with
increasing kn; see Eq. (38) of Ref. [3]. It is therefore beneficial
for the accuracy of the RSE at a given computation time to
use the lower numerical complexity of treating static modes to
increase their number. We balance the numerical complexity
of static modes and RSs in the RSE by choosing T dia ≈ T inv,
adjusting N1 and N2 appropriately.

To choose the basis RSs, we use a cutoff in their spatial fre-
quency inside the system, |√εkn| < kmax, with the maximum
wave number kmax in vacuum, and the refractive index

√
ε of

the basis sphere. The number of RSs is then approximately
given by N1 ≈ C(p)

1 (
√

εRkmax)d , with the dimensionality d ∈
{1, 2, 3}, and the polarization p ∈ {TE, TM}. The values of
C(p)

1 determined for ε = 4 and Rkmax � 1 are given in Table I.
For the static modes, we use λ < kS

max, with a separate
maximum wave number kS

max. The λ = 0 static modes are
always included in the VSC set. The resulting number of static
modes is N2 ≈ C2(RkS

max)d , with the values of C2 given in
Table I, determined for RkS

max � 1. We note that the scaling
constants are not significantly different between VSC and VC
sets. Requiring T dia = T inv, we then find

kS
max =

(
T dia

0 C3/2
1

T inv
0 C3/2

2

) 2
3d √

εkmax, (C9)

where C1 = CTM
1 for the 1D TM case, C1 = CTE

1 for the 1D TE
case, and C1 = CTM

1 + CTE
1 for the 2D and 3D cases. We use

this relation between kS
max and kmax for all numerical results

reported in the present work.
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