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Abstract

This paper is motivated by decommissioning studies in the field of oil and gas, which

comprise a very large number of installations and are of interest to a large number of

stakeholders. Generally, the problem gives rise to complicated multi-criteria decision

aid tools that rely upon the costly evaluation of multiple criteria for every piece of

equipment. We propose the use of machine learning techniques to reduce the number

of criteria by feature selection, thereby reducing the number of required evaluations

and producing a simplified decision aid tool with no sacrifice in performance. In

addition, we also propose the use of machine learning to explore the patterns of the

multi-criteria decision aid tool in a training set. Hence, we predict the outcome of

the analysis for the remaining pieces of equipment, effectively replacing the multi-

criteria analysis by the computational intelligence acquired from running it in the
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training set. Computational experiments illustrate the effectiveness of the proposed

approach.

Keywords: Oil & gas, Decommissioning, Dimensionality reduction, Feature

selection, Machine learning, Multi-criteria decision analysis
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1. Introduction

The end-of-life of oil and gas structures has become a worldwide concern. In fact,

many countries that have a significant production of oil and gas have recently been

discussing regulations and elaborating guidelines on the issue (Rouse et al., 2018;

Oil & Gas UK, 2015; MEI, 2018; DMIRS, 2017). Among the diversity of structures

that are part of the offshore system, sub-sea installations demand a special atten-

tion due to both their sensitive nature and the logistic challenges associated to the

decommissioning process. In addition, decommissioning is becoming more complex

as time elapses due to the increased number of pieces of equipment operating in

deep waters. Sub-sea structures have different compositions and require different

operations and equipment for decommissioning. Initially, possible end-of-life mea-

sures include in-situ abandonment and total or partial removal. Furthermore, total

or partial removal can be achieved by means of different alternatives, which depend

on the available removal techniques. Given the distinct impacts and a possibly large

number of criteria to consider, selecting a decommissioning alternative becomes a

rather challenging problem. To address such a problem, one must account for the

great variety of technologies and materials available, as well as the distinct envi-

ronmental and socio-economic conditions of each locality. In order to evaluate the

alternatives, a multidisciplinary approach is needed which involves economic, envi-
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ronmental, technical, social and safety aspects, among others (e.g., Martins et al.,

2019b; Oil & Gas UK, 2015). Moreover, the possibly large number of stakeholders

and their potentially conflicting interests can result in a very controversial process

(e.g. Fowler et al., 2014; Henrion et al., 2015; Martins et al., 2019b). Typically, the

decision is aided by a specialised expert system that makes use of the multi-criteria

decision analysis (MCDA) framework (Martins et al., 2019b). Indeed, such systems

have been applied in the literature for a varied set of problems (e.g., Beynon et al.,

2001; Del Vasto-Terrientes et al., 2015).

To the best of our knowledge, the majority of published oil and gas decommission-

ing reports so far have relied on a methodology called comparative assessment (Oil

& Gas UK, 2015; MEI, 2018; DMIRS, 2017), often based on subjective judgements

by stakeholders with respect to a number of pre-selected criteria and sub-criteria.

Generally, the alternatives are ranked by means of a weighted sum of the evalu-

ations with regard to the selected criteria (e.g., Ineos, 2018; Shell, 2017a; Repsol,

2017). The decision making process is commonly conducted individually for each

equipment, in a progression that can become rather cumbersome for large offshore

systems. Given the possibly large extension of the sub-sea system, the application

of multi-criteria methodology on a case-by-case basis often results in a very time-

consuming process. Indeed, some reported studies have taken up to ten years to

be finalised (Shell, 2017b). In addition, the evaluation of sub-criteria for each alter-

native is often subjective, and based on the preference of either the decision maker

or a group of stakeholders (Duro et al., 2014). Hence, the process tends to become

more complex, labour intensive and error prone as the number of criteria/sub-criteria

increases (Waegeman et al., 2009).

This paper proposes a novel approach to address such pitfalls that embeds ma-

chine learning (ML) techniques into the expert systems built to aid decommissioning
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decisions by means of MCDA techniques. We propose a MCDA based system with

computational intelligence that enables it to learn decision patterns from the succes-

sive application of the tool in a training set. The acquired intelligence is then used

to (i) rank the criteria in decreasing order of importance, which enables the decision

maker to reduce the problem’s dimension by eliminating inconsequential criteria and

(ii) to predict the outcome of the MCDA tool based on the criteria evaluations, effec-

tively replacing the MCDA tool by the intelligence acquired from the data collected

from its application in a training subset.

More specifically, a novel contribution of this paper is the introduction of a

method for dimensionality reduction applied to decommissioning studies in the field

of oil and gas. The proposed method is devised in such a way that it can also ensure

the selection of the most appropriate decommissioning alternatives. The method is

comprised of three steps, the first of which consists in the application of a selected

multi-criteria decision analysis (MCDA) tool to identify the most appropriate de-

commissioning alternative for each piece of equipment within a prescribed training

dataset. It is worth emphasising that this analysis takes into account evaluations of

the impacts with respect to all criteria/sub-criteria. The second step feeds the train-

ing dataset to a selected supervised machine learning technique in order to obtain a

model to classify the pieces of equipment, based on similarities in their characteristics

and criteria/sub-criteria assessments. Lastly, the method employs feature selection

to identify the smallest subset of sub-criteria which are most relevant to reaching

a decision, or equivalently the largest subset of criteria that are inconsequential to

the analysis, i.e. that will not significantly alter the outcome if removed. The ra-

tionale is to reduce not only the computational time required to reach a decision,

but also the labour intensive process required to produce an appraisal of the per-

formance of each piece of equipment with respect to each sub-criteria. The second
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reduction is attained because only the sub-criteria within the selected subset need

to be evaluated in order to estimate the MCDA outcome for a given piece of equip-

ment. Observe also that the decommissioning process can be further abbreviated if

the decision maker elects to use the decommissioning alternatives predicted by the

machine learning algorithm for all installations outside the training set, instead of

conducting an individual MCDA analysis for each of them individually.

1.1. Multi-Criteria Decision Analysis and Machine Learning

Multi-criteria decision analysis (MCDA) provides a comprehensive framework

for building computational intelligence capable of emulating the decision making

process of experts and stakeholders (Carneiro et al., 2019; Del Vasto-Terrientes et al.,

2015; Beynon et al., 2001). This framework has been extensively used to produce

expert systems for decision support under multiple criteria (e.g., Lakhani et al.,

2019; Glaize et al., 2019; Bystrzanowska and Tobiszewski, 2018; Dehe and Bamford,

2015). However, while the ensuing models are generally focused on the mapping of

the decision making process (Carneiro et al., 2019, 2018), occasionally including the

comparison of distinct MCDA approaches (Dehe and Bamford, 2015), they seldom

exploit the patterns that emerge in multiple successive applications of the decision

aid tool. In this work, we exploit these patterns by means of machine learning

techniques.

The connection and complementarity of multi-criteria decision analysis (MCDA)

and machine learning (ML) have been previously explored in the literature. Indeed,

MCDA and ML have been used as competing techniques for flood susceptibility map-

ping (Tehrany et al., 2019) and fraud detection (Spathis et al., 2002). Nonetheless,

combinations of MCDA and ML are comparatively rare in the literature. In an early

example, Cheng (2010) employed an MCDA approach for computerised essay assess-
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ment that made use of text mining techniques to derive the evaluation parameters.

Later on, Hillerman et al. (2017) proposed a ML approach to identify suspicious

claims from healthcare providers and employed MCDA to rank the suspicious claims

in decreasing order of auditing priority. Other applications include the combina-

tion of MCDA and cellular automata to predict land use dynamics (Quesada-Ruiz

et al., 2019), the use of ML to estimate the parameters of a multi-objective opti-

misation model employed to design electrification plans (León et al., 2019), as well

as a customer satisfaction prediction model that uses MCDA to aggregate individ-

ual preferences and employs data-mining techniques to estimate missing individual

evaluations.

Two previous works are particularly related to the approach we propose in this

paper, namely (Jedrkiewicz et al., 2018) and (Kartal et al., 2016). The former em-

ploys machine learning to reduce the number of alternatives presented to the MCDA

tool by exploiting the correlations in the data, whereas the latter uses MCDA to

divide inventory products in three classes and then applies ML to predict the classes

of incoming products. Our approach differs from that in (Jedrkiewicz et al., 2018) in

two main aspects; firstly, we do not seek to reduce the number of available decommis-

sioning alternatives, for the decision maker does not have that discretion. Instead,

our objective is to rank the criteria in decreasing order of importance, which may

allow the decision maker to reduce the dimension of the evaluation space, bearing

in mind that evaluations are costly. Secondly, whilst Jedrkiewicz et al. (2018) seek

patterns in the evaluation data, we look for the patterns that emerge from the suc-

cessive application of the MCDA tool; hence we are also able to identify patterns in

the MCDA tool. In addition, in contrast to the model in (Kartal et al., 2016), which

is limited to only three classes, our model can account for any number of classes.

Moreover, the model in (Kartal et al., 2016) neither ranks the criteria nor allows
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dimensionality reduction.

1.2. Dimensionality Reduction

Dimensionality reduction is often employed in the literature to extract useful

information from very large datasets (Sorzano et al., 2014). It is comprised of feature

selection and feature extraction (Khalid et al., 2014; Xu et al., 2019). While the

former is concerned with selecting a meaningful subset of the original variables (e.g.,

Guyon and Elisseeff, 2003), the latter is concerned with synthesising a reduced subset

of meaningful features from a high-dimensional space (Jolliffe, 2002; Pearson, 1901).

When it comes to decommissioning problems, however, the use of dimensionality

reduction is still incipient. Some papers proposed selecting criteria based upon expert

judgement (ISM, 2011; Ahmed et al., 2016), while Bernstein et al. (2010) advocated

a selection centred on the availability of information. Therefore, there seems to be

plenty of room for the introduction of formal machine learning techniques to address

variable selection in decommissioning problems.

Classification methods, in particular, find applications in a number of fields, such

as finances (Ryman-Tubb et al., 2018), internet safety (Huang et al., 2018) and

transportation safety (Chai et al., 2019). Specifically, they have been successfully

employed in the oil and gas industry. Some examples include the utilisation of

Support Vector Machines (SVM), Decision Trees (DT) and Random Forests (RF)

to predict corrosion in pipeline inspection (Liu et al., 2019). In a related work, El-

Abbasy et al. (2016) make use of regression analysis, artificial neural networks and

DT to investigate the causes of pipeline failure. Other works were concerned with

predicting oil production (Schuetter et al., 2018; Li and Chan, 2010). The former

utilises classification models, such as SVM and Gradient Boosting Machines (GBM),

to predict oil potential in unconventional reservoirs. The latter applies a neural-based
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decision tree to forecast well production. Further applications include using RF to

anticipate the development of oil and gas fields and estimate the impact to animal

species (Copeland et al., 2009). Nonetheless, specific applications of machine learning

to decommissioning problems have been found lacking. An additional innovation of

this work is to fill this gap.

The need for ML techniques in the context of decommissioning studies, which is

reinforced in this paper, has already been acknowledged in pioneering decommission-

ing studies (e.g., MEI, 2018; Oil & Gas UK, 2015), even though it was deferred to later

work. Specifically, these references suggest clustering pieces of equipment based on

similarities with respect to their characteristics, such as sub-sea status, diameter, in-

stallation data, among others. We argue that such a classification may be insufficient

and should benefit from the assessment of a reduced number of criteria/sub-criteria,

which may act as proxies for the characteristics of the environment surrounding the

installation, which certainly plays an important role in the selection of the decom-

missioning alternative.

To validate the proposed approach, we introduce a dataset based on real-world

data from actual sub-sea ducts, which we believe can be used in the future for bench-

marking purposes. We also compare the performance of DT, RF, SVM and GBM as

classification analysis tools in the proposed method. These procedures are applied

in the second and third steps of the framework, and their performance is assessed

and contrasted in the light of the selected dataset. In our experimental analysis,

the GBM model presented auspicious results, having the best overall performance

considering all features, with a mean accuracy of 82% and kappa of 72%. The further

feature selection results suggest that it may be possible to use only half of the initial

sub-criteria while still maintaining similar levels of performance.

Even though the evaluation and comparison of distinct MCDA approaches is
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beyond the scope of this paper, we perform a preliminary experiment designed to

illustrate the possible use of distinct MCDA algorithms in a decommissioning study.

In the experiment, we make use of three distinct MCDA algorithms and select the

alternative based on a vote. The results are preliminary and illustrate the challenges

and opportunities in the use of ensemble methods.

The remainder of this paper is organised as follows. Section 2 describes problem

setting for this study. Section 3 explains the general method of analysis and features

a brief overview of the MCDA and ML techniques employed. The dataset of the

numerical experiments is introduced in Section 4, which is followed by the presenta-

tion of the experimental results in Section 5. In that section, the ML methods are

compared and a variable relevance analysis is reported. Finally, Section 6 concludes

the paper.

2. Problem definition

Decision making for decommissioning in oil and gas platforms is generally carried

out from the analysis of each piece of equipment individually (e.g. Shell, 2017a; BG

Group, 2016; Xodus, 2017). Assume there is a set of decommissioning alternatives

A = {a1, a2, . . . , an} for a given piece of equipment, and suppose the decision is to

be reached based on a set of sub-criteria G = {1, 2, . . . , m}. In a decommissioning

study, generally the sub-criteria are related to environmental, social, economic, safety

and technical issues (Oil & Gas UK, 2015; MEI, 2018). The evaluation gives rise to

an N×M matrix comprised of the evaluations of each alternative with respect to each

sub-criterion. As previously mentioned, the majority of published decommissioning

studies so far have relied on a methodology called comparative assessment (e.g.,

Oil & Gas UK, 2015; MEI, 2018), which produces a performance index Ii for each
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alternative ai as follows:

Ii =
m∑
j=1

ljgj(ai), (1)

where lj is the weight attributed to sub-criterion j, 1 ≤ j ≤ m, and gj(ai) is the

evaluation of criterion j for alternative ai, 1 ≤ i ≤ n. The alternatives are then

ranked in decreasing order of performance index. Other MCDA methods are also

applied in different decommissioning studies, such as AHP (e.g. Xodus, 2017; Repsol,

2017; Na et al., 2017), ELECTRE (e.g. Dimitrijevic et al., 2014; Soltanmohammadi

et al., 2008) and PROMETHEE (e.g. Kerkvliet and Polatidis, 2016; Mergias et al.,

2007). The latter methods are somewhat more complex, but can also be employed

to generate a ranking of the alternatives based on performance indices. For more

details on MCDA methods and analyses, refer to (Greco et al., 2005).

Regardless of the MCDA approach, a common issue in oil and gas decommis-

sioning studies is that collecting information and producing each evaluation gj(ai)

for each piece of equipment often takes time. Furthermore, some criteria evaluations

may require multiple assessments by different, possibly conflicting, stakeholders. On

top of that, the abundance of pieces of equipment in the seabed leads to an increase

in complexity, especially in deep waters. Some authors also point out that a large

number of criteria can render the decision making process more difficult and may

generate confusion among the stakeholders (Amirshenava and Osanloo, 2018). In

order to address these issues, this paper builds upon a conjecture found in (MEI,

2018; Oil & Gas UK, 2015) that similar features in distinct pieces of equipment may

lead to similar choices of decommissioning alternatives. We argue, however, that

similar features may not be enough, since the selection also depends upon other

factors, such as the environment surrounding the piece of equipment. Fortunately,

the evaluations of the alternatives for each installation can serve as proxies for those
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factors. In addition, it is possible that the evaluation of a reduced set of sub-criteria

may be enough to produce an accurate estimation of the course of action that would

be selected if all criteria were accounted for.

Let E = {e1, e2, . . . , er}, 1 ≤ r ≤ ∞, be a small albeit representative subset

of the pieces of equipment found in a given oil field pending decommission. Let

gkj (ai), 1 ≤ j ≤ n, 1 ≤ i ≤ m, be the evaluation of the sub-criterion j for alternative

i relative to piece of equipment ek, 1 ≤ k ≤ r. Finally, denote by tp the total number

of parameters of each piece of equipment. The proposed procedure includes the three

steps detailed in Algorithm 1 below:

Algorithm 1 (Classification Analysis of the Training Set).

1. For each piece of equipment ek, create a row vector ek = (xk, yk), where xk is the

feature vector and contains all tp parameters and (m × n) sub-criteria evaluations

gkj (ai), 1 ≤ j ≤ n, 1 ≤ i ≤ m. Hence xk is of dimension (m× n + tp), and yk is the

alternative aki assigned by the MCDA algorithm for this piece of equipment, i.e. yk

is the class label. Observe that ek holds the entries matrix P defined in Step 2;

2. Use supervised classification to divide the population P = ek, k = 1, 2, . . . , r, into

m groups, one for each decommissioning alternative; and

3. Find the characteristics and sub-criteria that most impact in the action selection by

the MCDA algorithm.

It is worth of emphasizing that matrix P in Algorithm 1 is the training set of a

supervised learning algorithm (e.g., Hastie et al., 2001). Note also that the training

labels yk, k = 1, . . . , r, are assigned by a selected MCDA algorithm.
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Observe that the decision maker can employ the output of Step 3 to simplify

the assessment of the decommissioning alternatives for pieces of equipment outside

the training set. The assessment can now be performed as a function of the subset

of most relevant characteristics and sub-criteria. It is our conjecture that, in most

cases, such a subset will have a rather reduced dimension when compared to the

original set.

3. General method of analysis

The method in Algorithm 1, further detailed in Figure 1, comprises two distinct

tasks: dataset pre-processing and classification. Note that Step 1 of Algorithm 1

generates a dataset where each piece of equipment is associated with both its char-

acteristics and the scores for each alternative/sub-criterion pair, as well as the de-

commissioning alternative recommended by the selected MCDA tool.

Figure 1: Methodology framework regarding steps 2-3 of Algorithm 1.

Observe in Figure 1 that some ML algorithms are applied to the dataset under

a k−fold cross validation scheme (Steps 2-3 of Algorithm 1). Our case study, in

particular, makes use of decision trees (DT), random forests (RF), gradient boosting
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machines (GBM) and support vector machines (SVM). In the model selection step,

we compare these algorithms according to selected evaluation metrics and statistical

analyses, further explained in Section 3.5, and select a single model to be used

in the remaining steps. A variable relevance analysis then follows for the selected

model. After that, the decision maker chooses the smallest possible subset of the

most relevant variables that maintains the accuracy of the model. Finally, this subset

is then elected to comprise the reduced classification model in the last step.

The application of the framework in the context of a decommissioning study of

an oil and gas field is depicted in Figure 2. Let Es be the set of pieces of equipment

left out of the training set, with s >> r. It is this set that is fed to the first

step in Figure 2. For each piece of equipment ek ∈ Es, a vector pk is formed with

the evaluation of all relevant sub-criteria selected in Step 3 of Algorithm 1. Then,

the reduced model is applied to forecast the selected decommissioning alternative

(classification step), which is the output of the last step in Figure 2.

Figure 2: Classification model deployment for decommissioning.

The following sections present a brief description of the supervised methods pre-

viously mentioned.

3.1. Decision trees (DT)

Decision trees (Rokach and Maimon, 2008) utilise a recursive partitioning algo-

rithm to construct the tree and have the advantage of accepting both numerical and

categorical variables. It is a top-down approach that models decisions and possi-
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ble consequences, including growing and pruning stages. Basically, a decision tree

comprises:

• Nodes - a split performed on an attribute;

• Root - the topmost node;

• Branch - an outcome of the split; and

• Leaves - a class label.

The process consists in continuously splitting the training data into two or more

descendent subsets, until a stopping criteria is reached or all classes are split. The

splitting criterion is selected to identify the partition which is closest to having all

elements belonging to their correct class.

In order to avoid over-fitting, one can limit the growth of the tree or prune it.

Pruning is often attained by recursively snipping off the least important splits, based

on the complexity parameter (cp). On the one hand, because they depend on the

observation values, decision trees are robust to outliers. They are also fairly easy to

understand and interpret. On the other hand, they can be computationally expensive

due to the need of identifying splits from multiple variables (Hodeghatta and Nayak,

2016).

3.2. Random forests (RF)

Random forests (Breiman, 2001) belong to the class of ensemble methods. Briefly,

the method consists in first bootstrapping the dataset, and selecting random samples

to construct the training sample of each tree. After that, the method randomly selects

the features of each tree and makes use of the Gini index, a measure of heterogeneity,

to produce splits. Finally, the model utilises the samples that were not part of the
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training set, the so called out-of-bag (OOB) data, for testing purposes. The final

response is based on a vote on the decisions generated by each of the constructed

trees.

It presents some benefits compared to other machine learning methods, such as

requiring only two parameters, namely the number of trees (ntree) to be generated

and the number of variables selected for each tree (mtry). Breiman (2001) rec-

ommends that mtry be equal to the square root of the total number of variables.

Other benefits include reducing over-fitting when compared to decision trees, since

the response is the average of several trees. Additionally, the random selection of

variables has the advantage of reducing the correlation between trees (Feng et al.,

2015). It may be argued that the technique is more robust by virtue of creating mul-

tiple decision trees and optimising the output to obtain a better-performing classifier

(Hodeghatta and Nayak, 2016).

3.3. Gradient Boosting Machines (GBM)

Similarly to RF, Gradient Boosting Machines (GBM) (Friedman, 2001) are also

a type of an ensemble approach. The method relies on combining a large number of

weak trees to obtain a stronger ensemble prediction. In contrast to random forests

(RF), whose output is produced by a voting of the constituent trees, GBM can be

characterized as a boosting method (Natekin and Knoll, 2013). In order to boost

GBM models, the approach sequentially introduces new models to the ensemble with

the aim of mitigating the error of the current ensemble. Each new model is dubbed

weak learner.

There are different approaches that can be introduced to GBM in order to avoid

over-fitting (Natekin and Knoll, 2013). One is sub-sampling and involves the selection

of a random subset of the training set at each learning interaction, whose length is
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defined by a parameter called bag fraction. This means implementing a stochastic

gradient descent that steers the model away from local minima. Another approach is

to properly adjust the learning rate that controls how fast the gradient descent is. In

spite of potentially providing better generalisation, reduced learning rates increase

the computational cost. Hence, a compromise must be pursued. Furthermore, one

can also optimise the number of trees in the ensemble. Finally, the last aspect that

can be controlled is the interaction depth, which can be defined as the number of

nodes in each tree.

3.4. Support Vector Machines (k−SVM)

SVM (Boser et al., 1992) are conceived to identify the hyperplane that maximises

the distance between the two classes in a binary classification problem. The configu-

ration of the hyperplane depends on the distance to the training samples at the edge

of the class, dubbed support vector points. The method was originally applicable only

to linearly separable data, but can now be generalised by means of a transforma-

tion into a higher dimensional space (Witten et al., 2016). Multi-class problems can

benefit from a “one-to-one” approach, which gives rise to multiple binary classifiers,

each separating the training samples of a pair of different classes (Kim et al., 2003).

The appropriate class is decided by a vote.

There are two parameters to be optimised in k-SVM, namely the cost of con-

straint violation (C) and sigma (σ), a parameter associated with the kernel function

(Gacquer et al., 2011). Compared with other supervised methods, k-SVM is effective

in high dimensional spaces and memory efficient (Braga et al., 2019).

3.5. Model evaluation and selection

Several evaluation metrics can be used for model assessment. In this paper, we

consider both accuracy and a measure of agreement to be defined below. Firstly, we
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need to define the confusion matrix (Razi et al., 2019) Q = [qij], 1 ≤ i ≤ m, 1 ≤ j ≤

m, where m is the total number of classes. Each element qij denotes the number of

times that an element of class i was assigned to class j according to the classification

method. Also, recall from Section 2 that the total number of pieces of equipment in

the dataset is represented by r.

Accuracy is the percentage of correct predictions in a classifier when the classifier

is applied to unseen data (Hossin and Sulaiman, 2015; Razi et al., 2019). It is given

by:

P (0) =
1

r

m∑
i=1

qi,i × 100%. (2)

A measure that compares accuracy with the probability of agreement (Razi et al.,

2019; Cohen, 1960) is given by κ, and is defined as:

κ =
P (0)− P (E)

1− P (E)
, (3)

where P(0) is the accuracy of the classification model and P(E) is the chance of

agreement, which is obtained as follows:

P (E) =

m∑
i=1

(q:,iqi,:)

r2
. (4)

In the expression above, q:,i and qi,: are, respectively, sum of i-th row and i-th column

of the confusion matrix.

In order to obtain reliable estimates of classifier effectiveness, the model should

be tested in a different data sample than the one used at the training stage. One

method commonly utilised is called holdout, and consists in using a fraction of the

dataset (for example 2
3

of it) for training and the remaining fraction for testing. The

drawback is that the training set may be considerably reduced (Han et al., 2011).
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Another option is k-fold cross-validation, which consists in k training stages, each

with k samples used for testing and the remaining ones for training (Witten et al.,

2016). By doing that, one makes sure that all samples are considered in the training

phase.

Finally, statistical tests can be used for comparing machine learning methods with

respect to certain performance measures (Hothorn et al., 2005; Han et al., 2011). We

compare the models based on the values of P (0) and κ resulting from the k−fold

cross validation. To determine whether a model is superior to another, we apply a t-

test with Bonferroni correction (Bland and Altman, 1995) and use a 95% confidence

level.

4. Numerical experiments

For the sake of validation, we applied the framework proposed in Section 2, and

further specified in Section 3, to pipeline data from the Brent field (Shell, 2017a).

The decommissioning alternatives are presented in Table 1. A single alternative is

to be selected considering the set of twelve sub-criteria described in Table 2.

An important part of the proposed framework is the MCDA analysis for each piece

of equipment in the sample, refer to Step 1 of Algorithm 1 for details. However, the

approach is designed to work with any MCDA technique available to the decision

maker. At this point, it is worth emphasising that a discussion about the choice

of the MCDA approach to be employed is besides the scope of this paper. In our

experiments, we utilised the classical ELECTRE III (Roy, 1985; Figueira et al., 2013;

Del Vasto-Terrientes et al., 2015) method, which makes use of outranking to select

an available course of action (Rowley et al., 2012).

A second experiment is also presented to illustrate the possible use of ensemble

methods, i.e. methods that make use of multiple MCDA algorithms. In our experi-
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Table 1: Pipeline decommissioning alternatives.

Alternatives Description

a1 Leave in situ with no further remediation required

a2 Leave tied-in at platform; remote and trenched

a3 Leave tied-in at platform; remote and rock-dumped

a4 Trench and backfill whole length

a5 Rock-dump whole length

a6 Recover whole length by cut and lift

a7 Recover whole length by reverse S-lay

Source: Adapted from Shell (2017a).

ment, we applied ELECTRE III and PROMETHEE II (Brans and Vincke, 1985) to

the data and maintained their choice when the alternative coincided. On the other

hand, when both algorithms differed, we made use of comparative assessment (Greco

et al., 2005) to break the tie.

All machine learning experimental results were generated with 10-fold cross vali-

dation. The computational experiments were performed in R and made use of some

public machine learning libraries, namely rpart, caret, kernlab and gbm. The follow-

ing section describes the data pre-processing and Section 5 features an overview of

the results.

4.1. Dataset

To validate our approach, the original intent was to use real-world data from

decommissioning reports. In that sense, we found a dataset of sub-sea ducts in the

context of a classical report (Shell, 2017a,c). Unfortunately, the dataset is comprised

of only 14 samples, which are insufficient for our purposes (Chen et al., 2017; Chang
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Table 2: Sub-criteria for the decommissioning of the Brent field.

Criteria Label Weight Sub-criterion

Safety

1 0.2
3

Safety risk to offshore project personnel

2 0.2
3

Safety risk to other users of the sea

3 0.2
3

Safety risk to onshore project personnel

Environmental

4 0.2
4

Operational environmental impacts

5 0.2
4

Legacy environmental impacts

6 0.2
4

Energy use

7 0.2
4

Emissions

Technical 8 0.2 Technical feasibility

Social

9 0.2
3

Effects on commercial fisheries

10 0.2
3

Employment

11 0.2
3

Communities

Economic 12 0.2 Cost

Source: Adapted from Shell (2017a).

et al., 2014). Fortunately, the literature contains many reports of insufficient datasets

in diverse fields, such as medicine and manufacturing (Chen et al., 2017; Lateh et al.,

2017), and methodological suggestions on how to address this issue. To circumvent

small datasets, researchers often resource to synthetic data, which can be generated

by a number of techniques, such as fuzzy theory (Huang and Moraga, 2004), synthetic

minority over-sampling technique (SMOTE) (Chawla et al., 2002) and bootstrapping

(Ivănescu et al., 2006; Tsai and Li, 2008; Chao et al., 2011; Jiménez et al., 2014).

In this study, we apply the latter alternative to generate a synthetic dataset for

validation. This dataset with 1313 synthetic pipelines was made public (Martins
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et al., 2019a) for benchmarking purposes.

The decommissioning guidelines in (Oil & Gas UK, 2015; MEI, 2018) gave rise

to the conjecture that the following characteristics could be used as variables for

pipeline classification: type (e.g. rigid, flexible); fluid (e.g oil, gas, water); size;

length; coated/uncoated; installation date; on bottom status (e.g. fully exposed,

rock dumped), proximity to other infrastructure; residues (likely/ability to clean);

condition (e.g. good and recoverable, damaged). Bearing that in mind, and in

possession of the dataset in (Shell, 2017c), we selected the following parameters of

sub-sea ducts: diameter; length; concrete, steel and coat composition; weight; fluid;

proximity to other infrastructure (number of crossings); installation date; cleaning

type and on bottom status.

The initial dataset in (Shell, 2017a,c) contained all of the eleven characteristics

(parameters) mentioned above for each piece of equipment. In addition, it also in-

cluded the evaluation of each of the seven alternatives with respect to each of the

twelve sub-criteria described in Table 2. Initially, for each piece of equipment, we

applied the ELECTRE III tool, with the same set of weights used in the original

decommissioning report - which appears in Table 2, to produce the recommended

decommissioning alternative. The values of indifference, preference, and veto thresh-

olds were set to zero (0). In the second experiment, we applied both ELECTRE

III and PROMETHEE II with the same threshold values and weights. When these

methods recommended different alternatives, comparative assessment (CA) was con-

ducted, with the same set of weights. In that case, between the two alternatives rec-

ommended by ELECTRE III and PROMETHEE II, we select that with the highest

CA score.

The recommended decommissioning alternative acts as the independent variable

in the supervised training routine in Step 2 of Algorithm 1. In that routine, each
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equipment ek = (xk, yk) is an entry in the dataset, where xk is a vector containing

all the parameters and sub-criteria assessments and yk is the independent variable,

i.e. the decommissioning action the MCDA tool(s) recommended for the respective

installation.

5. Experimental results

This section is divided into three subsections. The following two subsections

report results of the first experiment. In the following subsection, we report the

results of each selected machine learning technique in the supervised classification

problem of Step 2 in Algorithm 1. Then, Section 5.2 illustrates the results of Step 3

of Algorithm 1, that was performed only for the GBM model, which outperformed

the competing methods in Step 2. Because of its superior performance, GBM was the

selected method for the second experiment, which is reported in Section Section 5.3.

5.1. Model comparison

The aim of this section is to compare the performance of selected machine learning

techniques, namely DT, RF, k−SVM and GBM, for predicting decommissioning

decisions based on the input variables described in Section 4.

We implemented Grid search (Bergstra and Bengio, 2012), a method for hyper-

parameter optimisation, to optimise the performance of each evaluated technique.

The parameters are briefly discussed below:

• DT: The only specification to be optimised for decision trees is the complexity

parameter and it was set as 0.047;

• RF: The number of trees was set as 1000. We tried each value in the set

{8, 9, . . . , 13} for the parameter mtry, i.e. the optimal number of variables

selected for each tree. The optimal value obtained was 13;
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• k−SVM: We used the radial basis kernel function and the parameter search was

for σ ∈ {0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5}

and C ∈ {1.5, 2, 2.5, 3, 3.5, 4, 4.5 , 5}. The selected values were σ = 0.04 and

C = 5; and

• GBM: We evaluated all combinations involving interaction depth in the set

{6, 7, 8}, number of trees in the set {130, 131, . . . , 140} and shrinkage in the

set {0.1, 0.15, 0.2, 0.3}. The best results were obtained with 140 trees, inter-

action depth equal to 7 and shrinkage equal to 0.1. The bag fraction was set

to 0.8.

Table 3 and Figure 3 summarise the evaluations of accuracy (P (0)) and κ for

the optimised models. Also, Table 4 shows the p-values of pairwise t-test results.

The significance threshold was α = 0.05. Each element in Table 4 is the p−value

of the null hypothesis, according to which the algorithms in the corresponding line

and column, respectively, are indifferent with respect to the performance measures.

One can see from the referred table that this hypothesis is rejected in all pairwise

comparisons.

An inspection in the preceding results yield that the GBM model presents the

best overall performance considering all features. It boasts a mean accuracy of 82%

and κ = 72%. At the other end, the worst performance is attained by DT, with

significantly lower accuracy and κ. Bearing that in mind, the GBM algorithm was

singled out for feature selection in Step 3 of Algorithm 1.

5.2. Feature selection

GBM’s feature selection tool is hybrid and combines learning and feature selection

(Liso, 2016). The measure of relative importance is due to Friedman (2001) and is
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Table 3: Model comparison through accuracy and kappa evaluation metrics.

Accuracy

Min 1st Qu. Median Mean 3rd Qu. Max

GBM 0.78 0.80 0.82 0.82 0.83 0.88

RF 0.74 0.77 0.79 0.79 0.81 0.84

k−SVM 0.67 0.70 0.70 0.71 0.74 0.75

DT 0.59 0.61 0.62 0.62 0.63 0.64

Kappa

Min 1st Qu. Median Mean 3rd Qu. Max

GBM 0.71 0.73 0.76 0.76 0.78 0.84

RF 0.64 0.69 0.71 0.72 0.74 0.78

k−SVM 0.55 0.60 0.60 0.61 0.65 0.66

DT 0.43 0.45 0.47 0.47 0.48 0.49

a function of the number of times that a variable is selected for splitting nodes,

modulated by the model improvement resulting from each split. For the sake of

comparison, the measures of importance are standardised.

As previously stated, GBM was the chosen method for variable selection because

it performed best in the classification step. The goal here is to eliminate irrelevant

features, i.e. installation parameters or sub-criteria assessments with very limited

impact on the output of the MCDA method. By doing so, one can build a lower

dimensional model with comparable performance and decreased computational cost

(Guyon and Elisseeff, 2003). From a practical standpoint, this means that we can

find an alternative model that requires a reduced number of sub-criteria assessments

and data collection. This, in turn, implies an accelerated decision making process,
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Figure 3: Model comparison.

with potentially considerable reductions in both costs and times for data acquisition

and sub-criteria evaluation.

In our case study, we opted to maintain all eleven features associated with the

installation parameters, which were enumerated in Section 4. This is because this

information is very easy to obtain, and hence the omission would not bring any

relevant benefit. In contrast, we ranked the sub-criteria in decreasing order of im-

portance, and tested dimensionality reduction scenarios whereby some of them were

eliminated, as detailed below.

Figure 4 conveys the relative importance of each sub-criterion that appears in

Table 2. It stands out that the sub-criteria 12 (Cost) was the most important. In

addition, we found that 12 (Cost), 6 (Energy Use), 11 (Communities), 1 (Safety risk

to offshore project personnel), 7 (Emissions), 4 (Operational environmental impacts),
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Table 4: The p-values corresponding to pairwise comparison of different classification models.

Accuracy

RF k−SVM DT

GBM 0.026 2.71e-05 1.758e-08

RF 2.5e-04 1.26e-07

k−SVM 3.58e-06

Kappa

RF k−SVM DT

GBM 0.019 3.18e-05 5.56e-09

RF 3.6e-04 3.56e-08

k−SVM 1.06e-06

2 (Safety risk to other users of the sea) and 9 (Effects on commercial fisheries), are

responsible for about 91.85% of the total importance. Furthermore, it is also strik-

ing that the sub-criteria 8 (Technical feasibility) presents a very limited relevance,

representing only 0.24% of relative influence.

To assess the effect of removing the less significant variables from the model, we

tested the GBM model with the subset of most relevant sub-criteria that account

for 92%, 83%, 68% and 56% of relative importance, respectively. Obviously, the

objective is to come up with the smallest possible subset of sub-criteria that produces

no significant decrease in performance.

Table 5 summarises accuracy and kappa evaluation metrics for each subset con-

sidered. The p-values produced by each t−test with respect to a pair of models are

unveiled in Table 6. One can easily see from the latter table that the models with

92% and 83% of the total importance are indistinguishable from the original model.
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Figure 4: Relative importance of criteria in the first experiment.

This means that we can keep only half of the sub-criteria assessments, namely sub-

criteria 12, 6, 11, 1, 7 and 4, with virtually no impact on the performance of the

classification method.

The results seem very promising, and suggest that the decommissioning study

of an oil field can be considerably simplified with the application of the proposed

method. Indeed, eliminating half of the sub-criteria assessments with no significant

loss in performance would be a very welcome development in a long, complex pro-

cess. Arguably, one can expect considerable reduction in the number of sub-criteria

since, in a complex process such as that which sets up the sub-criteria, it is possible

that many criteria and sub-criteria assessments be highly correlated. Such a corre-

lation can be captured by machine learning techniques in the process of generating

a simplified analysis tool with comparable results.
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Table 5: GBM models performance comparison considering different variables subsets through

accuracy and kappa evaluation metrics.

Accuracy

Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.79 0.80 0.82 0.82 0.83 0.88

GBM (92%) 0.78 0.79 0.80 0.81 0.83 0.88

GBM (83%) 0.76 0.80 0.81 0.81 0.83 0.86

GBM (68%) 0.76 0.78 0.80 0.80 0.81 0.83

GBM (56%) 0.75 0.76 0.78 0.78 0.80 0.82

Kappa

Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.71 0.73 0.76 0.76 0.78 0.84

GBM (92%) 0.71 0.73 0.74 0.75 0.77 0.84

GBM (83%) 0.68 0.74 0.75 0.75 0.77 0.81

GBM (68%) 0.67 0.71 0.74 0.73 0.75 0.78

GBM (56%) 0.67 0.68 0.71 0.71 0.74 0.76

Another potential gain of the proposed approach is that one does not need to

deploy the MCDA tool for all installations. Instead, it is only utilised in the training

set. For all installations outside this set, the decision maker can simply make use of

the predictions provided by the machine learning classification tool.

Finally, the ranking of the sub-criteria is instrumental to the analysis, since it

enables the decision maker to verify the consistency of the proposed MCDA tool.

For instance, it will confirm or not that variables which are deemed important to the

analysis have a real impact on the outcome of the MCDA tool.
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Table 6: p-values corresponding to pairwise comparison of the GBM model performance considering

different variables subsets according to the percentage of relative importance of the criteria given

by Friedman (2001) method.

Accuracy

GBM (92%) GBM (83%) GBM (68%) GBM (56%)

GBM (100%) 1 1 0.18 0.054

GBM (92%) 1 1 0.259

GBM (83%) 0.563 0.029

GBM (68%) 0.28

Kappa

GBM (92%) GBM (83%) GBM (68%) GBM (56%)

GBM (100%) 1 1 0.20 0.064

GBM (92%) 1 1 0.279

GBM (83%) 0.560 0.030

GBM (68%) 0.31

5.3. Second experiment - ensemble method

In the second experiment, we present a preliminary evaluation of the use of an

ensemble MCDA method in the generation of the training set for the ML approach.

We made use of two outranking methods, namely ELECTRE III and PROMETHEE

II and a simple average weighting (SAW) algorithm referred to as comparative as-

sessment (CA) in the decommissioning literature (Martins et al., 2019b; Greco et al.,

2005). We selected the alternative to be inserted in the training set based on a vote.

Hence, whenever the two outranking methods selected the same alternative, this al-

ternative was inserted in the training set. On the other hand, whenever the outrank-

29



ing methods diverged, the alternatives selected by ECTREE III and PROMETHEE

II were fed to the CA framework, which selected the best of the two.

Figure 5: Relative importance of criteria in the second experiment.

In the numerical experiment, the outranking methods elected the same alternative

for 80% of the pieces of equipment. Hence, we needed CA to break the tie 20% of

the time. As previously mentioned, we opted to use GBM for feature selection and

classification, since it was the superior method in the first experiment. Once again we

conducted grid search for the parameter optimisation, and this time the best results

were obtained with 130 trees, interaction depth equal to 7 and shrinkage equal to 0.1.

For this set of parameters, the mean accuracy reached 76% and κ = 68%. Observe

that these values are slightly reduced with respect to the first experiment, which

registered a mean accuracy of 82% and κ = 76%.

Regarding feature selection, the results in Figure 5 show that sub-criteria 12
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(Cost) and 8 (Technical Feasibility) were, once again, respectively the most and

least important. One can also notice that the results were similar to those in Figure

4, however the importance seems to decrease slightly more steeply.

Table 7: GBM models performance comparison considering different variables subsets through

accuracy and kappa evaluation metrics considering the labelling determined by an ensemble MCDA

method.

Accuracy

Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.73 0.75 0.77 0.76 0.78 0.80

GBM (90%) 0.73 0.74 0.75 0.76 0.77 0.82

GBM (80%) 0.72 0.73 0.74 0.75 0.76 0.79

GBM (73%) 0.69 0.72 0.73 0.73 0.75 0.76

GBM (63%) 0.68 0.72 0.73 0.74 0.76 0.80

Kappa

Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.63 0.67 0.69 0.68 0.70 0.73

GBM (90%) 0.64 0.65 0.66 0.67 0.69 0.76

GBM (80%) 0.61 0.64 0.66 0.66 0.68 0.71

GBM (73%) 0.58 0.62 0.64 0.64 0.66 0.68

GBM (63%) 0.57 0.62 0.64 0.65 0.68 0.73

To evaluate the precision of reduced models, we tested GBM with subsets that

totalled 90%, 80%, 73% and 63% of relative importance, respectively. The evaluation

metrics for each of the models generated with the subsets as well as the p-values ob-

tained from the pairwise comparisons between the models are shown in Tables 7 and
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Table 8: p-values corresponding to pairwise comparison of the GBM model performance considering

different variables subsets according to the percentage of relative importance of the criteria given

by Friedman (2001) method considering the labelling determined by different MCDA outranking

methods.

Accuracy

GBM (90%) GBM (80%) GBM (73%) GBM (63%)

GBM (100%) 1 1 1 1

GBM (90%) 1 0.2122 1

GBM (80%) 0.6323 1

GBM (73%) 1

Kappa

GBM (90%) GBM (80%) GBM (73%) GBM (63%)

GBM (100%) 1 1 1 1

GBM (90%) 1 0.2554 1

GBM (80%) 0.6132 1

GBM (73%) 1

8. From the results, we can see that a model with only the 4 (four) most important

sub-criteria, namely 12 (Cost), 4 (Operational environmental impacts), 1 (Safety

risk to offshore project personnel) and 11 (Communities), has an indistinguishable

performance when compared to the complete model. It is worth pointing out that

these four criteria account for around 63% of the relative importance. Hence, the

ensemble method enables the elimination of two thirds of the sub-criteria (from 12

to 4), whereas a 50% reduction (12 to 6) was attained with the use of ELECTREE

III on its own.
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To sum up, while the proposed ensemble method performed slightly worse in

terms of κ and accuracy, it boasts an improved performance in terms of dimension-

ality reduction. Future research could be devoted to find out if these preliminary

results would be maintained in different ensemble configurations. While the inves-

tigation of the effects of the ensemble in the performance of the proposed approach

falls beyond the scope of this problem, our results suggest that future research may

aim at investigating some questions that are raised by these preliminary results. For

example, one may be interested in investigating what the best configuration of an

ensemble method would be. Such an investigation would encompass a very large

number of possible combinations of MCDA approaches and could delve into aspects

such as the compatibility of the approaches and their consistencies and similarities in

terms of outputs. In addition, distinct ways of producing an outcome of the ensemble

could be investigated. For instance, instead of a vote, the method could make use of

regret analysis (Bubeck and Cesa-Bianchi, 2012) for labelling the training set.

6. Summary and conclusions

This study developed a framework based on supervised algorithms and dimen-

sionality reduction techniques aiming to reduce the time and effort of sub-criteria

evaluations in a decommissioning study. The framework makes use of a reduced

dataset comprised of installations characteristics and sub-criteria evaluations. A

number of machine learning algorithms are then applied to the dataset and that

with the best overall performance is singled out for variable selection. This latter

step then produces a reduced subset of relevant sub-criteria that should be measured

for the pieces of equipment left out of the training dataset. The reduced model can

be used to predict the decommissioning alternative for these pieces of equipment,

thus circumventing the need for a case by case MCDA analysis.
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The framework was validated through numerical analyses for a synthetic dataset

based on real data for pipelines in the Brent field (Shell, 2017c). The dataset variables

included eleven characteristics, such as diameter and fluid type, and the evaluation of

twelve sub-criteria for each of the seven decommissioning alternatives. The numerical

experiments, which were performed using ELECTREE III, as well as an ensemble of

three MCDA approaches to generate the labelling of the training set, suggest that a

significant reduction in the number of assessed criteria can be obtained with virtu-

ally no impact on the performance, thus reducing the overall effort and cost of the

decommissioning study. One significant contribution is the suggestion that the de-

cision maker can accurately predict the recommended decommissioning alternatives

with a reduced number of sub-criteria evaluations. In addition, the use of machine

learning precludes the need for a case by case MCDA analysis, for the recommended

alternatives for the installations outside the training set can be accurately forecast

by the classification method.

One limitation of the work is the use of a synthetic dataset, which was necessary

given the absence of real-world data. Such a limitation can be addressed in the future

if companies agree to make their data available, even if discharacterised. In addition,

the generality of the results is limited by the fact that the decommissioning criteria

may vary depending on the locality and on the regulatory bodies (Martins et al.,

2019b), hence the conclusions on the significance of a particular subset of criteria

may not be applicable to distinct decommissioning projects.

The current work can be extended and complemented in a number of directions.

One possible direction involves the investigation of the effects of changing weights

and parameters in the MCDA tool, whereby machine learning could be applied to

predict the response of the MCDA tool given the input of a weight vector and a set

of parameters. Such an investigation could also aim to find which MCDA approaches

34



are less sensitive to changes in parameters and weights, with a view to providing the

decision maker with a dependable and reproducible decision aid tool. Another pos-

sible topic of future research is the design of ensemble methods of similar or different

families of MCDA approaches to generate the training set. One could investigate

if different families tend to produce different decisions, as well as if some specific

methods are complementary or consistent with other approaches. In addition, the

possibility of applying regret analysis (Bubeck and Cesa-Bianchi, 2012) for labelling

could be evaluated.
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