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Abstract

In this work we analyze the capacity of the human body to combat HIV.

The model here treated takes into consideration four types of defense of an

organism infected by HIV: susceptible defense cells, the infected immune

cells, killer T cells, and the HIV specific killer T cells. This model therefore

analyzes the interactions between the responses of killer T cells and HIV

infections, evidencing how the immune system is attacked and how it defends.

An optimal control problem is proposed to derive an optimal sequence of

dosages in the standard drug treatment, in such a way as to minimize the

side effects.
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1. Introduction

Mathematical models are essential tools in decision making problems that

arise in a wide range of areas. In particular, they provide the means for un-

derstanding population dynamics (e.g., Levin et al., 1997), which can be used

as an abstraction to model epidemiological problems. According Heesterbeek5

et al. (2015) “many factors, including increasing antimicrobial resistance, hu-

man connectivity, population growth, urbanization, environmental and land

use change, as well as changing human behavior, present global challenges

for prevention and control. Faced with this complexity, mathematical models

offer valuable tools for understanding epidemiological patterns and for devel-10

oping and evaluating evidence for decision-making in global health”. More

specifically, Heesterbeek et al. (2015) provide an overview of the role of math-

ematical modeling in our understanding of the HIV epidemic, and in the

decision making process that followed. Such a role is also discussed in the

excellent work of Perelson and Ribeiro (2013), which discusses the impor-15

tance of modeling to uncover important characteristics of HIV infection.

In the early 1990s, researchers started using fishing models to describe

the dynamics in vivo of viral infections and immune responses; as one could

expect, the human immunodeficiency virus (HIV) attracted particular in-

terest (Nowak and Bangham, 1996; Perelson and Nelson, 1999; Nowak and20

May, 2000). At the time, researchers were focused on understanding both

the viral dynamics and the mechanisms of the virus to deceive the immune

system surveillance. They also sought to estimate basic viral parameters

and to model the response of the HIV infection to drug treatments. Wodarz
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et al. (2014) investigated the fundamental structure of the infection term, i.e.25

the overall rate at which target cells in a population become infected in the

presence of the virus. In a related line of research, Wodarz and Levy (2011)

accounted for the fact that multiple copies of the virus can infect the same

cell, and addressed the so-called co-infection problem.

A specific part of the immune system is formed by killer T cells or cy-30

totoxic T lymphocytes (CTL). These cells are very important in the fight

against viral infections (e.g., Gulzar and Copeland, 2004; Kamata et al.,

2015). Indeed, control models that account for the effects of drug treatment

often seek to keep these cells healthy and active in the fight against the in-

fection (e.g., Arruda et al., 2015). For a thorough discussion on the models35

of the dynamics of HIV infections, we refer to (Perelson and Ribeiro, 2013).

Recently, Arruda et al. (2015) proposed a model to describe the dynam-

ics of HIV in human body with the introduction of a new variable dubbed

activated or HIV-specific defense cell. That allows one to keep track of both

activated and non-activated CTL cells, providing a better understanding of40

the infection. In their model, they employed free HIV viruses in the body

as activators of the immune cells which, upon activation, become specific to

the virus and dedicated to destroy it.

This paper improves the formulation in (Arruda et al., 2015) by introduc-

ing a change in the activation mechanism whereby the CTL cells are activated45

by the interaction with an infected cell. Such a change makes the model more

realistic, given that this is how the activation actually takes place in the hu-

man body (Gulzar and Copeland, 2004). In addition, the proposed model

also incorporates the innovation in (Arruda et al., 2015), namely that the

3
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model keeps track of both the activated defense cells, providing an improved50

comprehension of the infection dynamics. An interesting byproduct of this

modification is that it provides a better understanding about the resump-

tion of the disease should the treatment be interrupted. In that case, the

infection generally returns with renewed force (e.g., Kilby et al., 2000; Abbas

and Mellors, 2002; Pinkevych et al., 2015), demanding additional medical55

attention and causing an increased damage to the patient’s health. Another

contribution of this paper is that the model applies normalized dosages of

medication, to take into account the fact that dosages must be limited to

prevent the possibility of overdose.

The proposed model aims to calibrate the dosage of the reverse tran-60

scriptase and protease inhibitors in standard Anti-retroviral Therapy (ART),

which are capable of producing an exponential decrease in viral levels, see

for example (Eisele and Siliciano, 2012; Finzi et al., 1999). The role of opti-

mal control theory in such calibration has long been recognized (e.g., Adams

et al., 2004; Joly and Pinto, 2006). Indeed, an optimal control approach is65

proposed here to derive optimal dosages in such a way as to guarantee an

effective treatment while also minimizing the side effects. Another novelty

of the model is that it applies normalized dosages of medication, to take into

account the fact that the dosages must be limited to avoid damage to the

patient’s health. That makes the model more realistic, avoiding excessive70

dosages at the beginning of the treatment, which could be prescribed for a

rapid response to the infection if overdose was not an issue.

This paper is organized as follows. Section 2 introduces the model and

describes the dynamic of the infection under controlled medication. It also

4



derives the equilibrium points for the system under nil or constant control.75

In Section 3, we derive an optimal control formulation to procure an optimal

medication dosage, taking into account both the benefits and the side effects

of continued treatment. Next, Section 4 presents some numerical experiments

aimed at providing an insight into the effect of the cost parameters in the

optimal control values and the system dynamics. Finally, section 5 concludes80

the paper.

2. The Model

When HIV invades the human body, the target is the defense or T CD4+

cells present in the body. These cells, considered as “auxiliary”, indicate the

presence of an invader to other immune cells (B and T CD8 +). The T CD8+85

cells respond to this signal by seeking the destruction of the infected cells,

and by responding they become specific for HIV. In this work we propose

a new mathematical model for studying the dynamics of HIV in the human

immune system, based on several existing models in the literature (Grégio

et al., 2009; Wodarz, 2007; Shu et al., 2014; Sánchez-Taltavull et al., 2016;90

Arruda et al., 2015; Yan et al., 2016).

This model is given by the ordinary differential equations system repro-

duced below, where the time index is dropped from the state and control
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variables for the sake of simplicity:



































































ẋ = λx − µxx− βvxv − u1x

ẋp = u1x− µxxp

ẏ = βvxv − µyy − pyyza − u2y

ẏb = u2y − µyyb

v̇ = kvµyy − µvv

ż = λz − µzz − βzzy

ża = βzzy − µzza

. (1)

In the above equations, the variable x represents susceptible cells, i.e.,95

cells that the HIV can connect to, the variable xp represents susceptible cells

protected by reverse transcriptase inhibitors, protease and input; the variable

y represents those cells already connected to the HIV (infected), whereas the

variable yb represents infected cells that are blocked by protease inhibitors.

We use v to represent the free virus present in the body, and employ the100

variable z to describe the population of killer T cells (CTL) of the immune

response. Finally, the variable za represents the population of CTL cells

activated to fight the infected cells, which is responding with antibodies (De

Boer, 2002). The model accounts for the fact that when the treatment is

interrupted, the blocked cells lose their protection and resume the production105

of the virus. As previously discussed, in the absence of protected and blocked

cells, the infection generally returns with renewed force (e.g., Kilby et al.,

2000). From the model in (1) we see that the treatment works by turning

susceptible cells x, which can be contaminated by the virus, into protected

cells xp that cannot. In addition, it also transforms infected cells y, which110

release virus, into blocked cells yb that do not. Hence, in the absence of
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Figure 1: System Dynamics.

protected and blocked cells the infection of susceptible cells and the release

of free viruses return to their pre-treatment behavior, and the equilibrium

point to be reached will be that of the system under no treatment.

To set up the initial condition, we consider the time instant of the first115

contact of the virus with the body, i.e. the trivial equilibrium point of the

system without the virus, and introduce a tiny amount v0 of viruses: x(0) =

λx/µx, xp(0) = 0, y(0) = 0, yb(0) = 0, v(0) = v0, z(0) = λz/µz, za(0) = 0.

In Eq. (1) u1 and u2 are the control variables, which represent the dosages

of the reverse transcriptase and the protease inhibitor, respectively. We as-120

sume that the dosages are normalized between 0 and 1, with the latter value

representing the maximum dosage that does no harm to the patient. Note

that xp and yb vanish when u1 = u2 = 0, for the patient is subject to no

treatment. In that case, the system dynamics mechanism depicted in Fig.

1 implies that the contact of the virus v with susceptible cells x produces125

infected cells y, which in turn produce more virus v, and so on. Observe also

7



that the infected cells y activate the killer cells z, which then become za and

start eliminating infected cells y. We stress that z and za are the natural

immune responses of the patient, which do not depend upon the treatment

to be generated.130

The parameters employed in the system of equations in (1) are described

in Table 1. Their values were obtained from the specialized literature (Nowak

and Bangham, 1996; Nowak and May, 2000; Mclean, 2013; Perelson and

Ribeiro, 2013). We consider that the susceptible cells are produced at a

constant rate λx, and decay at a constant rate µx. Given the time scale135

- we wish to simulate the system’s dynamics until the system reaches an

equilibrium point - these constant rates are a satisfactory approximation

well-documented in the literature, see for example (Nowak and Bangham,

1996; Nowak and May, 2000; Mclean, 2013; Perelson and Ribeiro, 2013).

We also assume that the susceptible cells are infected with the virus at a rate140

βv. Hence, the variable x migrates to the compartment of the variable y at

a rate βv. The variable y decays at a rate µy and is terminated at a rate

py, which is the rate at which the HIV activated CTL cells za eliminate the

infection. The free virus v is produced at a rate kv, for we assume that the

virus is released in the body upon the death of an infected cell, and it decays145

at rate µv. The CTL cells are produced at a constant rate λz, and decay at

an also constant rate µz. Note that βz is the cell activation rate, the rate

at which CTL cells z interact with infected cells and become activated CTL

cells za. Finally the activated CTL cells decay at the same rate of their non

activated counterpart.150

The control variable u1 represents permissible dosages of reverse tran-

8



scriptase inhibitors, integrase and input. These protect the target cells x,

preventing the infection, i.e. preventing them from becoming infected cells

y. To keep track of the effect of the medicine, our model introduces the

variable xp to represent the cells that are protected by the action of these155

inhibitors. It is this variable that allows us to estimate the effect of inter-

rupting the treatment at any point in time, which is not possible in other

models in the literature.

On the other hand, the control variable u2 simulates permissible dosages

of the protease inhibitor, which blocks the infected cells y, preventing them160

from releasing the virus in the body. Once again, this variable enables us to

estimate the effect of interrupting the treatment, for it provides an estimate

of the amount of virus released in the body at the precise moment when the

treatment is interrupted.

The values used in numerical simulations (see Tables 1 and 2), can be165

found at literature (Mclean, 2013; Wodarz, 2007; Perelson and Nelson, 1999).

2.1. Equilibrium Points

The equilibria of the dynamic system (1) are given by the relationship:

P = (x̄, x̄p, ȳ, ȳb, v̄, z̄, z̄a) (2)

=

(

λx

µx + u1 + βvv̄
,

λxµx

u1(µx + u1 + βvv̄)
,
µv v̄

kvµy

,
µvv̄

kvu2

, v̄,
kvλzµy

βzµvv̄ + kv µy µz

,

λzβzµvv̄

µz(βz µvv̄ + kv µy µz)

)

,

where:

ȳ = 0 or a ȳ2 + bȳ + c = 0, (3)
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Table 1: Parameters Dataset.

Mortality of susceptible cells µx 0.02 day−1

Mortality of infected cells µy 0.24 day−1

Virus mortality µv 2.4 day−1

Mortality of CTL cells µz 0.04 day−1

Average number of free virus released

from an infected cell

kv 360

Immune response activation rate βz 5 · 10−6mm3day−1

Virus infection rate βv 2.4 · 10−5mm3day−1

Rate of destruction of infected cells py 0.02mm3day−1

Supply rate of susceptible cells λx 20 day−1mm−3

Supply rate of CTL cells λz 20 day−1mm−3

Control by inhibitors of reverse transcrip-

tase, integrase and input

u1 [0, 1]

Control over protease inhibitors u2 [0, 1]

with,170

a = βv βz µ
2
v (µy µz + λz py + µz u2),

b = µv(βvkvµ
2
y µ

2
z + βzµvµxµyµz + βzλzµvµxpy + βzµvµxµzu2 + βzµvµyµzu1

+βzλzµvpyu1 + βzµvµzu1u2 + βvkvµyµ
2
zu2 − βvβzkvλxµyµz),

c = kvµvµxµ
2
yµ

2
z + kvµvµ

2
yµ

2
zu1 − βvk

2
vλxµ

2
yµ

2
z + kvµvµxµyµ

2
zu2 + kvµvµyµ

2
zu1u2.

For an uninfected individual we have v̄ = 0. Substituting this value in

the expression (2), we have the trivial equilibrium point:

Po = (x̄, x̄p, ȳ, ȳb, v̄, z̄, z̄a) =

(

λx

µx + u1

,
λxµx

u1(µx + u1)
, 0, 0, 0,

λz

µz

, 0

)

. (4)

10



Table 2: Initial conditions.

Susceptible cells x 103 mm−3

Protected cells xp 0 mm−3

HIV infected cells y 0 mm−3

Blocked cells yb 0 mm−3

Free HIV in the body v 10−3 mm−3

HIV activated CTL cells z 500 mm−3

Activated immune cells za 0 mm−3

Conversely, for an infected individual we have v̄ 6= 0. In that case one is

forced to solve the quadratic equation in (3). We recall that an equilibrium

point is stable if the sign of the real part of the eigenvalues of the Jacobian175

matrix at this point is negative, as stated in the Hartman-Grobman Theorem

(Kreyszig, 1978). It is easy to see that the condition for the stability of the

trivial equilibrium point is:

kvβvλxµy

(µx + u1)(µy + u2)µv

< 1. (5)

Consequently, we conclude that the basic reproduction number is given

by:180

R0 =
kvβvλxµy

(µx + u1)(µy + u2)µv

. (6)

Hence, if (5) holds true, the trivial equilibrium Po in (4) is stable. In

that case, the infection does not spread in the organism of the contaminated

individual.

11



3. Optimal Control Formulation

To apply the model, we obtain the initial conditions by running the un-185

controlled model from Eq. (1) for a period of 365 days. That simulates an

individual that has been diagnosed one year after the infection.

We point out that u1 and u2 are dynamic variables in continuous time,

which prescribe the maximum medication dosages administered without in-

jury to the patient at each time t ∈ [0, T ], where T is the total length of the

planned treatment. Thus, u1(t) represents the dosage of inhibitors of reverse

transcriptase, integrase and input at time t ∈ [0, T ]; whereas u2(t) indicates

the dosage of the protease inhibitor at time t ∈ [0, T ]. To simplify the treat-

ment, doctors can apply a sub-optimal treatment, with regular dosages of

medication corresponding to the combined medication prescribed by contin-

uous variables u1 and u2 for each regular interval. For example, if the treat-

ment is prescribed daily for a period of 365 days, the sub-optimal treatment

would be comprised of a discrete sequence of dosages ū1k, k ∈ {1, . . . , 365}

and ū2k, k ∈ {1, . . . , 365}, such that

ū1k+1 =

∫ k+1

k

u1(s)ds, k = 0, . . . , 364,

ū2k+1 =

∫ k+1

k

u2(s)ds, k = 0, . . . , 364.

(7)

Alternatively, doctors could prescribe average values of the sequences ū1 and

ū2 over predetermined intervals, such as monthly intervals for example, re-

evaluating the treatment between successive intervals.190

Observe that, if the dosages u1 and u2 were to be kept constant, one could

replace µx for (µx+u1) and µy for (µy+u2) in terms involving u1 and u2, and

12



all the results regarding the equilibrium points and their stability obtained

in the foregoing section would be retrieved here. In that case, the number

of primary virus replication after treatment (control), represented by Rc, is

given by:

Rc =
µx

µx + u1

µy

µy + u2

R0. (8)

Note that the terms multiplying R0 in the above equation arise due to the

(now constant) control variables u1(t) = u1, ∀t ∈ R, and u2(t) = u2, ∀t ∈ R.

Note also that, if u1 = u2 = 0 (no treatment), then Rc = R0, where R0 was

defined in (6).195

In the remainder of this paper, we analyze the system’s dynamics with

u1 : t → R+ and u2 : t → R+ varying over time, and strive to obtain

an optimal treatment, prescribing the values of these variables at each time

in such a way that an optimal compromise between the efficiency of the

treatment and its side effects is obtained.200

The system is now optimized with respect to control parameters u1 and

u2. To reach a compromise between medication and side effects, we introduce

an optimal control problem aimed at maximizing the number of protected

cells while also mitigating the side effects. The optimal control problem is

defined as follows:205

Maximize J = 1
2

∫ T

0

(

c1x
2
p − c2(1− v1)

2 − c3(1− v2)
2
)

dt,

Subject to (1).

(9)

Note that we have used u1 = (1− v1) and u2 = (1− v2) arbitrarily limiting

13



the maximum dosage between 0 and 1.

In the expression above, c1, c2 and c3 are non-negative scalars. The

functional J in (9) can be interpreted as follows: we seek to maximize the210

protected cells (xp) while also trying to minimize the drug administrations

(u1 and u2). We are assuming that the higher u1 and u2, the higher the side

effects.

To find the optimal control variables u∗

1 and u∗

2 that solve Problem (9), we

make use of Pontryagin’s maximum principle (Kirk, 1970; Lewis and Syrmos,215

1995; Pontryagin et al., 1961), and derive the Hamiltonian of our optimal

control problem, which is given by:

H = 1
2

[

c1x
2
p − c2(1− v1)

2 − c3(1− v2)
2
]

+

+w1 [λx − µxx− βvxv − (1− v1)x] +

+w2 [(1− v1)x− µxxp] + w3 [βvxv − µyy − pyyza − (1− v2)y] +

+w4 [(1− v2)y − µyyb] +

+w5 [kvµyy − µvv] + w6 [λz − µzz − βzzy] +

w7 [βzzy − µzza] + η1v1 + η2v2,

where wj, j = 1, . . . , 7, are the co-state variables, that determine the adjoint

systems. It is well known that the optimal solution must satisfy both the

original and the adjoint system of equations. The variables η1 and η2 are220

14



penalty multipliers (slack variables), added to the model to ensure that the

constraints v1 ≥ 0 and v2 ≥ 0 are satisfied. For the optimal values

v∗1 = 1− u∗

1 and v∗2 = 1− u∗

2, it holds that η1u
∗

1 = 0 and η2u
∗

2 = 0. For the

latter equality to hold, v1 and v2 must either be nil or positive. Both cases

are considered below.225

(i) Considering the set: {t | v1 > 0 and v2 > 0}

It follows from Pontryagin’s maximum principle that the optimal con-

trol variables v∗1 = 1− u∗

1 and v∗2 = 1− u∗

2 must satisfy:

∂H

∂v∗1
=

∂H

∂v∗2
= 0.

Then,


















∂H
∂v∗1

= c2 − c2v
∗

1 + xw1 − xw2 + η1 = 0

∂H
∂v∗2

= c3 − c3v
∗

2 + yw3 − yw4 + η2 = 0.

Thus, isolating u∗

1 and u∗

2, we obtain,



















v∗1 = (w1−w2)x+c2+η1
c2

v∗2 = (w3−w4)y+c3+η2
c3

.
(10)

As in this case we necessarily have η1 = η2 = 0, since η1v
∗

1 = η2v
∗

2 = 0,

the optimal control can be expressed as:



















v∗1 = (w1−w2)x+c2
c2

v∗2 = (w3−w4)y+c3
c3

.
(11)

15



(ii) Considering the set: {t | v1 = 0 and v2 = 0}

It follows from Eq. (10), that



















0 = (w1−w2)x+c2+η1
c2

0 = (w3−w4)y+c3+η2
c3

.
(12)

Since, by definition, η1 ≥ 0 and η2 ≥ 0, it follows from Eq. (12) that



















−η1 = (w2 − w1)x+ c2 ≤ 0

−η2 = (w4 − w3)y + c3 ≤ 0 .
(13)

Therefore, to ensure that u∗

1 and u∗

2 do not take negative values, we summarize

the results obtained in (11) and (13) by:

v∗1 = max
{

0 , (w1−w2)x+c2
c2

}

v∗2 = max
{

0 , (w3−w4)y+c3
c3

}

.

(14)

Hence, the optimal control for Problem (9) is characterized by (14).

3.1. The Co-State Equations

The necessary conditions of the Pontryagin’s maximum principle (Kirk,

1970) also establish that the adjoint variables satisfy:
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

























































































dw1

dt
= −∂H

∂x
= µxw1 + βvvw1 + v1w1 − v1w2 − βvvw3

dw2

dt
= − ∂H

∂xp
= −c1xp + µxw2

dw3

dt
= −∂H

∂y
= µyw3 + pyzaw3 + v2w3 − v2w4 − kvµyw5 + βzzw6− βzzw7

dw4

dt
= − ∂H

∂yb
= µyw4

dw5

dt
= −∂H

∂v
= βvxw1 − βvxw3 + µvw5 + pvzaw5

dw6

dt
= −∂H

∂z
= µzw6 + βzyw6 − βzyw7

dw7

dt
= − ∂H

∂za
= pyyw3 + µzw7.

(15)

Finally, we analyze the conditions of transversality. In our case, there is

no final value for the state variables. Therefore, the transversal conditions

to the adjoint variables are given by

wi(T ) = 0, i = 1, . . . , 7.

Observe that the optimal control values in (14) depend directly on the230

co-state variables and, through these variables, on the dynamics described

in (1). Hence, they cannot be analytically determined. Consequently, to

solve Problem (9), one searches for optimal control values v∗1 and v∗2 that

simultaneously solve the initial value problem and the final value problem in

Eq. (15). In this paper, we find the optimal control trajectories iteratively,235

employing a classical specialized gradient algorithm (Kirk, 1970) and solve

the differential equation systems by means of finite difference methods.
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4. Numerical simulations

The optimal control problem in Eq. (9) was solved for a one year treat-

ment period. The initial condition for the state variables was obtained by240

running the uncontrolled system for one year. The last value of each variable

(after 365 days) was taken as the initial value for the same variable in the

controlled problem. In this work, we first consider Case 1, with c1 = 10−6,

c2 = 1 and c3 = 1, which will be used as our benchmark for model evaluation.

Note that, under such parameters, the objective function in (9) evaluates the245

number of protected cells versus the side effects attained from the medica-

tion. The small value of c1 is due to the large number of immune cells, which

render the first term in Eq. (9) quite significant. The optimal trajectories of

the system for the selected parameters are depicted in Figure 2.

Note in that in the beginning of treatment we have a substantial decrease250

in the unprotected CD4+ T cells, with an increase in the number of pro-

tected cells. That is because the treatment makes most of these cells become

protected cells. Note that the HIV-specific CD8+ T cells are rapidly ac-

tivated to fight the virus. With regards to the infected cells, blocked and

unblocked, they rapidly vanish. Note that the number of remaining viruses255

rapidly decays to zero, its trivial equilibrium point. It is also noteworthy

that the optimal dosage of the transcriptase inhibitor is higher than that of

the integrase inhibitor.

As discussed in Section 3, the parameters c2 and c3 refer to the side effects

of the transcriptase and protease inhibitors, represented equation (9) by their260

dosages u1 and u2, respectively. Naturally, the side effects will depend upon

the drugs employed and may vary over time as these drugs evolve and are
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Figure 2: Optimal Trajectories for Case 1: c1 = 10−6, c2 = c3 = 1.
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Figure 3: Optimal Trajectories for Case 2: c1 = 10−6, c2 = 10, c3 = 1.
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Figure 4: Optimal Trajectories for Case 3: c1 = 10−6, c2 = 1, c3 = 10.
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modified. Hence, in the next couple of experiments we will explore two

possible scenarios: one in which u1 is associated with more side effects than

u2 and another in which the opposite holds. While the experiments are by no265

means extensive, they provide an insight into what happens with the optimal

dosages should one treatment present more side effects than the other. In

particular, our experiments show the case when the side effects of one drug

are tenfold those of the other.

To verify the effects of the variations in the controlled system dynamics,270

we consider Case 2, with c1 = 10−6, c2 = 10 and c3 = 1, depicted at Figure 3.

In this case, we assume that the reverse transcriptase inhibitor presents more

side effects than the protease inhibitor, thus causing an augmented value of

c2 with respect to Case 1. It can be noted that, with the increase of c2 there

is a different balance between protected cells and unprotected cells compared275

with Case 1. The evolution of the virus shows that, in this case, it reaches

extinction more slowly than in Case 1. The same applies to the infected cells

and blocked cells . Apparently, the changes do not cause significant changes

in the values of z and za . With regards to the control variables, i.e. the

medication levels, the levels of u1 are reduced in this example.280

For Case 3, we set c1 = 10−6, c2 = 1 and c3 = 10, and the results are

depicted in Figure 4. In that case we assume that u2 produces more side

effects than u1. It can be noted that the viruses get extinct at same rate

than in Case 1 . The medication levels are similar to those in Case 1 with a

not so significant increase of u2.285
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5. Concluding Remarks

This paper introduces a model of HIV dynamics that explicitly describes

the protected CD4+ T cells and the HIV-specific CD8+ T cells. This allows

us to explicitly understand and quantify the effects of medication, providing

a better understanding the system’s dynamics, and a prompt evaluation of290

the consequences of an interruption in the treatment. The model takes into

account the Anti-retroviral Therapy (ART), which has produced significant

advances in the treatment of HIV infection, but also introduces side effects,

which should be avoided whenever possible. To take account of the side

effects and produce a desirable compromise between treatment effectiveness295

and side effects, we propose an optimal control approach which prescribes

an optimal treatment aimed at maximizing the benefits of the treatment,

while also minimizing the side effects. To make the results meaningful, we

limit the dosage in a normalized interval to account for the fact that the

dosages must be limited in order to avoid harmful effects to the patients.300

Numerical examples were presented which provide insight into the behavior

of the system under different compromises between medication effectiveness

and side effects.
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Wodarz, D., Chan, C.N., Trinité, B., Komarova, N.L., Levy, D.N., 2014. On

the laws of virus spread through cell populations. Journal of Virology 88,395

13240–13248. doi:10.1128/JVI.02096-14.

Wodarz, D., Levy, D.N., 2011. Effect of multiple infection of cells on the

evolutionary dynamics of hiv in vivo: implications for host adaptation

27



mechanisms. Experimental Biology and Medicine 236, 926–937. doi:10.

1258/ebm.2011.011062.400

Yan, A.W.C., Cao, P., McCaw, J.M., 2016. On the extinction probability

in models of within-host infection: the role of latency and immunity. J.

Math. Biol. 73, 787–813.

28


	Introduction
	The Model 
	Equilibrium Points

	Optimal Control Formulation 
	The Co-State Equations 

	Numerical simulations 
	Concluding Remarks 

