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Abstract. Here we study the effects of age on facial shape in adolescents by using a 

method called multilevel principal components analysis (mPCA). An associated multi-

level multivariate probability distribution is derived and expressions for the (condi-

tional) probability of age-group membership are presented. This formalism is explored 

via Monte Carlo (MC) simulated data in the first dataset; where age is taken to increase 

the overall scale of a three-dimensional facial shape represented by 21 landmark points 

and all other “subjective” variations are related to the width of the face. Eigenvalue 

plots make sense and modes of variation correctly identify these two main factors at 

appropriate levels of the mPCA model. Component scores for both single-level PCA 

and mPCA show a strong trend with age. Conditional probabilities are shown to predict 

membership by age group and the Pearson correlation coefficient between actual and 

predicted group membership is r = 0.99. The effects of outliers added to the MC training 

data are reduced by the use of robust covariance matrix estimation and robust averaging 

of matrices. These methods are applied to another dataset containing 12 GPA-scaled 

(3D) landmark points for 195 shapes from 27 white, male schoolchildren aged 11 to 16 

years old. 21% of variation in the shapes for this dataset was accounted for by age. 

Mode 1 at level 1 (age) via mPCA appears to capture an elongation in facial shape with 

age, which is consistent with age-related shape changes in children. Component scores 

for both single-level PCA and mPCA again show a distinct trend with age. Conditional 

probabilities are again shown to reflect membership by age group and the Pearson cor-

relation coefficient is given by r = 0.63 in this case. These analyses are an excellent 

first test of the ability of multilevel statistical methods to model age-related changes in 

facial shape in adolescents. 

Keywords: multilevel principal components analysis; multivariate probability distri-

butions; facial shape; age-related changes in adolescents.   
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1 Introduction 

The importance of modeling the effects of groupings or covariates in shape or image 

data is becoming increasingly recognized, e.g., a bootstrapped response-based imputa-

tion modeling (BRIM) of facial shape [1], a linear mixed model of optic disk shape [2], 

or variational auto-encoders more generally (see, e.g., [3–5]). Multilevel principal com-

ponents analysis (mPCA) has also been shown [6–10] to provide an efficient method 

of modeling shape and image texture in such cases. Previous calculations using the 

mPCA approach have focused on: facial shape for a population of subjects that demon-

strated groupings by ethnicity and sex [7–8], image texture for two expressions (neutral 

and smiling) [9,10], and time-series shape data tracked through all phases of a smile 

[10]. Here we consider how age-related changes in facial shape can be modelled by 

multilevel statistical approaches for Monte Carlo (MC) simulated data and for real data 

by using a model that is illustrated schematically in Figure 1.  

 
Figure 1. Multilevel model of the effects of age on facial shape.  

2  Methods 

2.1  Mathematical Formalism 

3D landmark points for each shape are represented by a vector 𝑧. Single-level PCA is 

carried out by finding the mean shape vector 𝜇 over all shapes and a covariance matrix  
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𝑘1 and 𝑘2 indicate elements of this covariance matrix and 𝑖 refers to a given subject. 

The eigenvalues 𝜆𝑙 and (orthonormal) eigenvectors 𝑢𝑙 of this matrix are found readily. 

For PCA, one ranks all of the eigenvalues into descending order and one retains the 

first 𝑙1 components in the model. The shape 𝑧 is modeled by  
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The coefficients {𝑎𝑙} (also referred to as “component scores” here) are found readily 

by using a scalar product with respect to the set of orthonormal eigenvectors, i.e., 𝑎𝑙 =
𝑢𝑙 ∙ (𝑧 − 𝑧̅), for a fit of the model to a new shape vector 𝑧. The component score 𝑎𝑙 is 

standardized by dividing by the square root of the eigenvalue 𝜆𝑙.  

Level 1 • Variations due to age

Level 2 • Between-subject variation, i.e., all other 

variations that are not dependent on age



 

 
Figure 2. Multilevel model represented as a tree. Shapes 𝜇𝑙

2 at level 2 are average 

shapes over all shape data 𝑧 in a given group 𝑙 (e.g., 3 shapes per group are shown 

above). The shape 𝜇1 at level 1 is the average shape over all of the shape data 𝜇𝑙
2 at 

level 2 (e.g., 3 groups at level 2 are shown above). 

Multilevel PCA (mPCA) allows us to isolate the effects of various influences on shape 

at different levels of the model. This allows us to adjust for each subjects’ individual 

facial shape in order to obtain a clearer picture of those changes due to the primary 

factor, i.e., age here. The covariance matrix at level 2 is formed with respect to all sub-

jects in each age group 𝑙 and then these covariance matrices are averaged over all age 

groups to give the level 2 covariance matrix Σ2. The average shape for group 𝑙 at level 

2 is denoted 𝜇𝑙
2. By contrast, the covariance matrix at level 1, Σ1, is formed with respect 

to the shapes 𝜇𝑙
2 at each age group at level 2. The overall “grand mean” shape at level 

1 is denoted 𝜇1. These relationships for the multilevel model are illustrated as a tree 

diagram in Figure 2.  

mPCA uses PCA with respect to the covariance matrices at the two levels separately. 

The l-th eigenvalue at level 1 is denoted by 𝜆𝑙
1 with associated eigenvector 𝑢𝑙

1, whereas 

the l-th eigenvalue at level 2 is denoted by 𝜆𝑙
2 with associated eigenvector 𝑢𝑙

2. We rank 

all of the eigenvalues into descending order at each level of the model separately, and 

then we retain the first 𝑙1 and 𝑙2 eigenvectors of largest magnitude at the two levels, 

respectively. The shape 𝑧 is modeled by 
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where 𝜇1 is the “grand mean” at level 1, as described above. The coefficients {𝑎𝑙
1} and 

{𝑎𝑙
2} (again referred to as “component scores” here) are determined for any new shape, 

𝑧, by using a global optimization procedure in MATLAB R2017 with respect to an 

µ𝟏

µ𝟏
𝟐

𝒛𝟏

𝒛𝟐

𝒛𝟑

µ𝟐
𝟐

𝒛𝟒

𝒛𝟓

𝒛𝟔

µ𝟑
𝟐

𝒛𝟕

𝒛𝟖

𝒛𝟗

Data Level 2 Level 1 



appropriate cost function [6-10]. The mPCA component scores 𝑎𝑙
1 and 𝑎𝑙

2 may again 

be standardized by dividing by the square roots of 𝜆𝑙
1 and 𝜆𝑙

2, respectively.  

From Figure 2, we define that the probability along a branch linking level 1 to group 𝑙 
at level 2 as 𝑃(𝑙). Furthermore, we may define the probability along a branch linking 

group 𝑙 at level 2 to the data 𝑧 as 𝑃(𝑧|𝑙). The probability of both is therefore, 
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Assuming 𝑚 groups at level 2, we see immediately also that 
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These results lead on to Bayes theorem, which implies that  
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Here we shall use a multivariate normal distribution at level 2, which is given by 
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For small numbers of groups 𝑚 at level 2, one might set 𝑃(𝑙) to be constant. In this 

case, the conditional probability that a given shape 𝑧 belongs to group 𝑙 is given by, 
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For larger numbers of groups 𝑚 at level 2, it might be more appropriate to model 𝑃(𝑙)  

as a multivariate normal distribution also, by using   
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The conditional probability that a given shape 𝑧 belongs to group 𝑙 is now given by, 
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The extension of this approach to three or more levels is straightforward.   

2.2 Image Capture, Preprocessing, and Subject Characteristics 

 
Figure 3. Illustration of the 21 landmark points for dataset 1. 

MC simulations were used initially to explore age-related changes on facial shape in 

dataset 1. A template facial shape containing 21 landmarks points in three dimensions 

was constructed firstly, as shown in Figure 3. The effects of age were simulated by 

applying a scale factor that grew linearly with age (in arbitrary units) to all points in 

this template equally. All other “subjective” variation was included by altering the 

width of the face for all subjects randomly (irrespective of age). A small amount of 

normally distributed random error was added to all shapes additionally. However, there 

were essentially just two factors affecting facial shape in dataset 1. We expect the over-

all change in scale to be reflected at level 1 (age) of the multilevel model shown in 

Figure 1 and changes in the width to be reflected at level 2 (all other sources of varia-

tion). All shapes were centered on the origin and the average scale across all shapes 

was set to be equal to 1. Note that 30 age groups were used here with 300 subjects per 

group in the “training set” used in forming the original model and 100 per group for a 

separate testing dataset. The effects of outliers in the training set for single-level PCA 

and mPCA was explored by carrying out additional calculations with an extra 5% of 

the data containing strong outliers. Such shapes were outlying in terms of facial width 

and overall scale. Dataset 2 contained real data of 195 shapes from 27 white, male sub-

jects (aged 11 to 16) selected from two large comprehensive schools in the South Wales 

Valleys area in Rhonda Cynon Taf. Those with craniofacial anomalies were excluded. 

Ethical approval was obtained from the director of education, head teachers, school 



committees, and the relevant ethics committees of Bro Taf. Written informed consent 

was obtained before obtaining the 3D laser scans. 12 landmark points along the center-

line of the face and between the eyes were then used to describe facial shape. All shapes 

were GPA transformed and the average scale across all shapes was again set to be equal 

to 1. 

3  Results 

 
Figure 3. Eigenvalues for single-level PCA and mPCA level 1 (age) and level 2 (all 

other variations) for dataset 1.  

Eigenvalues for single-level PCA and mPCA are shown in Figure 3 for dataset 1. These 

results for mPCA demonstrated a single non-zero eigenvalue for the level 1 (age) and 

a single large eigenvalue for the level 2 (all other variations), as expected. Results for 

the eigenvalues for single-level PCA are of comparable magnitude to those results of 

mPCA, as one would expect, and they follow a very similar pattern.  

Modes of variation of shape for dataset 1 are presented in Figure 4. The first mode at 

level 1 (age) via mPCA and mode 1 via single-level PCA both capture increases in 

overall size of the face. The first mode at level 2 (all other variations) for mPCA clearly 

corresponds to changes in the width of the face. However, mode 2 via single-level PCA 

clearly mixes the effects of overall changes in size and width of the face. Such “mixing” 

is a limitation of single-level PCA.  

Results for the standardized component ‘scores’ for mPCA are shown in Figure 5. Com-

ponent 1 for level 1 (age) via mPCA demonstrates differences due to age clearly be-

cause the centroids are strongly separated. Indeed, there is a clear progression of these 

centroids with age. By contrast, component 1 for level 2 (all other variations except 

age) via mPCA does not seem to reflect changes due to age very strongly (not shown 



here). Results for both components 1 and 2 via single-level PCA again demonstrate a 

clear trend with age.  

 
Figure 4. Modes of shape variation in the frontal plane only for dataset 1: (upper left) 

= mode 1 via single-level PCA; (upper right) = mode 2 via single-level PCA; (lower 

left) = mode 1 at level 1 (age) via mPCA; (lower right) = mode 1 at level 2 (all other 

variations) via mPCA. (Landmark points are illustrated in Figure 3.) 

 
Figure 5. Centroids of standardized component scores for each of the 30 age groups 

(indicated by labels) for the test shapes in dataset 1 for (left) single-level PCA (modes 

1 and 2) and (right) mPCA for mode 1 at level 1 (age).  



Results for the (conditional) probabilities of group membership of Eq. (8) are shown as 

a heat map in Figure 6 for dataset 1. (Note that very similar results are seen by using 

Eq. (10) for a multivariate normal distribution for 𝑃(𝑙) and so these results are not 

presented here.) A strong trend in the maximal probabilities is observed in Figure 6 that 

clearly reflects the groupings by age. Age-group membership for each shape was pre-

dicted by choosing the group for which the conditional probability was highest. The 

Pearson correlation coefficient of actual versus predicted age group (from 1 to 30) is 

given by r = 0.99. 

 
Figure 6. Heat map of (conditional) probabilities of group membership of Eq. (8) for 

the 3000 test shapes used in dataset 1 (30 age groups and 100 shapes per group).   

The effect of adding outlying shapes to the training shape data in dataset 1 was to in-

crease the magnitude of eigenvalues and to add “random scatter” to points in the major 

modes of variation for both single-level PCA and mPCA. Model fits for the test set 

were seen to demonstrate a progression with age with that was less clear than in Figure 

5 due to this source of additional error. Furthermore, the overall scale of the (standard-

ized) component scores was increased and conditional probabilities of Eqs. (8) and (10) 

became less efficient at predicting group membership, e.g., Pearson’s r was reduced. 

Robust covariance matrix estimation and robust (median) averaging of covariance ma-

trices was found to reduce the effects of outliers in these initial studies.  



 
Figure 7. Eigenvalues for single-level PCA and mPCA level 1 (age) and level 2 (all 

other variations) for dataset 2.  

Eigenvalues for single-level PCA and mPCA are shown in Figure 7 for dataset 2. The 

results for mPCA demonstrate a single large non-zero eigenvalue for the level 1 (age) 

only, which is presumably due to the small number of landmark points and / or the 

small number of groups at this level. However, level 2 (all other variations) does now 

have many large non-zero eigenvalues, which is reasonable for “real data.” Results for 

the eigenvalues via single-level PCA are again of comparable magnitude to those re-

sults of mPCA and they follow a very similar pattern. mPCA calculations suggest that 

age contributed approximately 21% of the total variation for this 3D shape dataset.  

 
Figure 8. Mode 1 of shape variation at level 1 (age) via mPCA for dataset 2: (left) 

frontal plane; (right) sagittal plane. (Glabella (g), nasion (n), endocanthion left (enl), 

endocanthion right (enr), pronasale (prn), subnasale (sn), labiale superius (ls), labiale 

inferius (li), pogonion (pg), gonion (gn), philtrum (dpc), and stomion (sto).) 



Mode 1 at level 1 (age) via mPCA is shown in Figure 8 for dataset 2. This mode repre-

sents an overall increase in length of the face (and distance between the eyes) and a 

decrease in the distance between the endocanthion and pronasale. Broadly, one might 

interpret this as an elongation in facial shape, which is consistent with the growth of 

children [11]. Subtle differences are observed only between modes 1 at levels 1 (age) 

and 2 (all other variations) via mPCA, although we believe that these differences would 

become more apparent with increased number of landmark points. Mode 1 via single-

level PCA is similar to both of these modes via mPCA. Mode 2 via single-level PCA 

and mode 2 at level 2 via mPCA are similar; both modes appear to relate to shape 

changes relating to the eyes and prominence of the chin. However, all modes are diffi-

cult to resolve with so few landmark points, and future studies of age-related changes 

in facial shape in adolescents will include more such landmark points. 

 
Figure 9. Standardized component scores with respect to shape for dataset 2 for (left) 

single-level PCA and (right) mPCA at level 1 (age).  

Results for the standardized component ‘scores’ via mPCA are shown in Figure 9. 

Component 1 for level 1 (age) via mPCA demonstrates differences due to age clearly 

because the centroids are strongly separated. Indeed, a clear progression of these scores 

with age is again seen via mPCA at level 1. Component 2 for level 1 (age) shows a 

possible difference between ages 15 and 16, although this is probably due to random 

error because the sample size for age 16 was quite small. Component scores for level 2 

(all other variations) for mPCA again do not seem to reflect changes due to age very 

strongly (not shown here). This is an encouraging result given that we found only very 

subtle differences between modes 1 at levels 1 and 2 via mPCA. A clear trend with age 

is also seen in Figure 9 for both components 1 and 2 via single-level PCA.  

Results for the probabilities of group membership of Eq. (8) are shown as a heat map 

in Figure 10 for dataset 2. (Note that very similar results are again seen by using Eq. 

(10) for a multivariate normal distribution for 𝑃(𝑙) and so these results are not presented 

here.) “Miss-one-out” testing was used here, i.e., the model in each case was formed 

from all shape data except for the shape being tested. A trend is again observed in the 

maximal probabilities in Figure 11 that reflects the groupings by age, although this 

trend is not quite as clear as for the MC-simulated data. We expect that this trend will 



become clearer with increased number of landmark points. Again, age-group member-

ship for each shape was predicted by choosing the group for which the conditional 

probability was highest. The Pearson correlation coefficient of actual versus predicted 

group membership (from 11 to 16 years old) is given by r = 0.63.  

 
Figure 10. Heat map of (conditional) probabilities of group membership of Eq. (8) for 

the 195 shapes in dataset 2 (27 white, male subjects, aged 11 to 16 years old) using 

“miss-one-out” testing. 

4 Conclusions 

The effect of age on 3D facial shape data has been explored in this article. The formal-

ism for mPCA has been described and it was seen that mPCA allows us to model vari-

ations at different levels of structure in the data, i.e., age at one level of the model and 

all other variations at another level. Two datasets were considered, namely, MC-

simulated data of 21 3D landmark points and real data for 195 shapes of 12 3D land-

mark points for 27 white, male subjects aged 11 to 16 years old. Eigenvalues appeared 

to make sense for both datasets. In particular, examination of these eigenvalues sug-

gested that age contributed approximately 21% to the total variation in the shapes for 

the real data in dataset 2. Modes of variation also appeared to make sense for both 

datasets. Evidence of clustering by age group was seen in the component scores for 

both the simulated data and also the real data. An initial exploration of the associated 

multivariate probability distribution for such multilevel architectures was presented. 



Conditional probabilities were used to predict group membership. Results for the pre-

dicted and actual group memberships were positively correlated and the Pearson corre-

lation coefficients were r = 0.99 and r = 0.63 for the MC-simulated and the real data, 

respectively. These results are an encouraging initial exploration of the use of multi-

level statistical methods to explore and understand age-related changes in facial shape. 
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