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Abstract— This paper presents a contribution to the active
field of robotics research to support the development of social
skills and capabilities in children with Autism Spectrum Dis-
orders as well as Typically Developing children. We present
preliminary results of a novel experiment where classical roles
are reversed: children are here the teachers giving positive or
negative reinforcement to the Kaspar robot to make it learn
arbitrary associations between toys and locations where to
tidy them. The goal is to help children change perspective,
and understand that sometimes a learning agent needs several
repetitions before correctly learning something. We developed a
reinforcement learning algorithm enabling Kaspar to verbally
convey its uncertainty along learning, so as to better inform the
interacting child of the reasons behind successes and failures
made by the robot. Overall, 30 children aged between 7 and
8 (19 girls, 11 boys) performed 16 sessions of the experiment
in groups, and managed to teach Kaspar all associations in 2
to 7 trials. Kaspar only made a few unexpected associations,
mostly due to exploratory choices, and eventually reached
minimal uncertainty. All children expressed enthusiasm in the
experiment.

Keywords: Human-robot interaction, reinforcement learn-
ing, autism, autonomous robotics, children social skills,
teaching.

I. INTRODUCTION

In this short paper, we present recent progresses in devel-
oping robot learning abilities for the Kaspar robot [1], [2] in
order to make it learn from human feedback during social
interaction. More precisely, we propose a novel experiment
where children provide Kaspar with positive or negative
reinforcement to make it learn arbitrary associations between
6 different toys and 3 possible locations where these toys
could be placed. The main goal of this work is to contribute
to the development of social skills and capabilities in children
with Autism Spectrum Disorders.

A growing number of studies have tackled the complex
challenge of applying reinforcement learning techniques
for robot’s behaviour adaptation during social interaction
with humans (e.g. [3]). However, these studies have so far
mostly involved adults interacting with robots, and to our
knowledge, no one has yet addressed the question whether
enabling children to reinforce a robot while it learns arbitrary
associations could help develop social skills and perspective
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taking in these children [4], [5]. In contrast, robot learning
studies in social interaction contexts have typically focused
on extending reinforcement learning algorithm to make them
cope with the high degrees of uncertainty, volatility and non-
stationarity associated with non-verbal communication (e.g.
[6]).

In this study, we adopt a much simpler reinforcement
learning algorithm where the goal is to have the robot making
mistakes, and the children providing the right feedback to
make the robot correctly learn arbitrary associations. The
task consists in showing a set of locations and asking the
robot which toys among a small set should be placed there.
Prior to the experiment, the children are informed of the
correct associations. During the experiment, the children can
press two buttons (green and red) for either positively or neg-
atively rewarding the robot. To facilitate the understanding
by the children of the reasons the robot makes mistakes, the
strategy adopted here consists in having the robot verbally
convey the degree of uncertainty it has for each choice it has
to make. In the next section, we describe the task performed
by 30 children. We then describe the reinforcement learn-
ing algorithm, the results of the experiments, and a short
discussion.

II. EXPERIMENTAL PROTOCOL

We have set up a novel experiment (game)1 where the
Kaspar robot is interacting with two/three children (Fig. 1).

In this game, children work together to teach Kaspar how
to recognize and point at different animal toys in different
locations within the room. The children achieve this in a
number of steps. Importantly, before starting the sessions
Kaspar is already aware of having 6 potential toys with
different names. However, Kaspar does not know which
name is associated with which animal toy. The children take
it in turns to teach the robot to recognize the toys.
• Step 1: The children place bagged mystery toys around

the room with the help of the researcher making sure
that they are given sufficient space.

• Step 2: When the bags have been positioned, each child
teaches the robot to point at all bags successively. To
do this, one of the children physically manipulates the
arm of the robot to point at each of the bags, whilst
another child indicates to Kaspar when its arm is in the
right position with a button. Kaspar indicate when he
has logged the position. Once Kaspar has been shown

1This experiment has been approved by the ethical committee of Univer-
sity of Hertfordshire with the protocol number aCOM/SF/UH/03320(1).
The children’s parents provided written consents.



Fig. 1. (A) The researcher gives the instruction to students on how to give positive/negative reinforcement to the Kaspar robot, (B) Shows Kaspar
behaviour once he has learned about the name of a toy, (C)(D) Kaspar is pointing at different toys and guessing the name of the toys.

how to point at all of the locations, the children switch
roles and follow the same procedure again. This is
mainly to ensure that all present children have an equal
experience. Using this approach is similar in style to
clicker training, a reinforcement learning method which
is often used with dogs.

• Step 3: Once Kaspar has been shown how to point in
the direction of the bags, the children next reveal the
toys before moving onto the next part of the game.

• Step 4: Now all the toys are visible to Kaspar. The
children must teach Kaspar the names of these animals.
This is achieved by Kaspar by autonomously pointing
at each of the toys and say the name of the animal that
Kaspar thinks it is. Once again, the children answer by
using the keyfob and pressing either the green or the red
button dependent on Kaspar’s actions (green = correct
or red = incorrect). The children take this part in turns.
Kaspar continues to guess the names of the animal toys
until they can all be named correctly.

• Step 5: When all of animal toys can be correctly
identified by Kaspar the game concludes with a thanks
and farewell.

It should be noted that as Kaspar gets each animal correct
this should be eliminated from the list of potential animals
that are proposed for the ones that Kaspar is guessing
after. In addition, Kaspar should work through the animal
toys methodically and focus on an animal until it names

it correctly. Since the focus of the current pilot study is
to evaluate the performance of the proposed reinforcement
learning model and to enable the robot to learn-on-the-fly in
interaction with children, we have implemented and tested
a simplified version of the experimental scenario in which
Kaspar already knows how to point to different locations in
an autonomous manner and the main goal is to make it learn
arbitrary associations between the toys and locations.

III. ROBOT LEARNING ALGORITHM

The proposed algorithm is summarised in Algorithm 1. It
is based on the reinforcement learning framework [7] where
the set of discrete actions A = {a1, a2, ..., ak} represent
the possible toys among which the robot can choose, and
the set of discrete states S = {s1, s2, ..., sj} represent the
possible locations where to put these toys. For the experiment
described in Section II, we consider 6 toys and 3 locations.
Learning the value of discrete action at ∈ A selected at time
step t in state st ∈ S is done through Q-Learning [8], which
is a parsimonious algorithm for reinforcement learning with
discrete state and action spaces:

∆Qt(st, at) = α
(
rt + γmax

a
(Qt(st+1, a))−Qt(st, at)

)
(1)

where α is a learning rate and γ is a discount factor. The
probability of executing action a at timestep t is given by a



Algorithm 1 Interactive reinforcement learning algorithm
1: Initialize Q0(s, a)
2: for t = 0, 1, 2, ... do
3: Observe the current state st (i.e., location)
4: Select discrete action at (Eq. 2)
5: Communicate choice uncertainty Ht (Eq. 3)
6: Observe reward rt given by the children
7: Update Qt+1(st, at) (Eq. 1)
8: end for

Boltzmann softmax equation:

P (a|st) =
exp (βQt(st, a))∑
a′ exp (βQt(st, a′))

(2)

where β is the inverse temperature parameter which controls
the exploration-exploitation trade-off. Finally, following [9],
we measure the choice uncertainty as the entropy in the
action probability distribution:

Ht = −
∑

a

(
P (a|st) log2 P (a|st)

)
(3)

This choice uncertainty is verbally expressed by the robot
before each action execution, so as to help the children
understand why the robot may hesitate, be sometimes sure of
its answer, and sometimes not. Figure 2 in the results section
illustrates the different types of phrases that the robot may
use to express different levels of choice uncertainty.

IV. RESULTS

Before testing this paradigm with children with autism,
this paper presents the results of a first study with Typically
Developing (TD) children. Kaspar performed 16 sessions
of this experiment with 30 children aged between 7 and
8 (19 girls, 11 boys). Each session included a group of
3 children. Some groups asked to do one more session
of the experiment since they really enjoyed it. For each
group of children, Kaspar was successively confronted to
3 problems, each one consisting in learning which among
6 toys should be placed in a given location. The robot
thus faced a total of 48 problems during 202 trials. On
average, it took the robot 4.21±1.46 trials to learn each
(location, toy) association, with a minimum of 2 trials and
a maximum of 7. Figure 2 shows the trial-by-trial evolution
of the robot’s choice uncertainty averaged over the learning
of all experienced problems. Uncertainty was measured as
the entropy in probability distribution over the 6 toys. The
maximal uncertainty thus starts at 2.5850, which is obtained
for 6 equiprobable actions (i.e.,, P = 1/6) with Equation
3. This initial maximal uncertainty makes the robot verbally
express that it initially has no clue about the correct toy
associated to the current location. For an uncertainty around
1.5, the robot verbally expresses that it has an idea about the
correct toy but is not certain. For an uncertainty below 0.5,
the robot verbally expresses that it is sure of the answer.
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Fig. 2. Trial-by-trial evolution of the robot’s choice uncertainty averaged
over the learning of all experienced problems. Uncertainty was measured
as the entropy in probability distribution over the 6 toys. For each level of
entropy, the robot used a different verbal expression to convey its current
uncertainty in selecting a toy for the considered location.
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Fig. 3. Final Q-values obtained on average at the end of learning problems.
Problems are here regrouped depending on which toy number was the
correct answer to the problem (lines in the figure). Columns represent each
possible toy number. Colors indicate the final Q-value of a given toy number
averaged over all problems. Kaspar successfully learned the correct toys in
each problem.

Overall, Figure 2 illustrates that the children successfully
managed to make Kaspar progressively reduce its choice
uncertainty along learning. The final entropy at the end of
learning problems was on average 0.73±0.58. Moreover,
Figure 3 shows that at the end of each learning problem,
Kaspar found the correct toy: the represented matrix is
diagonal, illustrating that the final Q-value of the correct toy
in a given problem was always higher than the Q-values
learned for the other toys.

Importantly, among the total of 202 trials performed by
the robot in interaction with the 30 children, Kaspar made



a single perseverative error (selecting two consecutive toys
despite the negative feedback given by the children after the
first selection), and a single win-shift (picking a different
toy despite the positive feedback given by the children after
the previous selection). These cases were due to exploratory
choices occasionally made by Kaspar. These events were
rare because we used a high learning rate (α = 0.6) and
a high inverse temperature (β = 8) for these experiments.
Moreover, the robot picked the correct toy by chance at the
first trial of a given problem only 7 times in total, maximum
once per session of the experiment (thus once per group of
children). The rarity of this event thus avoided children to be
disturbed by the choice behaviour of the robot. Finally, and
of particular importance, only 3 children gave an incorrect
feedback to Kaspar, and this happened only once by each
of these 3 children. Strikingly, these 3 cases where false
positives where children rewarded the robot for a wrong
choice, and no case of false negative occurred in our task.

V. CONCLUSIONS AND FUTURE WORK

In this short paper, we presented recent progresses in
developing robot learning abilities for the Kaspar robot [1],
[2] in order to make it learn from human feedback during
social interaction. The goal is to help develop children’s
social skills by putting them in the position of teachers
having to assign feedback to the robot to make it learn. We
used a simple reinforcement learning algorithm combined
with verbal expression of the robot’s choice uncertainty,
in order to facilitate the understanding by the child of the
reasons the robot makes mistakes.

The experiment yielded promising results, where all tested
30 TD children managed to make the robot progressively
reduce its choice uncertainty and learn (toy, location) asso-
ciations in less than 7 trials. Moreover, the robot displayed
a coherent behaviour with very rare perseverative errors
and win-shifts. These results, plus the positive impression
expressed by children in the post-experiment questionnaire,
suggest that the proposed paradigm is adequate and can now
be transferred to children with autism.

In future work, we first plan to perform the experiment
with children with autism and investigate the differences in
teaching behaviour that they may adopt compared to TD
children. Later, we also plan to extend the robot learning
algorithm to different levels of adaptivity to make it look
more or less smart in the eyes of interacting children. The
goal would be to have each group of children interact with 2
different Kaspar robots, one being a fast learner and the other
a slow learner, to help children with autism understand that
different agents may need different numbers of repetitions,
and different types of feedback to learn a given task. Besides,
it would be interesting to compare learning performance of
the present algorithm with a version where Kaspar does
not verbally convey information about its choice uncertainty,
to evaluate the impact of this communication on children’s
teaching behaviour during the task.
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