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ABSTRACT

Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic
and the molecular interstellar medium (ISM) is a complex observational task. Here we address cloud formation processes by combin-
ing Hr self absorption (HISA) with molecular line data. Column density probability density functions (N-PDFs) are a common tool
for examining molecular clouds. One scenario proposed by numerical simulations is that the N-PDF evolves from a log-normal shape
at early times to a power-law-like shape at later times. To date, investigations of N-PDFs have been mostly limited to the molecular
component of the cloud. In this paper, we study the cold atomic component of the giant molecular filament GMF38.1-32.4a (GMF38a,
distance=3.4 kpc, length~ 230 pc), calculate its N-PDFs, and study its kinematics. We identify an extended HISA feature, which is
partly correlated with the '*CO emission. The peak velocities of the HISA and '*CO observations agree well on the eastern side of
the filament, whereas a velocity offset of approximately 4 km s~! is found on the western side. The sonic Mach number we derive
from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is
at subsonic and transonic velocities. The column density of the CNM part is on the order of 10?° to 10*' cm™2. The column density
of molecular hydrogen, traced by '*CO, is an order of magnitude higher. The N-PDFs from HISA (CNM), H1 emission (the warm
and cold neutral medium), and '*CO (molecular component) are well described by log-normal functions, which is in agreement with
turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the
high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the
filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already
shows high column density peaks, active star formation, and evidence of related feedback processes.

Key words. ISM: clouds — ISM: atoms — ISM: molecules — Radio lines: ISM — Stars: formation

1. Introduction

* All the HISA data are available in fits format at the CDS via anony- ) )
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-  Stars, one of the key components of our universe, form in molec-
strasbg.fr/cgi-bin/qcat?J/A+A/. ular clouds which are composed mainly of molecular hydrogen
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(e.g., Larson 2003; Stahler & Palla 2005; McKee & Ostriker
2007; Dobbs et al. 2014; Tan et al. 2014), yet the formation pro-
cess of molecular clouds is still under debate. Various studies
show molecular clouds form out of relatively diffuse atomic hy-
drogen gas (e.g., Larson 1981; Blitz et al. 2007; Clark et al.
2012; Hennebelle & Falgarone 2012; Dobbs et al. 2014; Stern-
berg et al. 2014; Klessen & Glover 2016). Different processes
have been proposed (e.g., Hennebelle & Falgarone 2012; Dobbs
et al. 2014; Klessen & Glover 2016). Basically, the atomic gas
contracts and the increased column density shield the cloud from
the interstellar UV radiation and cool down to form molecular
gas. The cold neutral medium (CNM) with a typical temperature
in the range of 40 to 100 K and volume density > 10 ~ 100 cm™>
(McKee & Ostriker 1977; Wolfire et al. 1995; Wilson et al. 2010)
is the key component connecting the diffuse atomic gas with the
molecular gas. Thus, observational constraints on the physical
properties of the CNM, such as density distribution and kinemat-
ics, are crucial to understanding the formation of the molecular
cloud.

Although 21cm Hi1 line emission offers a straightforward
tool to study atomic hydrogen, it is difficult to determine the
properties of the gas from which it arises. The main challenge
is the coexistence of the warm neutral medium (WNM) and the
CNM assumed to be in pressure equilibrium (McKee & Os-
triker 1977; Wolfire et al. 1995, 2003). Studies of Hr self ab-
sorption (HISA) overcome this problem, as they only trace the
CNM. HISA was first detected by Heeschen (1954, 1955) to-
wards the Galactic center. HISA features occur if cold, dense
atomic hydrogen is in front of a warmer emission background
(e.g., Knapp 1974). Since then, a number of observations that
have been carried out with single dish telescopes and interfer-
ometers, and HISA features were found to be widespread in the
Milky Way (e.g., Riegel & Crutcher 1972; Knapp 1974; Heiles
& Gordon 1975; McCutcheon et al. 1978; Levinson & Brown
1980; Minn 1981; Shuter et al. 1987; van der Werf et al. 1988;
van der Werf & Goss 1989; Montgomery et al. 1995; Gibson
et al. 2000; Kavars et al. 2003; Gibson et al. 2005a; Kavars et al.
2005; Dénes et al. 2018). The spin temperature of the cold Hi
responsible for HISA ranges from ~10-60 K, (e.g. Gibson et al.
2000; Kavars et al. 2005; McClure-Griffiths et al. 2006). A spe-
cial case of the HISA features, so-called H1 narrow self absorp-
tion (HINSA) features, were studied towards nearby molecular
clouds, revealing small linewidths on the order of <1 km s7! (Li
& Goldsmith 2003; Goldsmith & Li 2005; Krc¢o et al. 2008; Kr¢o
& Goldsmith 2010; Zuo et al. 2018). However, studies charac-
terizing the column density and the kinematic distribution of the
CNM in large maps are still rare.

Recent observations have revealed a group of large (>
100 pc) and massive (> 10° M) filaments, known as giant
molecular filaments (GMFs), which may be linked to Galactic
dynamics and trace the gravitational mid-plane in the Milky Way
(MW) (Jackson et al. 2010; Goodman et al. 2014; Wang et al.
2015; Zucker et al. 2015; Abreu-Vicente et al. 2016; Li et al.
2016; Wang et al. 2016; Zucker et al. 2018; Zhang et al. 2019).
These observations show that GMFs are the largest coherent gas
structures in our Milky Way, and often contain different evolu-
tionary stages of the star formation regions simultaneously in the
same filament (Goodman et al. 2014; Zucker et al. 2015), which
makes them ideal targets for studying the CNM properties in dif-
ferent environments that lead to molecular cloud formation.

A common tool to study molecular clouds are the probabil-
ity density functions of the column density (N-PDFs) (see e.g.,
Ostriker et al. 2001; Lombardi et al. 2008; Kainulainen et al.
2009; Alves de Oliveira et al. 2014; Sadavoy et al. 2014; Abreu-
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Vicente et al. 2015; Stutz & Kainulainen 2015; Schneider et al.
2015; Lin et al. 2017; Chen et al. 2018). The shape of N-PDFs
is predicted to depend on the physical processes acting within
the cloud. In the early evolution of a molecular cloud, turbu-
lent motions within the cloud dominate and the N-PDF reveals
a log-normal shape. The width of the log-normal N-PDF is also
determined by the turbulent motions (see e.g., Federrath et al.
2010; Ballesteros-Paredes et al. 2011; Kritsuk et al. 2011; Fed-
errath & Klessen 2013; Burkhart et al. 2015a; Bialy et al. 2017b).
In this scenario, more evolved clouds develop a high-density
power-law tail, indicating that the cloud structure has evolved
and gravity dominates. Observations indicate that star-forming
clouds show such tails, lending support to this scenario (e.g.,
Kainulainen et al. 2009; Schneider et al. 2013). The slope of the
power-law N-PDF can be related to evolutionary stages of the
clouds with steeper slopes possibly indicating with earlier evo-
lutionary stages (e.g., Kritsuk et al. 2011; Federrath & Klessen
2013; Ward et al. 2014).

High-mass star-forming regions reveal multiple power-laws,
having a shallower slope for the highest density regions. This in-
dicates a slower collapse for such regions (Schneider et al. 2015).
Lombardi et al. (2015) and Alves et al. (2017) present a contrast-
ing argument, reporting that all N-PDFs have a power-law shape
and the log-normal shape could be an observational bias, a view
point that has triggered considerable controversy (Ossenkopf-
Okada et al. 2016; Chen et al. 2018; Kortgen et al. 2019a).
Theoretical work and simulations of molecular clouds also re-
produce N-PDFs in different forms (e.g., Vazquez-Semadeni
1994; Federrath et al. 2010; Federrath & Klessen 2012; Burkhart
et al. 2015a). Burkhart et al. (2015b) and Imara & Burkhart
(2016) studied nearby molecular clouds, and report H1 N-PDFs
with a log-normal shape, without any power-law tail. Rebolledo
et al. (2017) studied the Carina and Gum 31 molecular complex,
where the H1 N-PDF also shows a log-normal shape.

To investigate the transition of atomic to molecular hydro-
gen in more detail, we examine the hydrogen content with HISA
measurements in detail for GMF38.1-32.4a (GMF38a, Ragan
et al. 2014). With a velocity range between 50 and 60 km s~!
(Ragan et al. 2014), GMF38a is at a median distance of 3.4 kpc
from the Sun (Galactocentric distance ~5.9 kpc) estimated from
the Bayesian Distance Estimator tool (Reid et al. 2016). The
top panel of Fig.1 shows the integrated '3*CO emission from
the GRS survey (Jackson et al. 2006). Our goal is to study the
kinematics of this GMF in the molecular and atomic hydrogen
traced by '3CO emission and HISA, respectively. Furthermore,
we analyze N-PDFs for the atomic and molecular hydrogen, and
compare their properties.

2. Observations and Methods
2.1. The H1 21 cm line and continuum

The H121 cm line observations of GMF38.1-32.4 are part of the
H1, OH, Recombination line survey of the Milky Way (THOR;
Beuther et al. 2016 and Wang et al. 2019). The survey observed
a part of the first quadrant of the Galactic plane (I = 14.0 - 67.4°
and |b| < 1.25°) with the Karl G. Jansky Very Large Array
(VLA) in C-configuration at L band from 1 to 2 GHz, cover-
ing the H1 21 cm line, 4 OH lines, 19 Ha recombination lines,
and eight continuum bands between 1 and 2 GHz (Beuther et al.
2016). Each pointing was observed for 4 X 2 minutes to ensure a
uniform uv-coverage. The spectral window for the H1 21 cm line
was set to have a bandwidth of 2 MHz (~ 400 km s™!) and a spec-
tral resolution of 3.91 kHz (~ 0.82 km s™'). The data calibra-
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tion was done with CASA! (McMullin et al. 2007). The flux and
bandpass were calibrated with the quasar 3C 286. J1822-0938
was used for the phase and gain calibration (see also Beuther
et al. 2016).

To recover the large scale structure, we combined the C-
configuration data with the Hr1 Very Large Array Galactic Plane
Survey (VGPS, Stil et al. 2006), which consists of VLA D-
configuration data combined with single-dish observations from
the Green Bank Telescope (GBT). We subtracted the continuum
in the visibility datasets (with the CASA command uvcontsub),
and used the multiscale CLEAN in CASA? to image the three
adjacent tiles of continuum-subtracted C-configuration data to-
gether with D-configuration data. A pixel size of 4”, a spectral
resolution of 1.5 km s~', and a robust weighting value of 0.45
were used. The resulting images, which have a synthesized beam
between 20” to 40” over the entire coverage of the THOR sur-
vey, were all smoothed to a common resolution of 40”. The im-
ages were further combined with the VGPS images (D+GBT)
using the task “feather” in CASA to recover the large-scale struc-
ture. We compared the flux of the combined H 1 data with the sin-
gle dish GBT data from VGPS. The flux agrees with each other
within 5.7%. Considering that the typical absolute flux calibra-
tion uncertainty for the VLA at 1.4 GHz is ~5% (Beuther et al.
2016), it is reasonable to conclude that our combined H1 data
fully recover the extended emission. The noise level in the line-
free channel is about 4 K per 1.5 km s™!.

Additionally, the THOR C-configuration only Hr line with
the continuum data (Beuther et al. 2016) are used to measure
the Hr1 optical depth towards bright continuum sources in the
background. The THOR+VGPS 1.4 GHz continuum data (VLA
C+D+GBT, Wang et al. 2018) are employed to estimate the dif-
fuse continuum emission in the background. By comparing the
flux density of the known SNRs (Green 2014), Anderson et al.
(2017) showed that the flux retrieved from the combined contin-
uum data is consistent with the literature. Thus, the continuum
data also recover the extended emission.

2.2. Hi self absorption

The integrated H1 emission over the velocity range 50—
60 km s~!, shown in the top panel of Fig. 1, reveals diffuse emis-
sion covering a larger area than the '3*CO emission. The strongest
H 1 emission does not coincide with 1*CO emission, but an anti-
correlation between the H1and '*CO emission is suggested. Our
analysis in the following section shows that this anti-correlation
is due to the HISA: the cold atomic hydrogen absorbs the emis-
sion from an emitting atomic hydrogen cloud in the background,
that is, H1 self absorption. The terminology “H1 self absorption”
can be misleading. The emission and absorption processes can
occur in the same cloud, but it is possible that the H1 emis-
sion originates from a distant background cloud, which covers
a similar or larger range of LSR velocities as the absorbing fore-
ground cloud as illustrated in Fig.2. A comprehensive discus-
sion about the radiative transfer of HISA features can be found
in Gibson et al. (2000), Kavars et al. (2003), Li & Goldsmith
(2003), and Goldsmith & Li (2005). In general, we observe an
emitting foreground and background H1 cloud, which have spin
temperatures, Tt, and T, respectively. The cold, absorbing H1
cloud can be located between these two emitting clouds, having
the spin temperature, Tyisa. Furthermore, we observe 1.4 GHz
continuum emission, which can be a diffuse Galactic compo-

! http://casa.nrao.edu; version 4.1.0
2 version 5.1.1

nent or arise from discrete strong sources. For simplicity, we as-
sume that the continuum emission is situated in the background.
In this, we will exclude the possibility of strong, discrete con-
tinuum sources and consider only the weak diffuse continuum
background when estimating the HISA properties. In Sect. 4.3,
we will utilize strong continuum sources to determine the optical
depth of the atomic hydrogen, which can help us to constrain the
spin temperature of HISA. Following the equation of radiative
transfer in Rybicki & Lightman (1979), the measured on and off
position brightness temperatures of the line above the continuum
at a certain velocity are:

Toff = ng(l - e—ng) + Tbg(1 - e_rbg )e_‘rﬂ"v + Tconte_(r{g*—rbg) - Tconh
Ton = Trp(1 — &™) + Tygisa(l — e M50 ™t
Tbg(l — e The )e—(ng+T1-usA) + Tconte_(ng+THISA+Tbg) = Teont

(H
where T¢g, Thg, THisA are the corresponding optical depths of each
component shown in Fig.2 and 7oy is the continuum bright-
ness temperature. During the data reduction, we subtract the con-
tinuum emission from the H1 visibility data (see also Sect. 2),
which is indicated by the last term (=70, See Sect. 2). An ex-
ample spectrum illustrating T, and fitted 7T is shown in Fig. 3.

Assuming on and off spectra share the same 7', and calculating
the difference, we get:

Ton-oft = Thisa(l — ™™™ — Tye(1 - e The)e (] — g7 THIsA)
—_ Tcont(l — e_THISA )e_(ng-'—Tbg)
= (THISA - Tbg(l - e_Tbg) — TCOnte_Tbg) > (1 _ e—THISA)e_Trg.
2

This equation can be further simplified by introducing the di-
mensionless parameter p (e.g., Feldt 1993; Gibson et al. 2000):

Tbg( 1- C_Tbg)
Totf .

p 3

That means for p = 1, there is no foreground emission and for
p = 0.5, the foreground and background emission are equal.
Measuring p is difficult and it usually has to be assumed. As
a last simplification, we assume that the foreground and back-
ground clouds are optically thin and therefore 7y, and 7y, are
small (Gibson et al. 2000). This results in:

Ton—off = (THISA - p Tof — Tcont) X (1 - e_THISA)- (4)

Ton and Tog can be derived from our H1 emission line observa-
tions, 7 copnt 1S from our THOR+VGPS 1.4 GHz continuum data
(see Sect. 2). With these observable quantities we can estimate
the properties of the HISA using Eq. 4. Specifically, we derive
the cloud spin temperature Tysa and the optical depth Tyga-
We cannot disentangle the spin temperature and the optical
depth. Figure 4 shows an example of the relation between Tyisa
and Tyisa for the region close to the strong continuum source
G34.256+0.146 of Tog = 103K, Ton = S0K, and Teone = 17K
The different colors represent different values of p from 0.4 to
1. The black vertical line indicates the temperature of the cos-
mic microwave background radiation (Fixsen et al. 1996; Fixsen
2009; Planck Collaboration et al. 2016) T = 2.7 K. Since the
L band continuum background emission in the Galactic plane is
larger than O (bottom panel Fig. 1), the spin temperature must be
larger than 2.7 K. The general interpretation of the curves is that
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Fig. 1. Overview of the giant molecular filament GMF38a. The top panel shows the '3CO (GRS, Jackson et al. 2006) integrated intensity contours

in the range v gg = 50 — 60 kms™!

overlaid on integrated H1 emission in the same velocity range. The black ellipses show the “off-positions”

whose spectra are shown in Fig. 5 and the black “X” signs mark positions whose spectra are show in Fig. 6. The bottom panel shows the same
13CO integrated intensity contours overlaid on 1.4 GHz continuum emission from the THOR survey (Wang et al. 2018). The contours in the top
panel indicate integrated '*CO emission levels of 5, 10, 20, and 30 K km s~!. The contours in the bottom panel indicate integrated '*CO emission
levels of 5 K kms™! for reference. The dashed box in the top panel outlines the region that is discussed in the following sections and shown in

Fig.7,9, 11, 14, and 19.

a higher optical depth is necessary to produce the assumed ab-
sorption feature for higher spin temperatures. This dependency
becomes very steep at a certain point, depending on p. In Sect. 4
we shall discuss the relations among 7, spin temperature, and p
in detail.

2.3. Background estimate to measure Ty

To extract a reliable HISA feature, it is crucial to know the back-
ground H1emission. Different methods can be found in the liter-
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ature to perform this task. The first one is to use absorption-free
H1emission spectra, located close to the absorption feature (e.g.,
Gibson et al. 2000), referred to as “off-positions”. This method
assumes that the H1 background emission stays spatially con-
stant over the absorption feature, which might be true for spa-
tially small HISA features. We tested this method by extract-
ing Hi1 spectra from five different regions, which are labeled as
“Off 1” to “Off 5” in Fig. 1. These off-positions were chosen
to be regions without significant 1.4 GHz continuum emission
and without '*CO emission. Furthermore, these regions did not
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g

ng THISA Tbg Tcont

Fig. 2. Schematic view of the observed H1 components. The cold ab-
sorbing cloud (HISA) with temperature Tyisa is surrounded by emitting
clouds with temperature T, and Ty,. Behind the H1 clouds, several con-
tinuum sources can be situated, either diffuse or discrete (marked with

a star).

120 1 T T T T T
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0 b—1 ] ] ] ] a
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Fig. 3. Sample spectrum showing a prominent HISA feature around
Ve ~ 35km s7!. The actual H1 spectra is shown in black (T,,) and
the estimated background emission using a second order polynomial fit

(see Sect. 2.3) is shown in blue (Tog).

show significant self absorption features at the velocity range of
visr = 50 — 60 kms~!. The corresponding spectra are presented
in Fig. 5. These spectra reveal large variations, which makes it
difficult to use them as a common off-position.

The second method utilizes a fit to the absorption free chan-
nels of the Hr spectra to get Tof. This method is applied fre-
quently, using different functions to fit the H1 emission, for ex-
ample, linear fits (e.g., Minn 1981; Montgomery et al. 1995;
McClure-Griffiths et al. 2006) or polynomials with different or-
der (e.g. Myers et al. 1978; Bowers et al. 1980; Shuter et al.
1987; Kavars et al. 2003; Li & Goldsmith 2003). Figure 6
presents five different spectra from different positions indicated
in Fig. 1. We used second and fourth order polynomials to fit the
spectra for the velocity range around the HISA (v sg = 40 — 50
and 60 — 70kms™"). A polynomial function of the third order
gave very similar results as the polynomial of the second order,
thus, for clarity, we do not show it here.

It is difficult to estimate which function is more suitable to
fit the H1 spectra. For regions without absorption, we expect that
the fitted spectra represents the actual spectra. Spectrum 3 in
Fig. 6 shows such a region and both functions represent the H1
spectra well. Spectra 2 and 4 in Fig. 6 represents Hr absorption
features and the difference between the second and forth order
polynomial is small. In contrast to this, Spectra 1 and 5 in Fig. 6
reveal a large difference between the fit functions. The fourth or-
der polynomial fit is much higher (~50 K) than the second order
polynomial for Spectrum 1, but much lower than the second or-

0.7 0.91.0

REE
IR IR

optical depth 7
—

R F R
Spin Temp Tysa [K]

Fig. 4. Optical depth as a function of the spin temperature (as intro-
duced in Eq.4) for the region close to the strong continuum source
G34.256+0.146 with Tog = 103K, Toy = 50K, and Teon = 17 K. The
optical depth of 7 = 3.5 is indicated with a black horizontal line. The
temperature of the CMB is indicated at 7 = 2.7 K with a black vertical
line.

120

100

80

60

T [K]

40

100
visg [kms™!]

Fig. 5. Selected H1 emission spectra around the GMF38a, which can
be used as “off-positions”. The regions we used for the extraction are
shown in Fig. 1. The black line shows the mean spectrum of all five
off-spectra and the gray shaded area indicates the velocity range of the
HISA feature (visg = 50 to 60 km s™").

der polynomial for Spectrum 5. It is not obvious which function
describes the H1 spectra more accurately. However, the fourth
order polynomial might overestimate the actual spectra as steep
slopes within the fitted velocity range would result in high val-
ues for the fitted spectra. In contrast to this, the second order
polynomial might underestimate the H1 emission for this spec-
tra. Hence, the fourth order polynomial might be an upper limit
and the second order polynomial might be a lower limit. We will
use both functions in the following analysis to estimate the un-
certainty of T, and to extract HISA.

Another method was to utilize the second derivative repre-
sentation of the spectrum as described in Kr¢o et al. (2008). Krco
et al. (2008) demonstrated that HINSA feature would become
dominant in the second derivative representation. We also tested
this method. For narrow HISA spectra (such as Spectrum 2 in
Fig. 6) the second derivative technique can recover the HISA
spectra relatively well. However, for broad spectra (e.g., Spec-
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trum 1 and Spectrum 5), the HISA spectra were filtered out by
the method. Therefore, we do not use this method in our analy-
Sis.

McCutcheon et al. (1978), Winnberg et al. (1980), and An-
dersson et al. (1991) used one or several Gaussian profiles to fit
the spectra and to derive the off spectra. However, as pointed
out by McCutcheon et al. (1978), this method only works if the
absorption feature is very narrow, the shape of the total spec-
trum is simple, and can be represented by a few Gaussians.
On the other hand Dénes et al. (2018) used a machine learning
method, the Autonomous Gaussian Decomposition algorithm
(AGD; GAUSSPY) developed by Lindner et al. (2015), to de-
compose the emission spectra while masking out the HISA fea-
tures to derive the off spectra. However, they only need to deal
with 47 spectra and it is not clear how well this method would
work for our region with ~ 2 million spectra. It is definitely
worthwhile to test the machine learning method in the future,
but it is beyond the scope of this paper.

The mean spectrum of the five off-positions shown in Fig. 5
is shown in gray in Fig. 6 as well. While the mean off-position
represents the H1 spectra of T, well in some cases (e.g., Spec-
trum 2 in Fig. 6), but in general it does not (e.g., Spectrum 1 or
5 in Fig. 6). There are apparent variations in the H1 spectrum at
velocities outside of the HISA feature, such the assumption of a
uniform Hr emission background does not seem to be adequate.
The mean spectrum method was also discussed by Myers et al.
(1978) and McCutcheon et al. (1978), and they concluded that it
is not suitable for HISA studies for the same reason. Hence, we
will use the polynomial fit method to extract the HISA feature
rather than using a mean off-spectrum.

The noise of the extracted HISA spectra measured at the ve-
locity ranges in visg = 40 — 50 and 60 — 70kms~"' is ~ 8 K
per 1.5 km s~! for the second order polynomial fit, ~ 5 K for
the forth order fit. Since a forth order polynomial function can
always fit the small bumps in the spectra better than the second
order polynomial function, it is no surprise the HISA spectra ex-
tracted with the forth order fit have smaller noise.

2.4. HISA extraction

With the methods described in Sect. 2.3 we can estimate T in
Eq. 4. Using this information, we can measure the depth of the
absorption feature (Tog — Ton). To analyze the absorption fea-
tures, we use a Gaussian curve to fit them. This allows us to
study the exact depth of the absorption features and their kine-
matics. Fits that result in a peak intensity higher than 25 K (~ 3
and 5 times the noise level of the HISA spectra extracted with
second and forth oder fit, respectively), 1.5 km s~l< full width
half maximum (FWHM) linewidth (=channel width) <20 km s~!
are considered as good fit. The peak values of the fitted Gaussian
curves are shown in Fig. 7 for different ways of estimating 7.
The absorption depth of the HISA shows values between ~30
and ~80 K.

As discussed in Sect. 2.3, different methods to estimate T
resulted in differences for the peak value. Those based on the
spatially averaged off-positions (bottom panel in Fig.7) show
unrealistically large values at the edges as well as in the presence
of continuum sources. In the first case, as the Galactic Hr1 emis-
sion drops at the edge, this method falsely identifies the edge
regions as absorption features. In the second case, the method
picks up the strong H1 absorption towards the bright continuum
emission in the background, as the structure of the continuum
emission is clearly visible (bottom panel in Fig. 7).
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Fig. 6. Selected H1 emission spectra corresponding the positions indi-
cated in Fig. 1. The black lines represent the H1 spectra, the colors cor-
respond to the HISA. The gray spectra indicate the mean of the five off-
positions presented in Fig. 5. The blue and red dashed lines represent the
fits of the background to the HISA spectrum for a polynomial of second
and fourth order, respectively, using the velocity range of vi sg = 40—50
and 60 — 70km ™! for the the baseline of the fit. The blue and red solid
lines show the difference between fitted H1 spectra and the measured
Hi1 spectra (Ton—of in Eq.4) for a polynomial of second and fourth or-
der, respectively. We fitted Spectra 1, 2, and 5 using a Gaussian function,
shown by the black solid curve on top of the HISA spectra.

Fitting T,y of each Hr spectra with a polynomial func-
tion circumvents these problems. Hence, the polynomial fitting
method is more appropriate for our analysis and in the following
we focus on the determination of 7, from HISA-free channels
in the T, spectrum.

We found large differences in T,g estimates made with poly-
nomials of second order forth order, in particular towards re-
gions around / = 35° and / = 33.8°(Fig.7). Using a forth or-
der polynomial for the background estimate, we found signif-
icantly more absorption due to a possible overestimate of the
background emission (Sect. 2.3). Other regions are not affected
significantly by the choice of the fit function, for instance, the
regions around spectrum 1 or 2. The uncertainties of the HISA
properties introduced by different polynomial function fittings
will be discussed in Sect. 4.7.

3. Results
3.1. Kinematics

In this section, we discuss the kinematic properties of the HISA
features. In contrast to the absorption depth, the peak velocity is
not significantly affected by the choice of the fit function. There-
fore we present here only the velocity structure using the sec-
ond order polynomial for the determination of T,g. The velocity
structure revealed by the fourth order polynomial is similar.

To compare the kinematics of the HISA feature with those of
the 13CO data, we resampled both the '*CO and Hi1 data to the
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spectrum shown in Fig. 5. The white contours represent the integrated '*CO emission at levels of 5 Kkm s~ for reference. The circles from left to
right marked the same positions as in Fig. 1 where Spectra 1 to 5 shown in Fig. 6 are extracted, respectively.

same spatial and velocity resolution (pixel size of 22" and spec-
tral channel width of 1.5 km s™!) and applied Gaussian fitting to
the data sets pixel by pixel to determine the peak velocity and
FWHM linewidth. Due to limited sensitivity and spectral reso-
lution of our H1 data, we cannot disentangle multiple velocity
components. Therefore, we chose to fit both the '3CO and HISA
data with a single Gaussian component for simplicity and con-
sistency. The Gaussian fitting to the HISA spectra is described
in Sect. 2.4. For the '3CO data, fits that result in a peak inten-
sity higher than 2 K (~10 times noise level of the '*CO datacube
at 1.5 km s7! channel width), 1.5 km s~' < FWHM linewidth
<20 km s~! are considered good fits for the '*CO data.

The peak velocity maps are presented in Fig.9. The '3CO
peak velocity shows that the majority of the filament is at ~54—
58 km s~!. The western part of the '*CO filament around / = 34°
is slightly red-shifted compared to rest of the filament, and has a
velocity of ~57-58 km s~!. For this region, the peak velocities re-
vealed by the HISA feature are at ~54-55 km s~!, which is about
3-4kms~! lower than the '*CO velocity. This can also be seen
in the right panel of Fig. 10, where we present a histogram of the
HISA and '3CO peak velocities for the eastern and western side
of the GMF, respectively. In contrast to this, the eastern side of
the filament around / = 36.5° shows a close correlation of the
peak velocities as shown in the left panel of Fig. 10. We will dis-
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Fig. 8. Examples of '*CO spectra extracted from the same positions as
in Fig.6 and the Gaussian fitting results if available. The '*CO spec-
tra are shown in thick black lines. The HISA spectra from the same
locations are scaled to 1/25 of its original intensity and shown in thin
blue lines. The positions corresponding to each spectrum are shown in
Fig. 1. For Spectra 1, 4, and 5, we can fit the spectrum with a Gaussian
component to the '3CO spectrum successfully, we show the Gaussian
fitting result with a black solid curve in each panel. For Spectra 2 and
3, the Gaussian fitting results did not meet the criteria we described in
Sect. 3.1 and were ignored.

cuss this effect in Sect. 4.1. The western and eastern region we
refer to here are both under the Galactic coordinate framework.

The linewidths of both '*CO and HISA are shown in Fig. 11.
The linewidth for the '>CO emission shows extremely high val-
ues of more than 10km s~! for the central region of the filament
around / = 35°. However, these values have to be treated cau-
tiously as the '*CO emission exhibits multiple lines in this re-
gion and we only use a single Gaussian function to fit them. On
the eastern side of the filament around / = 36.5° we find mostly
single components for the '*CO emission and the linewidth is
Av ~ 2 to 4 km s~!. The linewidth of the HISA feature shows
values Av ~ 3 — 6kms™! for the whole filament. This can
also be seen in the left panel of Fig. 12, where a histogram of
the linewidths is shown. The linewidth distribution of the '3CO
emission is systematically higher in the western region of the fil-
ament, whereas the linewidth of the HISA feature is similar to
the eastern region. This result has to be treated cautiously as we
see multiple components for the '*CO line within the western
region, which increases the linewidth.

To estimate the contribution of the non-thermal component
in the HISA features and the molecular emission, we assume

the relation oy = |02, — O — Ofes, Where oo is the mea-

sured velocity dispersion, oy, is the radial component of the ther-
mal velocity dispersion, and o is the velocity dispersion intro-
duced by the channel width of our data (1.5 km s™!). Assuming
a Gaussian line profile with the FWHM linewidth Av obtained
from the aforementioned fittings we get oops = Av/ V8In2, and
Ores = 1.5/ V8In2 km s~!. Assuming a Maxwell-Boltzmann ve-
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locity distribution, oy, = +/kgTx/(umy), where kg is the Boltz-
mann constant, u is the molecular weight, my is the mass of the
hydrogen atom, and T is the kinetic temperature. For HISA, we
assume Tx = Tgisa = 40 K. The peak excitation temperature
of 13CO we derived for the filament is ~ 25 K (see Sect. 3.2.1)
which agrees to what Roman-Duval et al. (2010) found for the
GRS molecular clouds. If we assume that the brightest 3CO
emission is coming from regions where the line is optically thick
and thermalized, then this excitation temperature will be compa-
rable to the actual gas kinetic temperature, which must therefore
have a value close to 20 K. Furthermore, simulations of molec-
ular clouds in a variety of different radiation fields show that
the CO mass-weighted temperature of the gas is typically in the
range 10-30 K, with very little dependence on the local environ-
ment (Pefialoza et al. 2018). Therefore, we assume a uniform T
of 20 K for '*CO. Assuming spatial isotropy, the Mach number
is estimated to be \/§(rmh /cs, where ¢ is the sound speed esti-
mated using a mean molecular weight y = 2.34 for the molecu-
lar cloud and u = 1.27 for the H1 cloud (Allen 1973; Cox 2000).
The distribution of the Mach number for HISA and '*CO across
the whole filament (Fig. 13) shows that the '3CO emission is
dominated by supersonic motions, whereas HISA features have
a much smaller Mach number in general with a significant frac-
tion of the HISA features, that is, a significant fraction of the
CNM being at subsonic and transonic velocities. If the HISA
and '3CO lack spatial isotropy, we could be overestimating the

Mach number by a maximum factor of V3.

3.2. Column density
3.2.1. H; column density

We use the '3CO(1-0) data from the Galactic Ring Survey (GRS,
Jackson et al. 2006) to derive the column density and kinematic
properties of the molecular gas of the filament. The data have an
angular resolution ® = 46" and a velocity resolution of Ay =
0.21kms~'. We can estimate the column density of the '*CO
molecule including opacity correction with the equation (Wilson
et al. 2010):

T13 fTMB(V) dv
1 —e 713 1 — e—5.3/TeX ’

N(3Co) =3.0x 10" 3)
where N(13CO) is the column density of the '3CO in units of
cm™2, dv is the velocity in kms™', 7,3 is the 3CO opacity, Tz
is the main beam brightness temperature, and T is the excita-
tion temperature. We do not have a direct measurement for the
excitation temperature, and we assume that the excitation tem-
peratures of the '2CO and '*CO are the same. Assuming that the
12CO line is optically thick, we used the >CO(1-0) data from
the FOREST unbiased Galactic plane imaging survey with the
Nobeyama 45 m telescope (FUGIN; Umemoto et al. 2017) to
estimate 7x following the formula (Wilson et al. 2010):

5.5

55 ’
ln(l + T,“b(‘2C0)+0.82)

Tex = (6)

where Typ('2CO) is the peak main-beam brightness tempera-
ture of '>CO(1-0) line. We calculated T., for regions where
Tmp(12CO) is above the So level (2 K), which results in a Tex
between ~5 to 25 K. For regions where Ty, (12CO) is below the
50 level (2 K), an upper limit of 5 K for T is applied. Follow-
ing Eq. B.6 in Schneider et al. (2016), we can derive 713 from
Tex and Ty (3 CO). For regions where T, ('*CO) is above S0
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level (1.05 K), 713 is estimated to be between ~0.1 and 3. For
regions where Tpp('3CO) is below 50 level (1.05 K), an up-
per limit of 0.1 for 73 is applied. The majority of the region
along the filament has a 743 < 1.0, only the region around (/ =
34.30, b = 0.18) and a few pixels around (I = 35.55, b = 0.0)
have a 713 > 2.0.

For the Galactocentric distance of 5.9 kpc of G38a, the
fractional abundance of 13CO relative to H, is estimated to be
2.9x107°® following the relations reported by Giannetti et al.
(2014). With this abundance, we converted the N('*CO) to
N(H;). Zhang et al. (2019) employed a similar method (uniform
CO abundance, Tpp('2CO) — Tey) to estimate the column den-
sity and mass of a sample of GMFs (they estimated the mass
of GMF38a to be ~ 3.8 — —11.0 x 10° M), and discussed in
detail the uncertainties brought in by T., and the '*CO abun-
dance. According to their results, the 10~ uncertainty of the col-
umn density estimated from '*CO is ~ 50%. Simulations show
that the abundance of '3CO could vary and we could underes-
timate the column density for the low column density part by

~ 40% (N(*CO) < 10'®, or N(Hy) < 3.4 x 10?! in this paper,
Szics et al. 2014, 2016).

3.2.2. CNM column density from HISA measurements

Besides the kinematics, the column density of H1 is also a criti-
cal cloud parameter. To estimate the column density of the HISA
feature we use the equation given by Wilson et al. (2010):

Ny = 1.8224 x 10"8 T f (v)dv, @)

where Ts and 7 are the spin temperature and optical depth, re-
spectively. For the CNM traced by HISA, Ts = Tysa and
7 = tuisa (Eq. 4). However, as mentioned in Sect. 2.2 we mea-
sure the spin temperature and the optical depth together and dis-
entangling them is difficult. Hence, we assume a constant spin
temperature over the cloud and calculate the optical depth using
Eq. 4. As we have no measurement for p, this value is difficult to
estimate. Considering GMF38a is at the near side of the Milky
way, we assume a value of p = 0.9 in the following and dis-
cuss the corresponding uncertainties in Sect. 4.2 and 4.7. We
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will discuss the uncertainty of column density brought in by the
method we choose to estimate the background temperature 7o
in Sect. 4.7

We integrate between 50 and 60 km™! and derive the column
density map shown in Fig. 14, assuming for the HISA feature a
spin temperature Ts = 40K, p = 0.9 and using a second order
polynomial to estimate the background temperature 7. Larger
spin temperatures do not change the structure of the column den-
sity map significantly, but will increase its value everywhere.

The column density peaks in the '*CO map do not coincide
well with the column density peaks of the atomic hydrogen. As
shown in Fig. 1, the highest peak in the '3CO (around / = 34°)
coincides with a strong continuum source and hence makes the
determination of the HISA feature at this position impossible.
However, we use this continuum source to constrain the optical
depth, which we present in Sect. 4.3. The highest column density
peak for the atomic hydrogen can be found in the eastern area of
the filament (I = 36.5°). In this region, the H, is diffuse and
its column density is low. Another CNM column density peak
can be found in the center of the filament around [/ = 35.4°,
b = +0.3°. This CNM feature has almost a round shape and only
a very weak counterpart in the '*CO emission.

Assuming a typical CNM thermal pressure of
Penm/k ~4000 K cm™ (Heiles 1997; Jenkins & Tripp
2011; Goldsmith 2013), and Tx = Tmsa = 40 K, we can
estimate the size of the CNM along the line of sight by dividing
the column density by Pcnm/k/Tk. Depending on the column
density, the line of sight size is estimated to be ~0.5-3 pc,
which is much smaller than the width and length of the filament
(~ 25 pc and ~230 pc, respectively). Arguing the other way
round, if the line of sight size of the CNM is similar to the
width of the filament (~ 25 pc), the thermal pressure would
be significantly lower, and the CNM could be under-pressured
or the pressure may be dominated by some other (magnetic or
turbulent) component.

3.2.3. Atomic gas column density from Hi emission

Since HISA traces only the CNM, it is likely that this com-
ponent is surrounded or even mixed with a warm compo-
nent. We also derive the column density traced by the Hi
emission (between 50 and 60 km s7!, 32.65° < [ <
37.27° and |b| < 1.25°), which traces both the CNM
and WNM. Following the method described in Bihr et al.
(2015), we derived the mean Hr optical depth map from the
strong continuum sources in the background (G33.498+0.194,
G33.810-0.189, G33.915+0.110, G34.133+0.471, G35.053-
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0.518, G35.574+0.068, G35.947+0.379, G36.056+0.357, and
G36.551+0.002; Wang et al. 2018). Following the method de-
scribed in Bihr et al. (2015), the optical depth measured towards
the continuum source is:

®

Ton, cont — £ off, cont
7T=-In| ———|,

TCO]’][

where Top, cone 1S the on-continuum-source brightness tempera-
ture, and Tof, cont 1S the off-continuum-source temperature. Since
we use the THOR C array data to calculate 7, the smooth, large-
scale structure is mostly filtered out (Beuther et al. 2016). We
can neglect the off emission Tof, cone and simplify Eq. 8 to:

TOI’I,COI'I[ )

TC()Ht (9)

Tsimplified = —ln(

For channels with a Ty, cone Value smaller than 3 times the rms,
we use the 30 value to get a lower limit of 7. The mean opti-
cal depth varies between 1.1 to 1.9 from 50 to 60 km s~!. The
optical depth corrected spin temperature is Ts = Tg/(1 —e™),
where T is the brightness temperature of the H1 emission. The
optical depth corrected atomic hydrogen column density is cal-
culated with Eq. 7. Since the absorption features towards these
continuum sources between 50 to 60 km s~! often saturates, the
optical depth we derived is a lower limit as shown in Fig. 18 and
we are underestimating the H1 column density.

The column density we derived from H1 emission is a com-
bined result from the far (10.3 kpc) and near side (3.4 kpc) due
to the kinematic distance ambiguity. Assuming the atomic gas in
the Galactic plane is approximately axisymmetric with respect
to the Galactic center (Kalberla & Dedes 2008), the atomic gas
at near side and far side that are at the same Galactocentric dis-
tance share the same density distribution in the vertical direction.
We used the average vertical density profile described by Lock-
man (1984) (see Eq. 5 and Table. 1 in their paper) to estimate
how much gas is at near distance for each line of sight and de-
rived the column density map of H1 emission at 3.4 kpc shown
in Fig. 14.

By comparing the column density maps of CNM and H;,, we
produce the CNM-to-Hj; ratio map and show it for the Eastern
and Western regions in Fig. 15. We masked out regions outside
the column density threshold contours shown in Fig. 14. In both
subregions, the CNM-to-H; ratio varies between ~ 0.5 — 25%
with a median value of ~ 9%. Figure 15 shows that the outer lay-
ers of the filament have high CNM-to-H, ratio, while the inner
regions show lower CNM-to-H, ratio. This change from the out-
side to the inside of the cloud can be interpreted as signature of
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Fig. 12.

the conversion of atomic to molecular gas with increasing den-
sity. Zuo et al. (2018) studied HINSA towards nearby clouds and
found a much lower ratio between 0.2 and 2%.

Figure 16 shows the surface density comparison be-
tween the atomic hydrogen (CNM+WNM) and the total gas
(CNM+WNM+Hy). The surface density of the atomic hydrogen
rises up to ~ 14 —23 Mg pc™? (~ 1.8 —2.9x 10?! cm~2) and then
saturates to an almost flat distribution. This turnover is at lower
values than that found by Bihr et al. (2015) towards W43 (50—
80 M, pc~2) but it is still higher than the 10 My pc~2 observed
towards nearby clouds (Lee et al. 2015) and predicted by models
(e.g., Krumholz et al. 2008, 2009; Sternberg et al. 2014). Such
higher than predicted Hr1 column densities can be explained by
the clumpy nature of the ISM with several Hi-to-H2 transitions
along the line of sight (Bialy et al. 2017a).

3.3. Mass estimate

As we know the column density and the distance to the cloud
(~3.4kpc), we can directly estimate the mass of H1 and H, gas.

We do so for three different regions, the “full filament” (red poly-
gon in Fig. 14), the “eastern region” (eastern green dashed poly-
gons in Fig. 14) and the “western region” (western green dashed
polygons in Fig. 14). Table 1 summarizes the mass measure-
ments. The molecular hydrogen mass for the entire filament is
~3.6x10° M and the CNM mass traced by the HISA is signifi-
cantly less, showing values of 3.4x103 to 9.5x10° M, depend-
ing on the assumed spin temperature.

Furthermore, we studied the cold atomic to the molecular
hydrogen mass ratio M(CNM)/M(H,). For the entire filament,
this value is between 1% and 3%, again depending on the as-
sumed spin temperature. However, this ratio has to be treated
cautiously. The HISA extraction method does not work reliably
in the center of the filament due to strong continuum emission
and we might miss some H1mass. The mass ratio for the smaller
regions show slightly higher values (3% to 4%). The H;, column
density shows significantly higher values for the western region
in comparison to the eastern region. In contrast to this, the H1
column density reveals a prominent peak on the eastern side and
hence the M(CNM)/M(H,) ratio is lower for the western than
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Fig. 12. Histograms of the FWHM linewidth of the HISA and '*CO emission in black (thin) and red (thick), respectively. The left and middle
panels show all extracted pixels within the marked eastern (around / = 36.5°) and western (around / = 34°) polygon in Fig. 9. The right panel

shows all extracted pixels for the whole filament (red polygon in Fig. 9).

Table 1. Mass estimates of the GMF.

Region MH,;) M(CNM) M(CNM) M(CNM)/M(H,) M(H 1 emission)
(20K) (40K) (40K)
[(Mo] (Mo] (Mol [Mo]
Full filament 3.6x10° 34x10° 9.5x10° 3% 2.3x10° (6.1x10°*)
Eastern region  7.9x10* 1.1x10° 3.4x103 4% 5.0x10%
Western region  1.1x10°  1.1x10° 29x 10° 3% 7.1x10*

+This mass is calculated including all H1 emission between 50 and 60 km s71,32.65° < I < 37.27°, |b| < 1.1° (bottom panel in

Fig. 14).
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Fig. 13. Histograms of the Mach number of the HISA and '*CO emis-
sion, shown in black and red, respectively.

that for the eastern region. Considering that '*CO does not trace
all the molecular hydrogen gas (Pineda et al. 2008; Goodman
et al. 2009; Gong et al. 2018), the M(CNM)/M(H,) ratio we de-
rive could be just an upper limit.

We further estimate the mass of the atomic component traced
by H1 emission. Within the same area (polygons in Fig. 14, the
atomic gas traced by H1emission has lower mass as the molecu-
lar gas (Table 1). However, since there is no clear boundary of the
GMF shown in the H1 column density map (see bottom panel in
Fig. 14), we can assume all H1 emission between 50 to 60 km s
within 32.65° < [ < 37.27° and || < 1.1° (same latitude range as
the GRS coverage) is associated with the filament to obtain the
mass. The mass is estimated to be 6.1x10° M, which is about
~60 times larger than the mass estimated for the CNM traced by
HISA (40 K). The mass of the atomic hydrogen is about 60%
larger than the molecular hydrogen mass (3.6x10° M), which
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makes sense since the molecular cloud is surrounded by a large
reservoir of atomic gas.

4. Discussion
4.1. Kinematics

For nearby galaxies, the ratios of the CO to H1 linewidth is
around oy/oco = 1 — 1.4 (Caldd-Primo et al. 2013; Mogotsi
et al. 2016). The linewidth values found in these studies are ap-
proximately o ~ 6 — 12kms~!, which corresponds to Av,,,, ~
14 — 28 kms™! for both the H1 and CO lines. These measure-
ments are done for the CO and H1 emission over large regions
(~0.5kpc), which can increase the linewidth due to superposi-
tion of different velocity components in the supersonically tur-
bulent ISM (e.g., Klessen & Glover 2016). Our Galactic HISA
measurements of GMF38a show significantly smaller values for
the linewidth of Av,,,, ~ 2 — 8kms~!' for CNM. The reason is
that we observe a much smaller region and we are able to sep-
arate multiple components. Furthermore, they observe H1 emis-
sion and the linewidth is dominated by WNM, whereas we ob-
serve cold H1 absorption features produced by CNM.

To study the linewidth ratio in detail, we determine this ra-
tio for the eastern region, which is indicated in Fig. 11. We fo-
cus on this region as it is not significantly affected by multi-
ple component line spectra. A histogram of the Hy/'3CO ratio
is shown in Fig. 17. The mean values for the linewidths are
AV, (PCO) = 3.6kms™! and Av,,,,,(H1) = 4.5kms™".

FWHM

4.2. The percentage of background emission — p

The percentage of background emission, parameterized with p,
is difficult to estimate. Different assumptions can be found in
the literature. For example, McClure-Griffiths et al. (2006) and
Dénes et al. (2018) assume that p = 1 and 0.9 for the observed
Riegel-Crutcher cloud, respectively, as the corresponding dis-
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Fig. 14. Top panel: Column density map of the molecular cloud derived from '*CO emission (see Sect. 3.2.1). Middle panel: The column density
map of the CNM derived from HISA, assuming 7s = 40K, p = 0.9 and using a second order polynomial to estimate the background temperature
T,o- Bottom panel: The optical depth corrected column density map of atomic hydrogen derived from H1 emission. The contours indicate column
density threshold used for the N-PDFs (see Sect. 4.5). For the H,, HISA, and H1emission they have levels of 6x10%°, 1.5x10%, and 1.7x10?' cm~2,
respectively. The red and green dashed polygons mark the region for the mass estimates and the column density PDF measurements shown in

Figs. 20 and 22, respectively.

tance is small (~125pc). Rebolledo et al. (2017) studied the
HISA features in the Gum 31 molecular complex with a sim-
ple two component assumption (p = 1). Li & Goldsmith (2003)
studied the H1 narrow self-absorption towards dark clouds in the
Taurus and Perseus region. Since these clouds are located at high
Galactic latitude away from the Galactic mid-plane, they can
assume a simple Gaussian Galactic H1 disk model (Lockman

1984) and estimate the factor p with the complementary error
function.

Since the background and foreground H1 emission occurs
from warm and diffuse H1 clouds, we do not expect fluctuations
of this emission on small scales. Hence, the assumption of a con-
stant p for the entire filament is reasonable. Furthermore, we can
obtain a lower limit for p. As shown in Fig.4, low values of
p < 0.4 are not feasible as the spin temperature would become
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the Eastern region (top panel) and Western region (bottom panel). The
contours in both panels indicate the integrated '*CO emission at levels
of 5, 10, 20, and 30 Kkms™!.

25

20 103
= =
L 15 =}
o 2 2
5 10 :
= 10 S
= 12
A 10t 2

5L 10°

10 100 1000

Sur + Xn, [Me pe™?]

Fig. 16. Surface density of the atomic hydrogen (vi; = 50 — 60 km s7!)
as a function of the total gas surface density (Zy; + Zy,). The solid line
represents a one-to-one relation.
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Fig. 17. Ratio of HISA and '*CO linewidths in the eastern region indi-
cated in Fig. 11.

smaller than the temperature of the CMB. As we further dis-
cussed in Sect. 4.4, low values of p < 0.7 would also result an
unrealistic low spin temperature.

For Galactocentric radius 7 < R < 35 kpc, Kalberla &
Dedes (2008) reported the average mid-plane volume density
distribution of the atomic gas follows n(R) ~ ny e~ ®=Re)/Ru with
no = 0.9 cm™3, and R,=3.15 kpc, R, =8.5 kpc (IAU recommen-
dations). Assuming n(R < 7 kpc) = n(7 kpc), we integrate the
density along the line of sight of GMF38a (I = 35.5°, b = 0°)
and obtain the amount of gas in the foreground and background
of GMF38a. Assuming optically thin emission, p is estimated to
be 0.91, which agrees with our adopted value of 0.9.

4.3. Optical depth measurement toward a strong continuum
source

We can use strong continuum sources to estimate the optical
depth of the CNM. The UCHun region G34.256+0.146 (see
Fig. 1) is an ideal candidate to perform this task as it is very
bright (T¢ont(max) ~ 1300 K) and slightly extended (d ~ 70”).
We use the THOR data to extract the absorption spectrum to-
wards the continuum peak and determine the optical depth and
the lower-limit of the optical depth using Eq. 9. The optical depth
spectrum is shown in Fig. 18. In the velocity range of the HISA
feature, the absorption spectrum saturates and the determined
optical depth 7 = 3.5 is a lower limit. Furthermore, since the
UCHu region is at the same distance as the filament (Ander-
son et al. 2014) and associated with the filament, there could
be CNM that are behind the UCH 11 region and are not traced by
the absorption spectrum. Therefore, the determined optical depth
represents a lower limit.

As explained in Sect.2.2, the general HISA extraction
method measures the optical depth together with the spin tem-
perature and we are not able to disentangle them. However, the
additional information from the absorption spectra towards the
strong continuum source and the corresponding optical depth
measurement allows us to overcome this problem. Figure 4
presents the optical depth as a function of the spin temperature
for different values of p. The lower limit of the optical depth
measurement is shown at 7 = 3.5 using a black horizontal line.
Assuming p = 0.9 reveals a spin temperature of Tyisa ~ 55 K.
This is a bit higher than the assumed spin temperature for the
column density determination presented in Fig.14 (40 K). Since
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Fig. 18. Spectrum of the Hr1 optical depth towards the UCH 1 region
G34.256+0.146 using the THOR data. For some channels, the absorp-
tion spectra saturates and the measured optical depth is a lower limit
of T = 3.5, which is indicated by the dotted line. The gray shaded area
indicates the velocity range of the HISA feature (v sg = 50—60kms™).

we measure the spin temperature close to an UCH 1 region, we
expect rather high values.

A problem for HISA studies is that low level of background
emission can be interpreted as an absorption feature. Studying
very narrow absorption features, HINSA (e.g., Li & Goldsmith
2003; Goldsmith & Li 2005; Goldsmith et al. 2007; Kréo &
Goldsmith 2010), can avoid this problem, since the steep absorp-
tion profiles of these HINSA features cannot be induced by two
broad emission profiles on each side of the absorption feature.
The broad HISA features we identified could be caused by two
emission components. Fortunately, the optical depth information
from the spectrum toward the strong continuum source helps to
solve this problem. Since the optical depth is high (r > 3.5) for
the velocity range of the HISA feature (Fig. 18), we are confident
that we actually indeed observe a HISA feature rather than miss-
ing H1 emission. Furthermore, the correlation of the HISA fea-
ture with the '*CO emission is another indicator of cold, dense
Hr

4.4. Maximum spin temperature

As explained in Sect. 4.3, we can use strong continuum sources
to measure the optical depth and therefore disentangle the spin
temperature and the optical depth. However, this is only possi-
ble in a selected number of locations, that is, in the vicinity of
a strong continuum source. In general we can only give the spin
temperature as a function of the optical depth. Figure 4 shows
that the function becomes very steep for certain spin tempera-
tures. Hence, this shows that the maximum spin temperature will
be reached for the case of large optical depth. This can also be
seen by solving Eq. 4 for Tysa:

Ton—off

(10)

l-e7
Since Ton_of is always negative, Tysa reaches an upper limit for
a given Tof and Teone When Ton-oft hag its minimum value, which

1-e 7
occurs for 7 — oo. This means the maximal Tyisa iS:

Twisa = + P Top + Teont-

Tuisa(max.) = Ton—off + P Tor + Teont-

an

This equation depends on the assumption of the ratio of fore-
ground and background emission, which is described by the fac-

Galactic Latitude
Tiisa(max.) [K]

Fig. 19. Maximum spin temperature (Eq. 11) of the absorption features
assuming p = 0.9. The black contours show the HISA column den-
sity map assuming Tysa =40 K, p = 0.9, and the contour levels are
1.5, 3.5, and 5.5x10% cm™2 with a smoothing of 3 pixels. Regions
with strong continuum emission are not reliable, such as SNR W44 and
G34.256+0.146 (see Fig. 1).

tor p. For p = 1, the upper limit of the spin temperature reaches
a maximum. We can use this information to calculate the upper
limit of the spin temperature for each pixel in our map. How-
ever, we do not assume p = 1, but rather a more realistic value
of p = 0.9. The result is given in Fig.19. We focus the discus-
sion on regions offset from strong continuum sources, since for
strong continuum sources the attenuation of the continuum ex-
ceeds by far the contribution of self-absorption to the Hr1 ab-
sorption spectrum. As expected, we see a clear anti-correlation
of the upper limit for the spin temperature and the column den-
sity of the HISA feature. A weaker absorption feature (Ton—off
is always negative) will result in a higher Tyss, and a lower
column density. The lowest values are found for the compact
HISA feature in the center around / = 35.5° with values around
Tuisa(max.) ~ 25 K. Similar values can be found for the eastern
region of the filament, whereas the western side of the filament
shows in general higher values around Tysa(max.) ~ 75 K. As
this is only an upper limit for the spin temperature, we cannot di-
rectly infer the actual temperature. However, it is plausible that
the H1 spin temperature is higher on the western side of the cloud
due to star formation activity and feedback processes, such as the
prominent UCH 1 region. We will discuss this aspect further in
Sect. 4.6.

For the H1 column density determination in Sect. 3.2, we as-
sumed a spin temperature of Tyisa = 40 K. As seen in Fig. 19,
this is higher than the upper limit of the spin temperature for
certain cold regions. Hence for a few channels we cannot de-
termine a column density for these regions, we exclude these
pixels in these channels from our column density calculation.
Since we observe only small regions with Tysa(max.) < 40K
in only a few velocity channels, the column density calculation
is not affected significantly. However, assuming a larger value
for the spin temperature increases this effect and larger regions
are affected, which would make the determined column density
unreliable.

Furthermore, as indicated in Equation 11, the factor p also
affects the value of Tysa(max.). If we take p = 0.7, the
Tuisa(max.) for the whole filament would drop ~ 20 K. Re-
gions around / = 35.5° and in the eastern part of the filament
would have a Tysa(max.) < 10 K, which is highly unlikely,
since simulations find very little H1 has a temperature <20 K
(Glover & Smith 2016). Furthermore, previous HISA study to-
wards nearby molecular clouds reveals a T's of 20-80 K (Gibson
et al. 2000, 2005b; Dénes et al. 2018). Therefore, our assump-
tion of Tyisa = 40 K and p = 0.9 in the previous sections is
reasonable.
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4.5. Column density probability density functions (N-PDFs)

The column density maps derived in Sect.3.2 can be utilized
to determine the probability density functions of column den-
sities (N-PDFs). We resampled all the column density maps
into the same spatial resolution and constructed the N-PDFs.
Figure 20 presents the N-PDFs in units of hydrogen atoms per
square cm for the entire filament traced by HISA, Hr1 emission
and '*CO. For the HISA feature, we assumed a spin temperature
of Tyisa = 40K, p = 0.9, and used a second order polynomial to
estimate the background emission, which are the same assump-
tions used to produce Fig. 14. We derived the H, column density
from 3CO (see Sect. 3.2.1), and converted it into the unit of
hydrogen atoms per square centimeter for easy comparison with
HISA and H1emission. We calculated the column density traced
by H1 emission with optical depth correction (see Sect. 3.3).

In the following, we first consider the quantification of the
shapes of the observed N-PDFs and then the interpretation of
the observed shapes. It has been argued that it may be necessary
to consider “completeness” of the N-PDFs when defining the
column density range that can be studied (Kainulainen & Tan
2013, see also Brunt 2015; Lombardi et al. 2015; Alves et al.
2017), although, it is unclear if such a requirement is meaning-
ful when studying possibly turbulence-dominated gas (Kortgen
et al. 2019b). In our analysis, we define the completeness for
the HISA and '3CO data, but do not apply such requirement for
the H1 emission data that we expect to be clearly turbulence-
dominated. We define the completeness with the help of the low-
est “closed contours” in the column density maps. These low-
est closed contours are 1.5 x 10%° cm™ for the HISA data and
1.2 x 10*' cm~2 for the '*CO data and lead to regions that are
marked with red polygons in Fig. 14. For H1 emission, we in-
clude all the data within 32.65° < [ < 37.27°, b < 1.1° and use
the column density level of 1.7 x 10>! cm~2 to define the range
over which the range is analyzed. We normalize all N-PDFs by
the mean column density of the tracer (shown in Table 2).

We first note that the N-PDFs of all components appear
curved in log-log representation, even when only taking into ac-
count the data above the completeness levels. Therefore, we do
not make an effort to quantify the N-PDFs with single power-law
functions. Given the appearance of the N-PDFs, we decided to
quantify their shapes through fits of log-normal functions. The
N-PDF from H1 emission shows a clear log-normal shape. We
cannot identify a clear peak in the N-PDFs of HISA and '3CO,
but proceed with the log-normal fit nevertheless. The best fit for
HISA is not well constrained and shows some excess over the
fit at the high column density side. The best fit for '*CO agrees
well with a log-normal function over a wide range at low column
densities, but shows an excess over it at higher columns; a power-
law could also describe the high column densities relatively well.
We fitted the power-law tail of the '*CO N-PDF with a power-
law (p(x) o« x™) from the optimal column density threshold
Nmin, Which results in the minimum Kolmogorov-Smirnov dis-
tance between the fit and the N-PDF. The fit was performed with
the python package Powerlaw (Alstott et al. 2014). The fitted
parameters of the log-normal functions and power-laws, when
applicable, are listed in Table 2.

The N-PDF from the H1 emission peaks at 2.2x10?! cm™2,
corresponding to Ay = 1 (Giiver & Ozel 2009). Studies towards
nearby clouds have found that the N-PDFs from H1 emission
there peak around ~ 1 -2 X 10%! cm~2 (Imara & Burkhart 2016),
slight lower than we find here for our target. The widths of the fit-
ted log-normal models vary among the tracers; the H1 emission
has the smallest width, followed by HISA and the '*CO that has
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the widest width (see Table 2). The narrowness of the H1 emis-
sion N-PDF indicates that H1 emission is relatively smoothly
distributed without large variations and substructure (Fig. 14).
The width of H1 emission N-PDF is similar to those seen to-
wards nearby clouds (Burkhart et al. 2015b; Imara & Burkhart
2016). We note that the width of the HISA N-PDF is much larger
than the error introduced by our HISA extraction method (see
Appendix B); we consider it is robustly between the widths of
H 1 emission and '*CO.

We also examine the N-PDF of “all gas”, derived by adding
together the column density maps from all three tracers (Fig. 21).
We note that “all gas” does not, in fact, trace all the gas, since
there is some amount of H, that '3CO does not trace (Pineda
et al. 2008; Goodman et al. 2009), aka., CO-dark gas. This frac-
tion could be as high as 26% to 79% of the total H, gas (Gong
et al. 2018). The N-PDF of “all gas” (Fig. 21) can not be fitted
with single log-normal or power-law function. Similar to what
we applied to the '3CO, we fitted the N-PDF with a log-normal
function and the high-column density side with a power-law, but
obviously, a single power law cannot account for the peak in the
observed distribution.

Next, we discuss the N-PDFs of the two subregions of the
filament. The N-PDFs for the eastern and western regions, in-
dicated with dashed polygons in Fig. 14, are shown in Fig. 22.
The N-PDFs of the cold dense H1 traced by HISA for both sub-
regions still can be described by a single log-normal function
with a similar width as that found over the whole filament. The
N-PDFs of the molecular gas show very different shapes for two
subregions. While the N-PDF for the eastern subregion can be
described by a log-normal function, the N-PDF for the western
subregion shows a clear power-law shape.

Recall that we pointed out in Sect. 1 that theoretical stud-
ies predicted that the shapes of the N-PDFs are depend on the
physical processes acting within the cloud, a log-normal N-PDF
indicates that turbulent dominates and a power-law indicates
that gravity dominates (e.g., Federrath et al. 2010; Ballesteros-
Paredes et al. 2011; Kritsuk et al. 2011; Federrath & Klessen
2013; Burkhart et al. 2015a). A possible explanation for the dif-
ferent N-PDF for different subregions is that the western subre-
gion shows ongoing high-mass star formation activities, that is,
UCH 1 region, indicating that the molecular cloud is dominated
by gravitational collapse.

One possible reason we do not see a power-law tail in the
N-PDF of the molecular gas in the eastern subregion is that the
13CO could be frozen onto the dust grains in the densest and
coldest part of the molecular cloud (e.g., Giannetti et al. 2014).
In this case we could not recover the high density part, whereas
in the western subregion the feedback effects from the UCH
have released the '*CO molecules from the dust grains. As the
line is not excited at very low density, altogether '*CO only
traces the intermediate density gas between the dense star form-
ing cores, and so these do not show up in the N-PDF (see e.g.,
Ossenkopf 2002 for a similar effect in the A-variance.)

We estimated the '3CO depletion factor by com-
paring the molecular cloud column density we derived
from '3CO with the H, column density derived from the
ATLASGAL dust continuum. Four ATLASGAL dense
clumps  (AGAL036.406+00.021, @ AGAL036.666-00.114,
AGAL036.826-00.039, and AGAL036.839-00.022) that have
velocities within the respective '3CO velocity range are located
in the eastern subregion (Urquhart et al. 2018). We smoothed
the ATLASGAL image into the same pixel size and angular
resolution calculated the column density of molecular hydrogen
following Eq. 15 in Giannetti et al. (2014). The same dust
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Table 2. Results of the fits to the N-PDFs.

Component N Threshold (N(H)) Log-normal width  power-law index Nnin
logio(N(H)) logio(N(H)) o @ logo(N(H))
CNM 20.18 20.39 0.31 - -
H1 emission 21.23 21.34 0.12 - -
H, 21.08 21.70 0.71 3.40 22.25
All gas 21.23 21.59 0.51 3.59 22.33
CNM West 20.18 20.42 0.27 - -
CNM East 20.18 20.38 0.35 - -
H, West 21.64 22.03 0.71 2.61 21.64
H; East 21.64 21.86 0.71 - -

opacity k = 1.8 cm? g~! as that used by Giannetti et al. (2014) is
employed, and we assume the dust temperature from Herschel
Hi-GAL results (Marsh et al. 2017). The '*CO depletion factors
we derived are between 2 and 4, with a mean value of 3, which
agrees with the numbers Giannetti et al. (2014) derived for
infrared dark sources. Therefore, the high column density part
of the N-PDF in the eastern subregion could be underestimated
due to '3CO depletion.

4.6. Evolutionary stages

As mentioned in Sect.3.2, we observe a significant difference
in the distribution of the H, column density for the eastern and
western subregion of the filament. The eastern subregion shows
a more diffuse column density distribution, whereas the west-
ern subregion reveals several high column density peaks. Hence,
the western subregion reveals a power-law in the N-PDFs shown
in Fig. 22 and the eastern subregion shows a log-normal shaped
PDEF. Furthermore, we see a luminous UCH 11 region within the
western subregion, whereas the eastern subregion does not har-
bor significant continuum emission. The ATLASGAL survey
(Schuller et al. 2009) shows strong extended submillimeter emis-
sion with a group of star forming clumps in the western sub-
region, whereas only a few unresolved continuum clumps are
found with velocities within the respective '2CO velocity range
in the eastern subregion (Ragan et al. 2014; Urquhart et al. 2018).
All these different tracers are indicative of active high mass star
formation with strong feedback effects on the western side of the
filament, while the eastern side shows no effects of feedback.

The kinematics of the HISA do not exhibit significant dif-
ferences between the eastern and western subregion. However,
comparing the HISA and '*CO kinematics shows an interest-
ing difference. The eastern subregion shows similar peak veloc-
ities for the Hr and CO, whereas the western subregion reveals
a difference of ~4kms~!. Using the newly developed histogram
of oriented gradients (HOG) tool, Soler et al. (2018) confirmed
morphological correlation between the H1 and '3CO emission in
velocity channels separated by 3 to 4 km s~! towards the west-
ern subregion. The H1 at ~54 km s™! is spatially correlated with
13CO emission at ~57.5 km s~ (Fig. 15 in Soler et al. 2018).
They further demonstrated by applying the HOG analysis on
synthetic observations from MHD simulations that this veloc-
ity offset between '*CO and H1 could arise from more general
molecular cloud formation conditions. Another explanation for
this velocity offset could be the feedback from the expanding
UCH 1 region G34.256+0.146. A significant amount of the '3CO
gas at ~ 54 km s~! has been driven away by the radiation from
the forming high-mass star.

Studying the cold H1 column density, we found higher col-
umn density peaks on the eastern side in comparison to a more
diffuse H1 column density structure on the western side. The
maximum spin temperature also shows smaller values on the
eastern side. This might be an indication of a younger, colder,
and more dense H1 cloud on the eastern side in comparison to
a more evolved cloud on the western side. It is possible that the
dense H1 cloud on the eastern side of the filament is about to be-
come a dense molecular cloud, forming high density peaks and
subsequently form stars. However, further observations or simu-
lations are needed to support this hypothesis.

4.7. Uncertainties for the determined HISA properties

Several factors introduce uncertainties to the determined proper-
ties of the HISA features. In the following we will discuss three
contributions: the ratio of foreground to background emission —
factor p, different methods to determine the background emis-
sion and the assumption of the spin temperature Tysa .-

Figure 4 also shows that for a fixed spin temperature Tyisa,
the larger the value of p is, the lower the optical depth 7 is, hence
the lower the column density is. Depending on the p value we
choose (between 0.7 and 0.9), the column density can change
by at most a factor of ~ 2. This is shown in Fig. 23 for N-PDFs
of the entire filament assuming three different values for p. The
column density structure stays almost constant, but the actual
values are shifted for different p values.

As discussed in Sect. 2.3, the chosen method for the back-
ground estimate can influence the absorption depth of the HISA
feature and thus the column density. We showed in Sect. 2.3 that
the best method is a polynomial fit to the H1 spectra and interpo-
late for the HISA feature. The difference for a second or fourth
order polynomial is negligible for most regions. As we can see
in the bottom panel of Fig. 23, the column density structures of
the second and fourth order polynomial are almost identical, the
mean column density of the fourth order polynomial fit is ~ 3%
higher than the one of second order. Thus we chose to use a sec-
ond order polynomial fit for Tog.

Another important factor is the assumption of a constant spin
temperature for the cloud. This is obviously a poor assumption,
but using additional measurements we can constrain the range
of the spin temperature. The most important one is the upper
limit for the spin temperature introduced in Sect. 4.4. Using this
information, we can constrain the spin temperature to values of
Tuisa < 70K for the majority of the HISA features. For the
CNM mass estimation given in Sect. 3.3, we assumed a spin tem-
perature of Tyisa = 20 and 40 K. As seen in Fig. 23, the N-PDF
does not change significantly, but higher spin temperatures result
in larger column densities and masses. In Sect. 3.3, we showed
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Fig. 21. N-PDF of the combination of atomic and molecular gas over
the entire region in Fig. 14. The green line shows the log-normal fit.
The dashed vertical line mark the column density threshold (the contour
levels in Fig. 14), and the vertical solid line mark the mean column
density. The red line shows the power-law fit with an index —a to the
high column density tail.

that the mass is about a factor of three larger for Tyysa = 40K
with respect to that assuming Tsa = 20 K.

Furthermore, we performed our HISA extraction method
on model images (see Appendix B) to estimate the uncertainty
brought in by the T4 fitting method to the width of the N-PDF.
The test results show that the “instrument broadening” intro-
duced by the fitting method to the N-PDF is not very large and
the log-normal width of the CNM we derive in the paper is ro-
bust.

In summary, it is difficult to quantify exactly the uncertainty
of the CNM column density and mass. Considering all assump-
tions, the CNM mass has an uncertainty of a factor of 2-3 (dom-
inated by the uncertainty of Ts), which is similar to the H, mass
uncertainty based on '*CO. However, we showed that the shape
of the column density PDF is robust.

5. Conclusions

We studied atomic and molecular gas components of the giant
molecular filament GMF38a. The molecular component is traced
via observations of 3CO, whereas the cold atomic gas is ob-
served via HISA features and H1 21 cm emission. The main re-
sults can be summarized as:

1. We extracted HISA by estimating the background emission
with different methods. For the observed giant filament, a
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Fig. 22. N-PDF:s for the two subregions within the filament marked with
dashed polygons in Fig. 14. The top and bottom panel show the N-
PDF of atomic and molecular hydrogen derived with HISA and *CO
measurements, respectively. The lighter lines show the log-normal (top
and bottom panel) and power-law (bottom panel) fits. The black dashed
lines in each panel mark the column density threshold, and the solid
vertical lines indicate the mean column densities. The bottom x-axes
in both panels are the relative column density for the N-PDF of the
western subregion, i.e., the red histogram in both panels. Other N-PDFs
are shifted to the correct absolute column density for comparison. The
thick black line in the molecular component panel shows the power-law
fit with an index —a to the column density distribution of the western
region.

polynomial fit of second order to the neighboring channels
of each HISA is the most reliable method from the different
options we tested to estimate the background emission.

. The HISA features and the '*CO emission are spatially cor-
related. While in the eastern subregion they correlate well,
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Fig. 23. Top panel: N-PDF:s for the atomic hydrogen for different p. The
PDF is measured over the entire filament indicated with a red polygon in
Fig. 14, assuming a constant spin temperature of Tyisa = 40 K. Bottom
panel: N-PDFs for the atomic hydrogen for different spin temperature
and different polynomial functions fit to get Tog. The dashed vertical
lines in each panel indicate the column density threshold, and the solid
vertical lines indicate the mean column densities. The bottom x-axes in
both panels are the relative column densities for the N-PDF of “Pol 2,
p=0.9,40K”, i.e., the black histogram in both panels. Other N-PDFs are
shifted to the correct absolute column density for comparison.

Table 3. Results of the fits to the N-PDFs of CNM for different param-
eters (Fig. 23).

Pol. P Taisa N Threshold (N(H)) width
[K]  logio(N(H)) logio(N(H)) o
Pol2 09 40 20.18 20.39 0.31
Pol2 0.8 40 20.28 20.49 0.31
Pol2 0.7 40 20.43 20.63 0.30
Pol2 09 20 19.71 19.92 0.30
Pol4 09 40 20.18 20.40 0.32

the peak velocities of the two tracers show an offset of
~4kms~! for the western subregion of the filament.

3. Although the linewidth ratio between HISA and '*CO is
around unity, the Mach number estimation shows that the
13CO emission is dominated by supersonic turbulent mo-
tions, whereas a large fraction of the CNM is at subsonic
or transonic velocities.

4. Assuming a spin temperature of Tysa = 40K for the Hr,
we determined the column densities of the cold dense H1
and compared them to the H, column density distribution
derived from the '3CO emission. The column density peaks
do not coincide and the H1 column density shows in general
a diffuse structure. The H, column density reveals promi-

nent peaks in the western subregion of the filament whereas
the eastern subregion appears more diffuse. The CNM-to-H,
column density ratio varies between 0.5 to 25% with a me-
dian value of ~ 9%. The outer layer of the filament exhibits
a higher ratio than that toward the cloud centers. The sur-
face density of atomic hydrogen peaks at ~ 14 — 23 Mg, pc~>
(corresponding to ~ 1.8 — 2.9 x 10*! cm~2). Furthermore, the
mass traced by HISA is only ~ 3% of the molecular mass,
and ~ 1.6% of the mass traced by atomic H1 emission.

5. Studying the N-PDFs, we are able to provide constraints on
the physical processes within the cloud. The location of the
HISA N-PDF is strongly dependent on the assumed parame-
ters, but the width is not. The N-PDFs of CNM, H1 emission,
and H, can be described by a log-normal function, which in-
dicates turbulent motions as the main physical driver. Only
the H, column density of the western subregion within the
filament is characterized by a high column density power-
law structure, consistent with the observed star formation
activity. Adding the column density maps of all three trac-
ers (CNM, H1 emission, and H;) up, we generated a column
density map of “all gas.”

6. We hypothesize that the eastern and western sides of the
filament represent different evolutionary stages. The east-
ern side represents an earlier stage, which is currently form-
ing a dense molecular cloud out of the atomic reservoir. As
we do not observe high molecular column density peaks,
the H1 shows low spin temperatures and high column den-
sities. In contrast, the western side of the filament shows
high H, column density peaks, signs of active star forma-
tion, such as UCH u1 regions, and, in general, a warmer and
less dense atomic counterpart. These differences provide in-
teresting constraints for theoretical models and simulations
of the formation of molecular clouds.
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Appendix A: All gas

Appendix B: CNM N-PDF width test

To test how much our HISA identification and fitting method
broadens the N-PDF of the CNM, we tested our HISA extraction
method on artificial H1 emission maps with absorption features.

We made a model H 1 map with a relative uniform peak Tg ~
85 K with a noise of ~ 4 K, which is similar to the real data we
have. The H1 spectra in the model map have a random linewidth
varying between ~30 to 45 km s~!, and a random peak velocity
between 47.5 to 52.5 km s~!. We also made a model continuum
map with a relative uniform 73 ~ 13 K with a noise of 0.7 K,
and both values are similar to the diffuse continuum emission
flux and the noise level of the real data. Both model images have
the same pixel size (10”) and beam size (40”) as the real data.

For the first test, we generate artificial absorption features
from a single column density value with Tysa =40 K and
p = 0.9, and added them into the model H1 image. This col-
umn density value equals to the mean CNM column density of
the GMF38a in Table 2 (log;o(N(H)) = 20.39 cm~2). The artifi-
cial absorption features peak at 50 km™! and have a linewidth of
5kms!. Following the method described in Sect. 2 and 3, we
extracted the HISA spectra, estimated the column density and
construct the N-PDF shown in the top panel of Fig. B.1. The ab-
sorption features we put in the model image all have the same
column density, so the modeled N-PDF is a delta function. Due
to noise and the uncertainty we brought in through our HISA ex-
traction method, the N-PDF we derived has a width of 0.19, and
about 10% lower mean column density than the input one.

For the second test, instead of a single column density value,
we generate artificial absorption features from a log-normal dis-
tribution column density with Tgisp =40 K and p = 0.9, and
added them into the model H1image. The input log-normal dis-
tribution has a width of 0.15, and a peak at the mean CNM
column density of the GMF38a in Table 2 (log;o(N(H)) =
20.39 cm™2). Similarly, we ran our procedure on the model im-
age and the N-PDF is shown in the bottom panel of Fig. B.1. The
input width of 0.15 is broadened to 0.22, and the mean column
density is also about 10% lower than the input one.

Both tests demonstrate that the “instrument broadening” con-
tribution to the N-PDF of our method is not very large and the
log-normal width of the CNM we derive in the paper is robust.
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Fig. A.1. The column density map of the gas combined molecular component (from '3CO), CNM (from HISA), and WNM+CNM (from H1

emission) (see Sect.3.2.1). The red and green dashed polygons mark the region for the mass estimates and the column density PDF measurements
(only molecular component and CNM) shown in Figs. 20 and 22, respectively.
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Fig. B.1. The N-PDFs of the CNM recovered from the tests.
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