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ABSTRACT

Induced pluripotent stem cell (iPSC) technologies have provided
in vitro models of inaccessible human cell types, yielding new insights
into disease mechanisms especially for neurological disorders.
However, without due consideration, the thousands of new human
iPSC lines generated in the past decade will inevitably affect the
reproducibility of iPSC-based experiments. Differences between
donor individuals, genetic stability and experimental variability
contribute to iIPSC model variation by impacting differentiation
potency, cellular heterogeneity, morphology, and transcript and
protein abundance. Such effects will confound reproducible disease
modelling in the absence of appropriate strategies. In this Review, we
explore the causes and effects of iPSC heterogeneity, and propose
approaches to detect and account for experimental variation between
studies, or even exploit it for deeper biological insight.
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Introduction

Since their invention just over a decade ago, induced pluripotent
stem cell (iPSC; see Glossary, Box 1)-based models have
established a new field in disease modelling, especially for
neurological disorders for which inadequate preclinical animal
models and poor access to human primary tissue are limiting
progress. Although mice, fly or worm models are usually generated
within a small number of well-studied genetic backgrounds,
thousands of new human iPSC lines have been generated in the
UK alone in the past 5 years, each influenced by its unique genetic
background (Box 1) and with the vast majority individually
receiving very little study. Indeed, the novelty of new genetically
interesting iPSC models may be discouraging further study of
existing models. Inevitably, differences between donor individuals
have been found to affect most iPSC cellular traits, from DNA
methylation, mRNA and protein abundance to pluripotency,
differentiation and cell morphology (Kilpinen et al., 2017). High
variability in differentiation potential and genetic stability between
iPSC lines remain subjects of intense research (Guhr et al., 2018).
Moreover, even after controlling for genotype, substantial
experimental heterogeneity remains. While anatomically matched
cell types between two genetically identical animal models might
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differ little, attempts at experimental replication of iPSC models are
thwarted by variation in the derived differentiated cells, and these
technical artefacts obscure the biological variation of interest
(Volpato et al., 2018). As iPSC culture and differentiation are a
multistep process, small variations at each step can inevitably
accumulate, generating significantly different outcomes (Fig. 1)
(Popp et al., 2018).

The field needs rigorous and well-documented quality control
(QC) measures, ‘gold standard’ iPSC lines and standardised
protocols, as well as robust statistical analysis to ensure that the
information obtained from these efforts are reproducible and
meaningful. Reproducibility is a cornerstone of scientific
knowledge and, without greater efforts to make iPSC-derived
model experiments comparable, this community will be highly
vulnerable to error. The aim of this Review is, therefore, to
summarise the variables affecting iPSC reproducibility and
to propose strategies for each stage of the multistep process to
overcome these challenges, thereby enabling experiments to be
more readily compared.

iPSCs as disease models

iPSCs were initially used to model diseases with highly penetrant
genetic variants (Box 1) of large phenotypic effect (Cao et al., 2016;
Liu et al., 2011; Wainger et al., 2014), but more recently they have
been used to study common genetic variants of modest effect size
that drive complex diseases. They provide a key platform to study
the impact of human cell type-specific gene regulation, as they can
recapitulate the broad regulatory profile of their in vivo counterparts
and also mirror tissue-specific functional genetic variation
(Banovich et al., 2018; Santos et al., 2017). Moreover, large-scale
iPSC-based studies have identified expression quantitative trait-
associated loci (eQTLs; Box 1) that inform on the interpretation of
variants identified by genome-wide association studies (GWAS;
Box 1) (Carcamo-Orive et al., 2017), as well as protein quantitative
trait loci that give insights into mechanisms through which disease-
associated genetic risk modulates cell physiology (Mirauta et al.,
2018 preprint).

Although the majority of current iPSC differentiation protocols
produce immature or fetal-like cells (Handel et al., 2016; Sloan
et al., 2017; Yao et al., 2017; Volpato et al., 2018), these cells
nonetheless demonstrate a range of cell type-specific characteristics.
For example, iPSC-derived neurons are still capable of fundamental
neuronal functions, including firing action potentials and releasing
neurotransmitters (Bardy et al., 2016). Furthermore, although their
maturity might be far from the biological age of disease onset,
and they may not display disease-associated cellular phenotypes,
researchers have argued that the presence of novel phenotypes in
iPSC-derived fetal-like cell models of disease supports ideas that
pathologies start long before clinical symptoms appear (Taoufik
et al., 2018). This can make iPSC-based models helpful not
only in understanding disease mechanisms but also in targeting
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Box 1. Glossary

Cellular heterogeneity: cell type diversity within the experimental
cellular population, i.e. due to the presence of multiple cell types and to
diversity in morphology, maturation and functionality within each cell type
present.

Expression quantitative trait-associated loci (eQTLs): genetic
variants that are associated with changes in the expression of a gene.

Genetic background: the entire set of genes in a genome.

Genome-wide association studies (GWAS): hypothesis-free methods
that identify associations between genetic loci and phenotypic traits.

Induced pluripotent stem cells (iPSCs): stem cells that are generated
by induced reprogramming of somatic cells through the forced
expression of transcription factors.

Induced reprogramming: briefly, it consists of induction of proliferation
and downregulation of cell type-specific transcription in a first step,
followed by continuous expression of key transcription factors until the
iPSC state is established.

Isogenic iPSC lines: lines derived from the same individual that are
engineered to differ at only one specific locus and are otherwise
genetically identical.

Penetrant genetic variant: a disease-causing mutation that will cause
disease symptoms across most of the individuals carrying it.

Polygenic risk: disease risk given by the combined contribution of
multiple genetic variants, each variant often of small individual effect.

Principal component analysis: a statistical approach that uses
orthogonal transformation to identify a set of principal components,
each successive linear component capturing as much of the variation in
the data as possible.

Probabilistic estimation of expression residuals (PEER): based on
factor analysis, PEER takes as input transcript profiles and covariates
from a set of individuals and outputs hidden factors that explain much of
the expression variability.

Removal of unwanted variation (RUV): a normalisation method that
identifies and removes unwanted sources of variation within omics
readouts.

Rosetta line: an iPSC line that is commonly used within all experiments
by multiple laboratories, and that enables researchers to address
experimental variation between those laboratories’ results.

Somatic mutations: acquired (not inherited) genetic alterations that
either pre-exist in the somatic cells or can be acquired in the handling of
the cells during reprogramming over culture.

Subclonal: a mutation that is present in only a fraction of the cells within
a population.

pre-symptomatic phases of disease. Coenzyme Q10 (Cooper et al.,
2012), rapamycin (Cooper et al., 2012), clioquinol (Sandor et al.,
2017), tasquinimod (Lang et al., 2019) and the LRRK2 kinase
inhibitor GW5074 (Cooper et al., 2012) are all examples of
compounds able to rescue disease-associated phenotypes and cell
dysfunctions that have been investigated in iPSC-derived
dopaminergic neurons (DaNs) from Parkinson’s disease patients.
iPSC models can also be used in personalised medicine, as

demonstrated by the observation that lithium only rescues
hyperexcitability phenotypes in neuronal models derived from
lithium-responsive bipolar disorder patients, but not in those from
non-responsive patients (Mertens et al., 2015).

In pursuit of more accurate modelling of human tissue, co-culture
systems consisting of multiple iPSC-derived disease-affected cell
types (Zhao et al., 2017; Shi et al., 2013; Odawara et al., 2014),
three-dimensional (3D) cultures (Choi et al., 2014) and 3D co-
culture organoids (Skardal et al., 2016) have recently been used to
recapitulate tissue-level and organ-level dysfunction, whereby the
pathology progresses through the interactions between different cell
types. However, although these approaches can ameliorate some of
the drawbacks of iPSC-based models such as reduced cell maturity,
incomplete disease phenotypes and line-to-line variation (Ghaffari
et al., 2018), these limitations still need to be effectively addressed
to be able to work with patient-derived cells in a high-standard,
reproducible and controlled environment. In summary, the promise
of iPSC-based human models is clear and the excitement justified.
However, in our haste to develop new human cell models, we cannot
overlook the fundamental scientific tenet of reproducibility, and the
variability within these models is significant.

Sources and effects of variation in iPSC cultures

iPSC derivation and differentiation are multistep processes and thus
small variations at each step can accumulate and generate
significantly different outcomes (Fig. 1) (Popp et al., 2018). The
substantial impact on the resulting differentiated cells can
overwhelm any biological variation of interest, especially where
effect sizes are small (Ghaffari et al., 2018).

Genetic background

It has been widely reported that heterogeneity at the iPSC stage is
mainly driven by the genetic background of the donor, more than by
any other non-genetic factor, such as culture conditions, passage
and sex (Burrows et al., 2016; Kilpinen et al., 2017; Kyttila et al.,
2016). For example, through a systematic generation and
phenotyping of hundreds of iPSC lines, the Human Induced
Pluripotent Stem Cells Initiative (HipSci) reported that 5-46% of the
variation in iPSC cell phenotypes is mainly due to inter-individual
differences (Kilpinen et al., 2017). Several other studies have found
that iPSC lines derived from the same individual are more similar to
each other than to iPSC lines from different individuals. This was
highlighted at different levels with inter-individual variation
detected in gene expression and eQTLs (Carcamo-Orive et al.,
2017; Rouhani et al., 2014; Thomas et al., 2015), and in DNA
methylation (Burrows et al., 2016). Although the process of induced
reprogramming (Box 1) is based on erasing the existing epigenetic
state of the cell of origin (Bilic et al., 2012; Medvedev et al., 2012),
the tissue from which the iPSCs were derived and the retention of
specific DNA methylation marks can determine the propensity of a
line to differentiate into different cell types (de Boni et al., 2018;
Roost et al., 2017). Studies have also confirmed that the individual
donor’s genetic background and differences in differentiation
protocols might, in turn, significantly influence the methylation
landscape affecting pluripotency between iPSCs from different
donors (de Boni et al., 2018; Kim et al., 2014). Unsurprisingly,
analyses have shown a higher inter-donor variability in the gene
expression of iPSCs-derived models compared to the primary cells
they are intended to model (Schwartzentruber et al., 2018),
confirming that induction and differentiation procedures
themselves introduce variation. Understanding the effects that the
genetic background exerts upon the resulting model is necessary as
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Fig. 1. Variation occurs at each step in an iPSC-based study. The vertical blue arrows indicate amplification of heterogeneity (Box 1) due to variation (indicated

by lightning bolts) created in the previous steps of iPSC derivation.

iPSC-specific eQTLs identified through large-scale studies
demonstrate that iPSCs have distinct regulatory gene networks
compared to their cells of origin (Carcamo-Orive et al., 2017,
DeBoever et al., 2017; Kilpinen et al., 2017). Notably, genes for
which expression varies with iPSC variability-associated eQTLs are
involved in stem cell maintenance and differentiation efficiency/
propensity (Carcamo-Orive et al., 2017; Kilpinen et al., 2017;
Yamasaki et al., 2017). Predictably, substantial donor effects on
protein expression levels are observed for proteins influencing cell
differentiation and cell—cell adhesion (Mirauta et al., 2018 preprint).
A large-scale quantitative cell morphology assay found donor
contribution of up to 23% to the observed phenotypic variation
between iPSCs derived from healthy individuals (Kilpinen et al.,
2017), confirming that inter-individual variation has significant
effects at different levels of the cellular phenotype.

Beyond the genetic background, donor-specific epigenetics
retained after reprogramming influence stem cell variation. In
particular, the donor-specific background can modulate the
Polycomb transcriptional repressors controlling cell identity and
development (Carcamo-Orive et al., 2017), and accounts for a
significant fraction of inter- and intra-individual iPSC line
variability.

Somatic mutations

Although neither donor age, ethnicity nor sex appear to influence
the number of mutations within iPSC lines, ultraviolet (UV)-
associated mutations are a major contributor to the heterogeneity in
mutation rates across iPSC lines. Thus, source tissue UV exposure
will influence the somatic mutation (Box 1) rate (D’ Antonio et al.,
2018). Reprogramming processes and culturing are thought to
influence the selection of somatic variants, notably those associated
with cancer, that might be advantageous within the culturing

process (Merkle et al., 2017). While variants advantageous to cell
culture will increase in frequency (Merkle et al., 2017), it has been
reported that 11% of all iPSC somatic variants are subclonal (Box 1)
(D’Antonio et al., 2018). Given their frequencies (10-30%), these
variants likely arose within the first few cellular divisions after
induced reprogramming of the parental cell, which suggests that a
single line can contain multiple subclones with altered genetic
backgrounds. Compared with clonal variants, subclonal variants
showed an enrichment in active promoters and an increased
association with altered gene expression (D’Antonio et al., 2018).
One of the most recurrent genomic variations found in stem cell
cultures is copy number gain of 20q11.21, which is present in up to
25% of embryonic stem cells/iPSCs and affects the differentiation
potential of iPSCs (Nguyen et al., 2014). Notably, even when
expression changes are not directly detected in iPSCs, variants
could have effects in specific differentiated cell types, i.e. mutations
in a cardiac-specific transcription factor might affect phenotypes in
iPSC-derived cardiomyocytes, but not in iPSC-derived neurons or
in the iPSCs themselves (D’Antonio et al., 2018).

Non-genetic variation

Lastly, several groups reported that variation in routine cell
culturing and maintenance such as variation in passage number,
growth rate and culture medium contribute to iPSC variability
(Fossati et al., 2016; Hu et al., 2010; Schwartzentruber et al., 2018;
Volpato et al., 2018), and that automated platforms can reduce such
variability (Paull et al., 2015). Our own group has also recently
shown that laboratory-based sources of variation, even when
different laboratories follow standardised protocols, can
substantially overpower genotypic effects. When comparing the
transcriptomic readouts of neurons derived from the same iPSC
lines following the same protocols across five distinct laboratories,
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the laboratory of origin accounted for up to 60% of the captured
variation. Among its main contributors were passage number and
use of frozen progenitors (Volpato et al., 2018). The resulting
variation was largely due to different proportions of differentiated
cell types within the cultures, despite following the same protocol
with the same iPSC lines. Multiple sources of experimental
variation contribute, and each contribution is potentially amplified
at multiple stages of the culturing process, producing highly
heterogeneous  cell populations. Along with hindering
reproducibility, this heterogeneity can, especially in subsequent
omics analyses, mask important biological differences.

Strategies to reduce variation

Acknowledging, measuring and reducing experimental variability
must be part of the experimental design. We agree with others that
the wuse of standardised methodologies, along with the
documentation of fate, yield and purity of the derived cell types,
would increase the reliability of phenotype comparisons and thus
improve reproducibility across different laboratories (Engle et al.,
2018; Hollingsworth et al., 2017). Fig. 2 illustrates the approaches to
reduce experimental bias and noise at each step within an iPSC-
based study. As we discussed above, significant variation arises
even when researchers closely follow similar protocols and,
regardless, protocols may be changed to facilitate new discovery.
We thus present strategies that facilitate comparisons across diverse
protocols.

Stem cell banks and reference panels: the need for well-understood
lines and common controls

Several large-scale consortia have generated large banks totalling
over a thousand iPSC lines and have made these lines available to
the research community, including Stem Cells for Biological Assays
of Novel Drugs and Predictive Toxicology (StemBANCC) (Cader
et al., 2019), HipSci (Leha et al., 2016), the European Bank for
Induced Pluripotent Stem Cells (EBiSC) (De Sousa et al., 2017), the
iPSC Collection for Omic Research (iPSCORE) (Panopoulos et al.,
2017) and others. These iPSC panels offer several advantages; for
example, through their systematic creation, curation and QC. The
consortia apply rigorous characterisation procedures to examine
genomic integrity and filter out lines that harbour somatic variation

that might influence cell behaviours (Engle et al., 2018; Popp et al.,
2018). Moreover, these lines are often accompanied by whole-
exome or genome sequencing data and are subject to extensive
transcriptomic and proteomic analyses. The lines available already
cover a multitude of disorders, with a particular focus on lines from
individuals carrying rare genetic variants (Cader et al., 2019; De
Sousa et al., 2017).

Despite these QC advantages, we argue that it is the re-use of
lines between studies that will prove key to accounting for variation
within these models (Volpato et al., 2018). The genetic background
significantly contributes to iPSC cellular heterogeneity (Box 1),
including differentiation potency, cellular morphology and gene
expression variation (Chandler et al., 2017; Kilpinen et al., 2017).
Thus, the effect of a variant of interest must be disentangled from the
unique genetic backgrounds of the studied lines. Although the
isogenic approaches described below allow researchers to examine
the effect of a variant within a specific genetic background, they do
not account for the effects of differing genetic backgrounds between
different lines across studies. Researchers must also consider that
the genetic background in iPSC models could be indirectly affecting
the cellular phenotype; for example, by altering the cellular
composition of the culture (Volpato et al., 2018). The repeated
use of the same or a small number of genetic backgrounds within all
other major modelling communities (e.g. mouse, fly, etc) has
enabled gene function comparison across studies, empowering
systematic genotype/phenotype projects and enabling cross-study
knowledge gathering (Doetschman et al., 2009; Smith et al., 2018).
Unfortunately, the iPSC modelling community is currently in
danger of generating an extensive body of knowledge for which
generality is untested and unknown.

The ability of a human iPSC line to model polygenic influence is
a unique strength, and the genetic capacity of these models to
capture polygenic risk (Box 1) is exciting. Thus, there is a strong
argument to vary the genetic background in order to examine the
combined contribution of multiple genetic variants towards a
phenotype. Moreover, the ability of iPSC models to explore the
genetics of any given patient’s disorder even without knowledge of
any specific disease-causing variant is also a strength. Thus,
although useful, we do not argue for the exclusive study of an
isogenic bank of lines into which to engineer single variants of
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Fig. 2. Flow chart illustrating the approaches to reduce experimental bias and noise. Experiments should be characterised at each step, from the initial
reprogramming and differentiation to the final observation of a disease phenotype. This chart can guide investigators in choosing the most appropriate cell lines
and protocols to model a specific disease. Exome seq, whole-exome sequencing; FACS, fluorescence-activated cell sorting; QCs, quality controls.
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interest. Instead, we argue for the inclusion of Rosetta lines (Box 1),
a set of case or control lines selected by and shared across each
community that can be appropriately re-used across experiments,
wherever possible. These Rosetta lines can become the reference
points for comparisons across studies, enabling researchers to detect
and potentially account for experimental variation between studies
(see below). Although studies following exactly the same protocol
can obtain significantly different results, the intra-study variation
appears to be significantly smaller than the inter-study variation,
which suggests a single point of reference for each study (i.e. the
inclusion of at least one Rosetta line) might sufficiently represent a
large proportion of that study’s specific variation. Including
multiple Rosetta lines would more accurately capture
experimental variation and/or increase the number of comparable
studies. Each disease research community might have very different
needs for their shared Rosetta lines. For example, the StemBANCC
consortium generated a large set of control lines derived from aged
controls that could be re-used across studies on a range of
neurodegenerative disorders (Cader et al., 2019). Family history
or polygenic risk for relevant phenotypic variation within
individuals contributing Rosetta lines could also be considered.

Experimental design

To ensure valid disease modelling experiments, the choice of
donors and lines, differentiation protocol, number of samples (both
cases and controls) and number of lines from each patient have to be
agreed primarily based on the disease to be modelled, the likely
effect size of disease-relevant phenotypes and the readouts of
interest. The highly detailed and curated iPSC banks and reference
panels described above provide excellent starting points to help
define a controlled and robust experimental design.

Assuming a straightforward study, such as the comparison of two
populations — cases versus controls, we recommend increasing the
number of cases and controls rather than increasing the number of
lines derived from each case or control individual, as this powers the
more interesting population comparison. An analysis of
transcriptomic profiles of undifferentiated iPSCs found that four
to six individuals per group provided a reasonable balance of
sensitivity and specificity (Germain et al., 2017), although this
number will vary significantly depending on the genetic effect
studied, e.g. smaller effect sizes will require larger numbers.
Remarkably, the same study reported that using multiple iPSC lines
from the same individual actually increased spurious differences in
gene expression between study groups. Nonetheless, having
multiple lines available from each individual enables the
examination of outliers for line-specific effects (e.g. somatic
variation — see above) and validation of key results.

Control lines should be matched for age, sex and ethnicity.
Whenever possible, these should also match the time in culture. If
female iPSC lines are used, they should be characterized for
X-chromosome inactivation status. Considerable variation in the
amount of X-chromosome reactivation in early-passage lines and
random re-inactivation of X chromosome in later passages affect
differentiation potential (Booth et al., 2019; DeBoever et al., 2017,
Mekhoubad et al., 2012; Salomonis et al., 2016).

Alternatively, a widely used strategy to deal with genetic
background influence on the expression of a disease phenotype in
the case of a known genetic variant is to use clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9-mediated
genomic editing technologies to generate isogenic cell line (Box 1)
pairs (Cong et al, 2013; Yumlu et al., 2017). Although
straightforward, this approach is not always ideal. For example,

where a particular genetic variant is not sufficient to cause disease,
ie. it is also found in the non-diseased population but at a
significantly lower frequency, the genetic background could also be
influencing the disease process. If so, examining the risk variant
within a patient line, which is more likely to have a risk-increasing
or -modifying genetic background, could be key for elucidating its
aetiological contribution. Thus, it is usually a better strategy to edit
the risk variant out of a patient line than to edit the variant into a
control line. However, comparing the effect of editing such a variant
out of a disease line to the effect of engineering the variant into a
control line would inform on the contribution of the genetic
background. Where a variant is apparently highly penetrant (Box 1),
it would be better engineered into a well-studied control line.

Obtaining homogeneous cellular composition

When differentiating iPSCs into the cell type of interest, the cellular
composition of the resulting culture is a primary source of inter- and
intra-experimental variation (Sandor et al., 2017; Volpato et al., 2018).
Although standardised protocols that produce more homogeneous and
more mature populations of cell types in a compressed time frame are
attractive to reduce variability (Nehme et al., 2018), researchers
should take care that the relevant biology is not skipped over and thus
missed (Schafer et al., 2019). Rigorous standardisation of iPSC
reprogramming and differentiation can preserve inter-individual
variation in iPSC-derived differentiated cells with high fidelity and
without increasing intra-individual variation, thus reducing the
previously reported intra-clone variation (Matsa et al., 2016). Other
strategies have proven effective in obtaining more homogeneous iPSC-
derived lines through functional QC analyses. Electrophysiological
activity assays can increase confidence in cell type specificity and
provide experimental readouts that can be used as standards for
achieving consistent models across multiple rounds of differentiation
(Ghaffari et al., 2018). Isolating the cell type of interest through the
expression of marker genes, most conveniently on the cell surface, is an
effective strategy for rapid isolation and characterization. However, for
certain cell types of interest, most notably neurons, a suitable cell
surface marker is not known and currently only neuronal nuclei can be
isolated (Matevossian et al., 2008). In another approach, a construct
with a tyrosine hydroxylase promoter driving a fluorescent reporter
was used to sort fixed iPSC-derived DaNs. Subsequent transcriptomic
analysis of the sorted and unsorted lines revealed that 34% of the total
transcriptomic variation was attributable to cell type heterogeneity in
DaN differentiation protocols and that the cell type purification step
increased transcriptomic uniformity in the purified lines (Sandor et al.,
2017). However, both nuclei and fluorescence-activated cell sorting of
fixed cells allow limited downstream assays, whereas sorting live cells
might itself introduce biases (Lluftio et al., 2018).

Identify and remove unwanted variation

If the gene expression profile is of interest, single-cell RNA
sequencing provides an excellent option to identify and distinguish
heterogeneous cell populations. Covariation across gene expression
profiles identifies shared cell types or states, which can be grouped
into individual populations by computational clustering approaches
(Kiselev et al., 2019). Clustering cells into distinct populations can
identify iPSC-derived cells that best approximate the native cell type
for use in subsequent analyses (Paik et al., 2018; Volpato et al.,
2018). Machine learning-based methods, trained on large-scale
in vivo gene expression and/or in vitro cellular physiological data,
can be used to identify the molecular signatures of different
functional states of differentiated cells (La Manno et al., 2016).
When such differences in maturation state are recognised, they can
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be regressed out to reveal the biological variation of interest
(Buettneret al., 2015). Similarly, proteomic analyses allow detection
of the cells’ volume or cell cycle stage by profiling marker protein
expression and DNA content, enabling normalisation (Akopyan
etal., 2014; Kafti etal., 2013). Gene expression variation of cell type
markers can be also used to estimate cell type heterogeneity in bulk
RNA-sequencing experiments. If the cell types within a culture have
been previously well characterised, deconvolution approaches will
use these profiles to estimate the cell type proportions within a
heterogeneous culture (Wang et al., 2019; Zaitsev et al., 2019).
However, single-marker genes can also be used. For example, GFAP
expression correlates well with the proportion of astrocytes within
iPSC-derived cultures (Booth et al., 2019). This was subsequently
used as a measure of iPSC differentiation efficiency, enabling
researchers to disregard uninteresting gene expression variation.

When the causes of variation are unknown and cannot be easily
regressed out from the data, factor analysis-based approaches can
capture variance between samples that, upon correlation to recorded
sources of variation such as experimental confounding factors, can
be safely removed from the data. Clearly associating trends in the
data with unwanted experimental variation is important in order to
justify their removal. Researchers cannot simply ignore trends
because their biological meaning is unclear or uninteresting.
Methods range from the simple principal component analysis
(Box 1) to the more articulate probabilistic estimation of expression
residuals (PEER; Box 1) approach (’t Hoen et al., 2013; Vigilante
etal., 2019) and generalized linear model based methods such as the
removal of unwanted variation (RUV; Box 1) strategy (Risso et al.,
2014). For instance, if Rosetta lines are used as a reference point
across different studies, RUV could help identify laboratory- and
experiment-dependent variation between the omics readouts of
Rosetta lines that, in turn, would help unmask the biological
variation of interest between the experimental lines across studies
(Fig. 3A). Our group has recently applied RUV to model variance
according to the experimental design, whereby a laboratory-
dependent variation was identifiable assuming similarity between
the technical replicates across different laboratories (Volpato et al.,
2018). Such tools can incorporate the effects of several types of
covariates and, by using negative-control genes or replicate
samples, model both technical and biological variability
(Carcamo-Orive et al., 2017; Ran et al., 2017; Volpato et al.,
2018). Moreover, RUV-based tools can cover a wide spectrum of
omics data, from gene expression, proteomics and metabolomics to
imaging data (https:/statistics.berkeley.edu/sites/default/files/tech-
reports/ruv.pdf).

Exploiting cellular heterogeneity
In culture, cells that are used to model a disease-relevant process are
unlikely to be undergoing that process in a highly synchronised
manner. Taking a single measurement of a property of the culture
cannot capture this heterogeneity. Instead, it captures cells at various
points in the process, summed into a single value that usually does
not recapitulate the modelled process in a helpful way. However,
single-cell transcriptomics allows researchers to distinguish cells
that are undergoing distinct processes or are at different stages
within the same process. The presence of distinct cellular processes
between patient-derived cell models can identify distinct aetiologies
between patients, which can prompt clinical re-evaluation, even
leading to a different diagnosis (Lang et al., 2019).

For cells undergoing the same biological process,
pseudotemporal ordering approaches attempt to arrange the cells
based on their progression through that process (Fig. 3B).

A Modelling and removal of technical heterogeneity
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Fig. 3. How to address and exploit heterogeneity to model disease. The
cell lines are plotted on axes that represent the principal dimensions of
variation from an omics measurement (e.g. gene expression via RNA
sequencing). (A) Identify and remove technical or non-relevant variation
between lines by assuming similarity between the same Rosetta line used in
the different studies. When variation between the Rosetta line instances is
removed using methods such as removal of unwanted variation (RUV), the
biological variation between different cell lines can be exposed/unmasked.
(B) Use single-cell assays to distinguish cell types and then use within-
population heterogeneity to arrange individual cells along a pseudotemporal
axis describing progression through a biological process. Each assayed cell
provides a stepping stone through the process of interest and the changes in
the expression of individual genes along this process can be inferred.

Reasoning that cells with more similar gene expression profiles
are more likely to be at a similar stage in the process than cells with
less similar gene expression profiles, cells can be ordered to
generate a pseudotemporal profile within the modelled cellular
process. In effect, each cell provides a snapshot of the unfolding
disease process with similar snapshots (gene expression profiles)
placed closer together within the series to provide a continuum
across which researchers can infer changes in the expression of
individual genes. This technique enables the identification of early
gene dysregulation events that, upon correction, can restore later
(typically more severe) gene dysregulation and ameliorate disease-
related cellular phenotypes (Lang et al., 2019). In addition, as
intrinsic properties of iPSC lines can result in varying cell types of
different proportions (Volpato et al., 2018), single-cell analyses of
cell-type and intra-culture heterogeneity may also reveal unique
developmental phenotypes where genetic variants affect cell types,
cell type proportions and the resulting cell type circuitries. For
instance, when iPSCs carrying genetic variants that cause the
neuromuscular  disorder metachromatic leukodystrophy are
differentiated into heterogeneous mixed populations of
oligodendrocytes, neurons and astrocytes, the disease-causing
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mutation favours the maintenance of immature oligodendroglial
progenitors and impairs their differentiation with consequent
reduction in neuronal function support and eventually neuron
death (Frati et al., 2018). This mechanism has been confirmed to
contribute to the early stages of pathology before neurodegeneration
occurs, pointing to the importance of such models to investigate
disease processes that are shaped early in brain development and
cannot be properly assessed in brain tissues of patients at the late
stages of the disease, with implications for the timing and efficacy of
treatments.

Future perspectives

iPSC models offer tremendous opportunities to advance our
understanding across a wide range of biology. Each model is as
unique as the individual from whom it was derived, along with a
large amount of known and unknown experimental variation.
Although every effort should be made to understand and reduce
experimental variation, a more immediate strategy would be for
each iPSC modelling community to adopt a set of appropriate
common case and control lines that would enable them to identify
experimental variation across studies. Through this simple step,
bioinformatics approaches can help to identify and remove bias
from omics measurements, aiding inter-study comparisons and thus
scientific reproducibility. Finally, single-cell assay technologies
may provide opportunities not only to reduce study heterogeneity
but also to convert process and progressional heterogeneity into
significantly insightful biology.

Competing interests
The authors declare no competing or financial interests.

Funding

This work was supported by the UK Dementia Research Institute, which receives its
funding from DRI Ltd, funded by the Medical Research Council, Alzheimer’s Society
and Alzheimer’s Research UK.

References

Akopyan, K., Silva Cascales, H., Hukasova, E., Saurin, A. T., Miillers, E.,
Jaiswal, H., Hollman, D. A. A., Kops, G. J. P. L., Medema, R. H. and Lindqvist,
A. (2014). Assessing kinetics from fixed cells reveals activation of the mitotic entry
network at the S/G2 transition. Mol. Cell 53, 843-853. doi:10.1016/j.molcel.2014.
01.031

Banovich, N. E., Li, Y. |, Raj, A., Ward, M. C., Greenside, P., Calderon, D., Tung,
P.Y., Burnett, J. E., Myrthil, M., Thomas, S. M. et al. (2018). Impact of regulatory
variation across human iPSCs and differentiated cells. Genome Res. 28, 122-131.
doi:10.1101/gr.224436.117

Bardy, C., van den Hurk, M., Kakaradov, B., Erwin, J. A., Jaeger, B. N.,
Hernandez, R. V., Eames, T., Paucar, A. A., Gorris, M., Marchand, C. et al.
(2016). Predicting the functional states of human iPSC-derived neurons with
single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21, 1573-1588.
doi:10.1038/mp.2016.158

Bilic, J. and Izpisua Belmonte, J. C. (2012). Concise review: induced pluripotent
stem cells versus embryonic stem cells: close enough or yet too far apart? Stem
Cells 30, 33-41. doi:10.1002/stem.700

Booth, H. D. E., Wessely, F., Connor-Robson, N., Rinaldi, F., Vowles, J.,
Browne, C., Evetts, S. G., Hu, M. T., Cowley, S. A., Webber, C. et al. (2019).
RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S
Parkinson’s iPSC-derived astrocytes. Neurobiol. Dis. 129, 56-66. doi:10.1016/j.
nbd.2019.05.006

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis,
F. J., Teichmann, S. A., Marioni, J. C. and Stegle, O. (2015). Computational
analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals
hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160. doi:10.1038/nbt.
3102

Burrows, C. K., Banovich, N. E., Pavlovic, B. J., Patterson, K., Gallego Romero,
l., Pritchard, J. K. and Gilad, Y. (2016). Genetic variation, not cell type of origin,
underlies the majority of identifiable regulatory differences in iPSCs. PLoS Genet.
12, €1005793. doi:10.1371/journal.pgen.1005793

Cader, Z., Graf, M., Burcin, M., Mandenius, C.-F. and Ross, J. A. (2019). Cell-
based assays using differentiated human induced pluripotent cells. Methods Mol.
Biol. 1994, 1-14. doi:10.1007/978-1-4939-9477-9_1

Cao, L., McDonnell, A., Nitzsche, A., Alexandrou, A., Saintot, P. P., Loucif, A. J.,
Brown, A. R., Young, G., Mis, M., Randall, A. et al. (2016). Pharmacological
reversal of a pain phenotype in iPSC-derived sensory neurons and patients with
inherited erythromelalgia. Sci. Transl. Med. 8, 335ra56. doi:10.1126/scitransimed.
aad7653

Carcamo-Orive, l., Hoffman, G. E., Cundiff, P., Beckmann, N. D., D’Souza, S. L.,
Knowles, J. W., Patel, A., Papatsenko, D., Abbasi, F., Reaven, G. M. et al.
(2017). Analysis of transcriptional variability in a large human iPSC library reveals
genetic and non-genetic determinants of heterogeneity. Cell Stem Cell 20,
518-532.€9. doi:10.1016/j.stem.2016.11.005

Chandler, C. H., Chari, S., Kowalski, A., Choi, L., Tack, D., DeNieu, M., Pitchers,
W., Sonnenschein, A., Marvin, L., Hummel, K. et al. (2017). How well do you
know your mutation? complex effects of genetic background on expressivity,
complementation, and ordering of allelic effects. PLoS Genet. 13, e1007075.
doi:10.1371/journal.pgen.1007075

Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., Chen,
H., Hooli, B., Asselin, C., Muffat, J. et al. (2014). A three-dimensional human
neural cell culture model of Alzheimer's disease. Nature 515, 274-278. doi:10.
1038/nature13800

Cong, L., Ran, F. A, Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X,,
Jiang, W., Marraffini, L. A. et al. (2013). Multiplex genome engineering using
CRISPR/Cas systems. Science 339, 819-823. doi:10.1126/science.1231143

Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg,
M., McLean, J. R., Carrillo-Reid, L., Xie, Z., Osborn, T. et al. (2012).
Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells
from patients with familial Parkinson’s disease. Sci. Transl. Med. 4, 141. doi:10.
1126/scitranslmed.3003985

D’Antonio, M., Benaglio, P., Jakubosky, D., Greenwald, W. W., Matsui, H.,
Donovan, M. K. R,, Li, H., Smith, E. N., D’Antonio-Chronowska, A. and Frazer,
K. A. (2018). Insights into the mutational burden of human induced pluripotent
stem cells from an integrative multi-omics approach. Cell Rep. 24, 883-894.
doi:10.1016/j.celrep.2018.06.091

de Boni, L., Gasparoni, G., Haubenreich, C., Tierling, S., Schmitt, I., Peitz, M.,
Koch, P., Walter, J., Wiillner, U. and Briistle, O. (2018). DNA methylation
alterations in iPSC- and hESC-derived neurons: potential implications for
neurological disease modeling. Clin. Epigenet. 10, 13. doi:10.1186/s13148-018-
0440-0

De Sousa, P. A,, Steeg, R., Wachter, E., Bruce, K., King, J., Hoeve, M., Khadun,
S., McConnachie, G., Holder, J., Kurtz, A. et al. (2017). Rapid establishment of
the European Bank for induced Pluripotent Stem Cells (EBiSC) - the hot start
experience. Stem Cell Res. 20, 105-114. doi:10.1016/j.scr.2017.03.002

DeBoever, C., Li, H., Jakubosky, D., Benaglio, P., Reyna, J., Olson, K. M.,
Huang, H., Biggs, W., Sandoval, E., D’Antonio, M. et al. (2017). Large-scale
profiling reveals the influence of genetic variation on gene expression in human
induced pluripotent stem cells. Cell Stem Cell 20, 533-546.e7. doi:10.1016/j.stem.
2017.03.009

Doetschman, T. (2009). Influence of genetic background on genetically engineered
mouse phenotypes. Methods Mol. Biol. 530, 423-433. doi:10.1007/978-1-59745-
471-1_23

Engle, S. J., Blaha, L. and Kleiman, R. J. (2018). Best practices for translational
disease modeling using human iPSC-derived neurons. Neuron 100, 783-797.
doi:10.1016/j.neuron.2018.10.033

Fossati, V., Jain, T. and Sevilla, A. (2016). The silver lining of induced pluripotent
stem cell variation. Stem Cell Investig. 3, 86. doi:10.21037/sci.2016.11.16

Frati, G., Luciani, M., Meneghini, V., De Cicco, S., Stahiman, M., Blomqvist, M.,
Grossi, S., Filocamo, M., Morena, F., Menegon, A. et al. (2018). Human iPSC-
based models highlight defective glial and neuronal differentiation from neural
progenitor cells in metachromatic leukodystrophy. Cell Death Dis. 9, 698. doi:10.
1038/s41419-018-0737-0

Germain, P.-L. and Testa, G. (2017). Taming human genetic variability:
transcriptomic meta-analysis guides the experimental design and interpretation
of iPSC-based disease modeling. Stem Cell Rep. 8, 1784-1796. doi:10.1016/j.
stemcr.2017.05.012

Ghaffari, L. T., Starr, A., Nelson, A. T. and Sattler, R. (2018). Representing
diversity in the dish: using patient-derived in vitro models to recreate the
heterogeneity of neurological disease. Front. Neurosci. 12, 56. doi:10.3389/fnins.
2018.00056

Gubhr, A,, Kobold, S., Seltmann, S., Seiler Wulczyn, A. E. M., Kurtz, A. and
Loser, P. (2018). Recent trends in research with human pluripotent stem cells:
impact of research and use of cell lines in experimental research and clinical trials.
Stem Cell Rep. 11, 485-496. doi:10.1016/j.stemcr.2018.06.012

Handel, A. E., Chintawar, S., Lalic, T., Whiteley, E., Vowles, J., Giustacchini, A.,
Argoud, K., Sopp, P., Nakanishi, M., Bowden, R. et al. (2016). Assessing
similarity to primary tissue and cortical layer identity in induced pluripotent stem
cell-derived cortical neurons through single-cell transcriptomics. Hum. Mol.
Genet. 25, 989-1000. doi:10.1093/hmg/ddv637

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://doi.org/10.1016/j.molcel.2014.01.031
https://doi.org/10.1016/j.molcel.2014.01.031
https://doi.org/10.1016/j.molcel.2014.01.031
https://doi.org/10.1016/j.molcel.2014.01.031
https://doi.org/10.1016/j.molcel.2014.01.031
https://doi.org/10.1101/gr.224436.117
https://doi.org/10.1101/gr.224436.117
https://doi.org/10.1101/gr.224436.117
https://doi.org/10.1101/gr.224436.117
https://doi.org/10.1038/mp.2016.158
https://doi.org/10.1038/mp.2016.158
https://doi.org/10.1038/mp.2016.158
https://doi.org/10.1038/mp.2016.158
https://doi.org/10.1038/mp.2016.158
https://doi.org/10.1002/stem.700
https://doi.org/10.1002/stem.700
https://doi.org/10.1002/stem.700
https://doi.org/10.1016/j.nbd.2019.05.006
https://doi.org/10.1016/j.nbd.2019.05.006
https://doi.org/10.1016/j.nbd.2019.05.006
https://doi.org/10.1016/j.nbd.2019.05.006
https://doi.org/10.1016/j.nbd.2019.05.006
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1371/journal.pgen.1005793
https://doi.org/10.1371/journal.pgen.1005793
https://doi.org/10.1371/journal.pgen.1005793
https://doi.org/10.1371/journal.pgen.1005793
https://doi.org/10.1007/978-1-4939-9477-9_1
https://doi.org/10.1007/978-1-4939-9477-9_1
https://doi.org/10.1007/978-1-4939-9477-9_1
https://doi.org/10.1126/scitranslmed.aad7653
https://doi.org/10.1126/scitranslmed.aad7653
https://doi.org/10.1126/scitranslmed.aad7653
https://doi.org/10.1126/scitranslmed.aad7653
https://doi.org/10.1126/scitranslmed.aad7653
https://doi.org/10.1016/j.stem.2016.11.005
https://doi.org/10.1016/j.stem.2016.11.005
https://doi.org/10.1016/j.stem.2016.11.005
https://doi.org/10.1016/j.stem.2016.11.005
https://doi.org/10.1016/j.stem.2016.11.005
https://doi.org/10.1371/journal.pgen.1007075
https://doi.org/10.1371/journal.pgen.1007075
https://doi.org/10.1371/journal.pgen.1007075
https://doi.org/10.1371/journal.pgen.1007075
https://doi.org/10.1371/journal.pgen.1007075
https://doi.org/10.1038/nature13800
https://doi.org/10.1038/nature13800
https://doi.org/10.1038/nature13800
https://doi.org/10.1038/nature13800
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/scitranslmed.3003985
https://doi.org/10.1126/scitranslmed.3003985
https://doi.org/10.1126/scitranslmed.3003985
https://doi.org/10.1126/scitranslmed.3003985
https://doi.org/10.1126/scitranslmed.3003985
https://doi.org/10.1016/j.celrep.2018.06.091
https://doi.org/10.1016/j.celrep.2018.06.091
https://doi.org/10.1016/j.celrep.2018.06.091
https://doi.org/10.1016/j.celrep.2018.06.091
https://doi.org/10.1016/j.celrep.2018.06.091
https://doi.org/10.1186/s13148-018-0440-0
https://doi.org/10.1186/s13148-018-0440-0
https://doi.org/10.1186/s13148-018-0440-0
https://doi.org/10.1186/s13148-018-0440-0
https://doi.org/10.1186/s13148-018-0440-0
https://doi.org/10.1016/j.scr.2017.03.002
https://doi.org/10.1016/j.scr.2017.03.002
https://doi.org/10.1016/j.scr.2017.03.002
https://doi.org/10.1016/j.scr.2017.03.002
https://doi.org/10.1016/j.stem.2017.03.009
https://doi.org/10.1016/j.stem.2017.03.009
https://doi.org/10.1016/j.stem.2017.03.009
https://doi.org/10.1016/j.stem.2017.03.009
https://doi.org/10.1016/j.stem.2017.03.009
https://doi.org/10.1007/978-1-59745-471-1_23
https://doi.org/10.1007/978-1-59745-471-1_23
https://doi.org/10.1007/978-1-59745-471-1_23
https://doi.org/10.1016/j.neuron.2018.10.033
https://doi.org/10.1016/j.neuron.2018.10.033
https://doi.org/10.1016/j.neuron.2018.10.033
https://doi.org/10.21037/sci.2016.11.16
https://doi.org/10.21037/sci.2016.11.16
https://doi.org/10.1038/s41419-018-0737-0
https://doi.org/10.1038/s41419-018-0737-0
https://doi.org/10.1038/s41419-018-0737-0
https://doi.org/10.1038/s41419-018-0737-0
https://doi.org/10.1038/s41419-018-0737-0
https://doi.org/10.1016/j.stemcr.2017.05.012
https://doi.org/10.1016/j.stemcr.2017.05.012
https://doi.org/10.1016/j.stemcr.2017.05.012
https://doi.org/10.1016/j.stemcr.2017.05.012
https://doi.org/10.3389/fnins.2018.00056
https://doi.org/10.3389/fnins.2018.00056
https://doi.org/10.3389/fnins.2018.00056
https://doi.org/10.3389/fnins.2018.00056
https://doi.org/10.1016/j.stemcr.2018.06.012
https://doi.org/10.1016/j.stemcr.2018.06.012
https://doi.org/10.1016/j.stemcr.2018.06.012
https://doi.org/10.1016/j.stemcr.2018.06.012
https://doi.org/10.1093/hmg/ddv637
https://doi.org/10.1093/hmg/ddv637
https://doi.org/10.1093/hmg/ddv637
https://doi.org/10.1093/hmg/ddv637
https://doi.org/10.1093/hmg/ddv637

REVIEW

Disease Models & Mechanisms (2020) 13, dmm042317. doi:10.1242/dmm.042317

Hollingsworth, E. W., Vaughn, J. E., Orack, J. C., Skinner, C., Khouri, J.,
Lizarraga, S. B., Hester, M. E., Watanabe, F., Kosik, K. S. and Imitola, J.
(2017). iPhemap: an atlas of phenotype to genotype relationships of human iPSC
models of neurological diseases. EMBO Mol. Med. 9, 1742-1762. doi:10.15252/
emmm.201708191

Hu, B.-Y., Weick, J. P., Yu, J., Ma, L.-X., Zhang, X.-Q., Thomson, J. A. and Zhang,
S.-C. (2010). Neural differentiation of human induced pluripotent stem cells
follows developmental principles but with variable potency. Proc. Natl. Acad. Sci.
USA 107, 4335-4340. doi:10.1073/pnas.0910012107

Kafri, R., Levy, J., Ginzberg, M. B., Oh, S., Lahav, G. and Kirschner, M. W.
(2013). Dynamics extracted from fixed cells reveal feedback linking cell growth to
cell cycle. Nature 494, 480-483. doi:10.1038/nature11897

Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Alasoo, K., Ashford, S., Bala, S.,
Bensaddek, D., Casale, F. P., Culley, O. J. et al. (2017). Common genetic
variation drives molecular heterogeneity in human iPSCs. Nature 546, 370-375.
doi:10.1038/nature22403

Kim, M., Park, Y.-K., Kang, T.-W.,, Lee, S.-H., Rhee, Y.-H., Park, J.-L., Kim, H.-J.,
Lee, D., Lee, D., Kim, S.-Y. et al. (2014). Dynamic changes in DNA methylation
and hydroxymethylation when hES cells undergo differentiation toward a neuronal
lineage. Hum. Mol. Genet. 23, 657-667. doi:10.1093/hmg/ddt453

Kiselev, V. Y., Andrews, T. S. and Hemberg, M. (2019). Publisher correction:
challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev.
Genet. 20, 310. doi:10.1038/s41576-019-0095-5

Kyttéld, A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy,
K. K., Nakanishi, M., Nishimura, K., Ohtaka, M., Weltner, J. et al. (2016).
Genetic variability overrides the impact of parental cell type and determines iPSC
differentiation potential. Stem Cell Rep. 6, 200-212. doi:10.1016/j.stemcr.2015.
12.009

La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A.,
Borm, L. E., Stott, S. R. W,, Toledo, E. M., Villaescusa, J. C. et al. (2016).
Molecular diversity of midbrain development in mouse, human, and stem cells.
Cell 167, 566-580.e19. doi:10.1016/j.cell.2016.09.027

Lang, C., Campbell, K. R., Ryan, B. J., Carling, P., Attar, M., Vowles, J.,
Perestenko, O. V., Bowden, R., Baig, F., Kasten, M. et al. (2019). Single-cell
sequencing of iPSC-dopamine neurons reconstructs disease progression and
identifies HDAC4 as a regulator of parkinson cell phenotypes. Cell Stem Cell 24,
93-106.€6. doi:10.1016/j.stem.2018.10.023

Leha, A., Moens, N., Meleckyte, R., Culley, O. J., Gervasio, M. K., Kerz, M.,
Reimer, A., Cain, S. A, Streeter, |., Folarin, A. et al. (2016). A high-content
platform to characterise human induced pluripotent stem cell lines. Methods 96,
85-96. doi:10.1016/j.ymeth.2015.11.012

Liu, G.-H., Barkho, B. Z., Ruiz, S., Diep, D., Qu, J., Yang, S.-L., Panopoulos,
A. D., Suzuki, K., Kurian, L., Walsh, C. et al. (2011). Recapitulation of premature
ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472,
221-225. doi:10.1038/nature09879

Llufrio, E. M., Wang, L., Naser, F. J. and Patti, G. J. (2018). Sorting cells alters their
redox state and cellular metabolome. Redox Biol. 16, 381-387. doi:10.1016/j.
redox.2018.03.004

Matevossian, A. and Akbarian, S. (2008). Neuronal nuclei isolation from human
postmortem brain tissue. J. Vis. Exp., €914. doi:10.3791/914

Matsa, E., Burridge, P. W., Yu, K.-H., Ahrens, J. H., Termglinchan, V., Wu, H.,
Liu, C., Shukla, P., Sayed, N., Churko, J. M. et al. (2016). Transcriptome profiling
of patient-specific human iPSC-cardiomyocytes predicts individual drug safety
and efficacy responses in vitro. Cell Stem Cell 19, 311-325. doi:10.1016/j.stem.
2016.07.006

Medvedev, S. P., Pokushalov, E. A. and Zakian, S. M. (2012). Epigenetics of
pluripotent cells. Acta Naturae 4, 28-46. doi:10.32607/20758251-2012-4-4-28-46

Mekhoubad, S., Bock, C., de Boer, A. S., Kiskinis, E., Meissner, A. and Eggan,
K. (2012). Erosion of dosage compensation impacts human iPSC disease
modeling. Cell Stem Cell 10, 595-609. doi:10.1016/j.stem.2012.02.014

Merkle, F. T., Ghosh, S., Kamitaki, N., Mitchell, J., Avior, Y., Mello, C., Kashin, S.,
Mekhoubad, S., llic, D., Charlton, M. et al. (2017). Human pluripotent stem cells
recurrently acquire and expand dominant negative P53 mutations. Nature 545,
229-233. doi:10.1038/nature22312

Mertens, J., Wang, Q.-W., Kim, Y., Yu, D. X., Pham, S., Yang, B., Zheng, Y.,
Diffenderfer, K. E., Zhang, J., Soltani, S. et al. (2015). Differential responses to
lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527,
95-99. doi:10.1038/nature 15526

Mirauta, B. A., Seaton, D. D., Bensaddek, D., Brenes, A., Bonder, M. J.,
Kilpinen, H., Consortium, H., Stegle, O. and Lamond, A. I. (2018). Population-
scale proteome variation in human induced pluripotent stem cells. bioRxiv doi:10.
1101/439216

Nehme, R., Zuccaro, E., Ghosh, S. D, Li, C., Sherwood, J. L., Pietilainen, O.,
Barrett, L. E., Limone, F., Worringer, K. A., Kommineni, S. et al. (2018).
Combining NGN2 programming with developmental patterning generates human
excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 23,
2509-2523. doi:10.1016/j.celrep.2018.04.066

Nguyen, H. T., Geens, M., Mertzanidou, A., Jacobs, K., Heirman, C., Breckpot,
K. and Spits, C. (2014). Gain of 20q11.21 in human embryonic stem cells

improves cell survival by increased expression of Bcl-xL. Mol. Hum. Reprod. 20,
168-177. doi:10.1093/molehr/gat077

Odawara, A., Saitoh, Y., Alhebshi, A. H., Gotoh, M. and Suzuki, I. (2014). Long-
term electrophysiological activity and pharmacological response of a human
induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochem.
Biophys. Res. Commun. 443, 1176-1181. doi:10.1016/j.bbrc.2013.12.142

Paik, D. T., Tian, L., Lee, J., Sayed, N., Chen, I. Y., Rhee, S., Rhee, J.-W., Kim, Y.,
Wirka, R. C., Buikema, J. W. et al. (2018). Large-scale single-cell RNA-seq
reveals molecular signatures of heterogeneous populations of human induced
pluripotent stem cell-derived endothelial cells. Circ. Res. 123, 443-450. doi:10.
1161/CIRCRESAHA.118.312913

Panopoulos, A. D., D’Antonio, M., Benaglio, P., Williams, R., Hashem, S. I.,
Schuldt, B. M., DeBoever, C., Arias, A. D., Garcia, M., Nelson, B. C. et al.
(2017). iPSCORE: a resource of 222 iPSC lines enabling functional
characterization of genetic variation across a variety of cell types. Stem Cell
Rep. 8, 1086-1100. doi:10.1016/j.stemcr.2017.03.012

Paull, D., Sevilla, A., Zhou, H., Hahn, A. K., Kim, H., Napolitano, C., Tsankov, A.,
Shang, L., Krumholz, K., Jagadeesan, P. et al. (2015). Automated, high-
throughput derivation, characterization and differentiation of induced pluripotent
stem cells. Nat. Methods 12, 885-892. doi:10.1038/nmeth.3507

Popp, B., Krumbiegel, M., Grosch, J., Sommer, A., Uebe, S., Kohl, Z., Pl6tz, S.,
Farrell, M., Trautmann, U., Kraus, C. et al. (2018). Need for high-resolution
genetic analysis in iPSC: results and lessons from the ForlPS consortium. Sci.
Rep. 8, 17201. doi:10.1038/s41598-018-35506-0

Ran, D. and Daye, Z. J. (2017). Gene expression variability and the analysis of
large-scale RNA-seq studies with the MDSeq. Nucleic Acids Res. 45, e127.
doi:10.1093/nar/gkx456

Risso, D., Ngai, J., Speed, T. P. and Dudoit, S. (2014). Normalization of RNA-seq
data using factor analysis of control genes or samples. Nat. Biotechnol. 32,
896-902. doi:10.1038/nbt.2931

Roost, M. S., Slieker, R. C., Bialecka, M., van Iperen, L., Gomes Fernandes,
M. M., He, N., Suchiman, H. E. D., Szuhai, K., Carlotti, F., de Koning, E. J. P.
et al. (2017). DNA methylation and transcriptional trajectories during human
development and reprogramming of isogenic pluripotent stem cells. Nat.
Commun. 8, 908. doi:10.1038/s41467-017-01077-3

Rouhani, F., Kumasaka, N., de Brito, M. C., Bradley, A., Vallier, L. and Gaffney,
D. (2014). Genetic background drives transcriptional variation in human induced
pluripotent stem cells. PLoS Genet. 10, e1004432. doi:10.1371/journal.pgen.
1004432

Salomonis, N., Dexheimer, P. J., Omberg, L., Schroll, R., Bush, S., Huo, J.,
Schriml, L., Ho Sui, S., Keddache, M., Mayhew, C. et al. (2016). Integrated
genomic analysis of diverse induced pluripotent stem cells from the progenitor cell
biology consortium. Stem Cell Rep. 7, 110-125. doi:10.1016/j.stemcr.2016.05.
006

Sandor, C., Robertson, P., Lang, C., Heger, A., Booth, H., Vowles, J., Witty, L.,
Bowden, R., Hu, M., Cowley, S. A. et al. (2017). Transcriptomic profiling of
purified patient-derived dopamine neurons identifies convergent perturbations
and therapeutics for Parkinson’s disease. Hum. Mol. Genet. 26, 552-566. doi:10.
1093/hmg/ddw412

Santos, R., Vadodaria, K. C., Jaeger, B. N., Mei, A., Lefcochilos-Fogelquist, S.,
Mendes, A. P. D., Erikson, G., Shokhirev, M., Randolph-Moore, L.,
Fredlender, C. et al. (2017). Differentiation of inflammation-responsive
astrocytes from glial progenitors generated from human induced pluripotent
stem cells. Stem Cell Rep. 8, 1757-1769. doi:10.1016/j.stemcr.2017.05.011

Schafer, S. T., Paquola, A. C. M., Stern, S., Gosselin, D., Ku, M., Pena, M., Kuret,
T. J. M., Liyanage, M., Mansour, A. A. F., Jaeger, B. N. et al. (2019).
Pathological priming causes developmental gene network heterochronicity in
autistic subject-derived neurons. Nat. Neurosci. 22, 243-255. doi:10.1038/
$41593-018-0295-x

Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K.,
Knights, A. J., Patel, M., Goncalves, A., Ferreira, R., Benn, C. L. et al. (2018).
Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet.
50, 54-61. doi:10.1038/s41588-017-0005-8

Shi, M., Majumdar, D., Gao, Y., Brewer, B. M., Goodwin, C. R., McLean, J. A, Li,
D. and Webb, D. J. (2013). Glia co-culture with neurons in microfluidic platforms
promotes the formation and stabilization of synaptic contacts. Lab Chip
3008-3012. doi:10.1039/c3Ic50249j

Skardal, A., Shupe, T. and Atala, A. (2016). Organoid-on-a-chip and body-on-a-
chip systems for drug screening and disease modeling. Drug Discov. Today 21,
1399-1411. doi:10.1016/j.drudis.2016.07.003

Sloan, S. A,, Darmanis, S., Huber, N., Khan, T. A., Birey, F., Caneda, C., Reimer,
R., Quake, S. R., Barres, B. A. and Pasca, S. P. (2017). Human astrocyte
maturation captured in 3d cerebral cortical spheroids derived from pluripotent
stem cells. Neuron 95, 779-790.e6. doi: 10.1016/j.neuron.2017.07.035

Smith, C. L., Blake, J. A., Kadin, J. A., Richardson, J. E., Bult, C. J. and Mouse
Genome Database Group (2018). Mouse Genome Database (MGD)-2018:
knowledgebase for the laboratory mouse. Nucleic Acids Res. 46, D836-D842.
doi:10.1093/nar/gkx1006

't Hoen, P. A., Friedlander, M. R., AIml&f, J., Sammeth, M., Pulyakhina, 1.,
Anvar, S. Y., Laros, J. F. J., Buermans, H. P. J., Karlberg, O., Brannvall, M.

8

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://doi.org/10.15252/emmm.201708191
https://doi.org/10.15252/emmm.201708191
https://doi.org/10.15252/emmm.201708191
https://doi.org/10.15252/emmm.201708191
https://doi.org/10.15252/emmm.201708191
https://doi.org/10.1073/pnas.0910012107
https://doi.org/10.1073/pnas.0910012107
https://doi.org/10.1073/pnas.0910012107
https://doi.org/10.1073/pnas.0910012107
https://doi.org/10.1038/nature11897
https://doi.org/10.1038/nature11897
https://doi.org/10.1038/nature11897
https://doi.org/10.1038/nature22403
https://doi.org/10.1038/nature22403
https://doi.org/10.1038/nature22403
https://doi.org/10.1038/nature22403
https://doi.org/10.1093/hmg/ddt453
https://doi.org/10.1093/hmg/ddt453
https://doi.org/10.1093/hmg/ddt453
https://doi.org/10.1093/hmg/ddt453
https://doi.org/10.1038/s41576-019-0095-5
https://doi.org/10.1038/s41576-019-0095-5
https://doi.org/10.1038/s41576-019-0095-5
https://doi.org/10.1016/j.stemcr.2015.12.009
https://doi.org/10.1016/j.stemcr.2015.12.009
https://doi.org/10.1016/j.stemcr.2015.12.009
https://doi.org/10.1016/j.stemcr.2015.12.009
https://doi.org/10.1016/j.stemcr.2015.12.009
https://doi.org/10.1016/j.cell.2016.09.027
https://doi.org/10.1016/j.cell.2016.09.027
https://doi.org/10.1016/j.cell.2016.09.027
https://doi.org/10.1016/j.cell.2016.09.027
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.ymeth.2015.11.012
https://doi.org/10.1016/j.ymeth.2015.11.012
https://doi.org/10.1016/j.ymeth.2015.11.012
https://doi.org/10.1016/j.ymeth.2015.11.012
https://doi.org/10.1038/nature09879
https://doi.org/10.1038/nature09879
https://doi.org/10.1038/nature09879
https://doi.org/10.1038/nature09879
https://doi.org/10.1016/j.redox.2018.03.004
https://doi.org/10.1016/j.redox.2018.03.004
https://doi.org/10.1016/j.redox.2018.03.004
https://doi.org/10.3791/914
https://doi.org/10.3791/914
https://doi.org/10.1016/j.stem.2016.07.006
https://doi.org/10.1016/j.stem.2016.07.006
https://doi.org/10.1016/j.stem.2016.07.006
https://doi.org/10.1016/j.stem.2016.07.006
https://doi.org/10.1016/j.stem.2016.07.006
https://doi.org/10.32607/20758251-2012-4-4-28-46
https://doi.org/10.32607/20758251-2012-4-4-28-46
https://doi.org/10.1016/j.stem.2012.02.014
https://doi.org/10.1016/j.stem.2012.02.014
https://doi.org/10.1016/j.stem.2012.02.014
https://doi.org/10.1038/nature22312
https://doi.org/10.1038/nature22312
https://doi.org/10.1038/nature22312
https://doi.org/10.1038/nature22312
https://doi.org/10.1038/nature15526
https://doi.org/10.1038/nature15526
https://doi.org/10.1038/nature15526
https://doi.org/10.1038/nature15526
https://doi.org/10.1101/439216
https://doi.org/10.1101/439216
https://doi.org/10.1101/439216
https://doi.org/10.1101/439216
https://doi.org/10.1016/j.celrep.2018.04.066
https://doi.org/10.1016/j.celrep.2018.04.066
https://doi.org/10.1016/j.celrep.2018.04.066
https://doi.org/10.1016/j.celrep.2018.04.066
https://doi.org/10.1016/j.celrep.2018.04.066
https://doi.org/10.1093/molehr/gat077
https://doi.org/10.1093/molehr/gat077
https://doi.org/10.1093/molehr/gat077
https://doi.org/10.1093/molehr/gat077
https://doi.org/10.1016/j.bbrc.2013.12.142
https://doi.org/10.1016/j.bbrc.2013.12.142
https://doi.org/10.1016/j.bbrc.2013.12.142
https://doi.org/10.1016/j.bbrc.2013.12.142
https://doi.org/10.1161/CIRCRESAHA.118.312913
https://doi.org/10.1161/CIRCRESAHA.118.312913
https://doi.org/10.1161/CIRCRESAHA.118.312913
https://doi.org/10.1161/CIRCRESAHA.118.312913
https://doi.org/10.1161/CIRCRESAHA.118.312913
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1038/nmeth.3507
https://doi.org/10.1038/nmeth.3507
https://doi.org/10.1038/nmeth.3507
https://doi.org/10.1038/nmeth.3507
https://doi.org/10.1038/s41598-018-35506-0
https://doi.org/10.1038/s41598-018-35506-0
https://doi.org/10.1038/s41598-018-35506-0
https://doi.org/10.1038/s41598-018-35506-0
https://doi.org/10.1093/nar/gkx456
https://doi.org/10.1093/nar/gkx456
https://doi.org/10.1093/nar/gkx456
https://doi.org/10.1038/nbt.2931
https://doi.org/10.1038/nbt.2931
https://doi.org/10.1038/nbt.2931
https://doi.org/10.1038/s41467-017-01077-3
https://doi.org/10.1038/s41467-017-01077-3
https://doi.org/10.1038/s41467-017-01077-3
https://doi.org/10.1038/s41467-017-01077-3
https://doi.org/10.1038/s41467-017-01077-3
https://doi.org/10.1371/journal.pgen.1004432
https://doi.org/10.1371/journal.pgen.1004432
https://doi.org/10.1371/journal.pgen.1004432
https://doi.org/10.1371/journal.pgen.1004432
https://doi.org/10.1016/j.stemcr.2016.05.006
https://doi.org/10.1016/j.stemcr.2016.05.006
https://doi.org/10.1016/j.stemcr.2016.05.006
https://doi.org/10.1016/j.stemcr.2016.05.006
https://doi.org/10.1016/j.stemcr.2016.05.006
https://doi.org/10.1093/hmg/ddw412
https://doi.org/10.1093/hmg/ddw412
https://doi.org/10.1093/hmg/ddw412
https://doi.org/10.1093/hmg/ddw412
https://doi.org/10.1093/hmg/ddw412
https://doi.org/10.1016/j.stemcr.2017.05.011
https://doi.org/10.1016/j.stemcr.2017.05.011
https://doi.org/10.1016/j.stemcr.2017.05.011
https://doi.org/10.1016/j.stemcr.2017.05.011
https://doi.org/10.1016/j.stemcr.2017.05.011
https://doi.org/10.1038/s41593-018-0295-x
https://doi.org/10.1038/s41593-018-0295-x
https://doi.org/10.1038/s41593-018-0295-x
https://doi.org/10.1038/s41593-018-0295-x
https://doi.org/10.1038/s41593-018-0295-x
https://doi.org/10.1038/s41588-017-0005-8
https://doi.org/10.1038/s41588-017-0005-8
https://doi.org/10.1038/s41588-017-0005-8
https://doi.org/10.1038/s41588-017-0005-8
https://doi.org/10.1039/c3lc50249j
https://doi.org/10.1039/c3lc50249j
https://doi.org/10.1039/c3lc50249j
https://doi.org/10.1039/c3lc50249j
https://doi.org/10.1016/j.drudis.2016.07.003
https://doi.org/10.1016/j.drudis.2016.07.003
https://doi.org/10.1016/j.drudis.2016.07.003
https://doi.org/10.1016/j.neuron.2017.07.035
https://doi.org/10.1016/j.neuron.2017.07.035
https://doi.org/10.1016/j.neuron.2017.07.035
https://doi.org/10.1016/j.neuron.2017.07.035
https://doi.org/10.1093/nar/gkx1006
https://doi.org/10.1093/nar/gkx1006
https://doi.org/10.1093/nar/gkx1006
https://doi.org/10.1093/nar/gkx1006
https://doi.org/10.1038/nbt.2702
https://doi.org/10.1038/nbt.2702

REVIEW

Disease Models & Mechanisms (2020) 13, dmm042317. doi:10.1242/dmm.042317

et al. (2013). Reproducibility of high-throughput mRNA and small RNA
sequencing across laboratories. Nat. Biotechnol. 31, 1015-1022. doi:10.1038/
nbt.2702

Taoufik, E., Kouroupi, G., Zygogianni, O. and Matsas, R. (2018). Synaptic
dysfunction in neurodegenerative and neurodevelopmental diseases: an
overview of induced pluripotent stem-cell-based disease models. Open Biol. 8,
180138. doi:10.1098/rsob.180138

Thomas, S. M., Kagan, C., Pavlovic, B. J., Burnett, J., Patterson, K., Pritchard,
J. K. and Gilad, Y. (2015). Reprogramming LCLs to iPSCs results in recovery of
donor-specific gene expression signature. PLoS Genet. 11, €1005216. doi:10.
1371/journal.pgen.1005216

Vigilante, A., Laddach, A., Moens, N., Meleckyte, R., Leha, A., Ghahramani, A.,
Culley, O. J., Kathuria, A., Hurling, C., Vickers, A. et al. (2019). Identifying
extrinsic versus intrinsic drivers of variation in cell behavior in human iPSC lines
from healthy donors. Cell Rep. 26, 2078-2087.e3. doi:10.1016/j.celrep.2019.01.
094

Volpato, V., Smith, J., Sandor, C., Ried, J. S., Baud, A., Handel, A., Newey, S.E.,
Wessely, F., Attar, M., Whiteley, E. et al. (2018). Reproducibility of molecular
phenotypes after long-term differentiation to human iPSC-derived neurons: a
multi-site omics study. Stem Cell Rep. 11, 897-911. doi:10.1016/j.stemcr.2018.
08.013

Wainger, B. J., Kiskinis, E., Mellin, C., Wiskow, O., Han, S. S. W., Sandoe, J.,
Perez, N. P., Williams, L. A., Lee, S., Boulting, G. et al. (2014). Intrinsic

membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor
neurons. Cell Rep 7, 1-11. doi:10.1016/j.celrep.2014.03.019

Wang, X., Park, J., Susztak, K., Zhang, N. R. and Li, M. (2019). Bulk tissue cell
type deconvolution with multi-subject single-cell expression reference. Nat.
Commun. 10, 380. doi:10.1038/s41467-018-08023-x

Yamasaki, A. E., Panopoulos, A. D. and Belmonte, J. C. . (2017). Understanding
the genetics behind complex human disease with large-scale iPSC collections.
Genome Biol. 18, 135. doi:10.1186/s13059-017-1276-1

Yao, Z., Mich, J. K., Ku, S., Menon, V., Krostag, A.-R., Martinez, R. A.,
Furchtgott, L., Mulholland, H., Bort, S., Fuqua, M. A. et al. (2017). A single-cell
roadmap of lineage bifurcation in human ESC models of embryonic brain
development. Cell Stem Cell 20, 120-134. doi:10.1016/j.stem.2016.09.011

Yumlu, S., Stumm, J., Bashir, S., Dreyer, A.-K., Lisowski, P., Danner, E. and
Kiihn, R. (2017). Gene editing and clonal isolation of human induced pluripotent
stem cells using CRISPR/Cas9. Methods 121-122, 29-44. doi:10.1016/j.ymeth.
2017.05.009

Zaitsev, K., Bambouskova, M., Swain, A. and Artyomov, M. N. (2019). Complete
deconvolution of cellular mixtures based on linearity of transcriptional signatures.
Nat. Commun. 10, 2209. doi:10.1038/s41467-019-09990-5

Zhao, J., Davis, M. D., Martens, Y. A., Shinohara, M., Graff-Radford, N. R.,
Younkin, S. G., Wszolek, Z. K., Kanekiyo, T. and Bu, G. (2017). APOE ¢4/¢4
diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol.
Genet. 26, 2690-2700. doi:10.1093/hmg/ddx155

(%]
S
oA
c
©
<
|9
o)
=
o
A
0}
g,
o
=
o)
(%)
©
Q
a4
(@]



https://doi.org/10.1038/nbt.2702
https://doi.org/10.1038/nbt.2702
https://doi.org/10.1038/nbt.2702
https://doi.org/10.1098/rsob.180138
https://doi.org/10.1098/rsob.180138
https://doi.org/10.1098/rsob.180138
https://doi.org/10.1098/rsob.180138
https://doi.org/10.1371/journal.pgen.1005216
https://doi.org/10.1371/journal.pgen.1005216
https://doi.org/10.1371/journal.pgen.1005216
https://doi.org/10.1371/journal.pgen.1005216
https://doi.org/10.1016/j.celrep.2019.01.094
https://doi.org/10.1016/j.celrep.2019.01.094
https://doi.org/10.1016/j.celrep.2019.01.094
https://doi.org/10.1016/j.celrep.2019.01.094
https://doi.org/10.1016/j.celrep.2019.01.094
https://doi.org/10.1016/j.stemcr.2018.08.013
https://doi.org/10.1016/j.stemcr.2018.08.013
https://doi.org/10.1016/j.stemcr.2018.08.013
https://doi.org/10.1016/j.stemcr.2018.08.013
https://doi.org/10.1016/j.stemcr.2018.08.013
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1016/j.celrep.2014.03.019
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1186/s13059-017-1276-1
https://doi.org/10.1186/s13059-017-1276-1
https://doi.org/10.1186/s13059-017-1276-1
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.ymeth.2017.05.009
https://doi.org/10.1016/j.ymeth.2017.05.009
https://doi.org/10.1016/j.ymeth.2017.05.009
https://doi.org/10.1016/j.ymeth.2017.05.009
https://doi.org/10.1038/s41467-019-09990-5
https://doi.org/10.1038/s41467-019-09990-5
https://doi.org/10.1038/s41467-019-09990-5
https://doi.org/10.1093/hmg/ddx155
https://doi.org/10.1093/hmg/ddx155
https://doi.org/10.1093/hmg/ddx155
https://doi.org/10.1093/hmg/ddx155

