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Bimodal Automated Carotid Ultrasound
Segmentation using Geometrically Constrained

Convolutional Neural Networks
Carl Azzopardi, Member, IEEE, Kenneth P. Camilleri, Senior Member, IEEE,

and Yulia Hicks, Senior Member, IEEE

Abstract—For asymptomatic patients suffering from carotid
stenosis, the assessment of plaque morphology is an important
clinical task which allows monitoring of the risk of plaque rupture
and future incidents of stroke. Ultrasound Imaging provides a
safe and non-invasive modality for this, and the segmentation
of media-adventitia boundaries and lumen-intima boundaries of
the Carotid artery form an essential part in this monitoring
process. In this paper, we propose a novel Deep Convolutional
Neural Network as a fully automated segmentation tool, and its
application in delineating both the media-adventitia boundary
and the lumen-intima boundary. We develop a new geometrically
constrained objective function as part of the Network’s Stochastic
Gradient Descent optimisation, thus tuning it to the problem at
hand. Furthermore, we also apply a novel, bimodal fusion of
envelope and phase congruency data as an input to the network,
as the latter provides an intensity-invariant data source to the
network. We finally report the segmentation performance of
the network on transverse sections of the carotid. Tests are
carried out on an augmented dataset of 81,000 images, and the
results are compared to other studies by reporting the DICE
coefficient of similarity, modified Hausdorff Distance, sensitivity
and specificity. Our proposed method is shown to yield results of
comparable accuracy over this larger dataset, with the advantage
of it being fully automated. We conclude that Deep Convolutional
Neural Networks provide a reliable trained manner in which
carotid ultrasound images may be automatically segmented, using
envelope data and intensity invariant phase congruency maps as
a data source.

Index Terms—Ultrasound, Segmentation, Deep Convolutional
Networks, Carotid Artery, Phase Congruency.

I. INTRODUCTION

ACCORDING to statistics presented by the American
Hearth Association, cerebrovascular disease is amongst

the leading causes of death in the United States, with an
estimated 7 million Americans above 20 years of age having
had a stroke between 2013 and 2016 [1]. In 2016 alone,
stroke accounted for approximately 1 in every 19 deaths, and
it thus ranks as the fourth leading cause of disease mortality
in the United States after heart disease, cancer and chronic
lower respiratory disease [1].

The underlying cause of these diseases is atherosclerosis - a
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Fig. 1: [Top] An example of a healthy carotid artery and
[Bottom] an example of an artery with an accumulation of
atherosclerotic plaque.

vascular pathology which is characterised by the thickening
and hardening of blood vessel walls [2]. When fatty substances
such as cholesterol, triglycerides, or cellular waste products
such as calcium and fibrin, start to accumulate on the inner
linings of an artery, they cause a progressive narrowing of
the lumen and consequently restrict the free flow of blood
[3]. This is shown in Figure 1. The carotid is one such artery
which is susceptible to such atherosclerotic deposits - or
plaque. Located on either side of the neck, it has the vital
function of supplying blood to the brain and to the muscles
in the face [4]. When atherosclerotic plaque ruptures in the
carotid artery, there is a significant risk that the blood clot
which forms will eventually travel upstream to occlude a
narrower vessel in the brain - ultimately leading to a stroke [4].

Localisation and grading of the severity of a stenosis, forms a
large part of the diagnostic process that clinical practitioners
use to assess the risk of rupture. Techniques such as Digital
Subtraction Angiography (DSA) and Magnetic Resonance
Angiography (MRA) are presently considered to be the gold
standard in assessing carotid disease severity [5]–[7]. However,
they are also considered to be somewhat invasive, and pose
risks to the patients due to the risk of emboli or nephrotoxicity
arising from the contrast agent used [7]. Ultrasound imaging
has therefore widely gained popularity due to its low cost
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and and non-invasive nature, permitting a quick assessment
of vessel geometry, degree of stenosis, as well as of plaque
morphology [4], [5], [7]. Classically, the intima-media thick-
ness (IMT) has been the clinical measure used in Ultrasound
imaging to monitor plaque progression and burden [8], [9].
However, given that plaque progresses faster along the length
of the vessel as opposed to in thickness, it may be better
indicated to monitor plaque progression in 3D, as this would
provide a better indication of sites which are at risk of rupture
[9].

In order for accurate measurement of vessel geometry to
take place - be it for later three dimensional reconstruction
of the artery or for further assessment of plaque burden
using metrics such as Total Plaque Volume (TPV) or Vessel
Wall Volume (VWV), two specific wall interfaces need to
be identified: the media-adventitia boundary (MAB) and the
Lumen - Intima boundary (LIB) [10]. Both these interfaces
need to be delineated in a robust and reproducible manner,
and manual methods have been shown to be tedious, labour
intensive [10], and prone to variability [11]. Thus, considerable
attention has been devoted to developing automated or semi-
automated carotid segmentation algorithms which facilitate
this process.

II. RELATED WORK

Previous literature shows certain patterns in the develop-
ment of the carotid segmentation techniques, allowing us
to categorise them by the nature of their approach. The
first distinction is that between addressing the segmentation
problem on longitudinal sections of the carotid, or segmen-
tation on transverse sections of the carotid. The majority of
studies available address the former [10], since this type of
segmentation then easily lends itself to evaluating the intima-
media thickness. A comprehensive review by Molinari et al.
[8] addresses some of the major works on the subject matter.

A. Segmentation in Longitudinal Images
A popular approach for longitudinal carotid segmentation

has been through using edge tracking or gradient-based tech-
niques, as shown in a number of studies [12]–[14]. In the
longitudinal section, the common carotid artery may be con-
sidered as a dark region surrounded by two bright line patterns
- the near wall and the far wall of the artery [8]. By considering
the intensity profile, or the intensity gradient across a section
cutting across the artery, the adventitial walls may be clearly
identified, and the IMT estimate may be obtained as the
distance between these two points [12]–[14].

Another widely used segmentation approach is based on Ac-
tive Contours, or Snakes. This entails having a set of vertices
connected by line segments [8] which dynamically move to
settle around the desired contour, under the action of defined
forces. Snake models however have issues that effect their
performance. They require correct fine tuning of parameters
for them to be correctly attracted to edges; they depend on the
initialisation of the snake model, and they are also prone to

leaking through edges which are not clearly defined [8]. Other
segmentation approaches for longitudinal sections described
in [8] include the use of Dynamic Programming, Nakagami
modelling, the use of the Hough Transform, and the use of
motion estimation and Bayesian frameworks.

B. Segmentation in Transverse Images
A number of studies have also addressed the problem

of segmenting carotid arteries in the transverse section, us-
ing either native 2D images or else from transverse slices
extracted from 3DUS images. In 2009, Seabra et al. [15]
proposed a semi-automatic technique for plaque segmentation
in transverse images based on a manually initialised 2D
active contour algorithm. Another study by Yang et al. [16]
proposed to use active shape models to segment both the
MA and LI interfaces. Ukwatta et al. [10] proposed a novel
semi-automated technique based on a level-set method to
segment the MA and LI interfaces. The operator was asked
to provide anchor points as high-level domain knowledge, and
this together with the incorporation of local and global image
statistics with boundary separation-based constraints allowed
accurate segmentation of the MA and LI interfaces. Other
segmentation approaches for transverse sections included the
use of deformable models [11], [17], modified Cohen Snakes
[18] and a Star algorithm improved by Kalman filtering [19].

Alternative methods have been proposed to segment the carotid
structures or plaque morphology natively in three dimensions.
Gill et al. [7] proposed a semi-automatic method based on a
dynamic balloon model in 2000. In 2010, Solovey et al. [20]
also proposed an LI interface segmentation algorithm on native
3D images based on a level-set method. In 2015, Hossain
et al. [9] presented a semi-automatic method for segmenting
both MA and LI interfaces using a distance regularized level
set algorithm, with a novel stopping criterion and a modified
energy function.

One notes further that, particularly in the case of transverse
segmentation, studies have aimed to segment either the LI
interface alone [7], [11], [17], [20]–[22], or else both the
LI and the MA interfaces [9], [10], [16], [23]. The latter
approach has increasingly gained interest, due to new volu-
metric parameters such as vessel wall volume (VWV) and
total plaque volume (TPV) which have been proposed to
characterise plaque burden [24]. Although these parameters
have been used in a number of research studies, they have
not yet gained widespread clinical acceptance due to certain
challenges, amongst which are the tediousness and inter/intra-
observer variability when manually delineating the LI and
MA interfaces [9]. Studies have therefore sought to develop
automatic or semi-automatic algorithms to segment these
interfaces.

C. Our Contribution
Deep networks have recently garnered much interest, as

they have driven forward the state-of-the-art in computer
vision tasks such as image classification, object detection and
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segmentation [25]. Such advancements have also been picked
up by the medical imaging research community. The survey by
Litjens et al. in 2017 [26] provides a comprehensive review
of studies employing Deep networks for a variety of tasks
and application areas within medical imaging. Litjens et al.
review over 300 contributions since 2012, with approximately
20 of these being contributions within the ultrasound imaging
field, and in turn 6 of these being related to cardiac / vascular
applications. None of these however treat the subject of carotid
segmentation. The study by Menchon-Lara et al. in [27]
addresses longitudinal carotid ultrasound segmentation using
a single layer perceptron network preceded by an autoen-
coder, for the purpose of intima-media thickness estimation.
The segmentation of the MAB interface in transverse and
longitudinal carotid images using deep convolutional neural
networks is thus a novel application, proposed by ourselves
in our preliminary work reported in [28]. In [28], we evaluate
various network configurations to find the optimal network size
and depth, as well as the optimal filter dimension. We further
propose a novel fusion of envelope and phase congruency data
as an input to the network, as the latter provides an intensity-
invariant data source to the network.

In this work, we propose a novel, geometrically constrained
Deep Convolutional Neural Network (DCNN), as well as
its novel application to concurrently segment both the MAB
interface and LIB interface on a larger data set of symptomatic
and asymptomatic transverse carotid ultrasound images. The
segmentation of both MAB and LIB is necessary if the total
plaque burden contained in between these two interfaces is to
be quantified. We propose a new geometrically constrained
objective cost function which is constructed and tuned to-
wards the segmentation of carotid structures. An enhanced
data augmentation strategy is also employed to improve and
enlarge further the size of the dataset. Finally, we present
an extensive set of experiments to test the performance of
our technique, and we compare it to the performance of
other methods by reporting the DICE coefficient of similarity,
modified Hausdorff Distance, the Sensitivity and Specificity.

III. METHODS

A. Study subjects and Image Acquisition

A total of fifty transverse ultrasound images were obtained
from across 15 subjects, having carotid arteries which display
varying degrees of stenosis of between 0% (negligible) and
60% (European Carotid Surgery Trial ECST Criteria). Sub-
jects had ages spanning between 60 to 80 years. Subjects
provided signed consent to participate in the study, which
was in turn approved by the University of Malta Research
Ethics Committee. The 2D ultrasound images were acquired
using an Ultrasonix Sonix RP ultrasound machine (Analogic
Corporation, Peabody, MA, USA), equipped with a 14 MHz
L14-5 Linear Probe. Scanner settings were set as follows:
Frequency: 6.6MHz, Depth: 3.0cm, Sector width: 100%, Gain:
51%, Dynamic Range: 92dB, Persist Setting: 0, Map Setting:
9, Chroma Setting: 0; Power Setting: 0; and were kept constant
across all subject acquisitions. Subjects were asked to lie

supine on a couch, and the probe was placed against the neck
while an image sequence was acquired for transverse carotid
sections. The probe was kept in the same spatial location while
the image sequence was acquired at a rate of 24 Hz.

B. Data Pre-processing
Image Pre-Processing. All data acquired from the Sonix

RP Ultrasound Scanner was saved in raw RF format and
transferred to a workstation for data processing with MATLAB
(Mathworks, USA). For the creation of B-mode images, a
Hilbert transform was used to demodulate the amplitude infor-
mation from the RF sinusoids. The amplitude data was then
passed through a logarithmic function to adjust for dynamic
range, and then decimated by a factor of four. The resulting
B-mode image was scan converted to obtain correct image
geometry. A median speckle reduction filter was then imple-
mented as per methodology described in [29], and applied over
all the B-mode images to reduce the effect of speckle noise.

Manual Segmentation. All the acquired transverse ultrasound
images were manually and independently traced with the
assistance of 2 radiographers, and used as labelled training
data for the DCNN. Each radiographer manually traced the
image sets twice, with a period of 2 weeks in between sessions.
The radiographers traced both the MAB and LIB in the
transverse sections of the carotid arteries.

C. Data Augmentation.
An abundance of training data is an important prerequisite

for correctly training a neural network. If the data is scarce,
simple distortions such as rotations, translations or skewing,
may be applied to the original training data as an easy way
of expanding the size of the data set [30]. In the case of the
ultrasound data sets, transverse image sets, as well as the corre-
sponding labelled datasets, were first scaled twice by a factor
of 1.2 and 1.5. The scaled images were then cropped back
to their original dimension. Each image, having dimensions
of 256 x 256 pixels was then patch-wise sampled 9 times
along an equally spread 3x3 grid centred about the middle,
using a 120 x 120 pixel window with a constant overlap
between each region. Finally, the images were rotated through
90, 180 and 270 degrees. All the additionally generated image
sets and corresponding labels were concatenated into separate
augmented dataset-pairs. From 15 different patients, originally
having a total of 50 images each, the dataset was augmented
to a total of 81,000 images.

D. Extracting Phase Congruency Information
The presence of speckle noise, low contrast, and local

changes of intensity make ultrasound image segmentation a
fairly difficult problem [31]. Methods which seek to delineate
a contour of interest based on a globally set intensity threshold
are often problematic - particularly because relevant contours
might not be visible due to tissue-dependent attenuation,
transducer orientation or structure depth [32]. There is also
another inherent variable which is the end user. Preferences
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on intensity gain settings vary across end-users and across
machines, thus making it difficult to find optimum parameter
values which apply across the board. It is therefore desirable to
approach the ultrasound segmentation problem using features
which are intensity-invariant and robust to attenuation. The
use of phase information provides one such possibility, since
phase is theoretically amplitude-invariant, and preserves the
structural information of a signal [31], [32].

In 1987, Morrone et al. [33] proposed a model of feature
perception called the local energy model. The said model
postulates that features may be perceived within an image,
at the points where the Fourier components are maximally in
phase. At the point of an edge transition, all the constituent
Fourier components of a square wave are exactly in phase -
and hence the phase congruency is said to reach a maximum
value. More specifically, we note that the phase is 0� at positive
edges, and 180� at negative edges. At all other points in the
square wave, the phase congruency will be low [34]. In their
work, Morrone et al. [33] define phase congruency as follows:

PC(x) = max
�̄(x)2[0,2⇡]

P
n
An cos(�n(x)� �̄)P

n
An

(1)

where An is the amplitude of the nth Fourier component of a
one-dimensional signal I(x) =

P
n
Ancos(�n(x)), and �n is

the local phase. The value of �̄(x), over which the equation
is maximised, is the amplitude weighted mean local phase
angle of all Fourier components at the point being considered.
Venkatesh et al. [35] however show that points of maximum
phase congruency may also be found by searching for peaks
in the local energy function, and that the energy function is
equal to the phase congruency scaled by the sum of the Fourier
amplitudes:

E(x) = PC(x)
X

n

An (2)

One clearly notes therefore that the local energy model is
directly proportional to the phase congruency function, and
thus, peaks in local energy correspond to peaks in phase
congruency.

Kovesi [34] proposed a more convenient method of computing
phase congruency via the local energy model, by convolving
the signal with a filter bank of quadrature logarithmic Gabor
filters. These allow for an arbitrarily large bandwidth filter to
be constructed, while still maintaining a zero DC component
in the even-symmetric filter. The log Gabor function has the
following transfer function on the linear frequency scale [34]:

G(!) = exp� (log(!/!0))2

2(log(/!0))2
(3)

where !0 is the filter’s centre frequency, and the term /!0

ensures a constant shape-bandwidth ratio by keeping it con-
stant over varying !0. If the even-symmetric (cosine) and
odd-symmetric (sine) wavelets are denoted by M

e
n

and M
o
n

respectively at a scale n, then, given signal I , the responses
of each quadrature pair of filters may be seen as follows:

[en(x), on(x)] = [I(x) ⇤Me

n
, I(x) ⇤Mo

n
] (4)

The amplitude and phase at a given scale n is therefore given
by the following equations:

An(x) =
p
en(x)2 + on(x)2

�n(x) = arctan 2(en(x), on(x))
(5)

where An and �n are response vectors defined at each point
x in the signal. The response vectors form the localised
representation of the signal, and may be used in the same
way that Fourier components are used to calculate phase
congruency [34]. Thus, given that:

PC(x) =
E(x)P
n
An(x)

(6)

and that:
E(x) =

p
e(x)2 + o(x)2 (7)

it follows that:

PC(x) =

p
(
P

n
en(x))2 + (

P
n
on(x))2P

n

p
en(x)2 + on(x)2

(8)

To mitigate the problem of noise resistance, Kovesi further
suggests to modify Eq. (7) as follows:

PC(x) =
E(x)� TP
n
An(x) + "

(9)

where " is a small positive constant which is included to avoid
dividing by zero, and T is a noise threshold.

The phase congruency calculation for a one dimensional signal
has required the formation of a 90 degree phase shift of
the original signal using odd-symmetric filters [34]. For the
analysis of two dimensional data, we note that one cannot
construct rotationally symmetric odd-symmetric filters, and
therefore we must apply our one dimensional analysis over a
number of separate orientations, and then combine the result to
obtain a single measure of edge significance [32]. Kovesi et al.
[34] suggested to construct a series of orientable 2D filters by
spreading a Log-Gabor function into 2D. Thus, considering
the one dimensional Log-Gabor filters defined earlier with
geometrically increasing centre frequencies and bandwidths,
we now mask these with an angular Gaussian tuned to a
particular orientation �0 as follows [32]:

G(!r,�) = exp
�
✓

(log(!r/!r0))2

2(log(/!0))2
+

(���0)2

2�2
�

◆

(10)

where �� defines the standard deviation of the Gaussian
spreading function in the angular direction.
From these filters, Kovesi et al. [36] proposes a phase-based
measure called feature asymmetry (FA), which combines
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(a) B-Mode image (b) Phase Congruency Map

Fig. 2: A Transverse B-Mode image of a Carotid Artery, and
the corresponding Phase Congruency Map

the orientation information and identifies step-like edges.
The 2D FA measure proposed by Kovesi was first applied
to echocardiography images by Mulet Parada et al. in
[32], whereby it was extended to a 2D + time measure for
boundary detection. Their method showed an improvement
in the number of spurious feature responses due to speckle.
We opt to use instead the maximum moments of phase
congruency, proposed also by Kovesi in [37] as an indication
of feature significance. The maximum moment of phase
congruency is obtained by computing the Phase Congruency
Covariance Matrix for each point in the image as follows:

G =

 P
PC

2
x

P
PCxPCyP

PCxPCy

P
PC

2
y

�
(11)

where PCx and PCy are the x and y components of the
Phase Congruency PC(x), for each orientation. The maximum
moment may be obtained by taking the maximum singular
value of the covariance matrix G. This provides us with a
Phase Congruency Map, an example of which may be noted
in Figure 2.

E. Deep Convolutional Neural Networks

A DCNN is a multilayer perceptron network which can
exploit the stationary nature of natural images by learning
features on locally connected pixels. The convolutional layers
learn small features from small image patches sampled from
the whole image [38]. The sub-sampling layers are used
to reduce the computational complexity by summarising the
statistics of a feature over a region in the image [38]. Our im-
age segmentation task may be posed as a pixel-by-pixel clas-
sification problem, whereby a decision is made for each pixel
- classifying it into ’foreground’ or ’background’. The output
of the network will therefore be a segmentation mask, ideally
matching the manual segmentation (ground truth) provided by
the expert. This may be defined as an optimisation problem,
whereby we attempt to minimize the error between our output
mask and the ground truth, by finding the optimal set of
parameters, ✓ and b for the objective function below. First,
assume we have a training set {(x(1)

, y
(1)), ..., (x(m)

, y
(m))}

of m training examples:

JO(✓, b) =
mX

k=1

(h✓,b(x
(k))� y

(k))2 (12)

The objective function JO(✓, b) is the sum of differences
between the predicted output segmentation mask h✓,b(xk) and
the ground truth labels yk, over all different training examples
k = 1, 2, 3...m. The mask h(x) is the result of a feed forward
operation carried out through the network. Referring to Figure
3, we note that the full DCNN is constructed using two parts:
an encoder section and a decoder section. The encoder is
built using stacks of convolutional and subsampling layers,
whereas the decoder is built using stacks of convolutional
transpose layers and up-sampling layers. Typical CNNs nor-
mally resemble just the encoder structure, with their final layer
being fully interconnected to a one-dimensional layer of nodes,
before feeding on to the output. Such CNNs however have the
inherent drawback of loss of image resolution, arising partially
out of the convolution operation in the convolution layers,
and partially out of the subsampling process designed to sum-
marise the feature space. Since we intend to train our network
in an end-to-end fashion, a decoder is appended to the end of
the encoding CNN, to expand the extracted features back to
full resolution, while concurrently calculating a probabilistic
mask. The feedforward equation for a particular layer l in the
encoder is provided by the following deterministic function
g
(l):

z
(l)
j

= g
(l)(z(l�1)

i
, w

(l)
ij
, b

(l)
j
)

=  

 
⇢

 
IX

i=0

w̃
(l)
i,j

⇤ z
(l�1)
i

+ b
(l)
j

!!
(13)

where z
(l)
j
, j 2 [1, F ] is the j

th output feature map for layer l,
calculated by convolving the trainable convolution filter w

(l)
ij

with the input to that layer z
(l�1)
i

. The index i denotes the
number of input maps available from the preceding layer,
F denotes the number of filters, b

(l)
j

denotes the trainable
bias term for layer l, w̃ denotes the flipped version of w

[39], and ⇤ denotes the convolution operator. The function
⇢(x) denotes the rectified linear activation function (ReLu),
defined as ⇢(x) = max(0, x), whereas the function  (x)
is used to define the sub-sampling function. Subsampling
functions normally implement either a max pooling function,
whereby the maximum value from the preceding layer of local
connections is passed onwards, or a mean pooling function,
whereby the average is passed onwards to the next layer
instead of the maximum. Within the decoder structure, the
feedforward equation is provided by the function h

(l) [40]:

y
(l)
j

= h
(l)(y(l�1)

i
, w

(l)
ij
, b

(l)
j
)

= ⇢

 
IX

i=0

w
(l)
i,j
 (y(l�1)

i
) + b

(l)
j

!
(14)

where y
(l�1)
i

in the first instance would be z from the
preceding encoder layer. Thereafter it would be simply the
output of the previous decoding layer. The function  (x)
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Fig. 3: A graphical representation of the encoder-decoder structure of the Deep Neural Network.

denotes an up-sampling operation, and the operator refers
to the transposed full convolution. Each layer is once again
followed by a ReLu function ⇢(x). At the end of the decoder
network, the number of output maps are reduced to three, and
fed into a softmax classifier, which provides logistic regression
for a three-class problem [38]. The softmax function �(z) has
the effect of maximising the maximum value of the outputs,
making these close to 1, and the rest close to 0. A graphical
representation of the DNN structure utilised is shown in Figure
3.

F. Modification of the Objective Cost Function

The objective function JO(✓, b) is defined in equation
(13) as the sum of differences between the predicted output
segmentation mask h✓,b(xk) and the ground truth labels y

k,
over all different training examples k = 1, 2, 3...m. The output
segmentation mask h✓,b(xk) is itself defined as the output from
the softmax function �(z) at the end of the DCNN. Thus:

(h✓,b(x
(k)) = �(y(l)

j
) (15)

where y
(l)
j

is defined from equation (16) as being the output of
the network prior to softmax normalisation. In order to tune the
objective function and make it more sensitive to the nature of
the structures that are being segmented, we propose to modify
the objective function with three additional cost terms which
are defined as follows:

Curvature. The radius of curvature at any point on a curve is
equal to the radius of the circular arc which best approximates
the curve at the said point as shown in Figure 4. It is
also defined as the inverse of curvature, and is expressed
mathematically as follows:

R =
1


(16)

where  is the curvature at a point. If we let the contour
of the artery, from which these penalty terms are going to be
derived, be expressed in the form of a curve in two dimensions
as u = f(v), then the curvature term  itself may also be
expressed as [41]:

 =

���d
2
u

dv2

���

1 +

�
du

dv

�2
�3/2 (17)

The penalty term we propose from the above measure of
curvature  is is defined as follows:

C(u) = ↵ (max (||� |̄|� 0.5, 0)) (18)

In equation (20), ↵ is a scaling coefficient. The absolute
value of  is used because we may ignore the sign of the
value, which is indicative of the direction of curvature, and
which is not important for computation of the penalty term.
The subtraction of the mean of  is implemented so that
the penalty term is made negligible if the contour is largely
smooth and without notches, a situation which would generally
yield similar values of  all throughout the curve. Finally,
we subtract a value of 0.5 because we may ignore curvature
values below this value as simple noise. Noise values below
0.5, which yield negative values after this subtraction are in
fact truncated to 0 by the max function to ensure a 0 penalty
in this case.

Solidity. Solidity is a measure of morphological roughness
and is sensitive to concavities in a shape or structure. It
compares the pixel area of the object to the area of a bounding
reference shape, which in this case would be the convex hull.
Mathematically therefore, it may be expressed as:

SLD =
A(u)

Ac(u)
(19)
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Fig. 4: [Left] A graphical representation of Curvature CA and
CB , where the penalty at CB > CA because the radius of
the osculating circle at CB is smaller than that of CA. [Right]
Curvature CC is of opposite sign due to opposite direction of
deformation.
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Fig. 5: A graphical representation of incorrect intersection
between the MA outer boundary and LI inner boundary.

where A(u) is the area of the object and Ac(u) is the convex
area of the shape in question. A solidity of 1 would indicate
a perfectly solid shape with an area which is equal to convex
area. An irregular shape with concavities would present with
a solidity which is < 1 due to the area being smaller than
the convex area. With regards to defining a penalty term,
the media adventitia boundary of the carotid is expected to
be smoothly circular, without any irregular concavities within
the perimeter. Thus we would seek to penalise the objective
function in instances where the solidity of the segmented mask
would again deviate significantly from 1. The cost term we
propose is therefore:

S(u) = �

✓
Ac(u)

A(u)
� 1

◆
(20)

where � is a scaling coefficient and the inverse of SLD is
used to have an increasing term in proportion to increased
concavities in shape.

Intersection. The third penalty term we introduce to the
objective cost function is a term which penalises the instances
whereby the lumen intima boundary would not be contained
within the media adventitia boundary, as is shown in Figure
5. This is in fact a circumstance which may not anatomically
occur, and therefore its occurrence is penalised heavily to
reduce the possibility of the neural network from converging
to such a result. Referring to Figure 5, if we consider the MAB
to be defined as contour C1, the LIB to be defined as contour

C2, and their joint intersection as contour C3, it easily follows
that any occurrence whereby AreaC2 6= AreaC3 should be
penalised. The proposed penalty term is therefore defined as:

I(u) = �

✓
AreaC2 �AreaC1\C2

AreaC0

◆
(21)

where � is a scaling coefficient used to scale the normalised
summation of pixels outside C1 to a suitable magnitude of
penalty term.

The overall new objective cost function, JM (✓, b), may there-
fore now be represented in the following manner:

JM (✓, b) =
mX

k=1

(h✓,b(x
(k))�y

(k))2+C(v)+S(v)+I(v) (22)

or alternatively:

JM (✓, b) =
mX

k=1

(h✓,b(x
(k))� y

(k))2

+ ↵ (max (||� |̄|� 0.5, 0))

+ �

✓
Ac(v)

A(v)
� 1

◆

+ �

✓
AreaC2 �AreaC1\C2

AreaC0

◆

(23)

The final intent of a modified objective cost function as
described in equation 25, is to firstly require the network to
train further, if the cost function results in greater, penalised
values, but also to feed back through the backpropagation
algorithm a set node errors observed at the output, such
that the network may direct correction efforts towards the
right filter map nodes further in. Modifying the nature of
the backpropagation algorithm itself is beyond the scope of
this work, and thus a heuristic approach to feeding back
the node errors at the output was implemented, and which
allows different penalty coefficients to be applied locally to
individual output maps. Furthermore, the modified objective
cost function, JM (✓, b), was implemented in the DCNN with
the scaling coefficients ↵,�, and � being expressed as a
fraction of the unmodified, original cost function JO(✓, b).
The rationale behind this was to have the scaling coefficients
vary proportionately according to the original cost function,
thus applying heavy penalty terms in the beginning when
the errors were large, and eventually having diminishing
penalty terms when the network was beginning to converge.
The scaling coefficients, ↵,�, and � were set, after several
experiments to: ↵ = 0.26JO(✓, b), � = 0.33JO(✓, b) and
� = JO(✓, b). This allowed for the evaluation of the overall
modified cost function JM (✓, b) as follows, which served to
guide convergence.
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JM (✓, b) =
mX

k=1

(h✓,b(x
(k))� y

(k))2

+ 0.26JO(✓, b) (max (||� |̄|� 0.5, 0))

+ 0.33JO(✓, b)

✓
Ac(v)

A(v)
� 1

◆

+ JO(✓, b)

✓
AreaC2 �AreaC1\C2

AreaC0

◆

(24)

Then, to feed back information regarding the relative nodes
producing errors at the output, an indication of which output
nodes are misclassifying results is required first, followed by
a manner in which to amplify and accentuate their error to
the network. To implement this, an apportionment of the
penalty scale coefficients ↵,�, and �, deriving from how much
we wish to penalise errors in the MAB and LIB is first re-
quired. Following experiments, we split up the original scaling
coefficients, ↵,�, and � into two sets of constituent scale
coefficients for both MAB and LIB contours. Mathematically
therefore:

↵ = ↵MAB + ↵LIB

� = �MAB + �LIB

� = �MAB + �LIB

(25)

The coefficients are thus split up and set at:
↵MAB = 0.16JO(✓, b), �MAB = 0.16JO(✓, b) and
�MAB = 0 for the outer MAB, and ↵LIB = 0.10JO(✓, b),
�LIB = 0.16JO(✓, b) and �LIB = JO(✓, b) for the inner LIB.
The smaller curvature penalty for the LIB was implemented to
achieve a somewhat lesser level of smoothening interference
on the LIB than the MAB - since the LIB must be allowed
to retain less regular shapes than the MAB.

The separate sets of ↵,�, and � allow the computation of
two temporary, intermediary cost functions which we denote:
JMAB(✓, b) and JLIB(✓, b) as follows:

JMAB(✓, b) =
mX

k=1

(h✓,b(x
(k))� y

(k))2

+ 0.16JO(✓, b) (max (||� |̄|� 0.5, 0))

+ 0.16JO(✓, b)

✓
Ac(v)

A(v)
� 1

◆
(26)

JLIB(✓, b) =
mX

k=1

(h✓,b(x
(k))� y

(k))2

+ 0.10JO(✓, b) (max (||� |̄|� 0.5, 0))

+ 0.16JO(✓, b)

✓
Ac(v)

A(v)
� 1

◆

+ JO(✓, b)

✓
AreaC2 �AreaC1\C2

AreaC0

◆

(27)

These are both generally larger than the original unmodified

cost function JO(✓, b). If we divide both temporary cost
functions JMAB(✓, b) and JLIB(✓, b) by the unmodified cost
function JO(✓, b), the resultant ratio is a multiplier > 1
which gauges the proportionate increase in penalty due to
classification errors in the output maps of the MAB and
LIB respectively. Reverting back to the error maps at the
output layers, the respective multipliers are applied to all
node deltas in their respective error maps. These node deltas
would correspond, spatially, to pixels found on the contour
and pixels contained within the said contour for the LIB,
and to pixels contained within an annular ring for the MAB.
Then, error nodes which already had a significant error value,
are correspondingly augmented by the multiplier. Conversely,
error nodes which had small error values are augmented by
the same factor, but their already small error values ensures
that the change remains negligible. The augmented node errors
are then fed back through the network via the backpropagation
algorithm.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Given the size of the dataset available, the data was first
augmented using the strategy described in section III C. A
number of schemes were then employed in order to prevent
over-fitting and in order to ensure validity of the results.
Firstly, during the training of the neural network, a basic
early-stopping technique described by Prechelt in [42] was
implemented in order to account for over-fitting. In accordance
with the technique described by Prechelt, the dataset was
split into two sub-datasets: a training dataset and a validation
dataset. This split was implemented in a ratio of 66% training
data and 33% validation data. Training took place only on the
training set, and the error was evaluated on the validation set
after each epoch. Once the training is stopped, the weights that
the network had in the previous training run are used. In our
experiments, we train using stochastic gradient descent, with
batches of 5 ultrasound images, a learning rate ⌘ of 5⇥10�6,
a momentum of 0.90 and a weight decay of 5 ⇥ 10�6. The
weights and bias terms were randomly initialised. The early
stopping technique was applied after 20 to 30 epochs.

In addition to the early stopping technique, a 15-fold leave-
one-out validation scheme was also utilised to have some
assurances on the validity of the results. The data available
from the acquisitions was split at patient-scan level during
each iteration into two categories: training + validation datasets
(described earlier for the early stopping technique) and testing
datasets. The training + validation datasets were created by
concatenating the various ultrasound images obtained from
different patient scans, and then randomising their sequence.
The testing dataset in each iteration was then always made
up of a hold-out set of ultrasound images from a particular
patient scan, which were not present as image in the training
data set.

Two experiments were carried out to compare the perfor-
mance of the network without the modified geometrically
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TABLE I: Results for testing DICE coefficient and MHD across [15]-fold Leave-one-out validation

Method Without modified objective function With modified objective function
MAB DICE MAB MHD LIB DICE LIB MHD MAB DICE MAB MHD LIB DICE LIB MHD

in mm in mm in mm in mm
Average 0.92 ± 0.04 0.27 ± 0.16 0.89 ± 0.08 0.36 ± 0.34 0.94 ± 0.04 0.24 ± 0.16 0.91 ± 0.07 0.33 ± 0.33

constrained objective function, and that of the network with
the said modification. Cross validation iterations were run in
both scenarios. The DCNN was built using the MatConvNet
toolbox and trained on an Intel Core i7 with a Geforce GT
650M video card. The segmentation results obtained from the
DCNN were compared against a manually labelled ground
truth dataset which were manually and independently traced
with the assistance of 2 radiographers, and used as labelled
training data. Each radiographer was asked to manually trace
the image sets twice, with a period of 2 weeks in between
sessions and an average across both labelling sessions was
retained as the final ground truth.

A number of evaluation metrics were used in order to quantify
the performance of the convolutional neural network, and
in order to allow comparison against other methods in the
literature:

Similarity. The similarity between the segmented result and
the ground truth is computed using the Dice Coefficient
of Similarity. This effectively gauges the degree of overlap
between two boundaries.

Modified Hausdorff Distance. The Hausdorff Distance is a
measure of distance between two point sets. It provides
the largest mismatched points between two boundaries. The
Modified Hausdorff distance [43] on the other hand finds the
mean distance between two boundaries and is computed as
follows:

MHD = max(d(A,B), d(B,A)), (28)

where
d(A,B) =

1

Na

X

a2A

d(a,B) (29)

Since the HD is a measure of the largest mismatch between
two boundaries, a single point can cause a high HD value. The
MHD mitigates this effect.

Sensitivity. The Sensitivity term is defined as the ability of a
method or test to correctly classify a sample as being diseased
[44], or in other words, the probability of a test being positive
when the disease is indeed present. A method which displays
high sensitivity is considered reliable when it produces a result
that is negative, since it rarely misdiagnoses instances where
the disease is present.

Specificity. The Specificity term, is defined as the ability of
a method or test to correctly classify a sample as being free
from disease [44], or in other words, the probability of a test
being negative when the disease is indeed absent. A method

which displays high specificity may be considered to reliably
exclude the presence of disease when this is in fact absent.

B. Results
As a novel application over our previous work in [28],

the network was trained to identify the contours of both
the media adventitia boundary as well as the lumen intima
boundary contemporarily. Thus the segmentation performance
was quantified individually for these two boundaries and
reported in our results. The rationale behind this is because the
problem of segmenting these two boundaries poses different
levels of challenge for the network. The media adventitia
boundary normally presents itself as an approximately circular
structure with well defined contours. This is shown to be
fairly consistent across a number of patient B-Mode scans,
as evidenced in Figure 7. The lumen intima boundary on
the other hand is prone to having an irregular shape, partly
because of the plaque which may be sited between the walls
of the intima, and partly because the walls of the intima
might not have clearly defined contours. This naturally poses
a greater challenge for the radiographer to manually label, and
correspondingly, a greater challenge for the network.

In Table 1 we present the averaged performance metrics
quantified for both training methods. The DICE coefficient
and the Modified Hausdorff Distance defined previously are
noted for both MAB and LIB. We observe that in agreement
with the noted difficulty of segmentation task, the segmenta-
tion performance of the network in delineating the MAB is
consistently higher than the performance for delineating the
LIB. The average DICE coefficient for the MAB is approx-
imately 3% higher for both instances of training methods.
Correspondingly, the average modified hausdorff distance is
noted to be approximately 0.09mm lower in the MAB than
the LIB, for both training methods. The overall performance of
the network is noted to be satisfactory, with DICE coefficients
exceeding 90% in both instances of MAB and LIB.

We further observe the performance of the network itself
using both training methods. The average DICE coefficients
for MAB and LIB respectively with the modified cost function
are 0.94 ± 0.04 and 0.91 ± 0.07. Whereas the average MHD
coefficients for the same modified cost function are 0.24 mm
± 0.16 mm and 0.33 mm ± 0.33 mm. These figures are both
improved in relation to the corresponding average DICE and
MHD coefficients for the MAB and LIB using a standard ob-
jective function. This indicates that our proposed modification
to the objective function, which imposes geometric constraints
on the stochastic gradient descent function, correctly discour-
ages the latter from assuming irregular segmentation results,
particularly for the media adventitia boundary which we know
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TABLE II: Results for testing Sensitivity (Sens) and Specificity (Spec) across [15]-fold Leave-one-out validation

Method Without modified objective function With modified objective function
MAB Sens MAB Spec LIB Sens LIB Spec MAB Sens MAB Spec LIB Sens LIB Spec

Average 0.924 ± 0.056 0.961 ± 0.025 0.937 ± 0.029 0.968 ± 0.026 0.929 ± 0.051 0.964 ± 0.025 0.936 ± 0.035 0.972 ± 0.020

should have an approximately circular shape. The modification
which penalises intersection of borders on the other hand
prevents instances whereby the lack of clearly defined LIB
border causes the network to result in incorrect interpretations.

The results noted in Table II provide further comparative
analyses with additional performance metrics of Sensitivity
and Specificity. Here we notice no particular consistency in
improvement between the MAB and LIB boundaries, as we
have instances where the sensitivity and specificity of the LIB
are better than those recorded for the MAB, and vice versa.
However we do also note a general improvement in average
performance across sensitivity and specificity for the modified
objective cost function, when this is compared to the unmod-
ified objective cost function. The only exception is noted in
the Sensitivity of the LIB, whereby the sensitivity with the
unmodified objective cost function is marginally better. It may
suffice to note again however that the performances for both
MAB and LIB are in excess of 90% for both sensitivity and
specificity. The images in Figure 7 show a qualitative result,
comparing the outputs of the ground truth with that of the
network with both optimisation methods. One may notice that
the results obtained exhibit a good degree of similarity to the
manual labelling, because indeed both network types generally
achieve DICE similarity coefficients in excess of 90%. The
third column shows degraded performance. The reason behind
this is that this particular dataset exhibited a higher degree of
occlusion and poor contrast in the delineation between the
MAB And LIB borders. This naturally poses a harder than
usual task for the neural network, which is reflected in its
poorer performance. The second and fifth columns exhibit
instances where the DCNN with the modified optimisation
achieves quantitative and qualitative improvements. Here we
observe a similar performance in the outer border but the inner
border however exhibits improved performance quantitatively,
which translates to a closer degree of congruence in Figure
7 between the labelled inner border and the corresponding
result produced by the network with the modified objective
function. Taking column 2 for instance, we note that the sharp
notch produced by the network on the left of the LIB with
the standard objective function is reduced and smoothed in
the corresponding result produced by the modified network.
Similarly, the kink visible at the top edge of the LIB in the
5th column is smoothed in the corresponding result produced
by the modified network. If one notes columns 1 and 4
on the other hand, we may here notice improved smoothed
performances on the outer MAB border at the top edge for
column 1 and rightmost edge for column 4 respectively. These
results are important, because although the ’general’ DICE
performance of both networks is still fairly high, with similar
coefficients in straightforward cases, the geometric constraints

imposed by the modified network serve to smooth the contours
produced by the network. Of course, care must be taken to
tune the effect of such geometric constraints to within limits
whereby the smoothing influence they exert on the LIB is
smaller and more subtle, to allow the latter to assume irregular
shapes which are common of atherosclerosis.

The results noted in Table III show a comparative assessment
of performance between our technique and the techniques of
other studies whose work similarly addressed the problem of
MAB and LIB segmentation. Table III shows that our average
results yield similar performance to that of Ukwatta et al. in
their study in [23] and [10], and superior performance to that
of Yang et al. in [16] and that of Hossain et al. in their
work of [9]. In their work, Ukwatta et al. propose a semi-
automated technique based on a level-set method to segment
the MA and LI interfaces, whereby the operator was asked
to provide anchor points as high-level domain knowledge.
This together with the incorporation of local and global image
statistics with boundary separation-based constraints allowed
for segmentation of the MA and LI interfaces. In comparison
to this, the technique proposed in our work is a fully automated
technique which requires no user intervention, barring the
initial training on a manually segmented dataset which would
have presumably been carried out once in the beginning with
a large enough and representative dataset.

V. CONCLUSION

In this work, we have developed a novel system, based on
a bimodal and geometrically constrained Deep Convolutional
Neural Network, for segmenting both the Media Adventitia
Boundary and the Lumen Intima Boundary in transverse
carotid Ultrasound images, using a fully automated approach.
We have combined the novel fusion of amplitude and phase
data as a bimodal source of input data, and also developed
a novel geometrically constrained objective function for the
training of the Deep Convolutional Neural Network.

We have shown that our geometrically constrained Deep
Convolutional Neural Network shows improvement of approx-
imately 2% in terms of DICE coefficient of performance, in
comparison to the DCNN with the standard objective cost
function that we have developed in our previous work. Fur-
thermore, we demonstrate that albeit the technique being fully
automated and having a larger and more generalisable dataset,
it retains a good performance of 94% and 91% for MAB
and LIB borders respectively, and that this retains comparable
performance to techniques from other studies which test on a
much smaller dataset.
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Fig. 6: A sample of segmentation results of outer MAB and inner LIB borders. [Row 1] - Averaged Ground truth; [Row 2] -
Classification without optimisation; [Row 3] - Segmentation without optimisation; [Row 4] - Classification with optimisation;
[Row 5] - Segmentation with optimisation. N.B red lines denote ground truth, green lines denote network results.

TABLE III: Results across different studies. Note that ’-’ denotes no results available from said study.

Study MAB DICE MAB MHD LIB DICE LIB MHD
in mm in mm

Ukwatta et al. [10] 0.954 ± 0.016 - ± - 0.931 ± 0.031 - ± -
Yang et al. [16] 0.918 ± 0.035 - ± - 0.936 ± 0.026 - ± -

Ukwatta et al. [23] 0.95 ± 0.017 - ± - 0.92 ± 0.042 - ± -
Hossain et al. [9] 0.915 ± 0.035 0.25 ± - 0.735 ± 0.169 0.25 ± -

Azzopardi et al. [28] 0.988 ± 0.035 0.05 ± - - ± - - ± -
This study 0.940 ± 0.040 0.24 ± 0.16 0.910 ± 0.070 0.33 ± 0.33
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