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Abstract

Background: An increasing volume of prostate biopsies and a world-wide shortage of uro-
pathologists puts a strain on pathology departments. Additionally, the high intra- and inter-
observer variability in grading can result in over- and undertreatment of prostate cancer.
Artificial intelligence (Al) methods may alleviate these problems by assisting the pathologist to
reduce workload and harmonize grading.

Methods: We digitized 6,682 needle biopsies from 976 participants in the population based
STHLM3 diagnostic study to train deep neural networks for assessing prostate biopsies. The
networks were evaluated by predicting the presence, extent, and Gleason grade of malignant
tissue for an independent test set comprising 1,631 biopsies from 245 men as well as an
external validation set of 330 biopsies from 73 men. We additionally evaluated grading
performance on 87 biopsies individually graded by 23 experienced urological pathologists from
the International Society of Urological Pathology. We assessed discriminatory performance
by receiver operating characteristics (ROC) and tumor extent predictions by correlating
predicted millimeter cancer length against measurements by the reporting pathologist. We
quantified the concordance between grades assigned by the Al and the expert urological
pathologists using Cohen’s kappa.

Results: The Al achieved an area under the ROC curve of 0-997 for distinguishing between
benign and malignant biopsy cores on the independent test set and 0-986 on the external
validation set. The correlation between millimeter cancer predicted by the Al and assigned by
the reporting pathologist was 0-96 for the independent test set and 0-87 for the external
validation set. For assigning Gleason grades, the Al achieved an average pairwise kappa of
0-62. This was within the range of the corresponding values for the expert pathologists (0-60
to 0-73).

Conclusions: The performance of the Al to detect and grade cancer in prostate needle biopsy
samples was comparable to that of international experts in prostate pathology. Al has potential
to reduce high intra-observer variability and to provide diagnostic expertise in regions where

this is currently unavailable.



Introduction

Histopathological evaluation of prostate biopsies is critical to the clinical management of men
suspected of having prostate cancer. Despite this importance, the histopathological diagnosis
of prostate cancer is associated with several challenges:

e More than one million men undergo prostate biopsy in the United States annually.’
With the standard biopsy procedure resulting in 10-12 needle cores per patient, more
than 10 million tissue samples need to be examined by pathologists. The increasing
incidence of prostate cancer in an aging population means that the number of biopsies
is likely to further increase.

e |t is recognized that there is a shortage of pathologists internationally. In China, there
is only one pathologist per 130,000 population, while in many African countries the
ratio is of the order of one per million.>® Western countries are facing similar problems,
with an expected decline in the number of practicing pathologists due to retirement.*

e Gleason grade is the most important prognostic factor for prostate cancer and is crucial
for treatment decisions. Gleason grade is based on morphologic examination and is
recognized to be notoriously subjective. This is reflected in high intra- and inter-
pathologist variability in reported grades, as well as both under- and over-diagnosis of

prostate cancer.>®

A possible solution to these challenges is the application of artificial intelligence (Al) to prostate
cancer histopathology. The development of an Al to identify benign biopsies with high
accuracy would decrease the workload of pathologists and allow them to focus on difficult
cases. Further, an accurate Al could assist the pathologist with the identification, localization
and grading of prostate cancer among those biopsies not culled in the initial screening
process, thus providing a safety net to protect against potential misclassification of biopsies.
Al-assisted pathology assessment could harmonize grading and reduce—inter-observer
variability, leading to more consistent and reliable diagnoses and better treatment decisions.

Using high resolution scanning, tissue samples can be digitized to whole slide images (WSI)
and utilized as input for the training of deep neural networks (DNN), an Al technique which
has been successful in many fields, including medical imaging.”~'® Despite the many
successes of Al, little work has been undertaken in prostate diagnostic histopathology.'"®

Attempts at grading prostate biopsies by DNNs have been limited to small datasets or subsets



of Gleason patterns, and they have lacked analyses of the clinical implications of the
introduction of Al-assisted prostate pathology.

In this study, we aimed to develop an Al with clinically acceptable accuracy for prostate cancer
detection, localization, and Gleason grading. To achieve this, we digitized 8,313 samples from
1,222 men included in the prospective and population based STHLM3 prostate cancer
diagnostic study undertaken in 2012-2015."'® We evaluated the performance of the model
on an independent test set as well as an external validation set (external lab and scanner),
and through a comparison with 87 cases of prostate cancer graded by the International Society
of Urological Pathology (ISUP) Imagebase panel consisting of 23 experienced uro-
pathologists. '

Methods

Sample population and data collection

Between 2012 and 2015, the prospective and population-based STHLM3 study evaluated a
diagnostic model for prostate cancer in men aged between 50 and 69 years."”'® Among the
59,159 participants, 7,406 (12:5%) underwent systematic biopsy according to a standardized
protocol consisting of 10 or 12 needle cores; with 12 cores being taken from prostates larger
than 35 cm?® (Table 1). Urologists who participated in the study and the study pathologist were
blinded to the clinical characteristics of the patients. A single pathologist (L.E.) graded all
biopsy cores according to the ISUP grading classification (where Gleason scores 6, 3+4=7,
4+3=7, 8, and 9-10 are reported as ISUP grade 1 to 5, also referred to as Gleason Grade
Groups). L.E. also delineated cancerous areas using a marker pen and measured the linear

cancer extent.?%?

The biopsy cores were formalin fixed and stained with hematoxylin and eosin. A selection of
8,313 biopsies from 1,222 STHLM3 participants was digitized. The cases were chosen to
represent the full range of diagnoses, with an over-representation of high-grade disease. To
further enrich the data with high-grade cases, 271 slides from 93 men with ISUP 4 and 5
prostate cancers were obtained from outside STHLM3 (see Appendix for details). These slides
were re-graded by L.E., digitized and utilized for training purposes only. We used 1,631 cores
from a random selection of 246 (20%) men to evaluate the performance of the Al (the
“independent test set”), while the rest were used for model training. That is, all biopsies from

a given man were assigned to either the training or the test dataset.?



Since slides from different pathology labs differ in appearance and quality due to differences
in slide preparation and since WSI characteristics and appearance vary by scanner, it is crucial
to assess the performance of DNN models on external labs and scanners (i.e. images of slides
from different pathology labs and scanners than the images on which the model was trained)
from a real-world clinical setting. We therefore obtained 330 slides (73 men) from the
Karolinska University Hospital and digitized them on the scanner available at the Karolinska
University Hospital pathology lab to replicate their entire workflow of lab processing and slide
digitization (the “external validation set”). The selection of slides was enriched for higher ISUP
grades to permit evaluation of predictions for these uncommon grades (Table 1). L.E. graded
all biopsies in the external test set to avoid confoundment between introducing a different
reporting pathologist and a different lab and scanner workflow simultaneously.

As an additional test set, we digitized 87 cores from the Pathology Imagebase, a reference
database launched by ISUP to promote the standardization of reporting of urological
pathology.’ These cases were independently reviewed by 23 highly experienced urological
pathologists (The ISUP Imagebase panel). Cores from the men in the three test sets were not
part of model development and were excluded from any analysis until the final evaluation.

The study protocol was approved by Stockholm regional ethics committee (permits 2012/572-
31/1, 2012/438-31/3 and 2018/845-32). For details concerning data collection, see Appendix.

Artificial intelligence framework

Image pre-processing

We processed the WSIs with a segmentation algorithm based on Laplacian filtering to identify
the regions corresponding to tissue sections and annotations drawn adjacent to the tissue
(Figure S1). We then extracted digital pixel-wise annotations, indicating the locations of
cancerous tissue of any grade, by identifying the tissue region corresponding to each
annotation. To obtain training data representing the morphological characteristics of Gleason
patterns 3, 4 and 5, we extracted numerous partially overlapping smaller images, or patches,
from each WSI. Each patch was small enough to largely represent only benign or cancerous
tissue. We used patch dimensions of 598 x 598 pixels (approx. 540 x 540 ym) at a resolution
corresponding to 10X magnification (pixel size approx. 0-90 ym). The process resulted in
approximately 5-1 million patches usable for training a DNN. See Appendix for details (Table
S1).



Deep neural network model for classification of image patches

We used two convolutional DNN ensembles, each consisting of 30 Inception V3 models pre-
trained on ImageNet, with classification layers adapted to our outcome.?*?* The first ensemble
performed binary classification of image patches into benign or malignant, while the second
ensemble classified patches into Gleason patterns 3 to 5. To reduce label noise in the latter
case, we trained the ensemble on patches extracted from cores containing only one Gleason
pattern (i.e. cores with Gleason score 3+3, 4+4, or 5+5). Importantly, the test data still
contained cores of all grades to provide a real-world scenario for evaluation. Each DNN in the
first and the second ensemble thus predicted the probability of each patch being malignant,
and whether it represented Gleason pattern 3, 4, or 5, respectively. See Appendix for details
(Figure S2).

Boosted tree model for core-level estimation of cancer grade and length

Once the probabilities for the Gleason pattern at each location of the biopsy core were
obtained from the DNN ensembles, we mapped them to core-specific characteristics (ISUP
grade and cancer length) using boosted trees.?® All cores in the training data were used for
training the boosted trees. Specifically, aggregated features from the patch-wise probabilities
predicted by each DNN for each core were used as input to the boosted trees, and the clinical
assessment of ISUP score and cancer length were used as outcomes. The ISUP grade group
was assigned based on a Bayesian decision rule of the core-level classifier to obtain ISUP
predictions at a clinically relevant operating point (see Appendix for details).

Model interpretation

With the aim of interpreting the representation of the image data learned by the DNN models,
we performed a visualization of the feature space. To obtain the feature representation of a
patch, we extracted the activations of the DNN’s penultimate layer for the patch in question.
To allow visualization of the high-dimensional feature space, we performed dimensionality
reduction using t-distributed stochastic neighbor embedding (t-SNE)*. Additionally, in order
to gain insights on the features of the input space the DNN model bases its decisions on, we
applied the deep Taylor decomposition approach implemented in the iNNvestigate toolbox.?"?
This technique relies on modelling the decision process of a DNN by backtracking the signals
observed in response to a particular input image, resulting in a pixel-wise estimate indicating
which parts of the input image are most likely to contribute to the DNN’s decision-making. See

Appendix for details (Figure S8).



Evaluation metrics

Cancer detection

We summarized the operating characteristics of the Al system in a Receiver Operating
Characteristic (ROC) curve and the Area Under the ROC Curve (AUC). We then specified a
range of acceptable sensitivities for potential clinical use, and evaluated achieved specificity
(both on core-level and patient-level) when compared to the pathology report. The enrichment
of high-grade disease in the independent test data and the external validation data could
potentially inflate the estimated AUC values, since these grades may be easier to discriminate
from benign cases compared to e.g. ISUP 1 and 2. Therefore, we also estimated the AUC
when ISUP 3-5 cases were removed from the independent test set and the external validation.

Cancer length estimation

We predicted cancer length in each core and compared it to the cancer length described in
the pathology report. The comparison was undertaken on individual cores as well as on
aggregated cores (i.e. total cancer length) for each man. Linear correlation was assessed on
both all cores and men, as well as restricted to positive cores and men.

ISUP grading

Cohen’s kappa with linear weights was used for evaluating the Al's performance against the
23 experienced uro-pathologists on the Imagebase test set. Linear weights emphasize a
higher level of disagreement of ratings further away from each other on the ordinal ISUP scale,
in accordance with previous publications on the Imagebase study.'® Each of the 87 slides in
Imagebase was graded by each of the 23 Imagebase panel pathologists, and additionally by
the Al. To evaluate how well the Al agreed with the pathologists, we calculated all pair-wise
kappas and summarized the average for each of the 23 raters. In addition, we estimated the
kappa with a grouping of the Gleason scores in ISUP grades (grade groups) 1, 2-3 and 4-5.
We also estimated Cohen’s kappa against the study pathologist's ISUP grading on the
independent test set and the external validation set. For the external validation set, we also
estimated Cohen’s kappa after calibrating the probabilities (i.e. scaling the ISUP probabilities
before assigning the predicted class). This was done to investigate whether simple fine tuning
(without retraining of the DNN) is likely to suffice to counteract any drop in performance on

external data.



Role of the funding source

The funders had no role in study design, data collection, analysis and interpretation, or writing
of the report. The corresponding author had full access to all the data in the study and had
final responsibility for the decision to submit for publication.

Results

Cancer detection

We estimated the AUC representing the ability of the Al to distinguish malignant from benign
cores to 0-997 for the independent test set and 0-986 for the external validation set (Figure 1).
The AUC values changed only marginally when ISUP 3-5 cases were removed: from 0.997 to
0.996 for the independent test set and from 0.986 to 0.980 for the external validation data. As
an example, at a sensitivity of 99:6% on the independent test set, the Al achieved a specificity
of 86:6% (Figure 1; top panel, second row from the top). At this sensitivity level, the Al failed
to detect three cores with cancer (two ISUP grade 1 and one ISUP grade 2, all with less than
0-5 mm cancer) across 721 malignant biopsy cores in the independent test data. No cancer
was misdiagnosed since other malignant cores from the same men were correctly classified.

For predicting whether a man had cancer or not, the AUC was 0-999 and 0-979, respectively.

Cancer length estimation

A visualization of the estimated localization of malignant tissue for an example biopsy is
presented in Figure 2B. The correlation between the cancer length estimates of the Al and the
measurements of the pathologist was 0-96 (0-93 for positive cores) for the independent test
set and 0-87 (0-80 for positive cores) for the external validation set. When aggregating the
cancer extent of all cores within a case, the correlation was 0-98 on the independent test set
and 0-94 on the external validation set, both for all men and for men positive for cancer (Figure
3). An online tool (https://tissuumaps.research.it.uu.se/sthim3/) allows for interactive

examination of predictions generated for 30 cores randomly selected (5 per ISUP score and
5 benign) from the independent test set and from the external validation set, respectively.

ISUP grading

The average pairwise kappa achieved by the Al on the 87 Imagebase cases was 0:62. The
pathologists had values ranging from 0-60 to 0-73, with the study pathologist (L.E.) having a
kappa of 0-73. When considering a narrower grouping of ISUP grades (ISUP 1, ISUP 2-3 and



ISUP 4-5), which often forms the basis for primary treatment selection, the Al scored even
higher relative to the pathologists (Figure 4A). The grades assigned by the panel and the Al
to each Imagebase case are shown in Appendix (Figure S3).

The kappa obtained by the Al relative to the pathology report in the independent test set of
1,631 cores was 0-83 for all cores and 0-70 for positive cores only (Figure 4B). The kappa
was 0-70 for all cores and 0-61 for positive cores on the external validation set (Figure 4C).
By scaling the ISUP probabilities before assigning the predicted class (calibrating to the new
site), the kappa increased to 0-76 for all cores and 0-66 for positive cores on the external
validation data (Figure 4D).

Model interpretation

A visualization of the feature space learned by the model to represent the histological image
data is shown in Figure 2A. Examination of this visualization reveals that the model has learnt
a representation that appears logical and unsurprising — most patches representing benign
tissue cluster together, and a smooth transition with increasing malignancy can be observed
first from the benign patches towards patches representing Gleason pattern 3, and further
towards the cluster of patches labeled as Gleason pattern 4. Interestingly, patches
representing Gleason pattern 5 appear as a separate cluster in the feature space.
Furthermore, the presence of patch-level label noise is observable, as a number of patches
labeled as malignant appear in the cluster of predominantly benign patches, and a cluster of
patches labeled as benign can be seen in a region overlapping with Gleason patterns 3 and
4,

We further identified the pixel-level patterns forming the basis of the DNN’s grading decisions
(Figure S8). Based on this analysis, the model appears to focus mainly on small glandular
structures, especially the luminal parts, as well as on cell nuclei. While these observations
may appear obvious to a pathologist, they serve as further confirmation that the DNN has
identified features which are genuinely relevant for the diagnostic task, as opposed to for
example utilizing artifactual patterns in the data resulting from variation in sample or image

processing.?

Discussion

Grading prostate cancer can be a difficult procedure due to the complex nature of the score

and its derivation. This has also been true for computer algorithms aiming at automating



grading. The challenge is not only to develop an Al for this task, but also to demonstrate that
it is consistent with current state-of-the-art diagnosis of prostate histopathology. Here, we have
for the first time demonstrated Al-based grading of prostate biopsies on the level of leading
urological pathologists represented by the ISUP Imagebase panel.

Due to the poor discriminative ability of the prostate specific antigen test and the systematic
biopsy protocol of 10-12 needle cores, which is still in common usage, most biopsies
encountered in clinical practice are of benign tissue. To reduce the workload of assessing
these samples, we evaluated the Al’s ability to assist the pathologist by pre-screening benign
from malignant cores. With an estimated AUC of 0-997 on the independent test set, the system
could automatically remove 809 benign biopsies from 246 men without missing a single man
out of the 211 with cancer diagnosed by the study pathologist (Figure 1). Since the pathology
report was used as gold standard for this evaluation, the Al, by design, cannot achieve a higher
sensitivity than the reporting pathologist. However, the sensitivity of the Al system could in fact
be higher, as some malignant cores may be overlooked by the pathologist but detected by the
Al. As an illustration of this, Ozkan et al. evaluated the agreement of two pathologists in the
assessment of cancer in biopsy cores.® Following examination of 407 cases, one pathologist
found cancer in 231 cases, while the other found cancer in 202 cases. This suggests that an
Al can not only streamline the workflow but could also improve sensitivity by detecting cancer
foci that would otherwise be accidentally overlooked.

In this study, we have also evaluated the assessment of tumor burden (cancer length). We
believe that both cancer detection and cancer length measurements can now be automated
without sacrificing patient safety. In support of this and to provide interpretations of the DNN’s
predictions, we have published on our website high-resolution images of cores randomly
selected from the independent test data and the external validation data, accompanied by their
ISUP grades and the Al’s predictions.

The first attempt to use DNNs for the detection of cancer on prostate biopsies was reported
by Litjens et al.’® Using an approach similar to ours but based on a small dataset, they could
safely exclude 32% of benign cores. A more recent study by Campanella et al. demonstrated
an AUC of 0-991 for cancer detection on an independent test set and 0.943 on external
validation data.'® There have also been attempts to undertake grading of prostate tissue
derived from prostatectomy or based on tissue microarrays.’**® None of these studies
achieved expert uro-pathologist level consistency in Gleason grading, estimated tumor
burden, or investigated grading on needle biopsies, which is of significance since this is the

sampling utilized for diagnosis and grading in virtually every pathology laboratory worldwide.
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Moreover, no previous study has used a well-defined cohort of samples to estimate the clinical
implications, with respect to key medical operating characteristic metrics such as sensitivity
and specificity.>'

The strengths of our study include the use of well-controlled, prospectively collected and
population-based data covering a large random sample of men with both the urologists and
the pathologist blinded to patient characteristics. Prostate cancers diagnosed in STHLM3 are
representative for a screening-by-invitation setting, and the data include cancer variants that
are notoriously difficult to diagnose (pseudohyperplastic and atrophic carcinoma), slides which
required immunohistochemistry, mimickers of cancer, slides with thick cuts and fragmented
cores and poor staining (Table S6). Despite these difficult cases, the Al achieved near perfect
diagnostic concordance with the study pathologist. The study was subjected to a strict
protocol, where the splitting of cases into training and test sets was performed at a patient
level and all analyses were pre-specified prior to the evaluation of the independent test set,
including code for producing tables, figures, and result statistics. A further strength is the use
of Imagebase which is a unique dataset for testing the performance of the Al against highly
experienced urological pathologists.

We trained the Al using annotations from a single, highly experienced urological pathologist
(L.E.). The decision to rely on a single pathologist for model training was done to avoid
presenting the Al with conflicting labels for the same morphological patterns and to thereby
achieve more consistent predictions. L.E. has in several studies demonstrated high
concordance with other experienced uro-pathologists, and therefore represents a good
reference for model training.**** For model evaluation, however, it is critical to assess

performance against multiple pathologists (Figure 4A).

Several sources of variability affect the Al’s predictions. In addition to morphological variability,
technical variability is introduced during slide preparation and scanning. Given the sensitivity
of DNNs to differences in input data, it is plausible that differences across labs and scanners
can invalidate any discriminatory capacity of a DNN.** Here, we showed that the capacity of
the Al in discriminating between benign and malignant biopsies decreased only marginally on
the external validation data compared to the independent test set. We did however observe
some reduction in performance with respect to overall Gleason grading (Cohen’s kappa
decreased from 0.83 to 0.70 from the independent test set to the external validation set with
respect to grades assigned by L.E.). This reduction in performance was most notable for ISUP
2 grades (Figure 4C). However, by scaling the Al's predictions for the different classes (i.e.

calibrating five scalar parameters to the new site), the results were markedly closer to the
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results achieved on the independent test data (Figure 4D). This is a key observation, as it
suggests that although some fine tuning to a new site or scanner is likely required to achieve
optimal performance, this tuning is lightweight and can be done using little data. Importantly,
it does not require redevelopment or retraining of either the DNN models or the slide-level
models, which would be infeasible both from a practical and regulatory perspective. Albeit
being a limitation of the method, requirement for such calibration is not uncommon when
deploying a diagnostic test at a new site (e.g. calibrants are routinely used in laboratory
diagnostics to diagnose and prevent site specific differences and drift over time) and is unlikely
to present a major hurdle for the clinical application of Al-based diagnostics.

A limitation of this study is the lack of exact pixel-wise annotations, since the annotations may
highlight regions that include a mixture of benign and malignant glands of different grades. To
address this issue, we trained the algorithm on slides with pure Gleason grades, used a patch
size large enough to cover glandular structures but small enough to minimize the presence of
mixed grades within a patch, and we focused our attention on core and patient level
performance metrics, which avoids caveats of patch-level evaluation and is clinically more
meaningful. Another limitation is the difficulty of using a subjective measure like ISUP grade
as ground truth for Al models. We approached this problem by evaluating the ISUP grade
assigned by the Al against a panel of experienced pathologists. We also confirmed that the
classifications of the Al did not substantially differ from the pathologist’s when evaluating PSA
relapses among the operated men in the trial (see Appendix for details, Table S7). As a
consequence of the study design with an enrichment of high-grade disease, the interpretation
of an estimated positive predictive value (PPV) is not straightforward (since the PPV is a
function of the prevalence in the dataset). We have therefore chosen to not report the PPV,
something that we will address in future studies with a design more suitable for estimating the
PPV.

Conclusions

We have demonstrated that an Al based on DNNs can grade prostate biopsies at the level of
highly experienced urological pathologists and that a DNN’s predictions can generalize to
external data. We believe that the use of a system like this can increase sensitivity and
promote patient safety by providing decision-support and by focusing the attention of the
pathologist on regions of interest. In addition, the use of an accurate Al system can reduce

pathology workload and high intra-observer variability in the reporting of prostate
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histopathology by producing reproducible and consistent grading. A further benefit is that Al
can provide diagnostic expertise in regions where this is currently unavailable.
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Table 1: Subject characteristics among all biopsied men in the STHLM3 study and among men whose
biopsies were digitized, tabulated by men (top) and by individual biopsy cores (bottom). No cancer
grade information is shown for Imagebase, as the grading of this set of samples was performed
independently by multiple observers. Imagebase cancer length was assessed by L.E.
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Figure 1: ROC curves and AUC for cancer detection by individual cores and by men (left) with four
operating points on the core level curve highlighted (right) for the independent test set (top) and the
external validation set (bottom). The first two columns from left show the number of biopsy cores that
could be discarded from further consideration and the number of biopsy cores that would need
pathological evaluation, respectively. The values in parentheses indicate the corresponding specificity
and sensitivity. The next five columns show the number and percentage of missed malignant cores by
ISUP score for each operating point. The rightmost column indicates the number and percentage of

missed cancers among all men with cancer.
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Figure 2: (A) A t-SNE visualization of the feature space learned by the DNN model. Feature
representations of patches were obtained by extracting the activations of the penultimate layer of the
grading DNN. The 2048-dimensional feature vectors were then reduced to two dimensions using t-SNE.
Each data point (n=153,484) represents a single patch from a random sample stratified by grade
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(including benign, Gleason 3, Gleason 4, Gleason 5). The colors indicate the grade assigned to each
patch by the study pathologist. Four example patches (538 um x 538 um), randomly selected from each
of the observed clusters, are shown.

(B) Color-coded visualization of cancer grades estimated by the Al. The colors represent the estimated
probabilities for the presence of benign (blue), malignant low grade (Gleason 3, yellow) and malignant
high grade (Gleason 4 or 5, red) tissue at different locations of the biopsy (left). A magnified view of the
Al output (center) and the corresponding H&E stained tissue (right) are shown for a region where an
estimated transition between low- and high-grade morphology can be observed. This core from the test
data was graded as ISUP 3 (GS 4+3) by the study pathologist.
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Figure 3: Scatterplots presenting the concordance between cancer lengths estimated by the Al and the
pathologist for indepedent test data. Results are shown for individual cores (left) and aggregated over
cores for each man (right) for the independent test set (top) and external validation set (bottom).
Corresponding linear correlation coefficients computed for all cores and malignant cores only are shown
in each plot. Data points in the left plot are jittered along the x-axis for clarity.
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A: ImageBase Panel B: Independent test data
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Figure 4: Grading performance on test data. (A) Cohen’s kappa for each pathologist ranked from lowest
to the highest. Each kappa value is the average pair-wise kappa for each of the pathologists compared
against the others. To account for the natural order of the ISUP scores we used linear weights. The Al
is highlighted with a black dot and an arrow. The study pathologist (L.E.) is highlighted with an arrow.
Values computed based on all five ISUP scores are plotted in red, while values based on a grouping of
ISUP scores commonly used for treatment decision are shown in blue. (B) A confusion matrix on the
independent test data of 1631 slides and (C) the external validation data of 330 slides. (D) Results on
external validation data are additionally shown following calibration of the slide-level model. This
procedure did not involve any model retraining. The pathologist’s (L.E.) grading is shown on the y-axis
and the Al's grading on the x-axis. For the independent test set, Cohen’s kappa with linear weights was
0.83 when considering all cases, and 0.70 when only considering the cases indicated as positive by the
pathologist. For the external validation set, the corresponding values were 0.70 and 0.61. Following
calibration, the kappa values increased to 0.76 and 0.66. The results are presented for an operating
point achieving a minimum cancer detection sensitivity of 99%.
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