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Abstract. Continuous time random walks (CTRWs) have random waiting times between particle jumps.
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1 Introduction

Stochastic modeling of many phenomena such as trading on financial markets or pollution in ecology often
includes modeling of rest periods between events. This means that there is a need for stochastic models
with random waiting times between state changes. Models that recently received attention as suitable
include fractional diffusions governed by Kolmogorov forward and backward partial differential equations
with the fractional derivative in time-variable and their Skorokhod J1 topology approximations using
continuous-time random walks (CTRWs). For example, the fractional derivative in time is used to reflect
delays between trades on financial markets and to derive the Black-Scholes formula in this framework
(see [35, 24, 39]). Fractional derivative in time is also used for modeling of sticking and trapping of a
pollutant particle in a porous medium or in the river flow (see [36, 6]). Additional applications of CTRWs
and related fractional diffusions in engineering and finance could be found in [11, 24, 32, 33, 35, 39].

Independence of waiting times and particle jumps yields the model known as decoupled CTRW [29,
28, 10]. Furthermore, for independent and identically distributed (iid) particle jumps Y1, . . . , Yn, the
rescaled random walk S(n) = Y1 + . . . + Yn converges to either the Brownian motion or a stable Lévy
process (see [31, Chapter 4], [38]) in the Skorokhod space D([0, 1]) (the space of right-continuous functions
on [0,1] with left limits) in the J1 topology introduced by Skorokhod in 1956 [37]. If the waiting times
between particle jumps are modeled by iid random variables G1, . . . , Gn from the domain of attraction
of a positively skewed stable law with stability index 0 < β < 1, the CTRW process S(N(t)), where
T (n) = G1 + . . . + Gn, N(t) = max{n ≥ 0: T (n) ≤ t}, gives the location of a particle at time t ≥ 0.
Then by applying the continuous mapping theorem (see [31, Theorem 4.19]), it follows that S(N(⌊ct⌋))
converges to the process A(E(t)) as c → ∞. The outer process A is either the Brownian motion or a stable
Lévy process, and the inner process E(t) is the inverse of a standard β-stable subordinator (D(t), t ≥ 0).
This convergence holds in both M1 and J1 Skorokhod topologies (see [30, 40]). The differences among
Skorokhod topologies are discussed in [4].

If the particle jumps are correlated, a similar procedure yields the correlated CTRW (see, for example,
[27]). In particular, correlated CTRW appears by replacing the outer random walk that represents particle
jumps in decoupled case by a suitably chosen discrete-time Markov chain. This Markov chain then yields
the fractional diffusion in the weak limit. Therefore, we refer to such correlated CTRW as a fractional
diffusion approximation in Skorokhod J1 topology.
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A very recent development of the topic of space-time fractional processes is due to Toniazzi [41], who
considered classical stochastic solutions for the fractional evolution equation on a bounded domain. An
alternative approach to studying the limiting behavior of CTRWs has been developed in [15, 16] for the
spatially non-homogeneous case, in which the jump distribution depends on position of a particle. In
order to obtain the limiting process, Kolokoltsov develops the theory of subordination of Markov processes
by the hitting-time processes [16].

Leonenko and colleagues [20] and [21] have constructed the correlated CTRWs converging to non-
heavy-tailed fractional Pearson diffusions (fPDs): Ornstein-Uhlenbeck (OU), Cox-Ingersoll-Ross (CIR)
and Jacobi. They used the well known discrete-time Markov chains arising from the Laplace-Bernoulli
urn scheme (see e.g. [14]) for the OU case, Wright-Fischer genetic model (see e.g. [14]) for the CIR and
Jacobi cases. For the Jacobi case, they have also used a construction based on the Ehrenfest-Brillouin
process, often interpreted in economic terms (see [9]). For motivation and more historical facts on these
discrete-time Markov chains we refer to [25] and [12].

In this paper we extend the approach of constructing a suitable discrete-time Markov chains in order
to obtain fPDs with heavy-tailed invariant distributions in the limit. The paper is organized as follows.
Section 2 includes the theoretical background on transition operators of discrete-time Markov chains
(Subsection 2.1). Subsection 2.2 presents the mechanism for construction of diffusion approximation
via Markov chains, with fractional diffusion approximations considered in Subsection 2.3. The methods
presented in Section 2 are then applied in Section 3 for the construction of heavy-tailed fPDs and their
approximations in Skorokhod J1 topology. In particular, Pearson diffusions and fPDs are described
in Subsections 3.1 and 3.2, respectively. Subsection 3.3 contains the specific constructions of all three
heavy-tailed Pearson diffusions: the Student diffusion is constructed in 3.3.1; the reciprocal gamma and
Fisher-Snedecor diffusions are constructed in 3.3.2. Finally, Section 3.4 contains construction of all three
heavy-tailed fPDs and their Skorokhod J1 topology approximations, i.e., the corresponding correlated
CTRWs.

2 General framework for fractional diffusion approximation

In this section we explain the general ideas for the construction of a Markov chain that leads to desired
diffusion process as the weak limit in the Skorokhod space endowed with J1 topology. In Subsection 2.1 we
explain the necessary technicalities, and in Subsection 2.2 we give a concrete algorithm for construction
of a generally parametrized diffusion via Markov chain in our setting.

2.1 Transition operators of the discrete-time Markov chains

Let µ be an arbitrary probability kernel on a measurable space (S, S). The associated transition operator
T is defined as

Tf(x) = (Tf)(x) =
∫

µ(x, dy)f(y), x ∈ S, (2.1)

where f : S → R is assumed to be measurable and either bounded or nonnegative. For details we refer
to [13, Chapter 19].

Denote by D(S) the space of right continuous functions with left limits defined on R
+ with values

in S. Throughout this paper, we consider the J1 topology in this space. Consider the Banach space of
bounded continuous functions on space S with the supremum norm denoted by ‖ · ‖∞.

For a closed operator A with domain D, a core for A is a linear subspace D ⊂ D such that the
restriction A|D has closure A. In that case, A is clearly uniquely determined by its restriction A|D.
Suitable core is important in order to technically establish connection between desired Markov chains
and their limiting diffusions. We work with C3

c (S) as a core of the diffusion infinitesimal generator, but
in general not all diffusions have it as its core. Theorems 1.6 and 2.1 from [8, Section 8] give sufficient
conditions for C∞

c (S) (and therefore C3
c (S) as well) to be a core of the diffusion infinitesimal generator.

The main technical tool used for obtaining the non-fractional diffusion approximation via suitably
chosen Markov chain with known transition operator is Theorem 19.28 from [13]. We state this Theorem
below.

Theorem 2.1. Let (Y (n), n ∈ N) be a sequence of discrete-time Markov chains on S with transition
operators (Un, n ∈ N). Consider a Feller process X on S with semigroup Tt and generator A. Fix a core
D for the generator A, and assume that (hn, n ∈ N) is the sequence of positive reals tending to zero as
n → ∞. Let

An = h−1
n (Un − I), Tn,t = U⌊t/hn⌋

n , Xn
t = Y n(⌊t/hn⌋).
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Then the following statements are equivalent:

a) If f ∈ D, there exist fn ∈ Dom(An) with fn → f and Anfn → Af as n → ∞

b) Tn,t → Tt strongly for each t > 0

c) Tn,tfn → Ttf for each f ∈ C0, uniformly for bounded t > 0

d) if X(n)(0) ⇒ X(0) in S, then Xn ⇒ X in the Skorokhod space D(S) with J1 topology.

The proof could be found in [13, Theorem 19.28, page 387].

Remark 2.2. In section 3 we apply technique established in the following sections for heavy-tailed Pearson
diffusions. Moreover, C3

c (S) can be referred to as a core of these diffusions, where S = R in the Student
diffusion case and S = [0, +∞〉 in the Fisher-Snedecor and reciprocal gamma cases. In particular all
three heavy-tailed Pearson diffusions satisfy conditions of Theorem 2.1. from [8, Section 8].

2.2 General approach to diffusion approximation via Markov chains

Let (N (n)(r), r ∈ N) be the starting Markov chain with state space Sn ⊆ N0 and transition probabilities
pij , i, j ∈ Sn. Let X = (X(t), t ≥ 0) be the desired diffusion process with state space S. The process X
is the solution of the stochastic differential equation (SDE)

dX(t) = µ(x) dt +
√

σ2(x) dW (t), t ≥ 0, x ∈ S,

where (W (t), t ≥ 0) is the standard Brownian motion. The infinitesimal generator of the process X is

Af(x) = µ(x)f ′(x) +
1
2

σ2(x)f ′′(x), f ∈ C3
c (S). (2.2)

First, starting points N (n)(0) = i ∈ Sn need to be connected with X(0) = x ∈ S, i.e., the state space
of the starting Markov chain needs to be connected to the state space of the desired diffusion process.
Define a strictly monotonic function gn : S → R, such that

i = ⌊gn(x)⌋

for n large enough and
lim

n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = 0.

According to the state space S of the desired diffusion process X, a new Markov chain (M (n)(r), r ∈ N)
is constructed via the transformation

M (n)(r) = g−1
n

(

N (n)(r)
)

, (2.3)

so that (M (n)(r), n ∈ N) has state space g−1
n (Sn) and transition operator

Tnf
(

g−1
n (i)

)

=
n
∑

j=0

pijf
(

g−1
n (i)

)

. (2.4)

We now define operator

An := h−1
n (Tn − I), fn ∈ Dom(An), fn(x) := f

(

g−1
n (i)

)

, f ∈ C3
c (S), (2.5)

where (hn, n ∈ N) is sequence of positive reals tending to zero as n → ∞.
Finally, define continuous-time stochastic process (X(n)(t), t ≥ 0) via time change in the Markov chain

X(n)(t) := M (n)
(

⌊h−1
n t⌋

)

. (2.6)

The next theorem gives sufficient conditions on when the diffusion process (X(t), t ≥ 0) can be obtained
as the limiting process of the time-changed stochastic process (X(n)(t), t ≥ 0).
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Theorem 2.3. For each n ∈ N, let (M (n)(r), r ∈ N0) be the Markov chain defined by (2.3) with the
transition operator (2.4). For each n ∈ N, let Xn = (X(n)(t), t ≥ 0) be its corresponding time-changed
process, with the time-change (2.6). Let operators (An, n ∈ N) be defined by (2.5). If

µn(x) : = h−1
n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)

, σ2
n(x) := h−1

n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)2

,

Rn(x) : = h−1
n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)3

3!
f ′′′(ζ), |ζ − g−1

n (i)| < |g−1
n (j) − g−1

n (i)| (2.7)

have uniform limits

lim
n→∞

‖µn − µ‖∞ = lim
n→∞

∥

∥σ2
n − σ2

∥

∥

∞ = lim
n→∞

‖Rn‖∞ = 0, (2.8)

where µ and σ2 are infinitesimal parameters given in (2.2), then

Xn ⇒ X, as n → ∞

in the Skorokhod space D(S) with J1 topology, where X = (X(t), t ≥ 0) is diffusion with the infinitesimal
generator A given by (2.2).

Proof. First, we prove statement a) of Theorem 2.1, i.e., we show that infinitesimal generator (2.2) can
be approximated by operator An defined in (2.5). According to the definition of function ⌊·⌋

⌊gn(x)⌋ ≤ gn(x) < ⌊gn(x)⌋ + 1,

therefore
i ≤ gn(x) < i + 1. (2.9)

Let gn be a monotone increasing function (monotone decreasing case is analogous). Monotonicity with
(2.9) give

g−1
n (i) ≤ g−1

n (gn(x)) < g−1
n (i + 1)

so that
|g−1

n (i) − x| <
∣

∣g−1
n (i + 1) − g−1

n (i)
∣

∣ .

The last inequality implies

lim
n→∞

∥

∥g−1
n (i) − x

∥

∥

∞ ≤ lim
n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = 0. (2.10)

Therefore for f ∈ C3
c (S)

lim
n→∞

‖fn − f‖∞ = lim
n→∞

sup
x∈S

|fn(x) − f(x)| = lim
n→∞

sup
x∈S

∣

∣f(g−1
n (i)) − f(x)

∣

∣ = 0.

Since

Anf(g−1
n (i)) = h−1

n





n
∑

j=0

pijf
(

g−1
n (j)

)

− f
(

g−1
n (i)

)





= h−1
n

n
∑

j=0

pij

[

f
(

g−1
n (j)

)

− f
(

g−1
n (i)

)]

,

Taylor formula for function f around g−1
n (i) with mean-value form of the remainder yields

Anf(g−1
n (i)) =h−1

n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)

f ′ (g−1
n (i)

)

+ h−1
n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)2

2!
f ′′ (g−1

n (i)
)

+ h−1
n

n
∑

j=0

pij

(

g−1
n (j) − g−1

n (i)
)3

3!
f ′′′ (ζ) , (2.11)
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where ζ is a real number such that |ζ − g−1
n (i)| < |g−1

n (j) − g−1
n (i)|.

Therefore (2.11) reduces to

Anf(g−1
n (i)) = µn(x)f ′ (g−1

n (i)
)

+
σ2

n(x)
2

f ′′ (g−1
n (i)

)

+ Rn(x).

The triangle inequality gives

‖Anfn − Af‖∞ = sup
x∈S

|Anfn(x) − Af(x)| = sup
x∈S

|Anfn(x) − Af(x)|

≤ sup
x∈S

∣

∣µn(x)f ′ (g−1
n (i)

)

− µ(x)f ′(x)
∣

∣+ sup
x∈S

∣

∣

∣

∣

σ2
n(x)
2

f ′′ (g−1
n (i)

)

− σ2(x)
2

f ′′(x)

∣

∣

∣

∣

+ sup
x∈S

|Rn(x)| . (2.12)

For f ∈ C3
c (S), (2.10) implies

lim
n→∞

‖f ′
n − f ′‖∞ = lim

n→∞
‖f ′′

n − f ′′‖∞ = 0 (2.13)

and uniform limits (2.8) and (2.13) together with (2.12) yield

lim
n→∞

‖Anfn − Af‖∞ = 0.

This completes the proof of statement a) of the Theorem 2.1. Since

X(n)(0) ⇒ X(0) ⇐⇒ lim
n→∞

∥

∥g−1
n (i) − x

∥

∥

∞ = 0,

the equivalence of statements a) and d) in Theorem 2.1 yields

Xn ⇒ X in D(S).

Remark 2.4. In all cases considered in this paper, gn : S → R are affine functions of the form

gn(x) = anx + bn,

where (an, n ∈ N) and (bn, n ∈ N) are sequences of real numbers such that

lim
n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = lim
n→∞

1
an

= 0,

and
i = ⌊gn(x)⌋

for n large enough.
Moreover, µn, σ2

n and Rn reduce to

µn(x) =
h−1

n

an

n
∑

j=0

pij (j − i) , σ2
n(x) =

h−1
n

a2
n

n
∑

j=0

pij (j − i)2
,

Rn(x) =
h−1

n

a3
n

n
∑

j=0

pij
(j − i)3

3!
f ′′′(ζ),

∣

∣ζ − g−1
n (i)

∣

∣ <

∣

∣

∣

∣

j − i

an

∣

∣

∣

∣

. (2.14)

Remark 2.5. In this paper we consider starting Markov chains with transition probabilities of the form

pi,i+1 > 0, pi,i−1 > 0, pi,i = 1 − pi,i+1 − pi,i−1, and 0 otherwise.

For such Markov chains, (2.14) further reduces to

µn(x) =
h−1

n

an
(pi,i+1 − pi,i−1) , σ2

n(x) =
h−1

n

a2
n

(pi,i+1 + pi,i−1) ,

Rn(x) =
h−1

n

6a3
n

(pi,i+1 − pi,i−1) f ′′′(ζ),
∣

∣ζ − g−1
n (i)

∣

∣ <

∣

∣

∣

∣

j − i

an

∣

∣

∣

∣

. (2.15)

This procedure simplifies manipulations in the state space and time change in order to obtain the desired
diffusion.
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2.3 Fractional diffusion approximation

Let T (r) = G1 + . . . + Gr, r ∈ N0,, T (0) = 0 be a random walk with iid waiting times Gr ≥ 0 between
particle jumps. Assume that these waiting times are independent of the Markov chain (H(n)(r), r ∈ N0).
Further, assume that G1 is in the domain of attraction of the β-stable distribution with index 0 < β < 1,
and that the waiting time of the Markov chain until its r-th move is described by T (r). Let

N(t) = max{r ≥ 0: T (r) ≤ t} (2.16)

be the number of jumps up to time t ≥ 0. Then the continuous time stochastic process H(n)(N(t)) gives
the state of the Markov chain at time t ≥ 0 and is a correlated CTRW process. The next Theorem
provides fractional diffusion approximation via correlated CTRWs.

Theorem 2.6. Let
(

A(n)(t), t ≥ 0
)

be the weak limit of (A(t), t ≥ 0), where all processes are càdlàg and

An ⇒ A in D(S)

with J1 topology, where S is the state space for the process A.
Let (N(t), t ≥ 0) be the renewal process defined in (2.16), and (E(t), t ≥ 0) be the inverse of the

standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. Then

A(n)
(

n−1N
(

n1/βt
))

⇒ A(E(t)), n → ∞

in the Skorokhod space D(S) with J1 topology.

Proof. The result directly follows from the proof of Theorem 8.1. in [20].

Remark 2.7. It is clear that once a non-fractional diffusion approximation is obtained, its fractional
counterpart approximation follows immediately from Theorem 2.6. Therefore, in order to obtain specific
fractional diffusion approximation, one needs to establish specific Markov chain, which will lead to the
non-fractional diffusion in the sense of Theorem 2.3. In the next section we apply this approach to
Pearson family of diffusions.

3 Application to heavy-tailed fractional Pearson diffusions

We start by defining Pearson diffusions and summarizing their properties.

3.1 Pearson diffusions

Pearson diffusion (X(t), t ≥ 0) is defined as the unique strong solution of the following SDE

dX(t) = −θ(X(t) − µ)dt +
√

2θ(b2X(t)2 + b1X(t) + b0)dW (t), t ≥ 0,

where µ ∈ R is the mean of the stationary distribution, θ > 0 is the scaling of time determining the speed
of reversion to the stationary mean µ, and b0, and b1 and b2 are such that the square root in the diffusion
coefficient is well defined when X(t) is in its state space (l, L). Beside this SDE, Pearson diffusions can be
defined by the partial differential equations (PDEs) for the transition density p(x, t; y, s) = d

dx P(X1(t) ≤
x|X1(s) = y), describing the time evolution of diffusion, that is, Kolmogorov forward (Fokker-Planck) and
backward PDEs. Since we consider time-homogeneous diffusions for which p(x, t; y, s) = p(x, t − s; y, 0)
for t > s, we can write p(x, t; y) = d

dx P(X1(t) ≤ x|X1(0) = y). Kolmogorov forward or Fokker-Planck
equation

∂p(x, t; y)
∂t

= − ∂

∂x
(µ(x)p(x, t; y)) +

1
2

∂2

∂x2

(

σ2(x)p(x, t; y)
)

describes the "forward evolution" of the diffusion, the current state y being a constant. Kolmogorov
backward equation

∂p(x, t; y)
∂t

= µ(y)
∂p(x, t; y)

∂y
+

σ2(y)
2

∂2p(x, t; y)
∂y2

.

describes the "backward evolution" of the diffusion, the future state x being a constant. The second-order
differential operator in this equation is the infinitesimal generator of the diffusion

Ag(y) =

(

µ(y)
∂

∂y
+

σ2(y)
2

∂2

∂y2

)

g(y). (3.1)
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It is a closed, generally unbounded, negative semidefinite, self-adjoint operator densely defined on the
space L2 ((l, L),m) of square integrable functions with respect to the diffusion invariant density m(x):

{f ∈ L2 ((l, L),m) ∩ C2 ((l, L)) : Af ∈ L2 ((l, L),m) and f satisfies boundary conditions at l and L}.
(3.2)

For more details on Kolmogorov forward and backward PDEs we refer to [26].
Pearson diffusions are categorized into six subfamilies (see [18]), based on the properties of the sta-

tionary distribution. Namely, in 1931 Kolmogorov noticed that the differential equation for the invariant
density m(x), x ∈ R of the classical Markovian diffusion with a linear drift a(x) = a1x + a0 = −θ(x − µ)
and the quadratic squared diffusion coefficient σ2(x) = 2θb(x) is the famous Pearson differential equation
(see [34])

m
′(x)/m(x) = [a(x) − b′(x)]/[b(x)] = [(a1 − 2b2)x + (a0 − b1)]/[b2x2 + b1x + b0].

According to the degree of the polynomial σ2(x) and further according to the sign of the leading coefficient
b2 and the sign of the discriminant ∆ = b2

1 − 4b0b2 in the quadratic case of σ2(x), Pearson diffusions are
classified into six subfamilies:

• constant b(x) - the Ornstein-Uhlenbeck (OU) process, characterized by normal stationary distribu-
tion,

• linear b(x) - the Cox-Ingersol-Ross (CIR) process, characterized by gamma stationary distribution,

• quadratic b(x) with b2 < 0 - the Jacobi (JC) diffusion, characterized by beta stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) > 0 - the Fisher-Snedecor (FS) diffusion, characterized by the
Fisher-Snedecor stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) = 0 - the reciprocal gamma (RG) diffusion, characterized by
reciprocal gamma stationary distribution,

• quadratic b(x) with b2 > 0 and ∆(b) < 0 - the Student (ST) diffusion, characterized by the Student
stationary distribution.

The first three types have non-heavy-tailed stationary distributions. These diffusions are very well
studied and widely applied, e.g., in financial practice. The properties of these diffusions can be found in the
classical book [14], while more recent developments relying on spectral representation of their transition
densities are covered in [18], [17], [19], [20] and [21]. Heavy-tailed Pearson diffusions have not yet found
their wide applications, in part due to complex properties of the spectrum of their infinitesimal generators
(3.1). Namely, the transition densities of heavy-tailed PDs are not known in explicit form without knowing
the structure of the spectrum of the infinitesimal generator. For these diffusions the spectrum consists
of two disjoint parts: the finite discrete part consisting of finitely many simple eigenvalues in 〈0, Λ〉 and
the absolutely continuous part which is exactly the interval 〈Λ, ∞〉. This structure generates the spectral
representation in form of a finite sum, including eigenvalues and classical orthogonal polynomials (Bessel,
Romanovski and Fisher-Snedecor) as eigenfunctions, and the integral part over the absolutely continuous
part of the spectrum, including confluent and generalized hypergeometric functions related to that part
of the spectrum. For detailed spectral analysis of these diffusions and the application of the spectral
representation of the transition density to statistical analysis of these diffusions we refer to the series of
papers [22], [23], [3], [1] and [2].

3.2 Fractional Pearson diffusions

For a Pearson diffusion (X(t), t ≥ 0), the corresponding fPD (Xβ(t), t ≥ 0) is defined via a non-Markovian
time-change E(t) independent of X1(t):

Xβ(t) := X (E(t)) , t ≥ 0.

Here E(t) = inf{x > 0 : Dx > t} is the inverse of the standard β-stable Lévy subordinator (D(t), t ≥ 0) of
order 0 < β < 1, with the Laplace transform E [e−sD(t)] = exp{−tsβ}, s ≥ 0. Since E(t) rests for periods
of time with non-exponential distribution, the process (Xβ(t), t ≥ 0) is non-Markovian. Although Xβ(t)
is not Markovian, we will refer to the function pβ(x, t; y) as the transition density of fPD Xβ(t). This
transition density satisfies

P(Xβ(t) ∈ B|Xβ(0) = y) =
∫

B

pβ(x, t; y)dx.
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for any Borel subset B ⊂ (l, L).
Analogously to the non-fractional case, time-evolution of fPDs can be (partially) described by time-

fractional forward and backward Kolmogorov equations, with the time-fractional derivative (regularized
non-local operator) defined in the Caputo sense (see [31]):

∂βu

∂tβ
=

{

∂u
∂t (t, x) , if β = 1

1
Γ(1−β)

∂
∂t

∫ t

0
(t − τ)−β

u (τ, x) dτ − u(0,x)
tβ , if β ∈ (0, 1).

In [18] the spectral representations for the transition densities of non-heavy-tailed fPDs (OU, CIR,
Jacobi) were obtained. Namely, it has been shown that the series

pβ(x, t; y) = m(x)
∞
∑

n=0

Eβ

(

−λntβ
)

Qn(y)Qn(x) (3.3)

converges for fixed t > 0, x, y ∈ (l, L), where Eβ(−z) =
∞
∑

j=0

(−z)j/Γ(1 + βj), z ≥ 0 is the Mittag-

Leffler function, and (Qn, n ≥ 0) are classical orthogonal polynomials that are eigenfunctions of the
infinitesimal generator of the corresponding non-fractional Pearson diffusion. In the generalized sense,
series (3.3) satisfies pβ(x, 0; y) = δ(x − y), where δ(·) is the Dirac delta function.

Spectral representations of transition densities for fractional reciprocal gamma and Fisher-Snedecor
diffusions were obtained in [19] using the asymptotic properties of confluent and Gauss hypergeometric
functions (see [7] and [5]) related to the continuous part of the spectrum of the infinitesimal generator
of the corresponding non-fractional Pearson diffusion. Here we point out that the case of the spectral
representation of Student diffusion, having absolutely continuous part of the spectrum of multilplicity
two, is still not completely resolved. For partial results on spectral analysis of Student diffusion we refer
to [23].

Spectral representations of the transition densities of fPDs can be used to obtain the explicit strong
solutions of the corresponding fractional Cauchy problems for both backward and forward equations.
For relevant results we refer to [18] for non-heavy-tailed fPDs and to [19] for the reciprocal gamma and
Fisher-Snedecor fractional diffusions.

3.3 Student, Fisher-Snedecor and reciprocal gamma diffusion approxima-

tions

In this section, we construct discrete-time Markov chains whose scaling limits are heavy-tailed Pearson
diffusions.

3.3.1 Student diffusion approximation

The Student diffusion X = (X(t), t ≥ 0) is defined as the solution of the SDE

dX(t) = −θ (X(t) − µ) dt+

√

√

√

√

2θδ2

ν − 1

(

1 +

(

X(t) − µ

δ

)2
)

dW (t), t ≥ 0, θ > 0, µ ∈ R, ν > 1, δ > 0,

with the infinitesimal generator

Af(x) = −θ (x − µ) f ′(x) +
1
2

2θδ2

ν − 1

(

1 +

(

x − µ

δ

)2
)

f ′′(x), f ∈ C3
c (R). (3.4)

The corresponding invariant distribution is symmetric scaled student distribution with probability density
function

st(x) =
Γ( ν+1

2 )

δ
√

πΓ( ν
2 )

(

1 +

(

x − µ

δ

)2
)− ν+1

2

, x ∈ R, (3.5)

where δ > 0 is scale parameter, µ ∈ R is location parameter, and ν > 1 is degrees of freedom of the
invariant distribution. When ν > 2, the mean and variance are finite.
Let (Z(n)(r), r ∈ N) be the Markov chain with state space {0, 1, 2, . . . , n} and transition probabilities

p0,1 = 1, pn,n−1 = 1,
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pi,i+1 =
1
2c

(

1 − 2i

n

)2

+
1
n

(

1 − i

n

)2

, pi,i−1 =
1
2c

(

1 − 2i

n

)2

+
1
n

(

i

n

)2

, pi,i = 1 − pi,i+1 − pi,i−1

(3.6)
and 0 otherwise, where i ∈ {1, 2, . . . , n − 1}, 0 < d < 1, c > 1 and n is large enough to ensure
pi,i+1 + pi,i−1 < 1.
This Markov chain is clearly irreducible since each state can be reached with positive probability. Finite-
ness of the state space {0, 1, 2, . . . , n} with the irreducibility implies that the Markov chain is also
reccurent, which in turn implies that the chain has the unique (up to a constant) invariant measure. Fur-
thermore, finiteness of the state space implies this Markov chain has the unique stationary distribution
π:

π(n) = π(0) =









2 +
2cn3

n(n − 2)2 + 2c









1 +
n−1
∑

x=2

x−1
∏

k=1

[

n(n − 2k)2 + 2c(n − k)2
]

x
∏

k=2

[n(n − 2k)2 + 2ck2]

















−1

,

π(x) =
2cn3

n(n − 2)2 + 2c
·

x−1
∏

k=1

[

n(n − 2k)2 + 2c(n − k)2
]

x
∏

k=2

[n(n − 2k)2 + 2ck2]
· π(0), x ∈ {1, 2, 3, . . . , n − 1}.

This Markov chain is also periodic, since states 0 and n have periods of 2.
For n ∈ N, define the function gn : R → R,

gn(x) =
1
2

(

n + (ax + b)
√

n
)

, a > 0, b ∈ R.

We assume that the initial states of the Markov chain (Z(n)(r), r ∈ N0) and the Student diffusion
X = (X(t), t ≥ 0) are given by Z(n)(0) = i and X(0) = x respectively, where

i(x) = i = ⌊gn(x)⌋ =

⌊

1
2

(

n + (ax + b)
√

n
)

⌋

, x ∈ R.

We also assume that n is always large enough so that i(x) is in the state space of Markov chain
(Z(n)(r), r ∈ N0). Furthermore, we assume that the inital Markov chain (Z(n)(r), r ∈ N0) never starts
from states 0 or n. Notice that the initial state is a function of x, but we will use notation i for simplicity.

For n ∈ N, define the new Markov chain

H(n)(r) = g−1
n (Z(n)(r)) =

1
a
√

n

(

2Z(n)(r) − n − b
√

n
)

, (3.7)

with the state space
{

1
a

√
n

(−n − b
√

n) , 1
a

√
n

(2 − n − b
√

n) , · · · 1
a

√
n

(n − b
√

n)
}

. The transition operator

Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(

2i − n − b
√

n

a
√

n

)

=
n
∑

j=0

pijf

(

2j − n − b
√

n

a
√

n

)

= pi,i−1 f

(

2(i − 1) − n − b
√

n

a
√

n

)

+ pi,i f

(

2i − n − b
√

n

a
√

n

)

+

+ pi,i+1 f

(

2(i + 1) − n − b
√

n

a
√

n

)

. (3.8)

Now for n ∈ N, define operator

An :=
θ

2
n2(Tn − I), fn ∈ Dom(An), fn(x) := f

(

g−1
n (i)

)

= f

(

2i − n − b
√

n

a
√

n

)

, (3.9)

where θ > 0 and f ∈ C3
c (R). Apply the scaling of time in (H(n)(r), r ∈ N0) to obtain the corresponding

continuous-time process (X(n)(t), t ≥ 0):

X(n)(t) := H(n)

(⌊

θ

2
n2t

⌋)

. (3.10)

The next theorem states that the Student diffusion could be obtained as the limiting process of the
time-changed processes (X(n)(t), t ≥ 0).
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Theorem 3.1. For n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.7) with the transition
operator (3.8). Let Xn = (X(n)(t), t ≥ 0) be its corresponding time-changed process, with the time-change
(3.10). Let the operators (An, n ∈ N) be defined by (3.9). Then as n → ∞

Xn ⇒ X in D(R),

where X = (X(t), t ≥ 0) is the Student diffusion with the infinitesimal generator A given by (3.4), and

µ = − b

a
, ν = c + 1, δ =

1
a

√

c

2
.

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e., function gn is strictly
monotonic and

lim
n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = lim
n→∞

∣

∣

∣

∣

2
a
√

n

∣

∣

∣

∣

= 0.

Taking into account Remark 2.5, state space transformation (3.7) with the time scale h−1
n = θn2/2 yield

µn(x) =
θ

a
n

√
n (pi,i+1 − pi,i−1) , σ2

n(x) =
2θ

a2
n (pi,i+1 + pi,i−1) ,

Rn(x) =
2θ

3a3

√
n (pi,i+1 − pi,i−1) f ′′′(ζ),

∣

∣

∣

∣

ζ − 2i − n − b
√

n

a
√

n

∣

∣

∣

∣

<

∣

∣

∣

∣

2
a
√

n
(j − i)

∣

∣

∣

∣

.

Next, the transition probabilities (3.6) further simplify

µn(x) =
θ

a
n

√
n

(

1
2c

(

1 − 2i

n

)2

+
1
n

(

1 − i

n

)2

− 1
2c

(

1 − 2i

n

)2

− 1
n

(

i

n

)2
)

=
θ
√

n

a

(

1 − 2i

n

)

= θ

(

n − 2i

a
√

n

)

, (3.11)

σ2
n(x) =

2θ

a2
n

(

1
2c

(

1 − 2i

n

)2

+
1
n

(

1 − i

n

)2

+
1
2c

(

1 − 2i

n

)2

+
1
n

(

i

n

)2
)

= 2θ

(

1
c

(

n − 2i

a
√

n

)2

+
1
a2

(

1 − i

n

)2

+
1
a2

(

i

n

)2
)

, (3.12)

|Rn(x)| ≤
∣

∣

∣

∣

∣

2θ

3a3

√
n

(

1
2c

(

1 − 2i

n

)2

+
1
n

(

1 − i

n

)2

− 1
2c

(

1 − 2i

n

)2

− 1
n

(

i

n

)2
)∣

∣

∣

∣

∣

K

=

∣

∣

∣

∣

∣

2θ

3a3

(

1√
n

(

1 − i

n

)2

− 1√
n

(

i

n

)2
)∣

∣

∣

∣

∣

K

=

∣

∣

∣

∣

2θ

3a3

(

n − 2i

n
√

n

)∣

∣

∣

∣

K, (3.13)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = ⌊gn(x)⌋, it follows

lim
n→∞

sup
x∈R

∣

∣

∣

∣

n − 2i

a
√

n
+

(

x +
b

a

)∣

∣

∣

∣

= 0, lim
n→∞

sup
x∈R

∣

∣

∣

∣

i

n
− 1

2

∣

∣

∣

∣

= 0. (3.14)

Now, using (3.11), (3.12), (3.13) together with (3.14) and the fact that f ∈ C3
c (R), we have

lim
n→∞

‖µn − µ‖∞ = 0, lim
n→∞

∥

∥σ2
n − σ2

∥

∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.15)

where

µ(x) = −θ

(

x +
b

a

)

, σ2(x) = 2θ

(

1
c

(

x +
b

a

)2

+
1

2a2

)

.

10



By re-parametrizing

µ = − b

a
, ν = c + 1, δ =

1
a

√

c

2
(3.16)

we obtain

µ(x) = −θ (x − µ) , σ2(x) =
2θδ2

ν − 1

(

1 +

(

x − µ

δ

)2
)

. (3.17)

Comparing (3.17) with (3.4) we see that the limits coincide with the infinitesimal parameters of the
Student diffusion. Since (3.15) holds, as a direct consequence of Theorem 2.3 we obtain Xn ⇒ X as
n → ∞ in D(R), where X is the generally parametrized Student diffusion.

Remark 3.2. Note that re-parametrization (3.16) ensures parameters of the Student diffusion satisfy

θ > 0, µ ∈ R, ν > 2, δ > 0,

since a > 0, b ∈ R, c > 1. In general, parameter ν can be any real number larger then 1, but ν > 2 we
obtained ensures that the invariant Student distribution has finite second moment.

Remark 3.3. It is well known that for high degrees of freedom ν, the Student distribution (3.5) can be
approximated by the normal distribution. If we let c → ∞ in the transition probabilities (3.6), they
resemble the structure of transition probabilities of the famous Bernoulli-Laplace urn-scheme model (see
[20, Section 6]), which leads to the OU diffusion. On the other hand, by taking into account (3.16), the
infinitesimal parameters (3.17) of the Student diffusion reduce to the infinitesimal parameters of the OU
process as c → ∞, and ν → ∞, δ → ∞. Therefore it is not suprising that when c → ∞, the scaled
Markov chain which leads to the Student diffusion resembles the structure of the scaled Markov chain
which leads to the OU process.

3.3.2 Fisher-Snedecor and reciprocal gamma diffusion approximations

First, we define starting Markov chain which will lead to the Fisher-Snedecor and reciprocal gamma
diffusions with appropriately chosen parameters. Let (G(n)(r), r ∈ N) be the Markov chain with the
state space {0, 1, 2, . . . , n} and transition probabilities

p0,1 = 1, pn,n−1 = 1,

pi,i+1 =

(

i

n

)2
a∗

nd
+

b∗

n2
+

c∗i

n2
, pi,i−1 =

a∗i + d∗

n2

i

nd
+

c∗i

n2
, pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise,

(3.18)
where i ∈ {1, 2, . . . , n − 1}, 0 < d < 1, a∗ ≥ 0, b∗ ≥ 0, c∗ ≥ 0, d∗ ≥ 0.

This Markov chain is clearly irreducible since each state can be reached with positive probability.
Finiteness of the state space {0, 1, 2, . . . , n} and the irreducibility imply that the Markov chain is also
reccurent, which in turn implies that the chain has the unique (up to a constant) invariant measure.
Furthermore, finiteness of the state space implies this Markov chain has the unique stationary distribution
π:

π(0) =









1 +
nd+2

a∗ + b∗ + c∗nd









1 +
(n − 1)2a∗ + nd(b∗ + c∗(n − 1))

nd+2

x−1
∏

k=1

[

a∗k2 + c∗ndk + b∗nd
]

x
∏

k=2

[a∗k2 + (c∗nd + d∗)k]

+
n−1
∑

x=2

x−1
∏

k=1

[

a∗k2 + c∗ndk + b∗nd
]

x
∏

k=2

[a∗k2 + (c∗nd + d∗)k]

















−1

,

π(x) =
nd+2

a∗ + b∗ + c∗nd
·

x−1
∏

k=1

[

a∗k2 + c∗ndk + b∗nd
]

x
∏

k=2

[a∗k2 + (c∗nd + d∗)k]
· π(0), x ∈ {1, 2, 3, . . . , n − 1}
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π(n) = π(n − 1) ·
[

(

n − 1
n

)2
a∗

nd
+

b∗

n2
+

c∗(n − 1)
n2

]

.

This Markov chain is also periodic, since states 0 and n have periods of 2.
Fisher-Snedecor diffusion

The Fisher-Snedecor diffusion Y = (Y (t), t ≥ 0) is defined as the solution of the SDE

dY (t) = −θ

(

Y (t) − β

β − 2

)

dt +

√

4θ

γ(β − 2)
Y (t)(γY (t) + β) dW (t), t ≥ 0, θ > 0, β > 2, γ > 0,

with the infinitesimal generator

Af(y) = −θ

(

y − β

β − 2

)

f ′(y) +
1
2

4θ

γ(β − 2)
y(γy + β)f ′′(y), f ∈ C3

c ([0, +∞〉). (3.19)

Let (G(n)(r), r ∈ N) be the Markov chain with the state space {0, 1, 2, . . . , n} and transition probabilities
(3.18) with parameters

a∗ = a, b∗ = a + b, c∗ = c, d∗ = b, a > 0, b > 0, c > 0,

i.e.,
p0,1 = 1, pn,n−1 = 1,

pi,i+1 =

(

i

n

)2
a

nd
+

a + b

n2
+

ci

n2
, pi,i−1 =

ai + b

n2

i

nd
+

ci

n2
, pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise,

(3.20)
where i ∈ {1, 2, . . . , n − 1} and n is large enough, ensuring pi,i+1 + pi,i−1 < 1. Define the function
gn : [0, +∞〉 → R,

gn(y) = ndy.

We assume that the initial states of the Markov chain (G(n)(r), r ∈ N0) and Fisher-Snedecor diffusion
Y = (Y (t), t ≥ 0) are given by G(n)(0) = i and Y (0) = y respectively, where

i(y) = i = ⌊gn(y)⌋ =
⌊

ndy
⌋

, y ∈ [0, +∞〉 .

We also assume that n is always large enough so that i(y) is in the state space of Markov chain
(G(n)(r), r ∈ N0). Furthermore, we assume that the inital Markov chain (G(n)(r), r ∈ N0) never starts
from states 0 or n. Notice that the initial state is a function of y, but we will use notation i for simplicity.
For n ∈ N, we define the new Markov chain (H(n)(r), r ∈ N) with the state space {0, 1/nd, . . . , 1/nd−1}

H(n)(r) = g−1
n (G(n)(r)) =

G(n)(r)
nd

. (3.21)

The transition operator Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(

i

nd

)

=
n
∑

j=0

pijf

(

j

nd

)

= pi,i−1 f

(

i − 1
nd

)

+ pi,i f

(

i

nd

)

+ pi,i+1 f

(

i + 1
nd

)

. (3.22)

For n ∈ N, define operator

An := n2+d(Tn − I), fn ∈ Dom(An), fn(y) := f
(

g−1
n (i)

)

= f

(

i

nd

)

, (3.23)

where f ∈ C3
c ([0, +∞〉) and by the following scaling of time in (H(n)(r), r ∈ N0), for n ∈ N we obtain

the corresponding continuous-time process (Y (n)(t), t ≥ 0):

Y (n)(t) := H(n)
(

⌊n2+dt⌋
)

. (3.24)

The next theorem states that the Fisher-Snedecor diffusion could be obtained as the limiting process of
the time-changed processes (Y (n)(t), t ≥ 0).
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Theorem 3.4. For n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.21) with the transition
operator (3.22). Let Y n = (Y (n)(t), t ≥ 0), for each n ∈ N, be its corresponding time-changed process,
with the time-change (3.24). Let the operators (An, n ∈ N) be defined by (3.23). Then

Y n ⇒ Y in D([0, +∞〉)

as n → ∞, where Y = (Y (t), t ≥ 0) is the Fisher-Snedecor diffusion with the infinitesimal generator A
given by (3.19), and

θ = b, β = 2

(

b

a
+ 1

)

, γ =
2 (a + b)

c
.

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e., function gn is strictly
monotone and

lim
n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = lim
n→∞

∣

∣

∣

∣

1
nd

∣

∣

∣

∣

= 0.

Taking into account Remark 2.5, state space transformation (3.7) together with the time scale h−1
n = n2+d

yield

µn(x) = n2 (pi,i+1 − pi,i−1) , σ2
n(x) = n2−d (pi,i+1 + pi,i−1) ,

Rn(x) =
1
6

n2(1−d) (pi,i+1 − pi,i−1) f ′′′(ζ),

∣

∣

∣

∣

ζ − i

nd

∣

∣

∣

∣

<

∣

∣

∣

∣

j − i

nd

∣

∣

∣

∣

.

Next, transition probabilities (3.6) further simplify

µn(y) = n2

(

(

i

n

)2
a

nd
+

a + b

n2
+

ci

n2
− ai + b

n2

i

nd
− ci

n2

)

= a + b − b
i

nd
, (3.25)

σ2
n(y) = n2−d

(

(

i

n

)2
a

nd
+

a + b

n2
+

ci

n2
+

ai + b

n2

i

nd
+

ci

n2

)

= 2a

(

i

nd

)2

+ 2c
i

nd
+

a + b

nd
+ b

i

n2d
, (3.26)

|Rn(y)| ≤
∣

∣

∣

∣

n2−2d

6

(

(

i

n

)2
a

nd
+

a + b

n2
+

ci

n2
− ai + b

n2

i

nd
− ci

n2

)

∣

∣

∣

∣

K

=

∣

∣

∣

∣

1
6

(

a + b

n2d
− b

i

n3d

) ∣

∣

∣

∣

K, (3.27)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = ⌊gn(y)⌋, it follows

lim
n→∞

sup
y∈[0, +∞〉

∣

∣

∣

∣

i

nd
− y

∣

∣

∣

∣

= 0. (3.28)

Now, using (3.25), (3.26), (3.27) together with (3.28) and the fact that f ∈ C3
c ([0, +∞〉) we have

lim
n→∞

‖µn − µ‖∞ = 0, lim
n→∞

∥

∥σ2
n − σ2

∥

∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.29)

where
µ(y) = a + b − by, σ2(y) = 2ay2 + 2cy.

By re-parametrizing

θ = b, β = 2

(

b

a
+ 1

)

, γ =
2 (a + b)

c
(3.30)

it follows

µ(y) = −θ

(

y − β

β − 2

)

, σ2(y) =
4θ

γ (β − 2)
y (γy + β) . (3.31)

13



Note that re-parametrization (3.30) ensures the generality of parameters of the Fisher-Snedecor diffusion,
i.e.

θ > 0, β > 2, γ > 0

since a > 0, b > 0, c > 0. Comparing the obtained limits (3.31) with (3.19) we see that the limits
coincide with the infinitesimal parameters of the Fisher-Snedecor diffusion. Since (3.29) holds, as a direct
consequence of Theorem 2.3 we obtain Y n ⇒ Y as n → ∞ in D([0, +∞〉), where Y is the generally
parametrized Fisher-Snedecor diffusion.

Reciprocal gamma diffusion
The reciprocal gamma diffusion Z = (Z(t), t ≥ 0) is defined as the solution of the SDE

dZ(t) = −θ

(

Z(t) − γ

β − 1

)

dt +

√

2θ

β − 1
Z2(t) dW (t), t ≥ 0, θ > 0, β > 1, γ > 0,

with the infinitesimal generator

Af(z) = −θ

(

z − γ

β − 1

)

f ′(z) +
1
2

2θ

β − 1
z2f ′′(z), f ∈ C3

c ([0, ∞)). (3.32)

Let (G(n)(r), r ∈ N) be the Markov chain with the state space {0, 1, 2, . . . , n} and transition probabilities
(3.18) with parameters

a∗ = a, b∗ = c, c∗ = 0, d∗ = b, a > 0, b > 0, c > 0,

i.e.
p0,1 = 1, pn,n−1 = 1,

pi,i+1 =

(

i

n

)2
a

nd
+

c

n2
, pi,i−1 =

ai + b

n2

i

nd
, pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise, (3.33)

where i ∈ {1, 2, . . . , n − 1} and n is large enough, ensuring pi,i+1 + pi,i−1 < 1. Define the function
gn : [0, +∞〉 → R,

gn(z) = ndz.

We assume that the initial states of the Markov chain (G(n)(r), r ∈ N0) and reciprocal gamma diffusion
Z = (Z(t), t ≥ 0) are given by G(n)(0) = i and Z(0) = z respectively, where

i(z) = i = ⌊gn(z)⌋ =
⌊

ndz
⌋

, z ∈ [0, +∞〉 .

and n is always large enough so that i(z) is in the state space of Markov chain (G(n)(r), r ∈ N0).
Furthermore, we assume that the initial Markov chain (G(n)(r), r ∈ N0) never starts from states 0 or n.
Notice that the initial state is a function of z, but we will use notation i for simplicity. For n ∈ N, we
define the new Markov chain (H(n)(r), r ∈ N) with the state space {0, 1/nd, . . . , 1/nd−1}

H(n)(r) = g−1
n (G(n)(r)) =

G(n)(r)
nd

. (3.34)

The transition operator Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(

i

nd

)

=
n
∑

j=0

pijf

(

j

nd

)

= pi,i−1 f

(

i − 1
nd

)

+ pi,i f

(

i

nd

)

+ pi,i+1 f

(

i + 1
nd

)

. (3.35)

For n ∈ N, define operator

An := n2+d(Tn − I), fn ∈ Dom(An), fn(z) := f
(

g−1
n (i)

)

= f

(

i

nd

)

(3.36)

where f ∈ C3
c ([0, +∞〉) and by the following scaling of time in (H(n)(r), r ∈ N0), for each n ∈ N we

obtain the corresponding continuous-time process (Z(n)(t), t ≥ 0):

Z(n)(t) := H(n)
(

⌊n2+dt⌋
)

. (3.37)

The next theorem states that the reciprocal gamma diffusion could be obtained as the limiting process
of the time-changed processes (Z(n)(t), t ≥ 0).
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Theorem 3.5. Forh n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.34) with the
transition operator (3.35). Let Zn = (Z(n)(t), t ≥ 0), for each n ∈ N, be its corresponding time-changed
process, with the time-change (3.37). Let the operators (An, n ∈ N) be defined by (3.36). Then

Zn ⇒ Z in D([0, +∞〉)

as n → ∞, where Z = (Z(t), t ≥ 0) is the RG diffusion with the infinitesimal generator A given by
(3.32), and

θ = b, β =
b

a
+ 1, γ =

c

a
.

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e. function gn is strictly
monotone and

lim
n→∞

∥

∥g−1
n (i + 1) − g−1

n (i)
∥

∥

∞ = lim
n→∞

∣

∣

∣

∣

1
nd

∣

∣

∣

∣

= 0.

Taking into account Remark 2.5, state space transformation (3.34) together with the time scale h−1
n =

n2+d yield

µn(z) = n2 (pi,i+1 − pi,i−1) , σ2
n(z) = n2−d (pi,i+1 + pi,i−1) ,

Rn(z) =
1
6

n2(1−d) (pi,i+1 − pi,i−1) f ′′′(ζ),

∣

∣

∣

∣

ζ − i

nd

∣

∣

∣

∣

<

∣

∣

∣

∣

j − i

nd

∣

∣

∣

∣

.

Transition probabilities (3.33) further simplify

µn(z) = n2

(

(

i

n

)2
a

nd
+

c

n2
− ai + b

n2

i

nd

)

= c − b
i

nd
, (3.38)

σ2
n(z) = n2−d

(

(

i

n

)2
a

nd
+

c

n2
+

ai + b

n2

i

nd

)

= 2a

(

i

nd

)2

+
c

nd
+ b

i

n2d
, (3.39)

|Rn(z)| ≤ K

6

∣

∣

∣

∣

n2−2d

(

(

i

n

)2
a

nd
+

c

n2
− ai + b

n2

i

nd

)

∣

∣

∣

∣

=
K

6

∣

∣

∣

∣

(

c

n2d
− b

i

n3d

) ∣

∣

∣

∣

, (3.40)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = ⌊gn(z)⌋, it follows

lim
n→∞

sup
z∈[0, +∞〉

∣

∣

∣

∣

i

nd
− z

∣

∣

∣

∣

= 0. (3.41)

Now, using (3.38), (3.39), (3.40) together with (3.41) and the fact that f ∈ C3
c ([0, +∞〉) we have

lim
n→∞

‖µn − µ‖∞ = 0, lim
n→∞

∥

∥σ2
n − σ2

∥

∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.42)

where
µ(z) = c − bz, σ2(z) = 2az2.

By re-parametrizing

θ = b, β =
b

a
+ 1, γ =

c

a
(3.43)

it follows

µ(z) = −θ

(

z − γ

β − 1

)

, σ2(z) =
2θ

β − 1
z2. (3.44)
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Notice that re-parametrization (3.43) ensures the generality of parameters of the reciprocal gamma dif-
fusion, i.e.,

θ > 0, β > 1, γ > 0

since a > 0, b > 0, c > 0. Comparing the obtained limits (3.44) with (3.32) we see that the limits
coincide with the infinitesimal parameters of the RG diffusion. Since (3.42) holds, as a direct consequence
of Theorem 2.3 we obtain Zn ⇒ Z as n → ∞ in D([0, +∞〉) , where Z is the generally parametrized
reciprocal gamma diffusion.

3.4 Fractional Student, Fisher-Snedecor and reciprocal gamma diffusion ap-

proximations in Skorokhod topology

In this section, we apply Theorem 2.6 to obtain fractional Student, Fisher-Snedecor and reciprocal gamma
diffusion approximations in Skorokhod topology.

Corollary 3.6. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.7). Let (X(n)(t), t ≥ 0) be the
corresponding rescaled Markov chain given by (3.10). Let (N(t), t ≥ 0) be the renewal process defined in
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1.
Then

X(n)
(

n−1N
(

n1/βt
))

⇒ X(E(t)), n → ∞

in the Skorokhod space D(R) with J1 topology, where (X(t), t ≥ 0) is Student diffusion with generator

Af(x) = −θ (x − µ) f ′(x) +
1
2

2θδ2

ν − 1

(

1 +

(

x − µ

δ

)2
)

f ′′(x), f ∈ C3
c (R).

Proof. Stochastic processes (X(n)(t), t ≥ 0) and (X(t), t ≥ 0) are both càdlàg, and Theorem 3.1 implies

Xn ⇒ X in D(R)

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result.

Corollary 3.7. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.21). Let (Y (n)(t), t ≥ 0) be the
corresponding rescaled Markov chain given by (3.24). Let (N(t), t ≥ 0) be the renewal process defined in
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1.
Then

Y (n)
(

n−1N
(

n1/βt
))

⇒ Y (E(t)), n → ∞

in the Skorokhod space D([0, +∞〉) with J1 topology, where (Y (t), t ≥ 0) is the Fisher-Snedecor diffusion
with generator

Af(y) = −θ

(

y − β

β − 2

)

f ′(y) +
1
2

4θ

γ(β − 2)
y(γy + β)f ′′(y), f ∈ C3

c ([0, +∞〉).

Proof. Stochastic processes (Y (n)(t), t ≥ 0) and (Y (t), t ≥ 0) are both càdlàg, and Theorem 3.4 implies

Y n ⇒ Y in D([0, +∞〉 .

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result.

Corollary 3.8. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.34). Let (Z(n)(t), t ≥ 0) be the
corresponding rescaled Markov chain given by (3.37). Let (N(t), t ≥ 0) be the renewal process defined in
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1.
Then

Z(n)
(

n−1N
(

n1/βt
))

⇒ Z(E(t)), n → ∞

in the Skorokhod space D(([0, +∞〉)) with J1 topology, where (Z(t), t ≥ 0) is the reciprocal gamma diffu-
sion with generator

Af(z) = −θ

(

z − γ

β − 1

)

f ′(z) +
1
2

2θ

β − 1
z2f ′′(z), f ∈ C3

c ([0, +∞〉).
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Proof. Stochastic processes (Z(n)(t), t ≥ 0) and (Z(t), t ≥ 0) are both càdlàg, and Theorem 3.5 implies

Zn ⇒ Z in D([0, +∞〉)

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result.
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