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Abstract:  

In the last few decades, production and procurement of food grain in India have steadily 

increased, however, storage capacity has not increased proportionally. The government of India 

(GOI) is establishing the various capacitated silos across the country to bridge this storage 

capacity gap. This paper presents a novel integrated multi-objective, multi-modal and multi-

period mathematical model for grain silo location-allocation problem with Dwell time to 

support the decision-making process of GOI. Two conflicting objectives- minimization of total 

supply chain network cost and total lead time (transit and dwell time) are simultaneously 

optimized using two Pareto based multi-objective algorithms with calibrated parameters.  

Keywords: Facility location-allocation problem, Multi-objective optimization, Mixed integer 

non-linear programming, Food grain supply chain, Non-dominated sorting chemical reaction 

optimization (NCRO) 

1. Introduction 

 

The continuously increasing population of India and the implementation of the National Food 

Security Act (NFSA) 2013 across the country cause the growing demand for food grain 

including wheat and rice. In order to meet this growing demand for food grain, the Government 

of India (GOI) is trying to increase the food grain production, procurement and reduce the post-

harvest losses. In the past few decades, most of the developing countries have given greater 

emphasis on increasing production of food grain rather than reducing losses. Due to inadequate 

infrastructure and highly inefficient supply chain, the annual loss of food in India is near about 

30-35% of the total production (Parwez, 2014). Storage and transit losses of food grain can be 

curbed through bulk storage and transportation instead of the conventional method of gunny 
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bags. Therefore, GOI is moving towards the modernized food grain supply chain system which 

consists of bulk grain handling, transportation and storage facilities. 

The Public Distribution System (PDS) is an Indian food security system which 

distributes the subsidized food grain to weaker and vulnerable section of the society. The major 

food grain supply chain related activities such as procurement from farmers in surplus states, 

storage, movement and distribution to deficit states are taken care by Food Corporation of India 

(FCI). In surplus states, food grain is procured from farmers by FCI and various State 

Government Agencies (SGAs) and stored in central warehouses. Wheat is procured in Rabi 

season (April to June) and rice in Kharif season (October to February). Further, food grain is 

allocated to the various deficit states on the basis of their demand and offtakes in the previous 

period. Then, deficit states handle the process of distribution of food grain to the final 

consumers through Fair Price Shops (FPS). Generally, intrastate and interstate food grain 

transportation are carried out by road and rail mode, respectively. The above described overall 

scenario of the Indian food grain supply chain is depicted in Fig. 1. 

 

 

Fig. 1. The configuration of Indian food grain supply chain 

The Comptroller and Auditor General of India, (CAG) 2013, report indicates that the storage 

capacity of the FCI has remained almost constant (15.2–15.6 Million Metric Ton (MMT)) 

during 2006-07 to 2011-12, whereas the central pool stock steadily increased from 21 MMT in 

2007 to 66.8 MMT in 2012 excluding the decentralized state’s procurement. The storage gap 

in FCI against the required capacity has steadily increased from 5.995 MMT during 2007-2008 

to 33.185 MMT in 2011-12 as represented in Fig. 2. This numerical data shows the mismatch 

between procured food grains quantity and available storage capacity. Thus, more storage 
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capacity is needed to cope up with growing procurement. Furthermore, the sudden increase in 

the stock of food grains in the central pool raises the issue of a large quantity of food grain 

movement from surplus states to deficit states. To meet the shortfall in storage capacity, GOI 

has started constructing the various capacitated steel silos in procuring (base silos) and 

consuming states (field silos).  

 

Fig. 2. Gap in Storage Capacity with FCI (Source: CAG 2013 report) 

The main contributions of this paper are as follows. First, motivated by the above 

delineated real-life scenario of Indian food grain supply chain, a novel integrated multi-

objective, multi-modal and multi-period mixed integer non-linear programming (MINLP) 

model is developed to solve the grain silo location-allocation problem of four echelon supply 

chain network. The mathematical model aims to minimize the two conflicting objective 

functions consisting of total food grain supply chain network cost and total lead time along 

with Dwell time (DT). The first objective function comprises of transportation cost 

(transportation cost from procurement centres to base silos, base silos to field silos and field 

silos to demand points), the fixed cost of silo establishment (base and field silo) and inventory 

cost at base and field silos. The second objective function involves dwell time (dwell time from 

procurement centres to base silos) and lead time (lead time from procurement centres to base 

silos, base silos to field silos and field silos to demand points). Specifically, the developed 

model concurrently optimizes the various critical decisions like location, allocation, capacity, 

inventory and transportation decisions. Second, the proposed model simultaneously considers 

the different realistic and practical features of the problem such as dwell time, multi-period, 
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heterogeneous capacitated vehicles and their limited availability at each echelon, multiple 

sourcing, multi-modal transportation, geographically dispersed surplus and deficit states,  

capacitated base and field silos, and vehicle capacity constraints, etc. The waiting time of food 

grain stock at SGA warehouses must be reduced to avoid - deterioration of food grain quality, 

an increase of carry-over charges and food grain losses. Therefore, the new DT function is 

introduced for calculating the waiting time of food grain at procurement centers with the 

consideration of administrative activities, vehicles used for shipment between procurement 

centers and base silos and availability of base silos storage capacity. Third, to provide the 

compromise solution to the FCI and GOI, the model is solved using the recently developed 

multi-objective evolutionary algorithm called non-dominated chemical reaction optimization 

(NCRO) algorithm and compared the results with the well-known non-dominated sorting 

genetic algorithm (NSGA-II). Even though the NCRO algorithm is not original, to the best of 

our knowledge, it has not been used for any practical problems. Therefore, we feel that the 

application of the NCRO algorithm with calibrated parameters to solve a grain silo location-

allocation problem and the comparison between NCRO and NSGA-II results for this problem 

can be one of the contributions. Finally, sensitivity analysis is conducted considering the eight 

parameters to obtain the managerial insights and practical implications for the effective 

decision-making process of food grain supply chain. 

 The rest of the paper is structured in the following manner. Section 2 provides the 

comprehensive review of the relevant existing literature. The problem delineation is given in 

Section 3. Section 4 illustrates the mathematical model of the problem including assumptions 

and notations. Section 5 deals with solution methodologies used for solving the model. Section 

6 reports and discusses the computational results. Finally, the conclusion and some future 

extensions are given in Section 7. 

 

2. Background and prior related work 

 

The limited literature is available on multi-objective facility location-allocation or supply chain 

network design problem in the context of food supply chain. The previous relevant studies are 

divided into two sub-sections for better understanding. The first sub-section is dedicated to 

facility location-allocation and other relevant problems. The multi-objective optimization 

along with review papers in the field of food supply chain are described in second sub-section.  

2.1 Facility location-allocation problems  
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Recently, Gholamian and Taghanzadeh, (2017) investigated the integrated supply chain 

network design problem of wheat and its products in Iran by simultaneously considering the 

long-term and mid-term decisions. They have incorporated various aspects like different types 

of wheat, flour factories, supplier selection, import of wheat and export of wheat products in 

the model. The novel features including waiting time, lead time, number of vehicles used for 

transportation, assignment decisions and scenario of producing and consuming states with 

various types of capacitated silos are considered in our current study. Etemadnia et al., (2015) 

addressed the hub location problem of fruit and vegetable supply chain system by considering 

the bimodal food transportation system. The objective function of the model was to minimize 

the transportation and hub location cost. Various transportation and total silo construction costs 

have been taken into account by Corner and Foulds, (2004) while developing a silo location 

model for sustainable grain supply chain. Therein, total construction cost was comprised of 

fixed and variable costs of silo establishment. The practical case of wheat logistical 

management problem focusing on storage and transportation system in Iran was addressed by 

Asgari et al., (2013). The novel warehouse preference constraints were included in their linear 

integer programing model. However, the main focus of the paper was on storage and 

transportation problem, not on the facility location-allocation problem. A two-stage food grain 

transportation model was developed by Maiyar and Thakkar, (2017) for the optimization of 

tactical and operational level decisions. However, they have not introduced the strategic, 

allocation, inventory, heterogeneous vehicles and multi-period characteristics in their paper.  

Furthermore, Ge et al., (2015) developed the analytic and simulation models for 

minimization of handling cost of the wheat supply chain in the Canadian grain industry. Their 

goal was to find out the effective quality testing strategies to mitigate the contamination risks 

under the new trust-based declaration system of wheat segregation. Nourbakhsh et al., (2016) 

proposed the mathematical model for the minimization of total system cost which comprises 

of infrastructure investment and monetary value of post-harvest losses. The formulated model 

optimizes the number and location of drying facilities, transportation routing, transhipments 

between roadway as well as railway, and transportation infrastructure capacity expansion. The 

model has been tested using the case study of the real-world network in the state of Illinois. 

The food quality was incorporated in the multi-period production and distribution planning 

problem of two-stage network (Rong et al., 2011). They have developed the mixed integer 

linear programming (MILP) model which minimizes the total costs including production, 
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transportation, inventory and waste disposal along with the cooling cost of transportation 

equipment and  storage facilities.   

The sugar cane loading station location problem in Thailand was investigated by Khamjan 

et al., (2013) and the mathematical model was solved by using the heuristic algorithm to 

minimize the investment, transportation and cane yield loss cost. The multi-modal, shipment 

quantity, inventory, lead time and waiting time characteristics are not considered in their 

model. The dynamic dairy facility location and supply chain planning problem with traffic 

congestion and uncertain demand was discussed by Jouzdani et al., (2013) using the empirical 

real-world case study of Tehran. The mathematical model aims to minimize the facility location 

cost, traffic congestion cost and raw/processed milk and dairy products transportation cost. 

Eskigun et al., (2005) considered the transit time, location of distribution centres and 

transportation mode while addressing the outbound supply chain network design problem. The 

transportation and lead time cost were the two main components of the objective function. 

Three mathematical models of grain transportation were presented for the determination of 

time, aggregate cost and rail network capacity (Hyland et al., 2016). Their main goal was to 

compare the conventional service of transportation with country elevators against shuttle 

service with terminal elevators. Furthermore, Rancourt et al., (2015) solved the food aid 

distribution problem of the Garissa region in Kenya by combining the need assessment and 

population data using mathematical programming methodology for the development of 

humanitarian logistics support decision tools. They have presented three location models for 

the design of last-mile food aid distribution network with the objective functions of 

minimization of social welfare cost, maximization of need coverage and minimization of 

required number of distribution centre locations. Boujelben et al., (2016) worked on multi-

period facility location problem with numerous operational constraints and presented the MILP 

model. Initially, the authors have determined the transportation routes and costs from 

distribution centres to customers by means of dynamic clustering method and then solved the 

proposed model using commercial solver. 

2.2 Multi-objective optimization in food supply chain 

In recent times, An and Ouyang, (2016) developed a bi-level robust optimization model for 

profit maximization and post-harvest loss minimization of a food company by considering 

farmers, storage facilities and export markets. They have integrated the market equilibrium 

among farmers, stochastic crop yields and post-harvest loss in the developed bi-level 
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Stackelberg leader-follower game. A multi-objective, multi-period and multi-modal 

sustainable load planning problem has been studied by Baykasoğlu and Subulan, (2016) 

considering load allocation, outsourcing and transportation mode selection decisions. The main 

focus of their paper was on load planning problem of the intermodal transportation network 

with three objectives - minimization of overall cost, total transit time and total carbon emission. 

Bortolini et al., (2016) dealt with the tactical optimization problem of fresh food distribution 

network concentrating on operating costs, carbon footprint and delivery time objectives. The 

linear programming model was developed by them considering producers and retailers along 

with constraints of food quality dependence, market demand and production capacity of 

farmers. Additionally, Cardona-Valdés et al., (2014) simultaneously minimized the cost and 

travelling time of the two-echelon bi-objective stochastic problem by considering the demand 

uncertainty at the distribution centre. In the domain of meat supply chain network design, 

Mohammed and Wang, (2017a) developed three objective model to minimize the 

transportation cost, required transportation vehicles and delivery time. Later, the same authors 

have extended the model by considering the minimization of transportation cost, environmental 

impact, distribution time and maximization of average delivery rate (Mohammed and Wang, 

2017b). They have suggested that the developed model can be expanded to the multi-period, 

multi-echelon scenario and solved using the multi-objective metaheuristic algorithms.  

Moreover, two conflicting objectives comprising of the total cost and CO2 emission were 

simultaneously optimized while solving the capacitated facility location-allocation problem 

(Harris et al., 2014), beef logistics network problem (Soysal et al., 2014) and milk distribution 

problem (Validi et al., 2014). Therein, Harris et al., (2014) considered the flexibility at the 

allocation level while dealing with the single source facility location problem and proposed the 

novel solution approach by integrating a multi-objective evolutionary algorithm with 

Lagrangian Relaxation. The transportation emission (due to distance, road condition, fuel types 

and weight of vehicles), return hauls and product perishability were concurrently considered 

by Soysal et al., (2014) in beef logistics network problem. Validi et al., (2014) developed the 

sustainable multi-objective model for the design of a capacitated distribution network of two-

layer Irish dairy market supply chain. A fuzzy multi-objective linear programming model was 

presented for integrated supply chain network design of an edible vegetable oil producer which 

concurrently minimize the movement cost between suppliers and silos and manufacturer and 

warehouses (Paksoy et al., 2012). The mixed integer programming (MIP) model was proposed 

and solved with real-world case data from the Marmara region of Turkey for optimization of 
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intermodal transportation network (Resat and Turkay, 2015). They included different 

transportation modes and time dependency on intermodal transportation in their model. A 

review of various operational research models employed in the domain of fresh fruit supply 

chain can be seen in Soto-Silva et al., (2016). In addition, Melo et al., (2009) critically analyzed 

the literature of facility location models for strategic decisions in the context of supply chain 

management, performance measures and optimization techniques. The comprehensive review 

of multi-criteria location problems focusing on bi-objective, multi-objective and multi-

characteristic problems and their solution approaches was given by Farahani et al., (2010). A 

summary of the relevant studies on multi-objective optimization in the food supply chain 

indicating key features and the position of the current work in comparison with them have been 

included in Table 1. 
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Study 

Single/

Multi 

period 

Single/

Multi-

modal 

Echelons 

in SC 
TC IC FLC 

Lead 

time 

Waiting 

time 
Objective functions Decisions Model Constraints 

An and 

Ouyang, 

(2016) 

Single Single Three Yes No Yes No No 

Maximization of profit and 

minimization of post-

harvest losses 

Determination of 

location and grain 

price  

 

MINLP 

Supply, capacity, grain 

conservation and binary 

decision variables 

Baykasoğlu 

and 

Subulan, 

(2016) 

Multi Multi Three  Yes No No Yes No 

Minimization of total 

transport cost, total transit 

time and total carbon 

emission 

Determination of 

export and import 

quantity and 

corresponding cruises 

and chartered block 

trains 

MILP 

Periodic load allocation for 

demand satisfaction, 

specific constraint on 

marine along with rail 

transportation and decision 

variable constraints  

Bortolini et 

al., (2016) 
Single Multi Two Yes No No Yes No 

Minimization of  operating 

cost, carbon footprint and 

delivery time 

Determination of 

shipment quantity   

 

LP 

Food quality dependence, 

market demand and 

production capacity 

Mohammed 

and Wang, 

(2017a) 

Single  Single Three Yes No No Yes No 

Minimization of 

transportation cost, required 

transportation vehicles and 

delivery time 

Determination of  

shipment quantity and 

corresponding number 

of expected required 

vehicles  

 

 

MILP 

Supply, capacity, demand 

satisfaction, transportation 

time, number of vehicles 

determination and decision 

variable constraints   

Mohammed 

and Wang, 

(2017b) 

Single  Single Three Yes No No Yes No 

Minimization of 

transportation cost, 

environmental impact,  

distribution time  and 

maximization of average 

delivery rate  

Determination of 

opening of farm and 

abattoir, shipment 

quantity and 

corresponding number 

of expected required 

labourers 

 

 

MILP 

Supply, capacity, demand 

satisfaction, number of 

vehicle determination and 

decision variable 

constraints 

Harris et al., 

(2014) 
Single Single Two Yes No Yes No No 

Minimization of total cost 

and CO2 emission 

Determination of  

number of depots to be 

opened 

 

LP 
Allocation, demand 

satisfaction and capacity 

Table 1 A summary of relevant studies on multi-objective optimization in food supply chain  
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Table 1 (continued)  

 

 

 

TC: Transportation cost, IC: Inventory cost, FLC: Facility location cost, MINLP: Mixed integer non-linear programming, MILP: Mixed integer linear programming,          

MIP: Mixed integer programming, LP: Linear programming  

 

 

Soysal et al., 

(2014) 
Multi Multi Four Yes Yes No No No 

Minimization of total 

logistics cost and total CO2 

emission 

Determination of flow 

quantities, inventory 

level, number of fully 

and less than fully 

loaded trucks rented 

 

 

 

LP 

Inventory and product flow 

balance, demand 

satisfaction, transport 

capacity, truck utilization 

rate and decision variable 

constraints       

 

Resat and 

Turkay, 

(2015) 

Multi Multi Two Yes No No Yes No 
Minimization of 

transportation cost and time 

Determination of flow 

quantity, traffic 

volume and time 

duration 

 

MILP 

Flow conservation, 

demand satisfaction, and  

time dependent traffic 

congestion constraints 

Validi et al., 

(2014) 
Single Single Three Yes No No No No 

Minimization of total cost 

and CO2 emission 

Determination of the 

sustainable 

transportation route 

 

MIP 
Demand, route assignment 

and AHP constraint   

Paksoy et 

al., 2012 
Single Single Three Yes No No No No 

Minimization of 

transportation cost from 

suppliers to silos and 

manufactures to warehouses 

Determination of 

various flow quantities 
LP 

Supply, capacity and 

demand 

Proposed 

 model 
Multi Multi Four Yes Yes Yes Yes Yes 

Minimization of total food 

grain supply chain network 

cost and total lead time 

along with Dwell time (DT) 

Determination of 

location, allocation, 

capacity, inventory 

and transportation 

decisions 

MINLP 

Supply, storage capacity, 

demand, inventory flow 

balance, maximum number 

of silos that can be 

established, vehicle 

capacity and availability 

constraint, decision 

variable constraints 



11 
 

The extensive review of the existing relevant literature indicates that very limited number of 

studies have been carried out on multi-objective facility location-allocation problems in the 

food supply chain domain. In order to tackle the grain silo location-allocation problem of the 

FCI, there is a need for a new mathematical model due to the following reasons. Researchers 

have mostly focused on the single objective while dealing with the food supply chain problems. 

The authors who typically worked on multi-objective optimization simultaneously considered 

the various conflicting objectives like profit and post-harvest losses, cost and carbon emission, 

and cost and carbon footprint. Few authors have included the time as a one of the objectives 

along with cost and carbon emission. However, their focus was on load planning and tactical 

optimization problem. The waiting time of food stock must be taken into account for the quick 

transfer of food from surplus states to deficit states and reduction of the post-harvest losses. 

Moreover, a large number of available studies are mainly based on the perishable food supply 

chain like sugar cane, milk and milk products, and fruits and vegetables. Due to the 

geographically dispersed surplus and deficit states, food grain is transported through different 

transportation modes. Hence, multi-modal transportation is an important aspect in the food 

grain supply chain. The timely availability of heterogeneous capacitated vehicles is another 

vital feature as it helps in quick transferring of food grain from surplus states to deficit states, 

reducing the post-harvest losses and minimizing the cost and time. Therefore, various realistic 

and practical features of the problem such as dwell time, multi-period, multi-echelon, 

heterogeneous capacitated vehicles and their limited availability at each echelon, multiple 

sourcing, multi-modal transportation, capacitated base and field silos and vehicle capacity 

constraints are simultaneously incorporated in our model. In addition, most of the previous 

papers are related to the food grain supply chain system of a particular country like Iran, 

Canada, Kenya, United States, Brazil and Turkey, etc. Each country's food grain supply chain 

system is not similar to any other due to the different procurement seasons, involved entities, 

geographically dispersed surplus and deficit states, storage as well as transportation systems 

and other factors. The grain supply chain is a complex dynamic system due to the presence of 

heterogeneous entities and their complex interactions (Swaminathan et al., 1998). Similarly, 

Indian food grain supply chain system is distinct and unique compared to other developing 

countries and it is very complex to manage because of its chaotic nature and the involvement 

of many entities - farmers, SGAs of surplus and deficit states, FCI, Railways, private 

contractors and their constraints (Sachan et al., 2005). 
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3.   Problem description  

The numerical data given in the introduction section show the huge shortfall of storage 

capacity with FCI against the central pool stock. In the centralized procurement system, FCI 

has to take over the wheat stock from SGAs at the end of the procurement season and transfer 

into their own warehouses. Since FCI doesn’t have enough storage capacity to accommodate 

this stock, they pay the carry-over charges to the various SGAs of procuring states to keep the 

stock beyond the prescribed time limit. The waiting time of food grains at SGAs warehouses 

is quite high because of the inadequate storage capacity of FCI. In some cases, the procured 

stock of food grains of the current year remains unlifted until the end of the following years. 

Subsequently, several SGAs don’t have sufficient covered warehouses for storage beyond the 

prescribed time limit. Therefore, they use an open storage, i.e., covered and plinth (CAP). Due 

to the CAP, the quality of the food grain deteriorates and consequential loss of food grain also 

increases. FCIs owned storage capacity is not even sufficient to accommodate the minimum 

buffer stock of different states for food security. In order to curtail the waiting time at SGAs 

warehouses, better preservation and quick transfer from producing states to consuming states 

of food grains, GOI is creating the modern infrastructure for integrated bulk grain handling, 

storage and transportation system including the steel silos in various surplus and deficit states. 

The considered four-echelon food grain supply chain network as illustrated in Fig. 3, is 

comprised of procurement centers, base silos, field silos and demand points. The silo location 

is a strategic decision and needs a lot of investment or fixed cost depending upon its storage 

capacity for constructing the same. For instance, if the silo of 0.025 MMT capacity is to be 

constructed, an initial approximate investment of INR 5 million is required. If we try to 

minimize the lead time comprising of waiting time of stock at SGAs warehouses, FCI needs a 

large number of silos i.e., huge investments and vice versa. Hence, there is a trade-off between 

the lead time and supply chain network cost and our objective is to determine the set of 

compromised solutions to resolve the trade-off among conflicting objectives through multi-

objective mathematical modeling. The formulated multi-objective mathematical model with 

two objective functions and constraints are described in the next section.      
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Fig. 3. Four-echelon food grain supply chain network 

4. Multi-objective mathematical model 

 

In this section, initially, we discuss the dwell time and its components as well as describe 

some assumptions considered while developing the model. Then, index sets, model parameters 

and decision variables are explained. Finally, the two objective functions and constraints used 

to solve the problem along with explanation are given. 

 

4.1 Dwell time and its components 

The lead time of food grain shipment from procurement centres to demand points comprises 

of the travel time of vehicles and the waiting time (dwell time) of food grain at procurement 

centres, base silos and field silos. We have not considered the waiting time of food grain at 

base and field silos because of very less food grain losses. As mentioned previously, due to the 

inadequate storage capacity of FCI, the waiting time of food grain stock at procurement centre 

increases, which deteriorate the food grain quality and increase the losses. The dwell time 

depends on three main factors, i.e., a number of vehicles (trucks) moved from procurement 

centre to base silo, availability of base silo storage capacity and administrative activities. 

Firstly, if a sufficient number of vehicles with a full truckload capacity are not moved from 

procurement centre to base silo in a given time period for food shipment, then food grain stock 

remains at procurement centre. Secondly, due to the inadequate base silo storage capacity, food 

grain stock cannot transfer to the base silo. Finally, some administrative activities and other 
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inefficiencies at the procurement centre will increase the waiting time. The sum of time losses 

due to lack of vehicle movement, unavailability of base silo capacity and administrative 

activities makes the total waiting time or dwell time (DT) of food grain stock at procurement 

centre. The dwell time function can be represented as follows:  

 

 DT     +  
Number of vehicles moved from        Availability of base silo storage 

 procurement centre to base silo          capacity at given location

 
= +  

      The aforementioned formula for calculating the dwell time comprises of three terms. 

Therein, three constant components including ,  and     are used to represent various waiting 

times caused by different motives. The first constant component depicts the waiting time at 

procurement centre due to administrative activities. The time lost due to the insufficient number 

of vehicles moved from procurement centres to base silos is described by the second constant 

component  in the numerator of the second term. Lastly, the constant component   is used in 

the numerator of the third term to indicate the waiting time of food grain stock at procurement 

centre because of inadequate base silos storage capacity. This DT function is modeled after the 

critical study of the CAG 2013 report, the High-Level Committee (HLC) 2015 report, other 

reports of PDS and relevant papers, where all these issues of waiting time are discussed.  

4.2 Assumptions:  

 

1. The amount of food grain procured and consumed in each surplus and deficit states, 

and the capacity of procurement centers are known and deterministic in nature.    

2. Potential locations of base and field silo are known and fixed. 

3. Three different types of capacitated vehicles (trucks and rakes) are considered for food 

grain transportation between various echelons. 

4. Three types of base and field silos with different but fixed capacities (small, medium 

and large) are considered.  

5. The availability of each capacitated vehicle is finite during a given time period. 

6. The amount of food grain procured is adequate to meet the demand. 

7. The demand must be fulfilled in a given time period.    
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4.3 Notations  

4.3.1 Index Sets 

 Set of procurement centres ( )1,2,....,p P=  

 Set of potential base silo locations ( )1, 2,....,b B=  

 Set of potential field silo locations ( )1, 2,....,f F=  

 Set of demand points ( )1, 2,....,d D=  

 Set of base silo types (  =  (small size),  (medium size),  (large size))q s m l  

 Set of field silo types ˆˆ ˆ(  =  (small size),  (medium size),  (large size))r s m l  

 Set of truck types available at procurement centre ( )1, 2,....,i I=  

 Set of rake types available at base silo ( )1, 2,....,j J=  

 Set of truck types available at field silo ( )1,2,....,k K=   

 Set of time periods ( )1, 2,....,t T=  

 

4.3.2 Model parameters 

pb    Transportation cost by trucks from procurement centre to base silo  

   (Unit cost/Km) 

bf            Transportation cost by rails from base silo to field silo (Unit cost/Km)  

fd             Transportation cost by trucks from field silo to demand point  

                 (Unit cost/Km)  

pb              Distance from procurement centre p to base silo b (Km)  

bf         Distance from base silo b to field silo f (Km) 

fd                Distance from field silo f to demand point d (Km) 

q
b         Fixed cost of construction of base silo of type q at location b ( ),  ,  q s m l=  
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r

f
                Fixed cost of construction of field silo of type r at location f ( )ˆˆ ˆ,  ,  r s m l=  

b              Inventory holding cost per unit time period in base silo b (MT/period) 

f             Inventory holding cost per unit time period in field silo f (MT/period)  

t

dM        Demand of demand points (distrcit level warehouses) d in time period t 

t

pG         Food grain quantity available at procurement centre p in time period t 

q

b         The capacity of the base silo of type q at location b ( ),  ,  q s m l=  

 r
f        The capacity of the field silo of type r at location f ( )ˆˆ ˆ,  ,  r s m l=  

pb        Transit time from procurement centre p to base silo b  

bf        Transit time from base silo b to field silo f  

fd        Transit time from field silo f to demand point d  

t

ip              Number of trucks of type i available at procurement centre p in time period t 

icap        Capacity of a truck of type i 

t

jb        Number of rakes of type j available at base silo b in time period t 

jcap        Capacity of a rake of type j 

t

kf        Number of trucks of type k available at field silo f in time period t 

kcap        Capacity of a truck of type k 

M        A sufficiently large number  

q

bU               Maximum number of base silos of type q that can be constructed in all   

potential base silo locations 

 r

fN   Maximum number of field silos of type r that can be established in all 

potential field silo locations       
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4.3.3 Decision variables  

     Binary Variables 

1     If a base silo of type  is to be constructed at location ,
 =   

0     otherwise,

q

b

q b
E





 

1     If a field silo of type  is to be constructed at location ,  
 =   

0     otherwise,

r

f

r f
H





 

1     If procurement centre  transports the food grain to base silo  in time period ,  
 

0     otherwise,

t

pb

p b t
X


= 


  

1     If base silo  transports the food grain to field silo in  time period ,  
  

0     otherwise,

t

bf

b f t
Y


= 


 

1     If field silo  transports the food grain to demand point  in time period ,  
 = 

0     otherwise,

t

fd

f d t
Z





 

   

   Continuous Variables 

t

pba       The amount of food grain quantity transported from procurement centre p to base 

silo b in time period t 

t

bfg  The amount of food grain quantity transported from base silo b to field silo f in 

time period t 

t

fd  The amount of food grain quantity transported from field silo f to demand point d 

in time period t 

 
t

bW       Inventory available in the base silo b at the end of period t  

 t

fV      Inventory available in the field silo f at the end of period t 

 Dwell time function   

t

pbDTPB  = Average Dwell time between procurement centre p to base silo b in time   

  period t  
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1 1

+            If   = 1,

       

0                                                                     otherwise,

pb

pb pb t

pb pbI Q
it q q tt

i b b bpb
i q

X

m cap E WDTPB

 



= =


+
   

−=    
   




           

Here, pb , pb and pb are constants.  

   Integer Variables 

it

pbm  Number of trucks of type i used for food grain transportation between procurement 

centre p to base silo b during time period t (number of trucks/time period). 

jt

bfn  Number of rakes of type j used for food grain transportation between base silo b to 

field silo f during time period t (number of rakes/time period). 

kt

fds  Number of trucks of type k used for food grain transportation between field silo f 

to demand point d during time period t (number of trucks/time period). 

 

4.4 Objective function  

The objective of the model is to determine the optimum base and field silo locations along 

with their capacities, the flow of food grain between various echelons and inventory at base 

and field silos such that the total supply chain network cost and lead time are minimized. Two 

conflicting objective functions are developed in the model. The minimization of the total 

supply chain network cost is the first objective which consists of transportation cost, silo 

construction cost and inventory cost. The transportation cost includes the cost from 

procurement centre to the base silo, base silo to field silo and field silo to demand point which 

is represented by Eq. (1). The Eq. (2) gives the silo construction cost which consists of fixed 

construction cost of base and field silos. The sum of inventory holding cost at base and field 

silos represents the total inventory cost in the first objective which is shown by Eq. (3). The 

second objective is the minimization of lead time of food grain supply chain network and 

consists of three main components. The lead time from procurement centres to base silos along 

with dwell time at procurement centre is the first component which is indicated in Eq. (4). 

Second and third components which are illustrated by Eqs. (5) and (6) are the lead time from 

base silos to field silos and field silos to demand points, respectively. These two conflicting 

objectives are described as follows: 
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First objective 

Minimize total network cost =Transportation cost + Silo construction cost + Inventory cost 

       Components of first objective 

Transportation cost = Transportation cost from procurement centre to base silo + 

       Transportation cost from base silo to field silo +  

       Transportation cost from field silo to demand point. 

       Transportation cost = 

1 1 1 1 1 1 1 1 1

   
P B T B F T F D T

t t t

pb pb pb bf bf bf fd fd fd

p b t b f t f d t

a g      
= = = = = = = = =

+ +      (1) 

 

       Silo construction cost = Fixed cost of base silo construction +  

          Fixed cost of field silo construction 

       Silo construction cost = 
1 1 1 1

 
QB F R

q q r r

b b f f

b q f r

E H 
= = = =

+        (2) 

       Inventory cost = Inventory cost at base silo + Inventory cost at field silo 

       Inventory cost =   
1 1 1 1

 + 
B T F T

t t

b b f f

b t f t

W V 
= = = =

        (3) 

Second objective  

Minimize total lead time =  

Dwell time and lead time from procurement centre to base silo + 

Lead time from base silo to field silo +  

Lead time from field silo to demand point 

Components of second objective 
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Dwell time and lead time from procurement centre to base silo =  

( )
1 1 1 1

P B I T
t it

pb pb pb

p b i t

DTPB m
= = = =

+       (4) 

       Lead time from base silo to field silo = ( )
1 1 1 1

B F J T
jt

bf bf

b f j t

n
= = = =

    (5) 

        Lead time from field silo to demand point = ( )
1 1 1 1

F D K T
kt

fd fd

f d k t

s
= = = =

   (6) 

Subject to Constraints   

1

                            ,
B

t t

pb p

b

a G p t
=

         (7) 

                           , ,t t

pb pba MX p b t         (8) 

1

                          , ,
Q

t q

pb b

q

X E p b t
=

         (9) 

Constraint (7) limits the food grain quantity transported from procurement centre to all 

constructed base silos to maximum food grain quantity available at the given procurement 

centre during each time period. Constraint (8) ensures that the food grain quantity can be 

transferred from procurement centre to base silo only if procurement centre is allocated to the 

base silo. Similarly, Constraint (9) make sure that the procurement centre can be allocated to 

base silo if base silo is constructed.  

1

                           ,
F

t t

bf b

f

g W b t
=

           (10) 

                            , ,t t

bf bfg MY b f t         (11)  

1 1

                   , ,
Q R

t q r

bf b f

q r

Y E H b f t
= =

         (12) 

1 1

                        , ,
Q R

t qr

bf bf

q r

Y L b f t
= =

         (12a) 
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1 1 1 1

2                 ,
Q QR R

q r qr

b f bf

q r q r

E H L b f
= = = =

+          (12b) 

1 1 1 1

1               ,
Q QR R

q r qr

b f bf

q r q r

E H L b f
= = = =

+ −          (12c) 

Constraint (10) shows that food grain quantity transferred from established base silos is less 

than or equal to the maximum inventory available at given base silo during that period. 

Constraint (11) implies that food grain can be shipped from base to field silo only if the base 

silo is allocated to the field silo. The base silo can be assigned to the field silo only if both base 

and field silo are established and it is depicted by Constraint (12). This constraint is nonlinear 

because of the multiplication of two binary variables, i.e.,  and q r

b fE H . In order to linearize this 

constraint, a new binary variable 
qr

bfL  is introduced which takes the value 1 if both  and q r

b fE H  

take the value 1 else remains 0. Therefore, Constraints (12a) to (12c) are used to ensure the 

linearization of Constraint (12). It means that either Constraint (12) or Constraints set (12a) to 

(12c) should appear in the model. 

1

                          ,
D

t t

fd f

d

V f t
=

         (13) 

                           , ,t t

fd fdMZ f d t          (14) 

1

                          , ,
R

t r

fd f

r

Z H f d t
=

         (15) 

Furthermore, Constraints set (13) and (14) portrays the supply constraint of field silo and big 

M constraint respectively. Constraint (15) states that the field silo can be assigned to demand 

point only if field silo is constructed.  

1

1 1

               ,
QP

t t q q

b pb b b

p q

W a E b t−

= =

+             (16) 

1

1 1

                ,
B R

t t r r

f bf f f

b r

V g H f t−

= =

+          (17) 

Constraints (16) and (17) make sure that inventory at base and field silo does not exceed their 

inventory holding capacity. 
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1

=                       ,
F

t t

fd d

f

M d t
=

        (18) 

Constraint (18) illustrates that food grain quantity shipped from all field silos is equal to the 

demand of demand point (district level warehouse).  

 
1

      
B

q q

b b

b

E U q
=

          (19) 

1

       
F

r r

f f

f

H N r
=

          (20) 

Constraint (19) restricts the maximum number of base silos of type q that can be established in 

a particular surplus state. Similarly, Constraint (20) shows the maximum limit of the number 

of field silos of type r to be constructed in a given deficit state.  

1

  1           
Q

q

b

q

E b
=

          (21) 

1

  1           
R

r

f

r

H f
=

          (22) 

Constraints (21) and (22) guarantee that at most one type of base silo ( ,  ,  q s m l= ) and field 

silo ( ˆˆ ˆ,  ,  r s m l= ) can be constructed at each potential base and field silo locations, respectively.  

 1

1 1

      ,
P F

t t t t

b pb bf b

p f

W a g W b t−

= =

+ − =                                                               (23) 

 
1

1 1

       ,
B D

t t t t

f bf fd f

b d

V g V f t−

= =

+ − =            (24) 

Flow conservation at every base and field silo is represented by Constraints (23) and (24), 

respectively.  

1

         , ,
I

t it

pb pb i

i

a m cap p b t
=

           (25) 
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1

           , ,
J

t jt

bf bf j

j

g n cap b f t
=

                                                              (26) 

1

            , ,
K

t kt

fd fd k

k

s cap f d t
=

                                                              (27) 

Constraint (25) represents the truck capacity constraint between procurement centre and base 

silo. In the similar way, rake capacity constraint between the base silo and the field silo is 

depicted by constraint (26). Constraint (27) describes the truck capacity constraint from field 

silo to demand point.  

            , ,t t

pb pbDTPB MX p b t          (28) 

                  , , ,it t

pb pbm MX p b i t          (29) 

                     , , ,jt t

bf bfn MY b f j t          (30) 

                    , , ,kt t

fd fds MZ f d k t          (31) 

Constraint (28) guarantees that DT between procurement centre to base silo exists if 

procurement centre is allocated to the base silo. In addition, heterogeneous capacitated vehicles 

can be moved from procurement centre to the base silo if procurement centre is assigned to the 

base silo and it is defined by Constraint (29). In the same way, Constraints set (30) indicates 

the restriction on a number of heterogeneous capacitated vehicles moved from the base silo to 

the field silo unless the base silo is allocated to the field silo. Constraint (31) represents the 

relationship between the  and kt t

fd fds Z  using the big M constraint.  

1

            , ,
B

it t

pb ip

b

m p i t
=

           (32) 

1

            , ,
F

jt t

bf jb

f

n b j t
=

                                                               (33) 

1

            , ,
D

kt t

fd kf

d

s f k t
=

                                                               (34) 
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Constraint (32) limits the number of trucks used from the procurement centre to base silos to 

maximum trucks available at the procurement centre during each time period. Correspondingly, 

Constraints (33) and (34) depict the restriction on a number of vehicles (rakes and trucks) 

utilized between base silo to field silos and field silo to demand points, respectively.   

              0,1            ,q

bE b q                                                                                 (35)   

  0,1            ,r

fH f r                                    (36) 

  0,1          , ,t

pbX p b t                                                                             (37) 

              0,1            , ,t

bfY b f t                                                                             (38)   

  0,1            , ,t

fdZ f d t                                                                         (39) 

Constraints (35) - (39) denote the binary variables.  

          , , ,  it

pbm p b i t                       (40) 

              , , ,jt

bfn b f j t                       (41) 

                 , , ,kt

fds f d k t                      (42) 

The integer variables are represented by constraints (40) – (42). 

 0            , ,t

pba p b t                     (43) 

 0            , ,t

bfg b f t                     (44) 

   0            , ,t

fd f d t                      (45) 

 0            ,t

bW b t                    (46) 

             0               ,t

fV f t                                                                                     (47) 

Finally, non-negativity constraints are indicated by constraints (43) - (47). 

The above-described mathematical model comprises of non-linear dwell time function and 

several decision variables including binary, integer and continuous along with real-life 
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constraints like supply, capacity, demand, inventory flow balance and vehicle capacity, etc. 

The second objective function and constraint (28) become the non-linear due to the non-

linearity of dwell time function. Many well-known conventional methods like  constraint 

method (ECM), goal programming and weighted sum method (WSM) exist to solve the multi-

objective model. However, these approaches transform the multi-objective model into single 

objective and then optimize the transformed single objective model (Jones et al., 2002). In 

addition, most of these techniques provide only one optimal point on the efficient Pareto 

Frontier in a single iteration, whereas “Multi-objective Evolutionary algorithms (MOEAs)” 

simultaneously develop a set of solutions at various points along the trade-off surface using the 

Pareto optimality and modified selection schemes (Deb, 2001). Unlike classical methods, 

MOEAs determine a set of Pareto-optimal solutions in a single iteration. The MOEAs are 

becoming popular among the researchers to solve the multi-objective models because of 

following features. 1) The population based approach, 2) Determination of multiple Pareto 

optimal solutions in a single simulation run, 3) Simple in implementation and 4) Feasibility of 

utilization on large parameter search spaces (Goh and Tan, 2009).  

Furthermore, the conventional technique based commercial software are incapable of 

solving the multi-objective model with non-linear and discrete decision variables (Yu et al., 

2017).  Hence, several MOEAs like NSGA-II (Cheshmehgaz et al., 2013), multi-objective 

vibration damping optimization (Hajipour et al., 2016), multi-objective biogeography based 

optimization (Sarrafha et al., 2015) and multi-objective hybrid particle swarm optimization 

(Shankar et al., 2013) algorithms have been utilized to address the complex multi-objective 

models. Therefore, recently developed NCRO algorithm (Bechikh et al., 2015) is employed to 

solve the mathematical model and obtained results are validated through NSGA-II algorithm 

(Deb et al., 2002). 

5. Solution approach 

 

The NCRO algorithm is inspired by the CRO algorithm and consist of few similar types of 

operators like two uni-molecular reactions and two intermolecular reactions. Thus, initially, we 

briefly describe the CRO algorithm as well as its features and then NCRO algorithm along with 

its flowchart and pseudocode in detail.   

 

5.1 CRO:  Basic algorithm and features  
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 CRO algorithm developed by Lam and Li, (2010) which is inspired from the chemical 

reaction phenomenon of molecules. The molecule is the main operating agent in CRO similar 

to the chromosome in GA and the solution of a particular problem is stored in it. Some basic 

attributes of molecule are as follows. The molecular structure represents the encoding scheme 

of a particular problem. The potential energy (PE) shows the objective function value of the 

considered molecule. The kinetic energy (KE) is used as a measure of tolerance to accept the 

worst solution than existing one for jumping out from the local minima. The population of 

molecules is generated using the four chemical reactions in which two reactions are uni-

molecular and remaining two are multi-molecular. On-wall ineffective collision and 

decomposition reactions are unimolecular whereas intermolecular ineffective and synthesis fall 

under the category of intermolecular reactions. These chemical reactions work as variation 

operators in CRO for environmental selection. The interested readers can refer to Lam et al., 

(2012) for comprehensive information about the CRO algorithm. The four variation operators 

(elementary chemical reaction) are described as follows.  

 

1) On-wall ineffective collision: In this reaction, a single molecule hits the wall of the 

container and then bounces back as a single unit. The new molecule is generated by 

perturbing the original molecule using the neighbourhood operator. Thus, its structure 

is not too much different from the original molecule.  

2) Decomposition:  This reaction takes place when a molecule collides with the wall of 

the container and splits into many parts (considered two parts in this paper). CRO 

algorithm uses this operator for exploration of new search space after the local search 

carried out by ineffective collisions.  

3) Intermolecular ineffective collision: It corresponds to the situation when two randomly 

generated molecules collide with each other and create two new molecules. This 

reaction is very similar to the on-wall ineffective collision and searches many 

neighbourhoods simultaneously.      

4) Synthesis: This operator performs the opposite action of the decomposition reaction. It 

occurs when many molecules (assumed two in this paper) hit against each other and 

form a new molecule.  

5.2 NCRO basic scheme  
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NCRO follows the same flow as of NSGA-II in a different manner. Initially, the problem 

specific information including values of model parameters, number of decision variables and 

number of objectives are provided in the form of input. Also, calibrated values obtained 

through Taguchi method are assigned to the algorithmic control parameters involving PopSize, 

KELossRate, MoleColl, InitialKE, and ,   etc. Next, the main algorithm will begin by     

randomly generating the initial population. The algorithm sequentially executes the following 

steps: offspring generation, revise generated offspring, combining parent and offspring, Quick 

Non-Dominated Sorting Algorithm (Q-NDSA), crowding distance assignment, PE assignment 

and determination of best non-dominated solutions, etc. CRO variation operators such as 

decomposition, synthesis, on-wall ineffective and inter-molecular ineffective are employed for 

obtaining the offspring (Qt) from the parent population (Pt). Due to the energy management 

laws of CRO which control the number of moves, Qt  population must be revised. The 

modifications are done so as to make CRO compatible with NSGA-II scheme. These include 

assignment of PE (presented in subsection 5.2.1) to the population and generation of offspring 

(presented in subsection 5.2.2). As soon as the offspring population is formed and revised, we 

combine both the parent and the offspring population, thereby ensuring elitism, i.e., Rt = Pt + 

Qt. As a result of combining the parent and offspring, the size of the population will be greater 

than N and less than or equal to 2N. The combined population is sorted using Quick Non-

Dominated Sorting Algorithm presented in subsection 5.2.3. Then, PE values are assigned to 

the combined population using the PE assignment formula which uses Pareto rank and 

crowding distance measure as parameters. Solutions with low value of PE are the best ones in 

the combined population. The N-best solutions among the population are selected based on PE 

values and are used as a parent population for the next iteration where another set of offspring 

is generated. Thus, repeating this procedure until a stopping criteria is reached. The delineation 

of NCRO algorithm with various operators and their satisfaction criteria is illustrated in Fig. 4 

in the form of a flowchart. Additionally, the pseudocode of NCRO is shown in Fig. 5. 
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Start Initialize the population

Termination criteria? Pareto front

Offspring generation

Inter-molecular 

collision  

Satisfy the 

Decomposition?

Satisfy the 

Synthesis? 

On-wall ineffective 

collision 
Decomposition

Inter-molecular 

ineffective collision 
Synthesis

Termination criteria 

of offspring?

Update the Offspring
Combine parent 

population and offspring 

Quick-Non-dominated 

sorting

Crowding distance 

operator  

Best solutions 

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

End

  

Fig. 4. Flowchart of NCRO 

( )

 Problem specific information including number of objectives, 

    number of decision variables etc. and algortihmic parametrs like 

    , ,  ,  ,  ,PopSize KELossRate MoleColl InitialKE 

Pseudocode NCRO

Input :

  .

   Iter(t) = 0 //Iteration count

   Pop ( ) = Initial population 

    the termination criteria not satisfy 

 = CROVariation (P )

          = Update otential e the nergy  p of

t

t t

t

etc

P

Q

Q



Start

While do

         

1

1 1

1 1

1

 the population ( )

         Pop ( )  //combine the parent and child populations

         Pop ( ) (P

Pop ( ) ( )

         Pop ( )  Apply

t

t t t

t t

t t

t

Q

P P Q

P

P P

P

+

+ +

+ +

+

= 

=

=

=

Q - NDSA )

          Crow_Distance Assignement 

1

1 1

 the Potential Energy Formula ( )

         Pop ( )  Take the best solutions among the combined population ( )

         Iter(t) = Iter(t)+1

 

Pareto front approximation 

t

t t

P

P P

+

+ +=

  End while

End

Output : 

 

Fig. 5. Pseudocode of NCRO 



29 
 

5.2.1 PE Assignment operator 

In the single objective case, we directly use the objective function as the potential 

energy or the fitness function. However, in case of bi-objective scenario, the same scheme 

cannot be applied for evaluating the quality of the molecule. Hence, the following new formula 

using the Pareto rank and crowding distance of a molecule is proposed. 

                  ( ) ( ) ( ( ))crowd xPE x rank x e −= +     (48)             

Where x is the decision vector, rank (x) represents the Pareto rank of that particular solution 

and crowd (x) denotes the crowding distance of that solution which is calculated in the same 

way as in NSGA-II. This formula helps in evaluating the solutions in the same way as in 

NSGA-II. If two or more solutions of the same rank are present, then the one with the highest 

crowding distance is preferred compared to the solution having the least crowding distance. 

This fitness formula retains the Pareto dominance relation. 

5.2.2 Generation of Offspring   

The CRO is unique compared to other evolutionary algorithms as its offspring is generated 

from various operations. When an offspring is produced, we update their potential energy and 

combine them with the parent population. In order to appropriately apply the CRO energy 

management laws for updating the offspring population, the number of offspring produced, its 

child and collision type performed on each molecule is marked. If the parent and offspring do 

not obey the energy management laws, their children will be removed from offspring 

population. As a result, the total energy in the system remains constant.  

5.2.3 Quick Non-Dominated Sorting (Q-NDSA) 

 The fundamental concept of Q-NDSA for the bi-objective problem is explained as 

follows. Initially, sorting of all the population members is carried out based on the first 

objective. The preceding solutions of a particular solution may dominate it, but the following 

solutions cannot dominate the same. A Pareto rank 1 is given to the first solution (a solution 

having the least first objective value). Now, to find the rest non-dominated solutions, we take 

values of the second objective of the next solution into account based on the sorting done by 

the first objective. The second objective value of the first solution is stored in a witness variable. 

If the second objective value of the current solution is less than that of the witness variable, 

then the solution is non-dominated. Once the first set of non-dominated solutions is identified, 



30 
 

we remove them from the solution set and repeat the same process so as to find the next set of 

non-dominated solutions. Iterations go on until all the solutions are assigned a Pareto rank. The 

whole procedure of Q-NDSA is represented in Fig. 6 in the form of pseudocode. 

 

( )

 Population 

    = QuickSort ( , 1) //Sort  according to the first objective

  Assign rank 1

  Initialise Pareto Front F

    //termination criterion

     // Find th

M

M M M

M 

Pseudocode : Q - NDSA

Input :

Start

While do

1

e actual best front from 

    // Find the first non-dominated solutions

      .ObjValue(2) //  is the second objective of

      current solution set having minimum first objective value

each 

M

W s S=

   For 

1

 

( .ObjValue(2) )  //  is not dominated by 

            = .ObjValue(2)

           .  = 

           = Union ( ,  ) // Keep the same front solutions 

               

i

i i

i

i

i

s M

s W S S

W s

s Rank Rank

F F s

 do

If < Then        

 in a temporary variable * /

           Remove ( , )  // Remove the current solution 

            from current solution set

Rank Increment

 Ranked Popula

i

F

M s M=

       End If

   End for

      

End while

End

Output : tion M

 

Fig. 6. Pseudocode of Q-NDSA 

5.3 Non-Dominated Sorting Genetic algorithm II (NSGA-II) 

The various steps of NSGA-II algorithm are described in this subsection as follows.    

5.3.1 Chromosome structure and initialization 

The decision variables are represented in the form of a multi-dimensional arrays, where all the 

decision variables become a part of a chromosome structure which represents a solution. The 

decision variables value are either given as an input or are selected randomly from a range of 

values.  

5.3.2 Non-Dominated Sorting 
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Non-dominated set contains a population of solutions where no solution dominates the other 

solution in that set. These various sets are called fronts in multi-objective case. We combine 

the parent and the offspring population and then we do the sorting. For each individual in the 

combined set, we calculate the number of solutions that dominate the solution p as np and the 

set of solutions which is dominated by p as Sp. All the solutions having np value zero are added 

to the first set of non-dominated solutions. For all the population with np=0, we traverse through 

the solutions in Sp and go on diminishing the domination value until it reaches zero. Then all 

these solutions are isolated in another list, which forms the second set of non-dominated 

solutions or the second front. Now the same is followed by the new list of the population and 

successive fronts are found out.  

5.3.3 Crowding Distance 

This parameter tells us how much a particular solution is surrounded by other solutions in the 

population. In order to find the crowding distance of a particular solution, we determine the 

average distance of two neighbouring solutions on either side of the solution along each 

objective function. Its calculation requires the normalization of each objective function and 

sorting of the population in ascending order according to an objective function value. At first, 

a crowding distance of infinity is assigned for boundary solutions. Then the crowding distance 

is calculated for the other solutions as the absolute difference of the function values of the 

neighbouring solutions. In the same way, again the distances are found out after sorting 

according to other objective functions and the final crowding distance is calculated as the sum 

of all the distances corresponding to each objective function. 

5.3.4 Genetic Operators 

Genetic operators are used to perform operations on current population so as to produce the 

offspring. The two major operators, i.e., mutation and crossover are employed to get diversity 

in solutions and to combine previous solutions into others. Simulated binary crossover and 

polynomial mutation operators are used to solve the formulated model.  

5.3.5 Selection 

Selection is carried out for determining the individuals of the next generation after the offspring 

population combines with present population. Once the solutions are sorted and crowding 

distances are assigned, crowd comparison operator is applied to select the best set of solutions. 

The solution with the least rank is preferred more, but if two solutions possess the same rank, 
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then the solution with the highest crowding distance is preferred. The overall procedure of the 

NSGA-II algorithm is illustrated using flowchart and pseudocode in Fig. 7 and Fig. 8, 

respectively. 

Start Initialize population 

Offspring generation 

Pareto front End
Termination 

Criterion?

Tournament selection

Crossover and Mutation 

Termination Criterion 

of Offspring?

Combine the population 

and offspring
Non-Dominated Sorting

Best solutions 

Crowding distance

Yes

Yes

No

No

 

Fig. 7. Flowchart of NSGA-II 

( )

( )

Population         // Initialise the Population set with length ‘ ’

 Termination condition is not satisfy

           Parent = Tournament selection of Population

           Offspring = genetic

n n

Start

 While

( ) Parent

    //Crossover or Mutation is based on probability to generate offspring

   Population = Offspring U Population

   Non Dominated Sorting : Population

   Crowding Distance Assignment: Population

  ( ) Selection Population   

   //selecting the best population based on crowding distance and pareto rank

 End while 

End

 

Fig. 8. Pseudocode of NSGA-II 
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6. Computational results and discussion 

In this section, we describe the various generated problem instances, parameter tuning of 

algorithms and the computational results. Further, the sensitivity analysis of the model and 

managerial insights are also discussed. 

6.1 Problem instances   

In order to verify and validate the formulated model and effectiveness of solution approach, 15 

problem instances are generated randomly based on the simulated data obtained from many 

reliable sources such as CAG report 2013, HLC report 2015, FCI portal (http://fci.gov.in) and 

PDS Portal of India (http://pdsportal.nic.in/main.aspx), etc. In these problem instances, the 

geographically dispersed major surplus states such as Punjab, Haryana, Madhya Pradesh, Uttar 

Pradesh, Rajasthan and deficit states like Maharashtra, Tamilnadu, Karnataka, West Bengal, 

etc. are covered. These instances depend on the supply chain network configuration which 

comprises of the number of procurement centres (P), number of potential base silo locations 

(B), number of potential field silo locations (F) and number of demand points (D). Moreover, 

all the problem instances are classified into small, medium and large scale category considering 

the number of supply chain facilities in the model. The characteristics of these problem 

instances are given in Table 2. The summary of the important input parameter values of the 

model is mentioned in Table 3. In addition, Table 4 provides the comprehensive description of 

each type of total decision variables and a total number of constraints exist in all problem 

instances. These total number of decision variables and constraints of all problem instances 

depicts the complexity of the model. 

Table 2 The characteristics of the problem instances 

Problem size 
Procurement 

centres (P) 

Potential base 

silo locations 

(B) 

Potential field 

silo locations 

(F) 

Demand 

points (D) 

Time period 

(T) 

Small 3-15 2-8 4-13 6-20 2 

Medium 16-30 9-15 14-25 21-35 3 

Large 31-60 16-25 26-35 36-60 4 
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Table 3 The values of input parameters of the model 

Parameters Range of values Parameters Range of values 

pb  20 
3

t

i p  700-1200 

bf  15 
1

t

j b  6-15 

fd  20 
2

t

j b  8-18 

pb  15-50 
3

t

j b  9-20 

bf  400-800 
1

t

k f  600-1000 

fd  20-80 
2

t

k f  700-1100 

q

b  3.0 × 107, 4.0 × 107, 5.0 × 107 
3

t

k f  800-1200 

r

f  5.0 × 106, 1.0 × 107, 1.5 × 107 icap  (i = 1, 2, 3) 20, 18, 15 

b  100 jcap  (j = 1, 2, 3) 3000, 1800, 1500 

f  80 kcap  (k = 1, 2, 3) 30, 25, 20 

t

dM  12000-25000 pb  2-6 

t

pG  20000-40000 bf  80-150 

q

b  150000, 200000, 250000 fd  4-10 

r
f  25000, 50000, 75000 

q

bU  2-23 

1

t

i p  500-1000 
r

fN  3-35 

2

t

i p  600-1100   
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Table 4 Depicting the problem sizes, different variables and constraints  

Problem 

Size 

Problem 

number 

Procurement 

centres 

(P) 

Potential 

base silo 

locations 

(B) 

Potential 

field silo 

locations 

(F) 

Demand 

points 

(D) 

Time 

period 

(T) 

Total 

number of 

constraints 

Binary 

variables 

Continuous 

variables 

Integer 

variables 

Small size 

1 5 3 4 7 2 1332 142 104 276 

2 8 4 6 10 2 3298 344 252 696 

3 10 5 8 13 2 5408 551       414       1164 

4 12 6 10 15 2 7816 786 596 1692 

5 15 8 13 20 2 13262 1310 1010 2904 

Medium 

size 

6 18 10 15 22 3 25858 2685 2055 5940 

7 20 11 17 25 3   32419 3342 2580 7488 

8 23 13 18 28 3 40378 4209 3204 9333 

9 26 14 22 32 3 53250 5460 4236 12384 

10 30 15 25 35 3 65551 6720 5220 15300 

Large Size 

11 35 16 26 40 4 94774 10192 7520 22080 

12 40 18 28 45 4 117114    12678 8872 26088 

13 45 21 30 50 4 145714 15071 10724 31584 

14 50 23 32 55 4 169216 18665 12468 36780 

15 60 25 35 60 4 221536 24395 15740 46500 
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6.2 Parameter tuning of the algorithms  

The parameter calibration is one of the paramount aspects of evolutionary algorithms which 

mostly impresses the solution quality and convergence rate of algorithms. Thus, appropriate 

values of algorithmic parameters are needed to avert the bad simulation results. The standard 

procedure or theoretical guidelines are rare in the literature for parameter calibration and it 

typically depends on the practice and capability of scholars. In most of the previous literature, 

authors have used the trial-and-error method and Taguchi method for parameter calibration. 

The manual process of parameter calibration using trial-and-error method is difficult. 

Moreover, it is impractical to investigate all possible parameter combinations (Lam et al., 

2012). Hence, in this paper, the parameters of NCRO and NSGA-II are efficiently calibrated 

using the Taguchi method. This method requires the least number of experiments for tuning 

compared with the full fractional experimental design. Hence, this technique is more popular 

for parameter tuning of evolutionary algorithms (Hajipour et al., 2016, Maghsoudlou et al., 

2016, Mousavi et al., 2014).      

Taguchi method uses the orthogonal arrays to examine the effect of a number of factors 

on the response variable. Influencing factors are categorized into controllable factors S and 

noise factors N. Generally, noise factors cannot be controlled directly. Thus, Taguchi attempts 

to reduce the effect of noise and to find out the optimal levels of controllable factors. In 

addition, three objective functions comprising of “smaller is better,” “larger is better,” and “the 

nominal is better” are used in Taguchi procedure. The cost and time objective functions of 

developed model are minimization type, hence in this paper, “smaller is better” is selected. To 

investigate the performance, the statistical measure called signal to noise ratio (S/N) is 

determined. The response defined by Sarrafha et al., (2015) which is based on the convergence 

and diversity criteria of the multi-objective problem is used in this paper. This metric is defined 

by the equation (49). 

R = MID/SNS     (49) 

Mean Ideal distance (MID): It measures the convergence rate of the Pareto fronts and can be 

depicted as follows:  

1MID = 

n

ii
c

n

=
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Where 
2 2

1 2i i ic f f= +  and n is the number of non-dominated solutions. Therein, 1 2,i if f  are the 

value of the ith non-dominated solution for the first and second objective functions. The smaller 

value of MID provides the better quality solution.  

Spread of non-dominance solution (SNS): It is the diversity measure of the Pareto archive 

solutions. The larger value of SNS is desired for better performance of the algorithm. 

( )
2

1SNS = 
1

n

ii
MID c

n

=
−

−


 

Various parameter levels of algorithms are given in Table 5. On the basis of parameters and 

their levels, L27 and L9 design of Taguchi method are employed for NCRO and NSGA- II 

algorithm, respectively. Finally, the orthogonal arrays of each design and response (R) obtained 

through NCRO and NSGA-II are reported in Tables 6 and 7. Moreover, Fig. 9 illustrates the 

effect plot of the S/N ratio for each algorithm. The best levels of all the parameters of each 

algorithm are selected using the results of the main effect plot of S/N ratio. Thus, the appropriate 

values of the parameters are highlighted in Table 5. The termination criteria of a maximum 

number of iterations (Max iteration = 200) has been set for proposed algorithms for all 

experiments. 

Table 5 Algorithm parameter ranges along with their levels  

Multi-objective 

algorithms 

Algorithm 

parameters 
Parameters range Low Medium High 

NCRO 

nPop 50-100 50 75 100 

InitialKE 1000-1000000 1000 10000 1000000 

KELossRate 0.2-0.6 0.2 0.4 0.6 

MoleColl 0.5-0.9 0.5 0.7 0.9 

DecThres 15-200 15 50 200 

SynThres 10-100 10 20 100 

nIter 100-300 100 200 300 

NSGA-II 

nPop 50-100 50 75 100 

Pc 0.85-0.95 0.85 0.9 0.95 

Pm 0.05-0.15 0.05 0.1 0.15 

nIter 100-300 100 200 300 
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Table 6 Obtained response values of NCRO 

Run order Algorithm parameters Response Value 

 nPop InitialKE KELossRate MoleColl DecThres SynThres nIter MID SNS R 

1 50 1000 0.2 0.5 15 10 100 418541.02 1076.68 388.73 

2 50 1000 0.2 0.5 50 20 200 419009.94 977.82 428.51 

3 50 1000 0.2 0.5 200 100 300 418757.09 841.64 497.55 

4 50 10000 0.4 0.7 15 10 100 418750.25 542.98 771.21 

5 50 10000 0.4 0.7 50 20 200 419727.42 508.09 826.08 

6 50 10000 0.4 0.7 200 100 300 418041.27 572.72 729.92 

7 50 1000000 0.6 0.9 15 10 100 418748.29 703.46 595.27 

8 50 1000000 0.6 0.9 50 20 200 418779.38 657.91 636.53 

9 50 1000000 0.6 0.9 200 100 300 419171.66 860.40 487.18 

10 75 1000 0.4 0.9 15 20 300 419133.73 1241.14 337.70 

11 75 1000 0.4 0.9 50 100 100 419001.30 683.70 612.84 

12 75 1000 0.4 0.9 200 10 200 417991.42 279.98 1492.92 

13 75 10000 0.6 0.5 15 20 300 417486.02 516.33 808.57 

14 75 10000 0.6 0.5 50 100 100 419050.31 376.90 1111.84 

15 75 10000 0.6 0.5 200 10 200 419947.83 649.01 647.06 

16 75 1000000 0.2 0.7 15 20 300 419203.20 523.15 801.31 

17 75 1000000 0.2 0.7 50 100 100 417364.34 683.39 610.72 

18 75 1000000 0.2 0.7 200 10 200 418739.19 399.42 1048.37 

19 100 1000 0.6 0.7 15 100 200 418362.79 423.22 988.52 

20 100 1000 0.6 0.7 50 10 300 418610.46 574.99 728.03 

21 100 1000 0.6 0.7 200 20 100 418683.42 517.58 808.92 

22 100 10000 0.2 0.9 15 100 200 419217.13 648.66 646.28 

23 100 10000 0.2 0.9 50 10 300 419068.87 705.58 593.94 

24 100 10000 0.2 0.9 200 20 100 419519.90 993.66 422.20 

25 100 1000000 0.4 0.5 15 100 200 419080.79 807.13 519.22 

26 100 1000000 0.4 0.5 50 10 300 418822.35 670.47 624.67 

27 100 1000000 0.4 0.5 200 20 100 419239.30 614.65 682.08 
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Table 7 Obtained response values of NSGA-II 

Run 

order 
Algorithm parameters Response Values 

 nPop Pc Pm nIter MID SNS R 

1 50 0.85 0.05 100 416376.51 6265.36 66.46 

2 50 0.90 0.10 200 416573.97 2526.68 164.87 

3 50 0.95 0.15 300 419763.44 4454.76 94.23 

4 75 0.85 0.10 300 412721.87 3150.03 131.02 

5 75 0.90 0.15 100 414047.82 2754.62 150.31 

6 75 0.95 0.05 200 415698.41 2740.37 151.69 

7 100 0.85 0.15 200 419418.08 7373.69 86.06 

8 100 0.90 0.05 300 412271.61 3617.15 113.98 

9 100 0.95 0.10 100 410421.23 2890.20 142.00 

 

 

Fig. 9. The mean S/N ratio plot for each algorithm 
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6.3 Computational results 

In order to solve and validate the formulated model, the proposed algorithms are coded in 

MATLAB R2014a software environment. Furthermore, all the experiments are performed on 

a workstation with the configuration of Intel Core i5, 2.90 GHz processor with 8 GB RAM. 

Firstly, the NCRO algorithm with best parameter levels from Table 5 is utilized to solve all 15 

generated problem instances. Meanwhile, to validate the solution obtained through NCRO, 

another robust MOEA called NSGA-II with calibrated parameter values was implemented. 

Each problem instance is solved using NCRO and NSGA-II algorithm and computational 

results of 20 runs are mentioned in Table 8. The total costs (INR), total lead time (hours) and 

computational time (seconds) of algorithms are determined by taking the mean of 20 runs of 

the algorithm. The total number of base and field silos established along with their types for all 

the problem instances are portrayed in the last two columns of Table 8. It has been observed 

from the result that established base and field silos are more of small size, then medium size 

and finally large size. The major share of transportation cost in total network cost is the main 

reason behind this. If we try to focus on minimizing the number of silos to be constructed, then 

investment cost will be reduced. However, transportation cost will increase due to the less 

number of silos and this proportional increase in transportation cost will be more than the 

proportional decrease in fixed cost of silo establishment. Hence, total network cost and total 

lead time will increase when the less number of silos are established. Moreover, the Pareto 

front obtained through NCRO algorithm of selected one instance from each category is 

compared to the Pareto front of NSGA-II algorithm in Figs 10 (a), (b) and (c). As per the results 

of Table 8, the total cost obtained through NCRO algorithm is lower than those attained using 

NSGA-II for all problem instances. Pertaining to the second objective of lead time 

minimization, NCRO provides the better results compared to the NSGA-II algorithm. The 

smaller computational time is taken by the NCRO meta-heuristic than NSGA-II to solve each 

problem instance depicts the superiority of NCRO over the NSGA-II. Moreover, two measures 

including MID and SNS clearly illustrates the better performance of the proposed algorithm. 

The NCRO algorithm provides better results than the NSGA-II due to the following promising 

features. The NCRO uses a Q-NDSA procedure which requires the less number of comparisons 

for sorting of the population compared to the NSGA-II. Therein, a pre-defined function based 

on rank and crowding distance is used to sort the population based on potential energy. The 

better convergence of NCRO algorithm is ensured by two local search operators including on 

wall ineffective and intermolecular ineffective collision. Furthermore, a good diversity 
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performance of NCRO is observed due to its ability of well-controlling the trade-off between 

intensification and diversification using its four operators and control of search direction 

through kinetic energy. The NCRO avoids the visiting of non-promising regions in the solution 

search space due to the potential energy management rules. 

The sufficient alternatives need to be provided to the decision makers to choose among the 

several trade-off solutions by balancing the objectives because of their conflicting nature. In 

the multi-objective problem, the Pareto front provides the set of non-dominated solutions and 

decision makers select the best compromise solution according to the company requirement. 

In this paper, many trade-off solutions are obtained after solving the model using the proposed 

two algorithms as shown in Figs 10 (a), (b) and (c). As per the preferences of GOI/FCI, they 

can choose the best compromise solution from the obtained multiple non-dominated solutions. 

If they give higher preference to the total network cost, then the compromise solution with 

lowest total network cost will be selected. However, the corresponding value of total lead time 

will be very high and vice-versa. In the present situation, the good compromise solution among 

the set of Pareto optimal solutions as shown in Figs 10 (a), (b) and (c) (marked with the black 

circle) is selected by properly balancing the total network cost and total lead time. The Pareto 

front preserves the convergence and diversity features of multi-objective nature of the problem. 
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Table 8 The solutions obtained by NCRO and NSGA-II for 15 problem instances 

 

Problem 

number 

Problem instance 

(P-B-F-D-T) 

NSGA-II NCRO Number of base silo 

constructed (their 

types) 

Number of field silo 

constructed (their 

types) 
Total network 

cost (INR) 

Total lead 

time (hr) 

CPU time 

(s) 

Total network 

cost (INR) 

Total lead  

time (hr) 

CPU time 

(s) 

1 (5-3-4-7-2) 6.31 × 109 2.10 × 105 44.28 5.51 × 109 1.74 × 105 26.83 2 (s = 1, m = 1, l= 0) 3 ˆ ˆ( 0,  1s m= = ˆ 2)l =  

2 (8-4-5-10-2)    1.22 × 1010 3.29 × 106 130.77 1.08 × 1010 2.86 × 106 81.48 2 (s = 1, m = 1, l= 0) 4 ˆ ˆ( 2,  1s m= = ˆ 1)l =  

3 (10-5-8-13-2) 1.63 × 1010 5.64 × 106 219.84 1.44 × 1010 4.29 × 106 175.82 4 (s = 1, m = 2, l= 1) 7 ˆ ˆ( 4,  2s m= = ˆ 1)l =  

4 (12-6-10-15-2) 2.15 × 1010 5.83 × 106 551.45 2.06 × 1010 4.98 × 106 452.44 5 (s = 3, m = 2, l= 0) 8 ˆ ˆ( 4,  4s m= = ˆ 0)l =  

5 (15-8-13-20-2) 2.36 × 1010 7.62 × 106 1345.45 2.14 × 1010 7.43 × 106 1051.86 6 (s = 3, m = 2, l= 1) 11 ˆ ˆ( 6,  3s m= = ˆ 2)l =  

6 (18-10-15-22-3) 3.61 × 1010 1.44 × 107 2060.27 3.46 × 1010 1.35 × 107 1616.73 7 (s = 3, m = 3, l= 1) 13 ˆ ˆ( 6,  5s m= = ˆ 2)l =  

7 (20-11-17-25-3) 3.66 × 1010 2.17 × 107 2627.35 3.54 × 1010 1.94 × 107 2302.43 8 (s = 3, m = 3, l= 2) 15 ˆ ˆ( 8,  4s m= = ˆ 3)l =  

8 (23-13-18-28-3) 4.35 × 1010 3.59 × 107 2959.04 4.22 × 1010 3.50 × 107 2658.51 10 (s = 5, m = 4, l= 1) 16 ˆ ˆ( 9,  5s m= = ˆ 2)l =  

9 (26-14-22-32-3) 4.66 × 1010 7.14 × 107 3296.47 4.39 × 1010 6.83 × 107 3008.38 11 (s = 4, m = 5, l= 2) 19 ˆ ˆ( 7,  9s m= = ˆ 3)l =  

10 (30-15-25-35-3) 4.74 × 1010 8.06 × 107 3665.88 4.53 × 1010 7.50 × 107 3309.55 13 (s = 6, m = 5, l= 2) 22 ˆ ˆ( 12,  7s m= = ˆ 3)l =  

11 (35-16-26-40-4) 5.64 × 1010 2.13 × 108 4238.19 5.20 × 1010 1.95 × 108 3960.10 14 (s = 6, m = 6, l= 2) 23 ˆ ˆ( 11,  8s m= = ˆ 4)l =  

12 (40-18-28-45-4) 5.80 × 1010 2.42 × 108 4555.76 5.51 × 1010 2.27 × 108 4205.58 15 (s = 7, m = 5, l = 3) 24 ˆ ˆ( 13,  6s m= = ˆ 5)l =  

13 (45-21-30-50-4) 6.07 × 1010 3.64 × 108 4909.44 5.79 × 1010 3.43 × 108 4518.93 17 (s =9, m = 6,  l = 2) 
26 ˆ ˆ( 10,  12s m= =  

ˆ 4)l =  

14 (50-23-32-55-4) 1.20 × 1011 4.23 × 108 5364.48 1.04 × 1011 4.05 × 108 4778.64 
18 (s =10, m =5,   l = 

3) 

29 ˆ ˆ( 16,  8s m= =  ˆ 5)l =   

15 (60-25-35-60-4) 1.32 × 1011 5.11 × 108 6299.66 1.17 × 1011 4.79 × 108 5628.71 
20 (s =12, m =5,   l = 

3) 

32 ˆ ˆ( 17,  10s m= =  
ˆ 5)l =  

 

 



43 
 

  

Fig. 10 (a). Obtained Pareto-fronts of the algorithms for problem instance 3 
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Fig. 10 (b). Obtained Pareto-fronts of the algorithms for problem instance 7  

 

 
 

 Fig. 10 (c). Obtained Pareto-fronts of the algorithms for problem instance 12 
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The solution of selected three problem instances in a given finite planning horizon is 

represented in Figs. 11 (a), (b) and (c). The total food grain quantity transferred between various 

echelons and inventory stored in a base as well as field silos within a planning period are 

depicted in Fig. 11 (a).  Additionally, Figs. 11 (b) and (c) show the number of each type of 

vehicles comprising of trucks and rakes utilized in a given planning period on the particular 

arc. The comprehensive food grain flow and storage analysis of the problem instance 1 for a 

unit time period has been carried out and shown on the supply chain network flow diagram in 

Fig. 12. Therein, amount of food grain shipped and a number of each type of vehicles utilized 

between the various echelons are represented on upper and lower side of each arrow 

respectively. The mode of food grain transportation is shown by the solid and dotted arrows, 

where the solid arrow indicates a road and dotted arrow depicts the rail transportation. Mostly, 

rail transportation is preferred over the road transportation for inter-state movement activities 

due to long distances, low transportation cost and a huge amount of food grain quantity. The 

solid base and field silos illustrate that at that potential locations base and field silos are not 

constructed.  

 

Fig. 11 (a). The aggregate values of food grain quantity transported and inventory at base and 

field silos  
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Fig. 11 (b). The aggregate values of various types of trucks used between procurement 

centres to base silos and field silos to demand points 

 

Fig. 11 (c). The aggregate values of various types of rakes used between base silos to field 

silos 
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Fig. 12. Food grain flows and vehicles used in a unit time period for problem instance 1 

Various components of total network cost and lead time objectives for chosen three instances 

are depicted in Figs. 13 (a) and (b). The number of base and field silos constructed are also 

shown on each instance. It can be observed from the Fig. 13 (a) that the major percentage of 

network cost is the transportation cost, then inventory cost and finally silo construction cost. 

Similarly, in total lead time objective of Fig. 13 (b), lead time from procurement centres to base 

silos has the highest portion after that lead time from field silos to demand points and then lead 

time from base silos to field silos. Finally, dwell time has the least percentage of the total lead 

time objective. Lead time mainly depends on the number of vehicles used for food grain 

transportation and if large quantity is moved then more vehicles will be utilized. However, rail-

rakes transport the large volume of food grain with less time duration compared with trucks.  
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Fig. 13 (a). Total network cost components   

 

Fig. 13 (b). Total lead time components  
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points (D), the capacity of base and field silos ( ,q r

b f  ), the fixed cost of base and field silo 

construction ( ,q r

b fc ), transportation cost ( pb ) and transit time ( pb ) were considered while 

performing the sensitivity analysis on the problem instance 3.  

6.4.1 The effects of number of procurement centres and demand points  

The effect on the cost and time objectives value after varying the number of procurement 

centers and demand points by -60%, -40%, -20%, +20%, +40%, and +60% from its current 

values are shown in Figs.14 (a) and (b), respectively. It can be observed from Fig. 14 (a) that 

as the number of procurement centres increase and decrease by 60% the total cost increases 

and decreases by 41% and 27% respectively. The value of second objective function i.e. total 

lead time also increases by 122% and decreases by 45% when the number of  procurement 

centres increase and decrease by 60% due to the variation in a number of vehicles used on the 

particular arc to transfer the food grain.  A similar type of nature of the graph of first and second 

objective functions with different numerical values is obtained (Fig. 14 (b)) when the demand 

points are increased and decreased by 60% from their original value. Moreover, the increase or 

decrease of the number of procurement centres and demand points will also affect the base and 

field silos to be constructed. This variation in the established base and field silos has been 

mentioned in Figs. 14 (a) and (b). It can be realized from Fig. 14 (a) that when the number of 

procurement centres increased by 20%, there is no need for additional base and field silo with 

respect to the original value. The number of established base and field silos are same when the 

number of procurement centres decrease by 20%. However, when the number of procurement 

centres and demand points increase by 40%, then one additional base and field silo are 

constructed to store more quantity and meet the increased demand and vice-versa.  
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Fig. 14 (a). The effect of variation in number of procurement centres on each objective 

 

 

Fig. 14 (b). The effect of variation in number of demand points on each objective 

 

 

 

 

6.4.2 The effects of capacity of base and field silos 
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Fig. 15 illustrates that increasing the capacity of base and field silos from -60% to 60% of their 

original value leads to decrease in the total network cost because the proportional increase in 

fixed silo construction cost is less than the proportional decrease in transportation cost. 

Furthermore, total lead time will also decrease due to the establishment of new base and field 

silos.  

 

 

Fig. 15. The effect of variation in base and field silo capacities on each objective 
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solutions in terms of the number of established base and field silos when the fixed cost of 

construction changed from -30% to 30% of their current cost is shown in Fig. 16. It can be 

observed from Fig. 16 that as the fixed cost increases the number of silo constructed decreases, 

therefore total fixed cost of silo construction decreases. However, transportation cost increases 

due to the less number of silos and this proportional increase in transportation cost is more than 

the proportional decrease in fixed cost of silo establishment. Hence, total network cost and total 

lead time increase when fixed cost increases.  
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Fig. 16.  The influence of fixed costs of base and field silo construction on each objective 
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Fig. 17.  The effect of variation in transportation cost and lead time on each objective 

6.5 Managerial implications and insights  

The important few managerial implications which can improve the efficiency and 

effectiveness of the current food grain supply chain network with respect to results of this study 

are discussed as follows. Due to the increased central pool stock of food grain and dismal 

storage capacity addition in the last decade, the GOI should expedite the current silo storage 

capacity augmentation plan. The transportation cost has the major portion of the total network 

cost. Therefore, we have to give more focus on transportation cost other than inventory and 

silo establishment cost while locating the silos. Otherwise, large capacitated silos may be 

constructed in every state for reducing the investment cost which leads to increase of total 

network cost. To quickly transfer the food grain from procurement centres to base silos and 

reduce the post-harvest losses at procurement centres, the available base silos storage capacity 

and requirement of heterogeneous capacitated vehicles need to be accurately determined. The 

issue of shortages of rake supply by Railways against the FCI requirement should be addressed 

as the transportation cost plays a major role in the total network cost. Additionally, small size 

field silos can be constructed at a district level warehouse in deficit states and packaging facility 

is to be provided at that location. The cost, time and post-harvest losses of food grain can be 

reduced by proper planning and management of silo location-allocation decisions across the 

country.  
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The valuable and crucial managerial insights obtained through this study would be 

beneficial to the various officials of the FCI, SGAs, Railways and other private entities 

involved in the food grain supply chain. The best optimal locations for construction of the 

different capacitated base and field silos in producing and consuming states can be determined 

using this model. In order to avoid the huge loss of investment and minimize the lead time of 

shipment, the GOI can utilize this model for feasibility analysis of different potential locations. 

In addition, the results of the current study will be helpful for effectively taking the other 

important decisions comprising of allocation of procurement centres and demand points to 

different silos, movement of food grain between various echelons and optimal inventory level 

at the silos. The developed model determines the number of vehicles used for food grain 

transportation which can solve one of the major issues of shortages of vehicles through proper 

planning and coordination between FCI, Railways and private contractors. The sufficient 

availability of vehicle resources and silo capacities can reduce the dwell as well as transit time 

of food grain shipment which leads to the reduction of food grain losses. Furthermore, the 

vehicle scheduling which can diminish the demurrage charges of the vehicle will be easily done 

at every stage of food gain supply chain network using the timely movement plan. The storage 

activity plan will be helpful for resolving the issue of underutilization of existing storage 

facilities.  

7. Conclusion and future scope 

The GOI has started constructing the different capacitated base and field silos in the various 

surplus and deficit states because of the shortfall of storage capacity with FCI. Lead time 

including waiting time of food grain in SGAs warehouses is high owing to lack of storage 

capacity. Thus, food grain losses and carry-over charges are continuously increasing. In this 

paper, a grain silo location-allocation problem of the Indian food grain supply chain has been 

addressed by considering the four-echelons including procurement centres, base silos, field 

silos and demand points. In order to support the decision making process of GOI, a novel 

MINLP model is formulated with two conflicting objectives - minimization of total supply 

chain network cost and total lead time. The various factors such as fixed establishment cost, 

transportation cost, inventory cost, dwell time and transit time are considered in the model. The 

aim of this study is to determine the optimal locations for establishment of base and field silos 

in surplus and deficit states along with their capacities. Moreover, food grain flow and 

inventory level are also determined using the formulated model. A novel dwell time function 

is developed for waiting time evaluation by taking into account the administrative activity time, 
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vehicles movement from procurement centres to base silos and availability of base silos storage 

capacity.  

Due to the non-linear nature and high complexity of the model, the recently developed 

multi-objective Pareto-based algorithm called NCRO has been employed for simultaneously 

optimizing the two conflicting objectives and obtained results are validated using robust 

NSGA-II algorithm. Further, the Taguchi method was implemented for parameter tuning of 

NCRO and NSGA-II algorithms. The mathematical model along with solution approach has 

been verified and validated by solving 15 problem instances considering major surplus and 

deficit states in India. The superior performance of the NCRO algorithm than NSGA-II, in 

terms of two multi-objective measures comprising of MID and SNS, two objective function 

values, computational time and Pareto fronts, is clearly observed through the computational 

results of several different problem instances. The solution in the form of aggregate values of 

the various types of decision variables of selected three problem instances and extensive food 

grain flow along with storage analysis of problem instance 1 for a single period is reported in 

computational results subsection. According to the computational experiments, transportation 

cost contributes significantly to the total network cost, then inventory cost and lastly silo 

establishment cost. Therefore, more number of small size, then medium size and finally large 

size base and field silos are selected for construction. Finally, the influence of some model 

parameters like procurement centres, demand points, capacity and fixed cost of base and field 

silos, etc. on the cost and time objectives as well as on established base and field silos is 

examined through sensitivity analysis approach. The insights evolved through this study will 

be advantageous to the various officials of the GOI/FCI, SGAs and other entities engaged in 

the food grain supply chain for their planning and coordination decisions. The feasibility 

analysis of various potential locations can be performed through the proposed model.   

In the current work, a sensitivity analysis was conducted to examine the impact of 

uncertain parameters on solution quality. Future study can incorporate the stochasticity in 

model parameters including demand, procurement and transportation time such that obtained 

solutions can optimize the expected values of objective functions. The development of fuzzy 

multi-objective model will be another possible extension of the current study. Furthermore, the 

inclusion of backlog and shortages can make the model more realistic according to the 

suitability of the problem environment. In order to implement the current model, the set of 

potential locations of base and field silos must be known. However, in some cases, FCI may 

require the support for the determination of appropriate potential locations. The different 

capacity levels of silos can be relaxed in the future study. In the context of sustainability, the 
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minimization of carbon emission can be considered as a third objective in addition to the cost 

and time.     

Acknowledgement 

This work was supported by the research project Procurement, Collection and Storage of 

food grains (CAG), No. - IIT/SRIC/IEM/CAG/2013-14/206 under the mega project 

Sustainable food Security through: Technological interventions for production, 

processing and logistics (SAL) No. – IIT/SRIC/AGFE/SAL/2013-14/159 sponsored by 

MHRD, Department of Higher Education, New Delhi. 

References  

Asgari, N., Farahani, R.Z., Rashidi-Bajgan, H., Sajadieh, M.S., 2013. Developing model-based 

software to optimise wheat storage and transportation: A real-world application. Appl. 

Soft Comput. J. 13, 1074–1084. 

An, K., Ouyang, Y., 2016. Robust grain supply chain design considering post-harvest loss and 

harvest timing equilibrium. Transp. Res. Part E Logist. Transp. Rev. 88, 110–128.  

Baykasoğlu, A., Subulan, K. 2016. A multi-objective sustainable load planning model for 

intermodal transportation networks with a real-life application. Transp. Res. Part E Logist. 

Transp. Rev. 95, 207-247. 

Bechikh, S., Chaabani, A., Said, L.B., 2015. An efficient chemical reaction optimization 

algorithm for multiobjective optimization. IEEE Trans. Cyber. 45, 2051-2064.  

Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., Pilati, F., 2015. Fresh food sustainable 

distribution: Cost, delivery time and carbon footprint three-objective optimization. J. Food 

Eng. 174, 56–67.  

Boujelben, M.K., Gicquel, C., Minoux, M., 2016. A MILP model and heuristic approach for 

facility location under multiple operational constraints. Comput. Ind. Eng. 98, 446–461.  

Cardona-Valdés, Y., Álvarez, A., & Pacheco, J., 2014. Metaheuristic procedure for a bi-

objective supply chain design problem with uncertainty. Transp. Res. Part B Methodol. 

60, 66–84.  



57 
 

Chen, M.C., Hsiao, Y.H., Himadeep Reddy, R., Tiwari, M.K., 2016. The Self-Learning Particle 

Swarm Optimization approach for routing pickup and delivery of multiple products with 

material handling in multiple cross-docks. Transp. Res. Part E Logist. Transp. Rev. 91, 

208–226.  

Cheshmehgaz, H.R., Desa, M.I., Wibowo, A., 2013. A flexible three-level logistic network 

design considering cost and time criteria with a multi-objective evolutionary algorithm. J. 

Intell. Manuf. 24, 277–293.  

Corner, J. L., Foulds, L. R., 2004. Sustainable development of the supply of grain. 

In Engineering Management Conference, Proceedings. IEEE International 3, 1226-1228. 

Deb, K., 2001. Multi-objective optimization using evolutionary algorithms. London: John 

Wiley & Sons Chichester. 

Deb, K., Pratab, S., Agarwal, S., Meyarivan, T., 2002. A Fast and Elitist Multiobjective Genetic 

Algorithm: NGSA-II. IEEE Trans. Evol. Comput. 6, 182–197.  

Department of Food & Public Distribution, Ministry of Consumer affairs, Food & Public 

Distribution. Public Distribution, NFSA & Computerisation. Available from: 

http://dfpd.nic.in/nfsa-act.htm Accessed 05.02.17. 

Department of Food & Public Distribution, Ministry of Consumer affairs, Food & Public 

Distribution. PDS portal of India. Available from: http://www.pdsportal.nic.in/main.aspx/ 

Accessed 17.02.17 

Eskigun, E., Uzsoy, R., Preckel, P. V, Beaujon, G., Krishnan, S., Tew, J.D., 2005. Outbound 

supply chain network design with mode selection, lead times and capacitated vehicle 

distribution centers. Eur. J. Oper. Res. 165, 182–206.  

Etemadnia, H., Goetz, S.J., Canning, P., Tavallali, M.S., 2015. Optimal wholesale facilities 

location within the fruit and vegetables supply chain with bimodal transportation options: 

An LP-MIP heuristic approach. Eur. J. Oper. Res. 244, 648–661.  

Farahani, R.Z., SteadieSeifi, M., Asgari, N., 2010. Multiple criteria facility location problems: 

A survey. Appl. Math. Model. 34, 1689-1709. 

http://www.pdsportal.nic.in/main.aspx


58 
 

Food Corporation of India. Available from: http://www.fci.gov.in/ Accessed 08.12.16 

Ge, H., Gray, R., Nolan, J., 2015. Agricultural supply chain optimization and complexity: A 

comparison of analytic vs simulated solutions and policies. Int. J. Prod. Econ. 159, 208–

220.  

Gholamian, M.R., Taghanzadeh, A.H., 2017. Integrated network design of wheat supply chain: 

A real case of Iran. Comput. Electron. Agric. 140, 139–147.  

Goh, C.-K. , & Tan, K. C. 2009. Evolutionary multi-objective optimization in uncertain 

environments. Issues and Algorithms, Stud. Comput. Intell. 186 , 5–18. 

Hajipour, V., Fattahi, P., Tavana, M., Di Caprio, D., 2016. Multi-objective multi-layer 

congested facility location-allocation problem optimization with Pareto-based meta-

heuristics. Appl. Math. Model. 40, 4948–4969.  

Harris, I., Mumford, C.L., Naim, M.M., 2014. A hybrid multi-objective approach to capacitated 

facility location with flexible store allocation for green logistics modeling. Transp. Res. 

Part E Logist. Transp. Rev. 66, 1–22.  

Hyland, M.F., Mahmassani, H.S., Bou, L., 2016. Analytical models of rail transportation 

service in the grain supply chain : Deconstructing the operational and economic 

advantages of shuttle train service. Transp. Res. Part E Logist. Transp. Rev. 93, 294–315.  

Jones, D. F., Mirrazavi, S. K., Tamiz, M., 2002. Multi-objective meta-heuristics: An overview 

of the current state-of-the-art. Eur. J. Oper. Res. 137, 1-9. 

Jouzdani, J., Sadjadi, S.J., Fathian, M., 2013. Dynamic dairy facility location and supply chain 

planning under traffic congestion and demand uncertainty : A case study of Tehran. Appl. 

Math. Model. 37, 8467–8483.  

Khamjan, W., Khamjan, S., Pathumnakul, S., 2013. Determination of the locations and 

capacities of sugar cane loading stations in Thailand. Comput. Ind. Eng. 66, 663–674.  

Lam, A.Y.S., Li, V.O.K., 2010. Chemical-Reaction-Inspired Metaheuristic for Optimization. 

IEEE Trans. on Evol. Comp. 14, 381–399.  

http://www.fci.gov.in/


59 
 

Lam, A.Y.S., Li, V.O.K., Yu, J.J.Q., 2012. Real-Coded Chemical Reaction Optimization. IEEE 

Trans. on Evol. Comp. 16, 339–353. 

Maghsoudlou,H., Kahag, M.R., Niaki, S.T.A., Pourvaziri, H., 2016. Bi-objective optimization 

of a three-echelon multi-server supply-chain problem in congested systems: Modeling and 

solution. Comput. Ind. Eng. 99, 41–62.  

Maiyar, L.M., Thakkar, J.J., 2017. A combined tactical and operational deterministic food grain 

transportation model: Particle swarm based optimization approach. Comput. Ind. Eng. 

110, 30-42. 

Melo, M.T., Nickel, S., Saldanha-da-Gama, F., 2009. Facility location and supply chain 

management - A review. Eur. J. Oper. Res. 196, 401–412.  

Mohammed, A., Wang, Q., 2017a. Developing a meat supply chain network design using a 

multi-objective possibilistic programming approach. Br. Food J. 119, 690-706. 

Mohammed, A., Wang, Q., 2017b. The fuzzy multi-objective distribution planner for a green 

meat supply chain. Int. J. Prod. Econ. 184, 47–58. 

Mousavi, S. M., Bahreininejad, A., Musa, S. N., Yusof, F., 2014. A modified particle swarm 

optimization for solving the integrated location and inventory control problems in a two-

echelon supply chain network. J. Intell. Manuf. 28, 191-206. 

Nourbakhsh, S.M., Bai, Y., Maia, G.D.N., Ouyang, Y., Rodriguez, L., 2016. Grain supply 

chain network design and logistics planning for reducing post-harvest loss. Biosyst. Eng. 

151, 105–115.  

Paksoy, T., Yapici, N., Özceylan, E., 2012. Application of fuzzy optimization to a supply chain 

network design : A case study of an edible vegetable oils manufacturer. Appl. Math. 

Model. 36, 2762–2776.  

Parwez, S., 2014. Food supply chain management in Indian Agriculture: Issues, opportunities 

and further research. African J. Bus. Manag. 8, 572–581. 

Rancourt, M.È., Cordeau, J.F., Laporte, G., Watkins, B., 2015. Tactical network planning for 

food aid distribution in Kenya. Comput. Oper. Res. 56, 68–83.  



60 
 

Report of the Comptroller and Auditor General of India, 2013. Storage management and 

movement of food grains in Food Corporation of India. Union Government Ministry of 

Consumer Affairs, Food and Public Distribution. 

Report of the High-Level Committee, 2015. Reorienting the role and restructuring of Food 

Corporation of India. 

Resat, H.G., Turkay, M., 2015. Design and operation of intermodal transportation network in 

the Marmara region of Turkey. Transp. Res. Part E Logist. Transp. Rev. 83, 16–33.  

Rong, A., Akkerman, R., Grunow, M., 2011. An optimization approach for managing fresh 

food quality throughout the supply chain. Int. J. Prod. Econ. 131, 421-429. 

Sachan, A., Sahay, B.S., Sharma, D., 2005. Developing Indian grain supply chain cost model: 

a system dynamics approach. Int. J. Product. Perform. Manag. 54, 187–205.  

Sarrafha, K., Rahmati, S.H.A., Niaki, S.T.A., Zaretalab, A., 2015. A bi-objective integrated 

procurement, production, and distribution problem of a multi-echelon supply chain 

network design: A new tuned MOEA. Comput. Oper. Res. 54, 35–51.  

Shankar, B., Basavarajappa, S., Kadadevaramath, R.S., Chen, J.C.H., 2013. A bi-objective 

optimization of supply chain design and distribution operations using non-dominated 

sorting algorithm: A case study. Expert Syst. Appl. 40, 5730–5739.  

Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M., 2016. 

Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 

345–355.  

Soysal, M., Bloemhof-Ruwaard, J.M., Van Der Vorst, J.G.A.J., 2014. Modelling food logistics 

networks with emission considerations: The case of an international beef supply chain. 

Int. J. Prod. Econ. 152, 57–70.  

Swaminathan, J.M., Smith, S.F., Sadeh, N.M., 1998. Modeling supply chain dynamics: a 

multiagent approach. Decis. Sci. 29, 607–632. 

Validi, S., Bhattacharya, A., Byrne, P.J., 2014. A case analysis of a sustainable food supply 

chain distribution system - A multi-objective approach. Int. J. Prod. Econ. 152, 71–87.  



61 
 

Yu, S., Zheng, S., Gao, S., Yang, J., 2017. A multi-objective decision model for investment in 

energy savings and emission reductions in coal mining. Eur. J. Oper. Res. 260, 335-347. 

 

 


