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Abstract: Growing food demand, environmental degradation, post-harvest losses and the 

dearth of resources encourage the decision makers from developing nations to integrate the 

economic and environmental aspects in food supply chain network design. This paper aims to 

develop a bi-objective decision support model for sustainable food grain supply chain 

considering an entire network of procurement centres, central, state and district level 

warehouses, and fair price shops. The model seeks to minimize the cost and carbon dioxide 

emission simultaneously. The model covers several problem peculiarities such as multi-

echelon, multi-period, multi-modal transportation, multiple sourcing and distribution, emission 

caused due to various motives, heterogeneous capacitated vehicles and limited availability, and 

capacitated warehouses. Multiple realistic problem instances are solved using the two Pareto 

based multi-objective algorithms. Sensitivity analysis results imply that the decision makers 

should establish a sufficient number of warehouses in each producing and consuming states by 

maintaining the suitable balance between the two objectives. Various policymakers like Food 

Corporation of India, logistics providers and state government agencies will be benefited from 

this research study.      
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1. Introduction  

1.1 Background  

Global food demand is estimated to increase by 50% by 2030 which leads to upsurge the 

demand of resources for production and transportation (Allaoui et al. 2018, Bruinsma 2017). 

Globally, around 1.3 billion tons of total food produced is wasted or lost annually (Gustavsson 

et al. 2011; FAO 2013). The food production in India has been steadily augmented thanks to 

advanced agricultural production technologies, but the food losses are still one of the major 

issues (Sharon et al. 2014; Kumar and Kalita 2017; Parwez 2014). Approximately 30-35% of 

the total food produced is wasted annually because of insufficient infrastructure and ineffectual 

supply chain (Parwez 2014; Comptroller and Auditor General of India (CAG) report 2013). 

Various inputs containing land, water, pesticides, fertilizer, and energy are required for 

producing food. The process leads to the production of greenhouse gas emissions. Therefore, 

wastages of resources and production of emissions are two main consequences of food losses 

(FAO 2013; Zhu et al. 2018). Additionally, food loss is one of the major causes of significant 

environmental impact along with economic and social impacts (Dreyer et al. 2019; Lemaire 

and Limbourg 2019; Scholz et al. 2015).  

Transportation planning is one of the vital element in the total costs of any supply chain (Maiyar 

and Thakkar 2017; Song et al. 2014). India comes third after China and the US in the largest 

global greenhouse gases emitter ranking (Timperley 2019). Also, transportation activities are 

the major causes of air pollution which have harmful effects on human health (Kelle 2019; 

Wang et al. 2011). Globally freight transport typically contributes 80-90% for transportation-

related carbon-emission (McKinnon 2010). In 2018, transportation activities emitted 24% of 
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the world’s annual carbon dioxide (Teter et al. 2019). Road transportation emission is the major 

contributor (94.5%) for India’s total transport sector emission of 261 tons of CO2 (Shrivastava 

et al. 2013). Further, the agricultural sector has a share of 16% in total greenhouse gas 

emissions (Timperley 2019). The crop yield in India is considerably reduced because of the 

heightened air pollution and climatic factors (Burney and Ramanathan 2014). Therein, 

approximately 5 million tons of crops (wheat and rice) get damaged annually due to pollutant 

gases (Ramanathan et al. 2014). According to the report of the Lancet Commission on pollution 

and health, India has ranked at first position in pollution-related deaths (2.51 million deaths in 

2015) (Landrigan et al. 2018). Therefore, consideration of the environmental impact of Food 

Supply Chain (FSC) activities along with the economic impact is very imperative and it 

increases the problem complexity (Banasik et al. 2019; Mohammed and Wang 2017b; Seuring 

2013; Brandenburg et al. 2014; Wang et al. 2019). 

1.2 Indian food grain supply chain distribution system 

This study is related to the food grain supply chain of Public Distribution System (PDS) in 

India as shown in Figure 1. Under the PDS, the Food Corporation of India (FCI) distributes the 

subsidized food grains to the weaker and vulnerable section of society (CAG, 2013; Mogale et 

al. 2018). Procurement from farmers, storage, transportation and distribution to final 

consumers through Fair Price Shops (FPS) are major activities of FCI (Maiyar et al. 2015). 

Due to the mismatch between the supply and demand of particular states, food grain has to be 

transferred from producing (surplus) states to consuming (deficit) states (Maiyar and Thakkar 

2017; Mahapatra and Mahanty 2018; Balani et al. 2013). The major wheat producing and 

consuming states in India are situated in a large geographically dispersed area, which results in 

more fuel consumption for food grain transportation (Reddy et al. 2017; Anoop et al. 2018, 

High-level committee report (HLC) 2015). The food grain is transported from surplus to deficit 
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states through rail mode to meet the demand of the people (CAG 2013; Maiyar et al. 2015; 

Mogale et al. 2017; Balani et al. 2013).  

 

Figure 1. Indian food grain supply chain distribution system 

1.3 Motivations  

The key motivations behind the current study including food grain storage problems, improper 

planning and coordination issues are realized from the CAG report (2013), HLC report (2015) 

and online sources (Indiastat). According to these sources, the total food grains stock in the 

central pool has progressively augmented from 21 Million Metric Ton (MMT) in 2007 to 66.78 

MMT in 2012, whereas FCI has increased its owned storage capacity by merely 0.4 MMT 

(15.2 – 15.6 MMT) in the period from 2006-07 to 2011-12. The shortfall in storage capacity 

with FCI against the required capacity indicates an increasing trend from 5.99 MMT in 2007-

08 to 33.18 MMT in 2011-12. These statistics indicate the discrepancy between the available 

storage capacity and central pool stock and emphasize the requirement of more storage capacity 

to deal with escalating procurement. Furthermore, the CAG report revealed severe disparities 

in the availability of storage capacity and a colossal dearth of storage space in deficit states. 

The abrupt augmentation of food grains stock in the central pool impels the concern of larger 

movement from producing to consuming states. In order to bridge the storage capacity gap, 

policymakers in India are establishing the heterogeneous capacitated warehouses in surplus 

and deficit states. Annually, on an average of 40 to 42 million tons of food grains are transferred 

across the country using the road, rail, and waterways (http://fci.gov.in). According to the CAG 

2013 report, the total number of 10,969 rakes are dispatched for food grain movement during 
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the period of 2011-12. Managing the food supply chain is an intricate and difficult issue since 

the number of intermediaries may differ from a commodity to another and to a country to 

another (Sachan et al. 2005; Higgins et al. 2010; Piramuthu et al. 2013). The post-harvest 

activities including transportation, processing, and storage are responsible for producing 

emissions (Allaoui et al. 2018; Banasik et al. 2019; FAO, 2013). 

1.4 Major contributions  

 The main contributions of this paper are as follows. Firstly, a new bi-objective 

mathematical model is formulated for integrated sustainable food grain supply chain 

distribution system considering an entire network of procurement centres, central, state and 

district level warehouses, and fair price shops. The objectives of the model are the minimization 

of cost and carbon dioxide emissions. Moreover, the model introduces several practical and 

realistic features of the problem like multiple echelons, periods, transportation modes, sourcing 

and distribution along with heterogeneous capacitated vehicles and their limited availability. 

Transportation emissions affected by vehicle types, load of vehicles and travelled distances, 

emission caused due to facility establishment, holding and handling operations are also 

incorporated in the proposed model. Additional characteristics such as geographically 

dispersed producing and consuming states, capacitated warehouses and vehicle capacity 

restrictions are integrated into the model. The developed model supports the policymakers in 

strategic and tactical planning decisions by optimizing the facility establishments, inventory 

level, and food grain flow from procurement centres to fair price shops. Furthermore, several 

trade-off solutions are obtained by solving the model using two Pareto based multi-objective 

algorithms namely, Multi-objective Particle Swarm Optimization (MOPSO) and Non-

Dominated Sorting Genetic Algorithm (NSGA-II).  

1.5 Structure of the paper 
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The remainder of the paper is organized in the following way. In Section 2, relevant 

literature is discussed. Section 3 presents the underline problem description. The formulation 

of the mathematical model is described in Section 4. In Section 5, the research methodology is 

explained. Section 6 is devoted to the results and discussion. Finally, concluding remarks, 

implications and future scope are given in Section 7.      

2. Review of relevant literature  

Recently, an interesting and insightful mathematical model-oriented review of the extant 

literature focusing on Sustainable Food Supply Chain (SFSC) domain was conducted by Esteso 

et al. (2018) and Zhu et al. (2018). They clearly highlighted the need for the development of 

mathematical programming models to support the decision making process of FSC in 

developing countries. The different challenges starting from farmers to consumers, recent 

trends and topics in FSCs, configuration of FSCs, need of sustainability, integration of the 

inherent characteristics and network of FSC are discussed in these two papers. They also found 

that most of the previous authors considered the generic FSC and not explored all the entities 

involved in it. The necessity of multiple time periods, integration of procurement, 

transportation and storage decisions, economic and environmental aspects and their conflicting 

nature, multi-objective modelling and algorithms/heuristics applications are delineated in the 

aforementioned articles. In addition to this, interested readers can refer the Soto-Silva et al. 

(2016), Ahumada and Villalobos (2009), Resat and Turkay (2019), Brandenburg and Rebs 

(2015), Dekker et al. (2012), Demir et al. (2014) and Eskandarpour et al. (2015) for literature 

review on sustainable supply chain network design and green logistics related aspects. In this 

section, the relevant literature concentrating on sustainable facility location inventory 

transportation problem in the FSC domain is discussed. Therein, we mainly focused on various 

types of models and their characteristics along with different solution methods reported.  
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In recent times, a sustainable agro-food supply chain network design problem was addressed 

by Allaoui et al. (2018) through an integrated two-stage hybrid approach. Mohammed and 

Wang (2017a) simultaneously minimized the transportation cost, required transportation 

vehicles and delivery time in the meat supply chain. The same authors extended their research 

with consideration of environmental impact and distribution time (Mohammed and Wang 

2017b). They suggested a few extensions of their study by integrating the multi-period, multi-

echelon and multi-objective metaheuristic algorithms. Kaur and Singh (2017) proposed a joint 

sustainable procurement and logistics model considering the emission generated during 

ordering, holding and logistics. The sustainability in closed-loop supply chain problems can be 

seen in Banasik et al. (2017), Hasani et al. (2012) and Nurjanni et al. (2017) studies.  

Some researchers considered the sustainability in various forms while examining the several 

FSC problems like two-layer supply chain network design (Validi et al. 2014a, 2015), location-

routing (Validi et al. 2018; Govindan et al. 2014), fresh food distribution (Bortolini et al. 2018) 

and beef/meat logistics network (Soysal et al. 2014, Golini et al. 2017). Majority of these 

studies have not simultaneously explored various practical features of FSC problems related to 

multi-period, multiple sourcing, multi-modal transportation and capacitated warehouses. The 

heterogeneous capacitated vehicles and their limited availability, CO2 emission produced due 

to different reasons and vehicle capacity constraints are also not concurrently appeared in these 

studies. The food quality and sustainability indicators were integrated into discrete event 

simulation models for the analysis of an integrated approach in the FSC (Van Der Vorst et al. 

2009). The metaheuristic approach was suggested for resilient FSC design problem (Bottani et 

al. 2019). Furthermore, a decision support system was recommended for sales forecasting and 

order planning operations of fresh FSC (Dellino et al. 2017). The remaining shelf-life of the 

perishable food was predicted by means of data collected through the sensor network (Li and 

Wang 2017). A carbon trading mechanism in fresh FSC was introduced by Wang et al. 
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(2018). The overview of key relevant papers delineating the main features of the model, 

components of two objective function, decisions taken and the solution methods used are 

mentioned in Table A.1 in appendix A. 

It can be noticed from Table A.1 that most of the authors modelled the problem in the form of 

MILP or MIP considering the multi-echelon scenario. However, multiple time periods and 

transportation modes were considered in limited studies. In total cost objective, facility location 

cost and variable transportation cost were largely taken into account by several researchers. 

Fixed transportation, inventory and handling costs appeared in a fewer number of articles. 

Almost all authors mentioned in Table A.1 incorporated the transportation CO2 emission and 

few researchers included the CO2 emission generated due to facility establishment, inventory 

holding and handling activities. Determination of location and product flows were mostly 

addressed decisions in literature. The heterogeneous fleet utilized and inventory level were 

observed in a limited number of research works. Few scholars contributed to food distribution 

network design regardless of its huge significance (Meneghetti and Monti 2015). The SFSC is 

considered very contextual because of the variability of food system in various countries (Zhu 

et al. 2018, Maiyar and Thakkar et al. 2017). There are several factors behind this variability 

like supply chain actors, different procurement periods, transportation and storage systems and 

geographically widespread producing and consuming provinces. The involvement of 

heterogeneous actors and their complex collaborations make the grain supply chain system 

more complex and dynamic (Swaminathan et al. 1998; Simonson, 2009). Indian food grain 

distribution system is the world’s largest distribution system of its kind and different as well as 

unique as compared with other developing nations (Balani et al. 2013). Furthermore, managing 

this system becomes more intricate and difficult as compared to developed economies due to 

its chaotic nature and a large number of intermediaries (Sachan et al., 2005).  
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3. Problem statement 

The shortfall in storage capacity with FCI can be observed from the statistical data mentioned 

in subsection 1.3. The policymakers in India are establishing the capacitated warehouses in 

several geographically dispersed surplus and deficit states to bridge the storage capacity gap. 

The warehouse establishment decision comes under the strategic category and requires a large 

amount of initial investment for an establishment based on its capacity levels. In order to curb 

the CO2 emission generated due to the travelling of larger distances, more number of 

warehouses will be required, i.e. large investment and vice-versa. In addition to this, the trade-

off occurs between the transportation cost and transportation CO2 emission due to the fixed 

hiring cost and emission produced by heterogeneous capacitated vehicles. It means that lower 

emission from transportation comes at a higher cost. Thus, we have developed a bi-objective 

mathematical model which seeks to minimize the cost and emission simultaneously. The main 

goal here is to decide on the locations and on the movement and storage planning in a multi-

period environment. The following decision variables are considered (1) location of central, 

state and district level warehouses (2) optimal quantity of food grain to be moved from 

procurement centres to fair price shops, (3) inventory available in the central, state and district 

level warehouses at the end of period, and (4) optimal number of heterogeneous capacitated 

vehicles used for food grain transportation.  

4. Problem formulation  

Several assumptions are considered in the formulation of the problem.  

• The procurement, demand and storage capacity of central, state and district level 

warehouses are known and deterministic. 

• Potential locations of central, state and district level warehouses are known and fixed.  

• The quantity of food grain procured is sufficient to meet the demand of fair price shops. 
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• Each fair price shops demand should be satisfied during the given time period. Shortages 

and backlogs are not permitted.  

• Three heterogeneous capacitated vehicles with limited availability at each echelon in each 

time period are available.       

• Each vehicle carries Full Truck Load (FTL) transport. 

Notations  

Indices  Description  

p    Index for procurement centres, 1,2,...,p P=   

q   Index for potential central warehouses in surplus states, 1, 2,...,q Q=   

r   Index for potential state warehouses in deficit states, 1,2,...,r R=   

s    Index for potential district level warehouses, 1,2,..., Ss =   

f    Index for fair price shops, 1,2,...,f F=   

k   Index for truck types available at procurement centres and state warehouse, 

1,2,...,k K=   

l   Index for rake types available at central warehouse in surplus state 1, 2,...,l L=   

m    Index for truck types available at district level warehouse, 1, 2,...,m M=   

t    Index for time period, 1, 2,...,t T=   

Parameters   Description  

qfc    Fixed cost of establishing a central warehouse q  

rfc    Fixed cost of establishing a state warehouse r  
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sfc    Fixed cost of establishing a district level warehouse s  

ke    Fixed cost of hiring a truck of type k for transportation  

le    Fixed cost of hiring a rake of type l for transportation  

me    Fixed cost of hiring a truck of type m for transportation  

v    Unit variable transportation cost per km by road mode  

u    Unit variable transportation cost per km by rail mode  

qic    Unit inventory carrying cost per period in central warehouse q 

ric    Unit inventory carrying cost per period in state warehouse r 

sic    Unit inventory carrying cost per period in district level warehouse s 

qhc                   Unit variable cost for handling one ton of food grain in the central warehouse q 

rhc   Unit variable cost for handling one ton of food grain in state warehouse r 

shc   Unit variable cost for handling one ton of food grain in the district level 

warehouse s  

pqg   Distance between procurement centre p to central warehouse q   

qrg   Distance between central warehouse q to state warehouse r 

rsg   Distance between state warehouse r to district level warehouse s  

sfg   Distance between district level warehouse s to fair price shop f 

t

pa   Amount of grain stock available at procurement centre p during time period t    
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qb   Maximum storage capacity of the central warehouse q  

rb   Maximum storage capacity of the state warehouse r  

sb   Maximum storage capacity of the district level warehouse s  

t

fd   Demand of fair price shop f during time period t    

t

kp   Total number of k type of trucks available at procurement centre p in time period 

t  

t

kr   Total number of k type of trucks available at state warehouse r in time period t  

t

lq   Total number of l type of rakes available at central warehouse q in time period 

t  

t

ms   Total number of m type of trucks available at district level warehouse s in time 

period t  

k   Capacity of truck of type k   

l   Capacity of rake of type l 

m   Capacity of truck of type m   

q   Amount of CO2 released while establishing central warehouse q   

r   Amount of CO2 released while establishing state warehouse r   

s   Amount of CO2 released while establishing district level warehouse s   
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pq

k   Amount of CO2 released per unit distance for each k type of truck travelling 

from procurement centre p to central warehouse q   

l

qr   Amount of CO2 released per unit distance for each l type of rake travelling from 

central warehouse q to state warehouse r   

k

rs   Amount of CO2 released per unit distance for each k type of truck travelling 

from state warehouse r to district level warehouse s 

m

sf   Amount of CO2 released per unit distance for each m type of truck travelling 

from district level warehouse s to fair price shop f  

q   Amount of CO2 released while handling one ton of food grain in central 

warehouse q 

r   Amount of CO2 released while handling one ton of food grain in state warehouse 

r 

s   Amount of CO2 released while handling one ton of food grain in district level 

warehouse s 

q   Amount of CO2 released while holding one ton of food grain in central 

warehouse q 

r   Amount of CO2 released while holding one ton of food grain in state warehouse 

r 

s   Amount of CO2 released while holding one ton of food grain in district level 

warehouse s 
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W   A sufficiently big number   

 

Decision variables   Description  

Binary variables  

qX   Equals to 1 if the central warehouse is established at location q and 0 otherwise   

rY   Equals to 1 if the state warehouse is established at location r and 0 otherwise   

sZ   Equals to 1 if the district level warehouse is established at location s and 0 

otherwise   

Continuous variables  

t

pqE   The amount of food grain dispatched by procurement centre p to central 

warehouse q in period t 

t

qrG   The amount of food grain dispatched by central warehouse q to state warehouse 

r in period t 

t

rsU   The amount of food grain dispatched by state warehouse r to district level 

warehouse s in period t 

t

sfV   The amount of food grain dispatched by district level warehouse s to fair price 

shop f in period t 

t

qI   The amount of food grain available at central warehouse q at the end of period 

t 

t

rJ   The amount of food grain available at state warehouse r at the end of period t 
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t

sB   The amount of food grain available at district level warehouse s at the end of 

period t 

Integer Variables  

kt

pqN   The number of k type of trucks dispatched from procurement centre p to central 

warehouse q in period t 

lt

qrN   The number of l type of rakes dispatched from central warehouse q to state 

warehouse r in period t 

kt

rsN   The number of k type of trucks dispatched from state warehouse r to district 

level warehouse s in period t 

mt

sfN   The number of m type of trucks dispatched from district level warehouse s to 

fair price shop f in period t 

Objective functions:  

Objective 1 = Minimization of Total Cost (TC) 

Min Obj1 (TC) = Fixed cost of facility location + Transportation cost (fixed and variable cost)      

+ Inventory cost + Handling cost        (1)

         

Fixed cost of Facility location = 
q q r r s s

q Q r R s S

fc X fc Y fc Z
  

+ +                   (1.1) 

Fixed transportation cost =  

kt lt kt mt

k pq l qr k rs m sf

t T k K p P q Q t T l L q Q r R t T k K r R s S t T m M s S f F

e N e N e N e N
               

+ + +             (1.2) 

Variable transportation cost =  
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    t t t t

pq pq qr qr rs rs sf sf

t T p P q Q t T q Q r R t T r R s S t T s S f F

v g E u g G v g U v g V
           

+ + +      (1.3) 

Inventory cost =      t t t

q q r r s s

t T q Q t T r R t T s S

I ic J ic B ic
     

+ +                    (1.4) 

Handling cost =  

t t t t t t

pq qr q qr rs r rs sf s

t T p P q Q q Q r R t T q Q r R r R s S t T r R s S s S f F

E G hc G U hc U V hc
              

     
+ + + + +     

     
           

  (1.5) 

The calculation of emissions from various sources is the crucial stage in the model formulation. 

The emission factor based on the total storage capacity of the warehouses is taken into 

consideration while determining the emission generated because of facility establishment. We 

have followed the approach of fixed transportation emission per vehicle described in Paksoy 

et al., (2011) and Mohammed and Wang (2017b) for calculating the transportation emission. 

The fixed emission factor per unit stocked and handled is considered for calculating the 

inventory and handling related emissions (Kaur and Singh 2017; Oglethorpe, 2010).   

Objective 2 = Minimization of Total Emission of CO2 (TE) 

Min Obj2 (TE) = Emission due to facility establishment + Emission due to transportation  

+   Emission due to inventory holding + Emission due to handling   (2)

  

Emission due to facility establishment (EF) = 
q q r r s s

q Q r R s S

X Y Z  
  

+ +                 (2.1) 

Emission due to transportation (ET) = 
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k kt l lt k kt

pq pq pq qr qr qr rs rs rs

t T k K p P q Q t T l L q Q r R t T k K r R s S

m mt

sf sf sf

t T m M s S f F

g N g N g N

g N

  



           

   

+ + +  


                         (2.2) 

Emission due to inventory holding (EI) = 

t t t

q q r r s s

t T q Q t T r R t T s S

I J B  
     

+ +      (2.3) 

Emission due to handling (EH) =  

t t t t t t

pq qr q qr rs r rs sf s

t T p P q Q q Q r R t T q Q r R r R s S t T r R s S s S f F

E G G U U V  
              

     
+ + + + +     

     
           

                    (2.4) 

Subject to constraints  

The total amount of food grain shipped from the procurement centre to all central warehouses 

should be less than or equal to the maximum quantity available at a particular 

procurement centre in a given time period. 

                     ,  t t

pq p

q Q

E A p t


      (3) 

A procurement centre has to transfer the food grain quantity to the established central 

warehouse only.  

                     ,  ,t

pq qE WX p q t            (4) 

The total amount of food grain distributed from central warehouse to all state warehouses is 

restricted by the maximum available inventory at the respective central warehouse in a given 

period t.  

                         ,  t t

qr q

r R

G I q t


      (5) 
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Food grain from the central warehouse is transferred to the state warehouse only if both central 

and state warehouses are established   

                         ,  ,  t

qr q rG WX Y q r t       (6) 

Similarly, the supply restrictions of state warehouse and district level warehouse are 

represented by constraint (7) and (8) respectively.  

                            ,  t t

rs r

s S

U J r t


      (7) 

                          ,  t t

sf s

f F

V B s t


      (8) 

Food grain from state warehouse is dispatched to district level warehouse only if both state and 

district level warehouses are constructed.  

                           ,  ,  t

rs r sU WY Z r s t             (9) 

Correspondingly, district level warehouse distributes the food grain to fair price shops only if 

the district level warehouse is established.   

                           ,  ,  t

sf sV WZ s f t                         (10) 

Total amount of food grain shipped from all district level warehouses should be equal to the 

demand of fair price shop. 

                    ,  t t

sf f

s S

V d f t


=      (11) 

The inventory at central warehouse should be lower or equal to the maximum inventory holding 

capacity of the central warehouse at any time.  

( )1
              ,  

t t t

q pq q

p P

I E b q t
−



+       (12) 
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Similarly, the capacity constraints of state warehouse and district level warehouse are defined 

by the constraint (13) and (14) respectively.     

( )1
              ,  

t t t

r qr r

q Q

J G b r t
−



+       (13) 

( )1
                ,  

t t t

s rs s

r R

B U b s t
−



+       (14) 

Inventory flow balance equations for central warehouses, state warehouses and district level 

warehouses are illustrated by Constraints (15), (16) and (17) respectively.      

( )1
             ,  

t t t t

q pq qr q

p P r R

I E G I q t
−

 

+ − =       (15) 

( )1
              ,  

t t t t

r qr rs r

q Q s S

J G U J r t
−

 

+ − =       (16) 

( )1
              ,  

t t t t

s rs sf s

r R f F

B U V B s t
−

 

+ − =       (17) 

Total amount of food grain quantity dispatched from procurement centre to central warehouse 

has to be lower or equal to the total capacity of trucks shipped between the same echelons.  

           ,  ,  t kt

pq pq k

k K

E N p q t


        (18) 

Correspondingly, the rake capacity constraint between a central and state warehouse, truck 

capacity constraint between state and district level warehouse, and truck capacity constraint 

between district level warehouse and fair price shop are specified by constraint (19), (20) and 

(21) respectively.   

           ,  ,  t lt

qr qr l

l L

G N q r t


        (19) 

           ,  ,  t kt

rs rs k

k K

U N r s t


        (20) 
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          ,  ,  t mt

sf sf m

m M

V N s f t


        (21) 

The number of each type of trucks utilized from the procurement centre to central warehouse 

should be within the maximum trucks available at respective procurement centre at a given 

time period.  

          ,  ,  kt t

pq kp

q Q

N p k t


       (22) 

Likewise, the restrictions on a number of rakes used between central and state warehouse, the 

number of trucks shipped from state to district level warehouse, and the number of trucks 

moved from district level warehouse to fair price shops are described using Constraint (23), 

(24) and (25) respectively.  

          ,  ,  lt t

qr lq

r R

N q l t


       (23) 
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          ,  ,  mt t
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       (25) 

Binary decision variables which indicate the establishment of central, state and district level 

warehouses.  

 , , 0,1          ,  ,  q r sX Y Z q r s       (26) 

The total amount of food grain quantity dispatched from a procurement centre to a central 

warehouse, a central warehouse to state warehouse, a state warehouse to a district level 

warehouse and a district level warehouse to fair price shop should be higher or equal to zero. 

Also, the inventory available at central, state, and district level warehouse should be higher or 

equal to zero.  



21 
 

 , ,  ,  , , , 0    ,  ,  ,  ,  ,  t t t t t t t
pq qr rs q r ssfE G U V I J B p q r s f t         (27) 

Total number of each type of vehicle travelled from a procurement centre to a central 

warehouse, a central warehouse to state warehouse, a state warehouse to a district level 

warehouse and a district level warehouse to fair price shops should be an integer.  

 , , ,                   ,  ,  ,  ,  ,  ,  ,  ,  kt lt kt mt

pq qr rs sfN N N N p q r s f k l m t            (28) 

5. Research methodology  

The classical multi-objective methods including epsilon constraint, goal programming, and 

weighted sum methods take substantial computational time for solving the real size problem 

instances because of a large set of variables and constraints (Kadambala et al. 2017; Maiyar 

and Thakkar 2017; Yu et al. 2017). Moreover, these techniques generate only one optimal point 

on the Pareto frontier in a single iteration, which lacks credibility in decision making 

(Pasandideh et al. 2015; Deb, 2001). In the extant literature, several authors have proved the 

efficiency and effectiveness of MOPSO and NSGA-II algorithms in dealing with bi-objective 

and multi-objective problems. Indeed, complex multi-objective problems including series-

parallel inventory redundancy allocation problem (Alikar et al. 2017), low-carbon distribution 

system problem (Validi et al. 2014b), cross-docking scheduling problem (Mohtashami et al. 

2015) and inventory control problem (Mousavi et al. 2016; Srivastav and Agrawal 2016) are 

tackled through MOPSO and NSGA-II algorithms. The MOPSO is used due to its ease of 

execution, the capability of endowing good convergence and preserving a balance between 

exploitation and exploration (Chakraborty et al. 2011; De et al. 2017; Govindan et al. 2019). 

The NSGA-II is well recognized, popular and robust algorithm to solve the multi-objective 

models (Pasandideh et al. 2015; Musavi and Bozorgi-Amiri 2017). Therefore, these two 

algorithms are implemented to obtain the Pareto optimal solutions to the problem.  
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The comprehensive steps of these two algorithms and data collection method are represented 

in the overall research methodology as shown in Figure B.1 (refer Appendix B). The warehouse 

location-allocation problem is identified from the storage capacity gap associated with the FCI. 

The critical review of the SFSC problems is carried out to analyse different model 

characteristics and find out the research gap. Next, the bi-objective mathematical model that 

seeks to minimize cost and carbon emission is formulated to support the decision-making 

process of policymakers. The data pertaining to model parameters is gleaned from several 

reliable sources. The data related to the fixed cost of warehouse locations and its capacity, 

inventory and operational cost is obtained from the High-level committee report (2015). The 

data related to supply, demand, potential locations of warehouses, transportation cost, 

availability of vehicles and its capacity are collected from field visits. The approach used by 

Nurjanni et al. (2017) and Mohammed and Wang (2017b) is followed while hypothetically 

simulating the data related to the amount of CO2 released. The distances between the two 

locations are determined from the google maps. Table B.1 (Appendix B) provides a summary 

of these model parameter values. Further, two Pareto based algorithms are selected to solve the 

bi-objective mathematical model and carried out the parameter tuning of algorithmic 

parameters. Finally, proposed algorithms are implemented and results are compared following 

the relevant literature.   

5.1 Multi-objective particle swarm optimization (MOPSO)  

A population-based optimization technique called particle swarm optimization (PSO) 

algorithm was proposed by Eberhart and Kennedy (1995) inspired from the behaviour of bird 

flocking and fish schooling. The PSO algorithm is mainly used for the optimization of single 

objective models and provides near-optimal solutions. Inspired by the PSO strategy, Moore 

and Chapman (1999) developed the MOPSO algorithm for solving multi-objective problems, 

where the Pareto archive is used to store all non-dominated solutions. PSO based algorithms 
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are simple for implementation, needs less parameter setting and balanced mechanism for local 

and global explorations (Trelea 2003; Zheng et al. 2003). Relying on the detailed flowchart of 

MOPSO as given in Figure B.1, the initialization, the fast non-dominated sorting and crowding 

distance steps of MOPSO are similar to the NSGA-II steps. In order to update the velocity of 

particles, Eq. (29) and (30) are used as follows.  

( ) ( )1 1 1 2 2

i i i i i i

t t t t t tv wv C r pbest x C r gbest x+ = + − + −     (29) 

1 1

i i i

t t tx x v+ += +          (30) 

Where 
1 1  i i

t tv and x+ +
 are the updated velocity and position vector of an ith particle in a t+1 

iteration, r1 and r2 are uniformly distributed random numbers between 0 and 1, C1 and C2 

represent the acceleration constants, pbest and gbest illustrates the local best for each individual 

and global best of the population and w is the inertia weight. Similar to the NSGA-II, parents 

and offspring are combined. The algorithm stops when it satisfies the termination criteria of a 

maximum number of iterations.   

5.2 Non-Dominated Sorting Genetic algorithm II (NSGA-II) 

Deb et al. (2002) proposed NSGA-II as one of the well-known and efficient Pareto based multi-

objective algorithms. Several researchers have proved its effectiveness and quality by tackling 

complex engineering and combinatorial multi-objective problems through NSGA-II (Govindan 

et al. 2014; Kadambala et al. 2017; Mohtashami et al. 2015). The problem is solved using the 

NSGA-II through the implementation of the several key steps mentioned in Figure B.1. The 

full explanation of the NSGA-II algorithm is provided in Appendix C.    

6. Results and discussion  

Initially, fifteen problem instances are generated following the collected secondary data for 

verification and validation of the model. The problem characteristics include the number of 
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procurement centres (PC), central warehouses (CW), state warehouses (SW) and district-level 

warehouses (DLW), fair price shops (FPS) and time periods (TP). These test problems are 

classified into three sizes: small, medium and large scale according to Table 1. Moreover, the 

complexity of the model in terms of a number of decision variables and constraints in each test 

problem is presented in the same table.
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Table 1 Different problem instances and its complexity 

 

Parameter setting of the algorithm is one of the crucial aspects. The solution quality and convergence velocity mostly depend on it (Mousavi et al. 

2016; Kadambala et al. 2017). Therefore, several preliminary computational experiments are performed to find out suitable parameters. The tuned 

algorithm parameters of NSGA-II algorithm are as follows: (1) Population size = 50; (2) crossover probability = 0.9; (3) mutation probability = 

Problem 

size 

Problem 

instance 

number 

PC(P) CW(Q) SW(R) DLW(S) FPS(F) TP(T) 
Decision variables   Constraints   

Binary  Continuous   Integer  Total Equality  Inequality  Total 

Small scale  

I1 4 2 3 6 8 2 11 182 480 673 529 644 1173 

I2 6 3 5 9 11 2 17 388 1062 1467 1135 1314 2449 

I3 8 4 6 11 13 2 21 572 1590 2183 1679 1906 3585 

I4 10 5 7 12 15 2 25 782 2196 3003 2301 2576 4877 

I5 11 6 8 13 16 2 27 906 2556 3489 2669 2968 5637 

Medium 

scale 

I6 12 7 9 14 18 3 30 1665 4725 6420 4899 5386 10285 

I7 15 8 11 18 21 3 37 2463 7056 9556 7267 7873 15140 

I8 18 10 13 21 25 3 44 3456 9972 13472 10223 10946 21169 

I9 20 11 15 25 29 3 51 4608 13365 18024 13656 14483 28139 

I10 22 13 17 28 32 3 58 5811 16911 22780 17239 18174 35413 

Large scale  

I11 25 15 20 30 35 4 65 9560 27900 35525 28365 29760 58125 

I12 27 18 22 33 38 4 73 11740 34344 46157 34861 36418 71279 

I13 30 20 25 35 40 4 80 13820 40500 54400 41060 42780 83840 

I14 40 25 30 45 55 4 100 22700 66900 89700 67620 69790 137410 

I15 50 30 35 55 70 4 120 33780 99900 133800 100780 103400 204180 
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0.1 and (4) number of generations = 200. Similarly, we have set the following suitable 

parameters for MOPSO algorithm. (1) Swarm size = 50; (2) Inertia weight = 0.9; (3) Cognition 

acceleration parameter = 0.1; (4) Social acceleration parameter =0.95 and (5) number of 

generations = 200. 

The Matlab (R2018a) software is used for computer coding of both algorithms. All 

computational experiments are run on a computer with Intel Core i5, 2.90 GHz processor with 

8 GB RAM. Each problem instance is solved by means of MOPSO and NSGA-II algorithm 

with calibrated parameters. The obtained solutions of the model in terms of “minimum”, 

“intermediate”, and “maximum” values of the first objective (total cost) and the second 

objective function (total CO2 emission) along with the computational time for all instances 

using proposed two algorithms are reported in Tables 2(a) and (b) respectively. The 

“minimum” and “maximum” portrays the highest and lowest values of a particular objective in 

the Pareto front. Both the objectives are treated in the same way and given equal importance 

(weights) while selecting the Pareto optimal solution (intermediate) among the set of non-

dominated solutions. The Pareto optimal solution mentioned in Tables 2(a) and (b) is one 

among the set of Pareto solutions obtained in several runs. It can be observed from these tables 

that MOPSO algorithm performs better compared to NSGA-II for all considered problem 

instances. The CPU time taken by the NSGA-II algorithm to solve each problem instance is 

higher than the MOPSO. These results support the findings of Kadambala et al. (2017), 

Maghsoudlou et al. (2016) and Srivastav and Agrawal (2016). The cost minimal and emission 

minimal solution pertaining to the first problem instance is evaluated and reported in Table 3. 

It can be noticed from this table that if decision makers aspire to optimize the cost over the 

emission, the best choice has a cost value of 52.89 m and emission value of 338.59 mt. In 

another case, if policymakers wish to optimize emission over the cost then the values 

mentioned in the second row of Table 3 will be the best alternative. Finally, if there is no 
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priority among the two objectives, an intermediate (best compromise) solution reported in the 

last row of Table 3 will be the best option. 

 

Table 2(a) Computational results obtained using MOPSO algorithm  

 

Problem 

instance  

Total cost (millions $) Total CO2 emission (mt) 
Computational  

Time (sec) 
min inter max min inter max 

I1 52.89 55.24 56.90 338.05 338.37 338.59 13.77 

I2 169.42 170.37 172.13 909.32 909.56 909.72 28.37 

I3 275.31 276.80 278.18 1610.89 1610.95 1611.07 40.23 

I4 448.74 449.71 450.39 2507.52 2507.87 2508.10 54.35 

I5 538.08 539.25 540.71 2813.00 2813.05 2813.09 63.18 

I6 1072.59 1075.23 1079.32 6184.82 6185.33 6185.75 114.20 

I7 1674.47 1680.00 1683.42 8783.45 8784.21 8788.12 172.06 

I8 2392.93 2401.22 2404.90 11963.13 11964.56 11965.23 238.19 

I9 3134.22 3134.89 3137.02 15422.08 15423.24 15423.95 331.25 

I10 3849.36 3849.90 3852.96 20919.80 20920.51 20921.12 416.54 

I11 7800.14 7806.14 7810.66 36116.76 36118.40 36121.08 689.67 

I12 9768.32 9772.49 9774.73 48422.48 48423.25 48424.01 863.52 

I13 10919.80 10927.71 10937.41 62211.27 62214.79 62222.41 961.77 

I14 18114.15 18121.74 18131.70 92109.07 92109.59 92109.92 1585.02 

I15 26053.81 26060.15 26066.17 132163.45 132167.64 132172.01 2380.36 
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Table 2(b) Computational results obtained using NSGA-II algorithm 

 

Problem 

instance 

Total cost (millions $) Total CO2 emission (mt) 
Computational 

Time (sec) 
min inter max min inter max 

I1 53.21 55.46 57.28 338.12 338.45 338.63 17.32 

I2 169.66 170.49 172.40 909.26 909.66 909.79 36.75 

I3 275.44 277.13 278.50 1610.93 1610.99 1611.13 57.83 

I4 449.08 449.84 450.55 2507.65 2507.94 2508.15 68.59 

I5 538.24 539.45 540.94 2813.33 2813.57 2813.60 90.24 

I6 1073.28 1075.49 1080.22 6184.72 6185.43 6185.87 136.59 

I7 1676.08 1680.39 1685.21 8784.11 8785.74 8788.35 198.34 

I8 2393.15 2401.46 2405.16 11963.39 11964.63 11965.48 287.78 

I9 3134.48 3135.08 3137.26 15422.46 15423.39 15424.26 392.04 

I10 3849.53 3850.04 3853.17 20919.86 20920.98 20921.33 475.87 

I11 7800.42 7806.34 7810.98 36116.92 36118.48 36121.13 767.38 

I12 9768.83 9772.90 9775.86 48422.71 48423.92 48425.29 907.61 

I13 10921.66 10928.19 10935.64 62211.94 62214.91 62222.92 1095.94 

I14 18119.89 18125.84 18136.28 92109.41 92109.77 92110.60 1657.89 

I15 26054.31 26060.37 26067.16 132163.83 132167.76 132172.30 2528.76 

 

 

Table 3 Payoff matrix for first problem instance  

Objective functions Total cost (m$) Total CO2 emission (mt) 

Total cost 52.89 338.59 

Total CO2 emission 56.90 338.05 

Best compromise 

solution 
55.24 338.37 

 

One test instance from each problem category is selected to ensure conciseness in discussing 

the results of the optimization model. Figures 2(a) - (c) portray the Pareto frontier of both 

optimization techniques for the chosen three problem instances. MOPSO provides suitable 

Pareto solutions with more number of Pareto points on the efficient frontier compared to 
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NSGA-II. These Pareto points will be beneficial to the policymakers while designing the SFSC 

network. According to the policymakers’ preferences, they can select any one solution from 

the set of Pareto optimal solutions. In the literature, Harris et al. (2014); Nurjanni et al. (2017); 

Soysal et al. (2014); Validi et al. (2014b), Guo et al. (2018) and Wang et al. (2011) discussed 

the similar type of solution behaviour. The nature of the obtained Pareto frontier is compatible 

with their results. 
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(a)                                                                                      (b)        (c) 

Figure 2. Pareto frontier of (a) third problem (b) seventh problem and (c) thirteenth problem  

A brief summary of all the values of decision variables considering finite planning horizon pertaining to each selected problem instance is analyzed 

and reported in Figures 3(a) and (b). Consolidated quantity of food grain transported between each stage and inventory available in the different 

warehouses at the end of the periods are represented in Figure 3(a). The carbon emission caused due to transportation activities mainly depends 

on the vehicles dispatched for transporting food grains between echelons. Hence, Figure 3(b) illustrates the aggregated heterogeneous vehicles 

dispatched within an overall planning period for food grains movement. The escalation in the quantity shipped between each stage and 

corresponding vehicles moved against the increment in the problem scale are perceived from these two figures. 
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Figure 3 (a) Consolidated grain quantity transferred and inventory level  

 

 

Figure 3 (b) Consolidated number of vehicles utilised 

 

Sensitivity analysis  

The sensitivity analysis is conducted on the problem instance three to visualize the influence 

of the model parameters on two objectives and to obtain more insights for the improvement in 

the current SFSC. The number of procurement centres (supply) and the number of fair price 

shops (demand) are two crucial parameters of the model. Therefore, these two parameters are 

taken into consideration to observe the impact of variation in supply and demand. Figures 4(a) 
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and (b) depict the effect of the deviation of a number of procurement centres from -50% to 

+50% of its current value on cost and CO2 emission respectively. The supply network cost is 

increased (35.67%) and decreased (19.33%) when the number of 

procurement centres increased and decreased (50%), respectively. Similarly, the increment of 

50% in a number of procurement centres decrease the CO2 emission by 2.04% and decrement 

of 50% increases the emission by 3.52%. The changes in the values of each component of two 

objectives can also be viewed from Figures 4(a) and (b). In a similar way, the fluctuations in 

the numerical values of two objectives along with their elements are reported in Figures 5(a) 

and (b) after varying the number of fair price shops by +50%, +25%, -25% and -50% from its 

original value. It is observed from figure 5(a) that total cost increased and decreased when the 

number of fair price shops increased and decreased. The CO2 emission is diminished (4.65%) 

and increased (11.73%) after the 50% increment and reduction in a number of fair price shops. 

Following these relationships, policymakers should focus on establishing an adequate number 

of warehouses in surplus and deficit states by maintaining the proper balance between two 

objectives. Various acronyms used in Figures 4 (a, b) and 5 (a, b) for describing the several 

components of cost and emission objectives are elaborated as follows.  FLC - Facility location 

cost, TRC - Transportation cost, INC - Inventory cost, HAC - Handling cost and TC - Total 

cost. EFL – Emission produced during facility establishment, ET – Transportation 

emission, EI – Emission generated due to the stocking of inventory, EH – Emission generated 

due to handling activities and TE – Total emission.      
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Figure 4(a). The impact of variations in supply (procurement centres) on cost 

 

 

Figure 4(b). The impact of variations in supply (procurement centres) on CO2 emission 
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Figure 5(a). The impact of variations in demand (fair price shops) on cost 

 

 

 

Figure 5(b). The impact of variations in demand (fair price shops) on CO2 emission 

 

7. Conclusion and future scope  

This study aimed to explore the sustainability in FSC domain by developing a decision support 

model integrating the economic and environmental dimensions. The storage capacity gap, 
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increment of food grain stock, colossal post-harvest losses and degrading environment are 

some of the key motivations behind this study. The development of a bi-objective mathematical 

model by integrating the several problem peculiarities to support the strategic and tactical 

decision-making process of policymakers is the main contribution of our work. The formulated 

mathematical model is competent enough to demonstrate the trade-offs between cost and CO2 

emission. Small, medium and large scale problem instances stimulated from food grain supply 

chain in India are solved using two Pareto based multi-objective algorithms. The solution 

obtained through MOPSO algorithm is superior compared with NSGA-II algorithm. Sensitivity 

analysis results imply that the decision makers should establish a sufficient number of 

warehouses in each producing and consuming states by maintaining the suitable balance 

between the two objectives. Some of the crucial managerial insights and theoretical 

implications which can improve the efficacy and effectiveness of the present food grain supply 

chain pertaining to the results of the study are delineated here. 

7.1 Theoretical implications   

This research study delivers the theoretical contributions to the recent topic of sustainability in 

the FSC. Existing research work of Banasik et al. (2019), Mohammed and Wang (2017b), 

Seuring (2013), Maiyar and Thakkar (2017), Brandenburg et al. (2014) and Wang et al. (2019) 

argued the growing attention of the environmental impact of FSC activities along with 

economic influence. New mathematical models are necessary to improve the FSC in 

developing nations by integrating sustainability, multiple time periods, integration of 

procurement, transportation and storage decisions (Esteso et al. 2018, Zhu et al. 2018). They 

also emphasized the integration of economic and environmental aspects and their conflicting 

nature and multi-objective modelling in SFSC domain. Following these arguments, a novel 

decision support model which aims to minimize the cost and emission is presented to design 

the SFSC network. 
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Furthermore, past studies mainly focused on multi-echelon supply chain network with facility 

location, variable transportation costs and transportation emission (Banasik et al. 2017, 

Mohammed and Wang 2017a, 2017b, Validi et al. 2014a, 2018). Few scholars evaluated the 

location and transportation related decisions in their works (Musavi and Bozorgi-Amiri 2017, 

Govindan et al. 2014). Therefore, several practical characteristics like multiple time periods 

and transportation modes, heterogeneous capacitated vehicles and their limited availability, 

multiple sourcing and distribution, geographically dispersed producing and consuming states, 

capacitated warehouses and vehicle capacity restrictions are simultaneously integrated into the 

developed model. The transportation emissions affected by vehicle types, load of vehicles and 

travelled distances, emission caused due to facility establishment, holding and handling 

operations are also considered in the model.  A comparative analysis of two meta-heuristic 

algorithms on the food grain supply chain problem in developing economy is also distinctive 

which bridges the research gap of algorithms/heuristics applications in SFSC domain (Esteso 

et al. 2018, Zhu et al. 2018, Validi et al. 2015, Mohammed and Wang 2017b, Allaoui et al. 

2018). The influence of supply and demand uncertainty is captured through the sensitivity 

analysis which overlooked in the Validi et al. (2014b) and Maiyar and Thakkar et al. (2017) 

studies.     

7.2 Managerial implications  

The different actors involved in the FSC including farmers, state government agencies of 

surplus and deficit states, private transporters, FCI and railways get several insights from this 

research. Due to the increment of central food grain stock and gloomy capacity addition in the 

last decade, policymakers should bridge the storage capacity gap by establishing adequate 

warehouses across the country. The proposed decision support model can be used for the 

feasibility analysis of the various potential locations that help to evade the loss of huge capital 

investment. The establishment of central warehouses in surplus states will be helpful for quick 
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transfer of food grain stock from procurement centres to central warehouses. This will results 

in the increment of procurement from farmers and they get the benefit of MSP which improves 

their economic and welfare growth. Similarly, the construction of state and district level 

warehouses will be useful for the effective distribution of food grains in deficit states and 

reducing the malnutrition by satisfying the demand of the people. Due to the construction of 

new warehouses, farmers and other actors travel the fewer distances to reach the nearby 

warehouses. This leads to a reduction in transportation cost and associated emission between 

different stages. The less emission will be instrumental to decrease the carbon tax of 

transportation activities. The emission generated by trucks is higher than the rail, hence 

decision makers can focus on utilization of rail rather than truck wherever possible. Therefore, 

transportation activities need a particular interest while establishing warehouses. The storage 

losses of food grain stock by keeping it in open storage will be significantly lowered due to the 

establishment of new warehouses. Overall, the majority of the problems related to storage, 

transportation, post-harvest losses, a huge amount of hiring and carry overcharges can be 

resolved after the availability of sufficient storage capacity. Also, policymakers can curb the 

emission produced due to central food grain stock and associated handling activities by 

maintaining the optimal inventory in different warehouses.  

The Pareto optimal solutions obtained are helpful for the policymakers to maintain the proper 

trade-off between cost and carbon dioxide emission. The movement and storage activity plan 

in a definite planning horizon with the consideration of carbon emission can be prepared using 

the results of this model. Policymakers can make the various strategies and plans based on the 

heterogeneous capacitated vehicles movement to minimize the transportation cost and 

associated emission. The issues related to vehicles requirement and their scheduling along with 

shortages can be resolved through the time-dependent movement plan of vehicles. The storage 

activity plan will be useful for the optimal utilization of resources. 
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Limitations and future scope  

Similar to the other studies, the current study has a few limitations which open the doors for 

future research. The stochastic or fuzzy multi-objective model can be formulated in the near 

future to capture the uncertainty in procurement and demand parameters. The present model 

integrated the economic and environmental dimension of sustainability. We have not explored 

the social dimension due to the difficulty in quantifying the social factors (Esteso et al. 2018, 

Zhu et al. 2018).  Also, water footprint needs to be incorporated in future decision support 

models to evaluate the impact of FSC activities on it. The current model needs the set of 

potential location of different warehouses for the establishment. However, in few instances, 

policymakers can ask for support to determine potential locations of warehouses.  The inclusion 

of the minimization of lead time objective is another possible extension of the present model. 

The current study considered single food grain and future research can look into the multi-food 

grain scenario. The quantification of the post-harvest losses is another avenue for research. The 

proposed two metaheuristic algorithms can be applied to other problems like location-routing, 

hub location and scheduling, and vehicle routing problems in crop based and animal based agro 

food supply chain to evaluate its effectiveness.  
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Model features 

Objective functions 
Decisions 

 

 

Solution method 

Economic objective components 
Environmental objective 

components 

Study 
Multi-

period 

Multi-

modal 

Multi-

echelon 
Approach FLC FTC VTC IC HC 

CO2 emission generated 

due to 

 

L 

 

HFU 

 

PF 

 

IL 

FE TR IH HA 

Allaoui et al. 

(2018) 
✓ ✓ ✓    MILP ✓    ✓     ✓ ✓     ✓   ✓   

Epsilon constraint 

Banasik et al. 

(2017) 
✓   ✓ MILP ✓   ✓   ✓   ✓     ✓   ✓   

  Epsilon constraint 

Govindan et al. 

(2014) 
✓   ✓ MIP 

✓ 

 
✓ ✓   ✓ ✓ ✓   ✓ ✓   ✓   

MOPSO and NSGA-II 

Mohammed 

and Wang 

(2017a) 
    ✓ MILP     ✓             ✓ ✓ ✓   

LP metrics,  Epsilon  

constraint and 

Tchebycheff methods 

Mohammed 

and Wang 

(2017b) 
    ✓ MILP     ✓   ✓ ✓ ✓     

 
✓ 

 

  

 
✓ 

 

  

LP metrics,  Epsilon 

constraint and goal 

programming 

Musavi and 

Bozorgi-Amiri 

(2017) 
    ✓ MILP     ✓       ✓     

 
✓ 

 

  

 
✓ 

 

  

 

NSGA-II and  Epsilon 

constraint 

Nurjanni et al. 

(2017) 
  ✓ ✓ MILP ✓   ✓   ✓   ✓   ✓ 

 
✓   ✓   

Weighted sum, 

Tchebycheff and 

augmented Techeby. 

Soysal et al. 

(2014) 
✓ ✓ ✓ MILP   ✓ ✓ ✓     ✓       ✓ ✓ ✓ 

  Epsilon constraint 

Validi et al. 

(2014a) 
    ✓ MIP ✓ ✓ ✓       ✓     ✓ ✓ ✓   

NSGA-II, MOGA-II 

and Hybrid 

Validi et al. 

(2018) 
    ✓ MIP ✓   ✓       ✓     ✓       

MOGA-II 

Our study ✓ ✓ ✓ MINLP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
MOPSO and NSGA-

II 

Appendix A 

Table A.1 Comparative study of relevant literature with present work 
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Approach: MILP= Mixed integer linear programming; MIP= Mixed integer programming; MINLP = Mixed integer non-linear programming;  

Economic objective components: FLC= Facility location cost; FTC= Fixed transportation cost; VTC= variable transportation cost; IC= Inventory cost; HC= Handling 

cost 

Environmental objective components: CO2 emission generated due to FE= Facility establishment; TR= Transportation; IH= Inventory holding; HA= Handling activities  

Decisions  

Strategic: L= Location, HFU = Heterogeneous fleet utilized; PF= Product flows; IL= Inventory level  
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Appendix B  

 

Figure B.1 Research methodology  
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Table B.1 Summary of model parameter values 

 

 

 

 

 

 

 

 

 

 

Parameters Range of values Parameters Range of values 

qfc  USD  400000-500000 
t

fd  200-700 MT 

rfc  USD  100000-200000 
t

kp  500-1000 

sfc  USD  20000-80000 
t

kr  300-500 

ke  USD 50-30 
t

lq  5-30 

le  USD 300-150 
t

ms  200-400 

me  USD 20-10 k  20-30 MT 

v  USD 0.69 l  1500-3000 MT 

u  USD 0.52 m  8-12 MT 

, ,q r sic ic ic  USD 5 q  1386-2310 Kg 

, ,q r shc hc hc  USD 4.23 r  462-924 kg 

pqg  15-100 Km s  115-323 kg 

qrg  500-2500 Km 
pq

k  0.150-0.225 kg 

rsg  200-500 Km 
l

qr  9-20 kg 

sfg  10-80 Km 
k

rs  0.150-0.225  

t

pa  20000-40000 MT 
m

sf  0.06-0.09 kg 

qb  150000–250000 MT , ,q r s    0.0118 kg 

rb  50000–100000 MT , ,q r s    0.01095 kg 

sb  12500–35000 MT   



51 
 

Appendix C 

Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

Chromosome structure and initialization 

The solution to the problem is encoded in the chromosome in the form of multi-dimensional 

arrays. The set of decision variables comprising of binary (Eq. 23), continuous (Eq. 24) and 

integer (Eq. 25) variables are the part of the chromosome. The values of these decision 

variables are generated randomly, within an upper and a lower limit of decision variables.  

Non-Dominated Sorting 

In the non-dominated set, a particular solution cannot be dominated by any other solution in 

that set. Different non-dominated solutions in the form of sets are obtained through non-

dominated sorting and these sets are called front in multi-objective case. Initially, a temporary 

population is generated by combining the parent and offspring populations. We set np as the 

number of solutions that dominate a solution p and Sp as the set of solutions that are dominated 

by the solution p. The np and Sp are determined for each specific solution in the combined set. 

Now all the solutions with zero np value are included in the first set of non-dominated solutions. 

We traverse through the solutions in Sp for all the population with np=0 and go on reducing the 

domination value until it reaches zero. Then, all these solutions are isolated into another list, 

which forms the second set of non-dominated solutions or the second front. Now the same is 

followed by the new list of the population and subsequent fronts are identified.  

Crowding Distance 

This parameter is used for estimating the density of the solutions surrounding a specific 

solution in the population. To find out the crowding distance of a particular solution, an average 

distance of two neighbouring solutions on either side of that solution along each objective 

function is determined.  
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Genetic Operators 

In order to produce the offspring from the current population, genetic operators including 

mutation and crossover are employed in the algorithm. Mutation is used for obtaining 

diversified solutions and a crossover is used for combining the previous solutions into others. 

The offspring is generated by means of simulated binary crossover operator and polynomial 

mutation operator because of real number encoding.    

Selection 

Selection is performed for evaluating the individuals of the next generation when the offspring 

population combines with the current population. Crowd comparison operator selects the best 

set of solutions after solutions sorting and crowding distance assignment procedure. The lowest 

rank solutions are more preferred, however, if two solutions get the same rank, then the solution 

is selected based on the highest crowding distance criterion. Finally algorithm stops when it 

satisfies the terminations criteria of maximum iterations and provides the set of Pareto optimal 

solutions.  

 


