
A Triple Origin for the Heavy and Low-spin Binary Black Holes
Detected by LIGO/VIRGO

Carl L. Rodriguez1,3 and Fabio Antonini2
1 MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139, USA

2 Astrophysics Research Group, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
Received 2018 May 21; revised 2018 June 14; accepted 2018 June 20; published 2018 August 6

Abstract

We explore the masses, merger rates, eccentricities, and spins for field binary black holes (BHs) driven to
merger by a third companion through the Lidov–Kozai mechanism. Using a population synthesis approach, we
model the creation of stellar-mass BH triples across a range of different initial conditions and stellar
metallicities. We find that the production of triple-mediated mergers is enhanced at low metallicities by a factor
of ∼100 due to the lower BH natal kicks and reduced stellar mass loss. These triples naturally yield heavy binary
BHs with near-zero effective spins, consistent with most of the mergers observed to date. This process produces
a merger rate of between 2 and 25 Gpc−3 yr−1 in the local universe, suggesting that the Lidov–Kozai mechanism
can potentially explain all of the low-spin, heavy BH mergers observed by Advanced LIGO/Virgo. Finally, we
show that triples admit a unique eccentricity and spin distribution that will allow this model to be tested in the
near future.
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1. Introduction

With the detection of five binary black hole (BH) mergers and
one binary BH (BBH) candidate (Abbott et al. 2016b,
2016c, 2017a, 2017b, 2017c), Advanced LIGO and Advanced
Virgo will soon begin providing entire catalogs of BBH mergers.
Even before the detection of GW150914, the first BBH merger,
many different formation scenarios for BBHs had been proposed
in the literature. These include formation from isolated binaries,
either through a common-envelope phase (e.g., Belczynski et al.
2002, 2010, 2016; Podsiadlowski et al. 2003; Voss & Tauris
2003; Sadowski et al. 2008; Dominik et al. 2012, 2015, 2013) or
through chemically homogeneous evolution via rapid rotation
(e.g., De Mink & Mandel 2016; Mandel & De Mink 2016;
Marchant et al. 2016), and dynamical formation in dense star
clusters such as open clusters (e.g., Portegies Zwart &
McMillan 2000; Banerjee et al. 2010; Ziosi et al. 2014; Banerjee
2017), globular clusters (e.g., Portegies Zwart &McMillan 2000;
O’Leary et al. 2006, 2007; Moody & Sigurdsson 2009; Downing
et al. 2010, 2011; Tanikawa 2013; Bae et al. 2014; Rodriguez
et al. 2015, 2016a, 2016b, 2018; Askar et al. 2016; Giesler et al.
2018), or galactic nuclei (e.g., Miller & Lauburg 2009; O’Leary
et al. 2009; Antonini & Perets 2012; Antonini & Rasio 2016;
Bartos et al. 2017; VanLandingham et al. 2016; Petrovich &
Antonini 2017; Stone et al. 2017; Hoang et al. 2018; Leigh et al.
2018). Despite their vastly different physical mechanisms, each
of these formation channels has been invoked to solve the same
problem: getting two BHs sufficiently close that the emission of
gravitational waves (GWs) will lead them to merge.

To solve this problem, Silsbee & Tremaine (2017) and
Antonini et al. (2017) proposed an alternative solution that
invokes the secular interaction of a BBH with a third distant
companion in the field of a galaxy. This third object can, at an
appropriate separation and inclination, induce highly eccentric
oscillations in the BBH, which will in turn promote a rapid
merger of the binary through GW emission. This application of

the mechanism of Lidov (1962) and Kozai (1962) (LK) (see
Naoz 2016, for a review) provides a natural, purely dynamical
mechanism to drive BBHs to merge in the field of a galaxy
without having to invoke the complicated and poorly
constrained physics of common-envelope evolution. Despite
the high multiplicity of triple systems around massive binaries
(∼60%, Sana et al. 2014), the contribution of stellar triples to
the BBH merger rate remains minimally explored.
Furthermore, it has recently been shown (Antonini et al.

2018; Liu & Lai 2017, 2018) that the precession of the intrinsic
spins of the BHs about the orbital angular momentum of
the binary can produce significant misalignment between the
orbital and spin angular momenta of merging BBHs from the
LK channel. In Antonini et al. (2018), we showed that the spin
evolution of a BBH during LK oscillations naturally leads to
effective spins near zero, consistent with many of the LIGO/
Virgo detections to date. Given that the spins of merging BBHs
have been proposed as a promising way to discriminate
between formation channels (Gerosa et al. 2013; Rodriguez
et al. 2016c; Farr et al. 2017, 2018; Vitale et al. 2017),
understanding the spin dynamics of any given formation
channel is necessary to understand its contribution to the GW
landscape.
In this paper, we explore BBH mergers from binaries driven

to merger by the LK effect in galactic fields. We evolve a set of
stellar triples to provide a realistic population of stellar-mass
BH triples, which are in turn integrated using the secular LK
equations including the relativistic spin–orbit (SO) and spin–
spin (SS) couplings from post-Newtonian (pN) theory. We find
that at low metallicities the production of LK-driven mergers
from stellar triples is significantly enhanced, largely due to the
lower BH natal kicks and reduced mass lost to stellar winds.
Combined with an integration over the cosmic star formation
rate (SFR), this enhancement suggests a BH merger rate
between 1 and 25 Gpc−3 yr−1 in the local universe, competitive
with other formation channels. These low-metallicity LK-
driven mergers, with their large masses and near-zero effective
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spins, can easily explain all of the heavy, low-spin BBH
mergers observed by LIGO/Virgo.

In Section 2, we re-derive the relativistic corrections to the
binary motion arising from the precession of the pericenter and
the lowest-order SO and SS terms, using a Hamiltonian
formalism developed in Tremaine et al. (2009), Petrovich
(2015), and Liu et al. (2015), and explore the resultant
implications for the spin evolution. In Section 3, we describe
the setup of our triple population synthesis technique, while in
Section 4 we describe the features of our population of evolved
BH triples. In Section 5, we show how the distribution of BH
spins from merging triples (and in particular the distributions of
the effective spins) naturally forms a population of mergers
with near-zero effective spins, while in Section 6 we showcase
various observable parameters from our BBH merger popula-
tion (including the masses, eccentricities, and spins), and
compute the merger rate of BH triples. Throughout this paper,
we assume a ΛCDM cosmology with h=0.679 and
ΩM=0.3065 (Ade et al. 2016), and that all BHs are born
maximally spinning (although we relax this assumption in
Section 6.1).

2. Secular Equations of Motion

We are interested in the long-term evolution of triple systems
for which the relativistic contributions to the inner binary
become significant. To set up our dynamical problem, we use
the LK equations of motion to octupole order (Liu et al. 2015;
Petrovich 2015) using the geometric formalism developed in
Tremaine et al. (2009) and Correia et al. (2011). See Tremaine
& Yavetz (2014) for a detailed explanation. In this formalism,
the orientations of the binaries and their orbital elements are

described using the dimensionless angular momentum and
Laplace–Runge–Lenz vectors, j and e, defined such that

º -
º

ˆ
ˆ

j n
e u

e

e

1 2

where e is the eccentricity of the binary, e points in the
direction of the binary pericenter, and j points along the orbital
angular momentum of the binary. See Figure 1. We also define
the scalar angular momentum for a circular binary

mºL GMa

such that ´ jL is the standard angular momentum vector, with
M≡m1+m2 and μ≡m1m2/M being the reduced mass of
the binary.
The power of this formalism lies in the fact that the Poisson

brackets of the angular momentum and eccentricity vectors can
be expressed as




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where òijk is the Levi–Civita symbol. It is then straightforward
to show that, for any Hamiltonian H, the equations of motion

Figure 1. An illustration of the general problem considered in this paper and the geometric formalism we use. For any triple system, the total angular momentum of
the system is conserved (in the absence of GW emission) and defines a fixed “invariable plane” of the system. L1 and L2 define the circular angular momenta of each
binary (e.g., m= +( )L G m m a1 1 2 ), while the dimensionless angular momentum ( j1 and j2) and eccentricity (e1 and e2) vectors are used to define the orientation and
orbital elements of the triple. The eccentricity of the inner binary (e1) and the mutual inclination of the two binaries change during an LK oscillation, as the two
binaries exchange angular momentum while precessing about the total angular momentum of the system. The plot shows several LK oscillations for a triple with
m1=m2=m3=1 Me, a1=1 au, a2=10 au, e2=0.2, and an initial state of e1=0.5 and i=85°. S1 and S2 define the spin vectors of the inner BHs, which we
assume do not directly couple to the outer binary.
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can be expressed as (Tremaine et al. 2009)

 

=

= +

{ }

{ } { }j e

df

dt
f H

f H f H

,

, ,j e

which, when combined with the Poisson brackets from
Equations (1), yields

 = ´ + ´( ) ( )j
e j

d

dt L
H H

1
2e j

 = - ´ + ´( ) ( )e
j e

d

dt L
H H

1
. 3e j

To determine the orbital evolution of a system, all that remains
is to specify the orbit-averaged Hamiltonian to be inserted into
Equations (2) and (3).

For a non-spinning triple system, the LK Hamiltonian HLK

can be written as

= + + ( )H H H H 4LK 1 2 12

where H1 and H2 are the Keplerian Hamiltonians for the inner
and outer binaries, and H12 is an interaction term between the
two, often expressed as a series expansion in the instantaneous
separation between the two binaries (Kozai 1962; Lidov 1962;
Harrington 1968; Ford et al. 2000; Naoz et al. 2013). We use
the geometric form of these equations developed in Petrovich
(2015) and Liu et al. (2015), accurate up to the octupole order
of the interaction term. See Equations (17)–(20) in Liu
et al. (2015).

To account for the pN corrections to the Newtonian three-
body problem, we can self-consistently add additional terms to
the Hamiltonian, accounting for pericenter precession at first
pN order (1pN), the evolution of the BH spins due to geodetic
precession about j1 (1pN), the back-reaction on the orbit from
Lense–Thirring precession (1.5pN, Damour & Schäeer 1988),
and the gravitomagnetic coupling between the two spins
and the quadrupole–monopole interaction (2pN, Barker &
O’Connell 1975; Damour 2001). The complete Hamiltonian
then becomes

= + + + ( )H H H H H 5LK 1pN SO SS

where the pN couplings between the orbit of the inner masses
and their spins are given by (e.g., Damour & Schäeer 1988;
Buonanno et al. 2011)
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where r1 and p1 are the reduced positions and momenta of the
inner binary, and where we introduce two new combinations of

the BH spin vectors:
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where S1 and S2 correspond to the spin vectors of m1 and m2.
These can also be written in terms of the dimensionless spin
parameter c as

c c= ∣ ∣ ( )S
Gm

c
, 1. 9i i

i
i

2

Averaging each of these terms over an orbital period (see,
e.g., Tremaine & Yavetz 2014), we can express the orbit-
averaged contributions from each pN effect as
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To derive the equations of motion from Equations (10)–(12),
we simply calculate the derivatives using Equations (2) and (3).
For the contribution from á ñH1pN , we find
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with j1 conserved at 1pN order prior to the inclusion of spin
effects or GW emission. This is identical to the pericenter
precession term found in the literature (Eggleton & Kiseleva-
Eggleton 2001; Fabrycky & Tremaine 2007; Liu et al. 2015),
but falls naturally out of the orbit-averaged vector formalism.
We then consider the SO and SS terms. In addition to the
Poisson brackets between j and e, we introduce Poisson
brackets for the spin vectors:
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with all other Poisson brackets ({ }S j,i j
1 1 , { }S e,i j

1 1 , { }S j,i j
1 2 ,

{ }S e,i j
1 2 , and their «1 2 equivalents) being zero. We can then

explicitly write down the orbit-averaged equations of motion
from á ñHSO and á ñHSS :
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and similarly for S2. The SS terms can be derived in a similar
fashion:
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and similarly for S2. Equations (13) and (15)–(20), combined
with the octupole-order LK equations from Liu et al. (2015),
give us the complete equations of motion for a triple with
spinning inner components described by the Hamiltonian in
Equation (5), and are fully consistent with previously derived
results in the literature for isolated binaries (Barker &
O’Connell 1975).

When defining the BH spins, we find it convenient to define
the angles between the spins and the orbital angular momentum
as

q º -
⎛
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·
∣ · ∣
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1 1 1
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and similarly for θ2. We also define the angle between the
components of the spins lying in the orbital plane,
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However, the spin parameter best constrained by the current
generation of GW detectors is the effective binary spin (Ajith
et al. 2011; Vitale et al. 2014; Pürrer et al. 2016), defined as the
mass-weighted projection of the two spins onto the orbital
angular momentum:

c c
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In the following sections, we will primarily focus on χeff as the
main spin observable of interest to Advanced LIGO/Virgo.

Since each of the above dynamical equation resembles an
expression for simple precession (e.g., = W ´u̇ u), it is
straightforward to write down the timescale associated with
each effect as p» W∣ ∣t . At 1pN order, the timescale for the
precession of e1 about j1 (Equation (13), often referred to as
pericenter, Schwarzschild, or apsidal precession) is

p
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Also at 1pN order, the timescale for the precession of the spins
S1 and S2 about j1 is

p
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and similarly for S2. Note that, while SO effects are frequently
referred to as 1.5pN order, the simple precession of the spins
about j1 is formally a 1pN effect. This effect, often referred to as
de Sitter or geodetic precession, is nothing more than the change
in the angles arising from the parallel transport of the spins about
the orbit. Similar timescales can be derived for the higher-order
SO and SS effects. Although we do not write them down here,
we note that the timescales from Equations (15)–(20) agree
with results in the literature (e.g., Merritt 2013) in the limit of

S 02 . Additionally, we define the quadrupole timescale for a
single LK oscillation of the triple as
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where n º +( )G m m a1 2 1
3 is the mean motion of the inner

binary.
Finally, we add the dissipation in a1 and e1 from the

emission of GWs. As writing down Hamiltonians for non-
conservative processes requires special mathematical care, we
instead simply add the known contributions from Peters (1964):
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During each integration timestep, we compute the change in a1
from Equation (25), while the change in eccentricity is included
in the geometric variables as

=
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-

ˆ

ˆ

e
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allowing us to self-consistently track the change in angular
momentum from GW emission during our triple integration.

2.1. Secular Dynamics of Spinning Triples

The chaotic evolution of spins during the evolution of triple
systems has been well described in the context of planetary
systems (e.g., Storch et al. 2014; Liu et al. 2015; Storch & Lai
2015). In that case, the evolution of the spin vector can be
classified by comparing the precession timescales of the orbital
angular momentum of the binary (during an LK oscillation) to
the precession of the spin vector about the total angular
momentum of the inner binary (due to tidal forces). If the

4
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precession rate of S1 about j1 is significantly longer than the
precession of j1 about the total angular momentum of the
system, then the spins are expected to effectively precess about
the total angular momentum, keeping a constant angle with
respect to the invariable plane (the “non-adiabatic” case). For
our problem, this would correspond to tS1>tLK. On the other
hand, if the precession of S1 about j1 is significantly faster than
the precession of j1 (i.e., tS1<tLK), the spins are expected to
adiabatically follow j1, virtually oblivious to the presence of the
third companion. The intermediate “trans-adiabatic” regime, in
which tS1∼tLK, allows for chaotic evolution of the spins, and
is thought to play an important role in the observed spins of
many exo-planetary systems (Storch et al. 2014).

Although we might expect to observe a similar behavior for
the spinning BH systems studied here, we now show that this is
not the case. We define the adiabaticity parameter (with S1 as
the spin of the more massive BH) as

º ( )R
t

t
27

S

LK

1

such that any triple for which R<1 is considered non-
adiabatic, while those where R>1 are considered adiabatic.
While the LK timescale remains unchanged during the
evolution of the triple (ignoring GW emission), the timescale
for spin precession varies as ( - e1 1

2), meaning that the spin
timescale could decrease by several orders of magnitude over
the course of a single LK oscillation. Thus, one might think that
a triple can easily transit from the non-adiabatic to the adiabatic
regime, where its brief moment in the trans-adiabatic regime
can induce chaotic evolution in the spin vectors.

Unfortunately, the potential chaotic spin evolution is largely
suppressed by a conspiracy of relativity (Antonini et al. 2018).
Both the precession of S1, S2 about j1 (Equation (23)) and the
precession of the pericenter of the inner binary (Equation (22))
are formally 1pN order contributions, and both scale as

-( )a e11
5 2

1
2 . However, it is well known that short-range

forces between components of the inner binary—particularly
pericenter precession—can quench LK oscillations in a
hierarchical triple, since at a certain separation the inner binary
will precess so rapidly that it decouples from the outer binary.
Conceptually, this point can be thought of as the separation
where the time for the inner binary to precess by π is shorter
than the timescale to change j1 by the order of itself. Thus, by
setting =t t j1pN LK 1 we find the angular momentum below
which LK oscillations are quenched by relativistic precession4

(Antonini et al. 2018):

p
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+ ⎛
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( ) ( )j
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3 1
. 29GR 2

1 2
2

3

2 2

1

3

1

What Equation (29) describes is an angular momentum
barrier that cannot be passed by systems that evolve from

j1>jGR. Because the pericenter and spin precession terms
enter at the same order in the pN expansion, we find that R=1
near the barrier, implying that initially non-adiabatic systems
(R< 1) cannot become adiabatic (R> 1) in the absence of GW
dissipation. For the population we study in Section 4, roughly
99% of the BH triples begin their evolution in the non-adiabatic
regime, with 87% of systems having R<0.1 and 60% having
R<0.01. At the same time, any triple that may try to evolve
into the trans-adiabatic regime is stopped by the angular
momentum barrier. We conclude that any trans-adiabatic (and
possibly chaotic) evolution of the SO orientation is suppressed.
As such, while we might expect a wide range of SO
misalignments from triples in the non-adiabatic regime,
especially for cases where the eccentric LK mechanism can
produce orbital flips of the system (e.g., Naoz et al. 2011), we
do not expect to see truly chaotic evolution of the triple spins as
one does for planetary systems.

2.2. GW Emission and Freezing the Spin Angles

At the peak of an LK oscillation, the eccentricity of the inner
binary reaches its maximum, and the energy lost via GW
emission can become important for the dynamical evolution of
the triple. We can write the timescale for GW radiation as

=
-

( )t a
da

dt
30GW

1

where the derivative is given by Equation (25). The value of
the angular momentum where GW radiation dominates over the
LK dynamics can be derived by setting tGW=tLK j1, which
gives
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For j1�jGW the inner binary effectively decouples from the
third body, and the BBH merges as an isolated system.
Two situations are relevant here: (i) the 2.5pN terms

dominate the evolution of the binary before the 1pN pericenter
precession can affect the LK oscillations, and (ii) the 1pN terms
become important before the 2.5pN terms and arrest the
evolution of the triple.
In case (i), the inner binary “plunges” directly into the

regime where GWs dominate its evolution during the
maximum eccentricity phase of an LK oscillation. After this
regime is reached, the evolutions of e1 and a1 are the same as in
an isolated binary evolving under GW emission alone; this
happens after approximately one LK cycle (starting from
e1≈ 0) at the quadrupole level of approximation, or could take
several LK cycles at the octupole level. We show an example
of this type of evolution in the left panels of Figure 2. The inner
binary in this case undergoes extreme ( >e 0.999991

max ) LK
oscillations arising from the strong contribution of the
octupole-order terms, including several flips of the inner orbit.
In this strongly non-adiabatic case, the LK oscillations are
several orders of magnitude faster than the spin precession
timescale of the binary, and the spins remain essentially fixed
while j1 varies significantly right up to the merger of the inner
binary.
In case (ii), when the precessional effect becomes important

before the dissipative effects dominate, e1 and the inclination
experience damped oscillations, where the angular momentum

4 An alternative criterion can be derived by requiring that pericenter
precession becomes so strong at a certain separation that the fixed point of
the LK problem no longer exists. This leads to the following condition for LK
oscillations to be fully quenched by the 1pN pericenter precession (Blaes et al.
2002):
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In the next sections, we use Equation (28) to classify systems that will be
completely suppressed by pericenter precession, because it is a more
conservative criterion than Equation (29).
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barrier (Equation (29)) suppresses any trans-adiabatic behavior,
and a1 and e1 slowly decrease over many LK cycles. In the
right panels of Figure 2, we show an example of this type of
evolution. Any highly eccentric oscillations and chaotic spin
evolution are dampened by pericenter precession as the inner
binary reaches high eccentricities. The spin vectors can precess
onto the invariable plane of the triple (as described in Antonini
et al. 2018), eventually freezing to a constant misalignment
with respect to j1 as the inner binary orbit decays due to GW
emission to a region where pericenter precession completely
suppresses LK oscillations, expression (28).

The condition for the transition between regimes (ii) and (i)
can be derived by requiring jGR<jGW, which leads to

p n
<
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For systems that satisfy this condition, the 1pN terms are not
important, since GW radiation will drive a fast inspiral of the
BBH at j≈j2.5pN. Both of these cases have particular
observable properties for Advanced LIGO/Virgo, which we
will explore in Section 6.

3. Triple Population

Here we detail the initial conditions considered in this study,
and describe our method for evolving massive stellar triples
from their birth on the zero-age main sequence to the formation
of BH triples. We start with a population of stellar triples with

the following initial conditions: we draw the primary mass (m1)
of the inner binary from between 22Me and 150Me from a
standard distribution given by p(m)dm∝m−αdm, where
α=2.3 (Kroupa 2001). The mass of the secondary (m2) is
assigned by assuming a uniform distribution of mass ratio, such
that m2/m1=U(0, 1). The tertiary mass (m3) is assigned in a
similar fashion (m3/(m1+m2)=U(0, 1)). These samples are
repeatedly drawn until the initial mass of each star lies between
22Me and 150Me. The spins for all BHs are assumed to be
maximal (χ= 1) although we relax this assumption in
Section 6.1.
The orbital properties for the inner and outer binaries are

selected from two distinct populations: for the inner binaries,
we use recent results on close binaries from Sana et al. (2012).
The orbital periods for the inner binaries are drawn according
to (log P)−0.55d log P where P is in days and log P is selected
from 0.15 to 5.5. The eccentricity is drawn from a distribution
given by p(e)de∝e−0.42de from 0 to 0.9. For the outer
binaries, we assign the semimajor axis from a distribution that
is flat in log a, while the eccentricity is drawn from a thermal
distribution, p(e)de∝2ede. All the angles defining the triple
(arguments of pericenter, longitudes of the ascending node, and
the inclination) are drawn from isotropic distributions (with the
longitude of the ascending node of the outer binary offset from
the inner binary by π (i.e.Ω2=Ω1− π)).
To evolve our stellar triples to BH triples, we use a modified

form of the binary stellar evolution (BSE) package from Hurley
et al. (2002), including newer prescriptions for wind-driven

Figure 2. Two triple systems integrated to merger from our BH triple population described in Section 4. On the left, we show a triple where the eccentric LK
mechanism pushes the inner binary to merge very rapidly (case (i) from Section 2.2). In this case, the spins remain essentially fixed in 3D space (with respect to the
invariable plane) while the orbit of the inner binary oscillates wildly about them. On the right, we show an example where the spin precession and LK oscillations
occur on a similar timescale. Here, the spin vectors smoothly precess onto the invariable plane of the triple (see Antonini et al. 2018), until both they and the inner
binary are frozen at a given orientation due to the increased pericenter precession from the 1pN terms (case (ii)). Eventually this frozen binary merges due to GW
emission. The inset shows the final changes in inclination and θ2 arising from SO and SS effects, where the spins of the inner binary can couple to its orbital angular
momentum (influencing the mutual inclination of the triple). These effects are not present in χeff, since the effective spin is a constant of the motion up to 2pN order.
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mass loss, compact object formation, and pulsational-pair
instabilities (see details in Rodriguez et al. 2016a, 2018). Each
triple is integrated by considering the inner binary and the
tertiary as separate stellar systems. In other words, the binary is
evolved using BSE, while the tertiary is evolved using the
single stellar evolution (SSE) subset of BSE (Hurley et al.
2000). This, of course, does not account for the possibilities of
mass accretion between the inner binary and the tertiary or any
dynamical interaction between the inner and outer binaries (in
other words, we do not consider any LK oscillations that the
triples may experience before they become BH triples). Such
physics, while interesting, is significantly beyond the scope of
this paper (though again see Antonini et al. 2017 for a thorough
analysis of such triples using the self-consistent method
developed in Toonen et al. 2016). What we are interested in
is the change to the orbital components due to the mass loss
and BH natal kicks as the elements of the triple evolve toward
their final BH states.

To compute this, we track the masses, radii, stellar types, BH
natal kicks, and (for the inner binary) the semimajor axes and
eccentricities as computed by BSE for every star/binary. Then,
at every timestep, we expand the semimajor axis of the outer
binary by an increment

D =
D

+ +
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When a BH is formed, we extract the velocity of the natal
kick as computed by BSE. The kick is then applied self-
consistently to the orbital elements of the triple (see Appendix
1 of Hurley et al. 2002). Briefly, we assume that each natal kick
occurs instantaneously (compared to the orbital timescale).
When the kick occurs, we draw a random orbital phase from
the mean anomaly. The kick is then applied instantaneously to
the orbital velocity vector of that component. We compute the
new angular momentum vectors (using the new orbital velocity
vector and the same orbital position vector) and a new Laplace–
Runge–Lenz vector, A. This gives us the new orientation of
each binary in three-dimensional space, as well as the new
semimajor axis and eccentricity, computed via
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where Mnew is the new mass of the binary after BH formation,
and the new j and e vectors are simply L Lnew and Anew,
respectively. The new semimajor axis is given by
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If anew<0 or enew>1, the binary is disrupted.
Note that we must take care to apply the correct kick to each

system. These kicks can be thought of as the combination of
two effects: the actual change in velocity of one component
arising from the asymmetric ejection of material, and the
change in the orbital elements from the instantaneous loss of
mass from a single component (Blaauw 1961). When the inner
binary undergoes a supernova (SN), this mass loss can change
the semimajor axis, eccentricity, and center-of-mass velocity of
the binary. While most of the changes are naturally tracked by
our above formalism, the change in the center-of-mass velocity
of the inner binary must be explicitly recorded. This change is

then added to the velocity arising from the BH natal kick, and
applied as Vnew to the outer binary.
In addition to the masses and the evolution of the orbital

elements, we implement several additional checks on the
survival of our BH triples. We do not keep any triples that
become dynamically unstable at any point during their
integration, because a fully chaotic dynamical triple cannot
be modeled by the secular evolution considered here (and
would very likely result in a collision). We consider triples to
be stable if they satisfy (Mardling & Aarseth 2001)
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We also do not keep any triples that could potentially undergo a
collision between their inner and outer components (BSE self-
consistently tracks for collisions in the inner binary). For this,
any triple where the pericenter distance of the outer binary can
potentially touch the apocenter of the inner binary according to

- - < + +( ) ( ) ( )a e R a e R R1 1 max ,2 2 3 1 1 1 2

at any point during its evolution is discarded (where Ri are the
radii of the stars).
Although we will discuss them in Section 4, we do not

dynamically integrate any triple for which the LK mechanism
will be strongly suppressed by the 1pN pericenter precession of
the inner binary. For this, we simply exclude any triple for
which Equation (28) is satisfied once all three objects
have evolved to BHs. Finally, we explicitly exclude from our
sample any triples whose inner binary would merge during a
Hubble time due to GWs alone. This is done to limit ourselves
to the population of “useful triples” (a term taken from Davies
2017), those that merge only due to the LK oscillations induced
by the tertiary BH. Although there is likely a small population
of merging BBHs whose dynamics may have been altered by a
third companion, we do not consider them, in order to maintain
a clean separation between the triple-driven BBH mergers
studied here and the rate of mergers from common-envelope
evolution in galactic fields.

4. Initial Population of BH Triples

4.1. Evolved BH Triples

We integrate a population of stellar triples using the
formalism and initial conditions described in the previous
section. We consider 11 different stellar metallicities (1.5Ze,
Ze, 0.5Ze, 0.375Ze, 0.25Ze, 0.125Ze, 0.05Ze, 0.0375Ze,
0.025Ze, 0.0125Ze, and 0.005Ze), and integrate 105 different
triples for each metallicity bin, for a total of 1.1×106 stellar
triples.
Of immediate interest is the number of stellar triples that

survive to become stable, hierarchical BH triples. Of our
1.1×106 triples, approximately 10% evolve from zero-age
main-sequence triples to hierarchically stable (Equation (33))
BH triples without being disrupted due to mass loss or natal
kicks, or undergoing stellar collisions. Of those, roughly half
(5% of the initial population) form triples where the LK
timescale is less than the precession timescale of the inner
binary, and have the potential to undergo LK oscillations
(Equation (28)). However, these results are highly dependent
on the metallicity of the system.

7

The Astrophysical Journal, 863:7 (15pp), 2018 August 10 Rodriguez & Antonini



In Figure 3, we show the number of systems in each
metallicity bin that survive their evolution from stellar triple to
BH triple to LK-induced merger (which we will explore in the
next section). As the metallicity is increased, the number of
systems that survive their evolution decreases dramatically,
with nearly an order of magnitude fewer systems remaining as
bound and hierarchical triples at solar metallicity than at lower
(~ Z0.01 ) metallicities. This is entirely due to the mass loss
and natal kicks experienced by massive stars at different stellar
metallicities. Massive stars with high metallicities lose
significant amounts of their mass during their evolution,
largely due to radiation pressure in higher-opacity envelopes
and line-driven winds (e.g., Vink et al. 2001). This mass loss
expands the bound systems (such as binaries and triples),
making each system more susceptible to disruption during
stellar collapse. Furthermore, high-metallicity stars lose more
mass, producing lower-mass cores and correspondingly lower-
mass BHs. These systems are conjectured to experience large
natal kicks during an SN, adding significant velocity kicks to
the system (e.g., Fryer et al. 2012; Repetto & Nelemans 2015),
while many of the massive BHs that form at lower metallicities
are expected to form via direct collapse, experiencing little or
no kick (Fryer & Kalogera 2001; Belczynski et al. 2016). The
effect of metallicity is twofold: high-metallicity systems lose
more mass during their evolution, significantly expanding their
orbits, where the stronger natal kicks associated with these
lower-mass BHs can more easily disrupt the outer orbits.

While the survival of BH triples increases by nearly a factor
of 10 at low Z versus Ze, the number of LK-induced mergers
increases by almost a factor of 100. This additional increase is
due to the decreased mass loss at lower metallicities, which
reduces the expansion of both the inner and outer semimajor
axes during the evolution of the triples. These tighter triples
have significantly shorter LK timescales than triples at high
metallicities. In Figure 3 (red axis) we show the median LK
timescale (24) for the collection of bound and hierarchical

triples in each metallicity bin. The typical LK timescale of the
lowest metallicity triples is ∼100 times shorter than for those at
solar metallicities. These triples will have many opportunities
to experience highly eccentric oscillations (thousands per
Hubble time) that may induce a merger, while high-metallicity
systems may undergo only a few to tens of oscillations within
the age of the universe.

Figure 3. The efficiency of stellar triples at producing merging BBH triples as
a function of metallicity. Each metallicity bin started with 105 stellar triples.
Out of those, we show the number of triples for which the systems remain
bound and hierarchical as they evolve from stars to BHs, the number of those
BH triples for which LK oscillations are possible (according to Equation (28)),
and the number of those BH triples which merge. We also show the median LK
timescale (Equation (24)) in red for all of the LK-possible triples in each
metallicity bin. The increase by a factor of ∼100 in the number of mergers at
low metallicity arises from both the increased number of surviving BH triples
and the decreased LK timescale of those triples.

Figure 4. The final orbital parameters for the inner and outer binaries of all the
bound BH triples at both solar and 5% solar metallicities. At solar metallicity,
the increased mass loss from stellar winds drives both the inner and outer
binaries to significantly larger separations (and correspondingly longer LK
timescales) compared to low-metallicity systems. We separate the populations
into triples that are precession-dominated, those for which LK oscillations are
possible (Equation (28)), and those that have undergone a common-envelope
phase of evolution. We find no post-common-envelope systems that have a
sufficiently close tertiary companion to undergo LK oscillations.
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In Figure 4, we show the orbital parameters of the inner and
outer binaries for those bound and hierarchical triples in our Ze
and 0.05Ze models. While the minimum value of -( )a e11 1

2 at
solar metallicity for LK-driven mergers is ∼10 au, the low-
metallicity triples span the allowed range of inner orbits from
0.1 to -( )a e10 13

1 1
2 . Below 0.1, we find that all BH triples are

suppressed from undergoing LK oscillations by the pericenter
precession of the inner binary. We note that this includes all
systems for which the inner binary has undergone a common-
envelope phase of evolution. Although we find many post-
common-envelope systems in our 1.1×106 triples, they all
inhabit the region of parameter space (Equation (28)) where
pericenter precession quenches any possibility of LK
oscillations.

4.2. Initial BH Spin-misalignment

Although the formalism presented in Section 2 allows us to
track the evolution of the spin vectors for the hierarchical three-
body problem, the initial amount of misalignment between the
BH spins and the angular momentum of the inner binary must
be treated carefully. While we assume that the initial stellar
spins are aligned with j1, it is well known that the BH kicks can
significantly misalign the orbital and spin angular momenta
(e.g. Kalogera 2000), since any instantaneous kick to one of the
binary components will change the direction of the orbital
angular momentum. Fortunately, the formalism presented in
Hurley et al. (2002) and employed here makes it trivial to track
the change in orientation of j1 through the two SNe of the inner
binary (the outer binary kick cannot torque the inner binary).

In Figure 5, we show the post-kick misalignments of the BH
spins with j1, assuming that SN kicks are emitted isotropically
in direction from the surface of the exploding stars, and that
neither mass transfer nor tidal torques can realign either the
stellar or BH spin with the orbit after the natal kick. These are
both highly conservative assumptions that allow us to explore
the maximum allowed post-SN misalignment (see Rodriguez
et al. 2016c). We find that the vast majority of post-kick
misalignments are very small, with 97% of systems having

misalignments less than 0°.1, and 99% of systems having
misalignments less than 6°. On the other hand, the misalign-
ments of the isolated binaries themselves (ignoring whether the
third BH remains bound) can be significantly larger, with ∼8%
of binaries having misalignments greater than 6° (in agreement
with Rodriguez et al. 2016c). This increased preference for
aligned triples arises from the difficulty of keeping the outer
companion bound to the inner binary after the SN. While the
semimajor axes for the inner binaries are sufficiently small for
the binary to survive the kick, the outer orbits are so wide that
the SN kicks are frequently several times larger than the typical
orbital velocities for the outer orbits (usually a few km s−1).
Since smaller kicks produce smaller spin–orbit misalignments,
the requirement that the tertiary companion remains bound
significantly limits the possible range of initial misalignments.
Because of that, and the associated difficulties of following

spin realignment through mass transfer and tidal torques, we
will assume that our BH triple systems begin with their BH
spins aligned with j1 (although we test the implications of this
assumption in Figure 7).

5. Spin Distributions of Useful Triples

We now turn to understanding the spin distributions of
merging triple systems formed from stellar triples. As stated
previously, we are interested in the distribution of “useful”
triples, which we define to be those mergers whose inner
binaries would not have merged in a Hubble time as an isolated
system. We focus mainly on the distributions of χeff

(Equation (21)), because this is the spin parameter most easily
measured by Advanced LIGO/Virgo. The first question that
naturally arises is whether the inclusion of higher-order pN
corrections (the SO and SS terms) has a significant influence on
the final measurable values of χeff. It was claimed in Liu & Lai
(2017, 2018) and Antonini et al. (2017) that the lowest-order
precession of the spin vectors about j1 (also known as geodetic
or de Sitter precession) would dominate the spin dynamics of
the system, and the higher-order terms (such as the Lense–

Figure 5. The misalignments between the spins of the two BHs and the angular
momentum of the inner binary (θ1 and θ2) after the triple has evolved to a stable
BH triple, assuming the initial stellar spins were aligned with j1. We show the
final misalignments for all the inner binaries that were evolved (regardless of
whether the tertiary remained bound and hierarchical), and for all the triples.
The triple population has a significant preference for spin alignment, since any
natal kick capable of significantly torquing j1 would also likely disrupt the
weakly bound tertiary companion.

Figure 6. The distribution of effective spins for merging BBHs. We show the
distribution for triples with varying levels of spin physics. We consider triples
with no spin effects, only 1pN precession of the spins (Equation (17)), all SO
terms (Equations (15)–(17)), and all SO and SS terms (Equations (15)–(20)).
Considering only the 1pN “de Sitter” precession of the spins is clearly
sufficient for most cases, since the higher-order SO and SS terms to not play a
significant role until immediately before merger. The filled gray histogram
shows χeff if the spins were completely isotropic (but using the mass
distribution from our population synthesis).
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Thirring/SO coupling or the SS coupling) would not
significantly affect the dynamical evolution.

In Figure 6, we show the χeff distributions of our useful
triples, and how they vary depending on the sophistication of
the SO physics considered. As expected (Antonini et al. 2017),
there is a significant difference between the triples integrated
with no spin terms and those integrated by considering de Sitter
precession (which we simulate by including all SO terms, but
setting χ1= χ2= 0, allowing the spin vectors to precess but
not couple to the orbits).

Figure 6 also makes clear that the inclusion of the full SO
and SS terms does not play a significant role in the final
distribution of the measurable spin terms. This is fully
consistent with the discussion in Section 2.2: any triple for
which the separation during LK oscillations would get small
enough for SO or SS effects to become relevant will
immediately decouple from the tertiary and merge due to the
GW emission. This “case (i)” type of merger is illustrated in
the left panel of Figure 2. On the other hand, for any case where
the LK oscillations remain relevant during the inspiral, the 1pN
pericenter precession will suppress any higher-order pN effects
until the binary effectively decouples from the third companion
(“case (ii)”, or the right panels of Figure 2). In other words,
there exists no regime in which the SO or SS terms are relevant
for the distributions of χeff.

We have also assumed that the initial spin distributions of
the BHs are aligned with j1 at the beginning of the LK
evolution of the triple. We showed in Section 4.2 that, due to
the natal kicks, the vast majority of bound and hierarchical BH
triples have spins initially aligned with j1 (assuming the spins
of the stars were initially aligned with j1). In Figure 7, we show
χeff for the same population integrated with all spin terms, but
with different initial orientations for the spins. As expected, the
initial misalignments for the stellar triples make little difference
in the final χeff distributions. However, we also find that, if the
distribution of initial spins is isotropic (as would be expected
for dynamically assembled triples, e.g., Antonini & Rasio
2016), then the final distribution of spins is also isotropic. This
is to be expected, since it is well known that an isotropic

distribution of spins will remain isotropic during inspirals of
isolated binaries (Schnittman 2004), and there is no reason to
expect differential precession of the two spin vectors by de
Sitter precession (which dominates the spin evolution during
LK oscillations) to create a preferred direction from an
isotropic distribution.

6. Gravitational-wave Observables

6.1. Masses and Spins

The first obvious observable parameters that can be explored
by the current generation of gravitational-wave detectors are
the masses and the spins of the merging BHs. As mentioned
previously, the spin parameter most easily measured by
Advanced LIGO/Virgo is the effective spin parameter, χeff.
One can immediately ask whether there is any immediate
correlation between the masses and the effective spins of our
merging triples.
In Figure 8, we show the 2D distributions of the total mass

versus the effective spin. There is no strong correlation between
the effective spin and the total mass for the population of triple-
driven mergers surveyed here. This is to be expected, since the
LK timescale (24) is much more strongly dependent on the
angular momentum of the outer binary than on the masses of
the triple components. While this may not hold for more
massive systems (such as a stellar-mass BBH in orbit around a
supermassive BH), there is no significant correlation for the
cases considered here. We do note that this model naturally
explains all of the heavy BBHs observed to date (those with
total masses 40Me) along with their correspondingly low
effective spins.
Throughout this analysis, we have assumed that the spins of

the BBHs are maximal. This was done for simplicity, but we
can also consider the effect of spin magnitudes on our
predictions for χeff. Because we have shown that the SO and

Figure 7. Similar to Figure 6 (with all spin terms), but considering different
initial spin alignments for the inner BBHs. We show the final χeff distributions
for BBHs that are perfectly aligned with j1, those that begin with some
misalignment based on BH natal kicks (Figure 5), and a completely isotropic
initial distribution. The aligned and misaligned distributions are virtually
identical, largely because the initial misalignments are extremely small. The
initially isotropic distribution yields a final distribution that is also isotropic.

Figure 8. Joint total mass (m1 + m2) and effective spin distributions for
merging BBHs. We also show each of the measured posteriors for Mtot and χeff

for each of the five BBH mergers (and one BBH merger candidate) reported by
LIGO/Virgo so far.
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SS terms have a negligible effect on the spin evolution (while
the precession of the spins about j1 is independent of the spin
magnitudes), for χeff in these systems, we can to a good
approximation simply replace the spin magnitudes in our
integrated χeff distributions, to determine what χeff would have
been with lower spins. We show these values in Figure 9. As
the spin magnitudes are decreased, the distribution of χeff

converges to zero, as would be expected for systems with low
spins lying in the plane.

While we have focused on the effective spin of the BBHs, in
reality the spin information is much more complex. It has been
suggested (Gerosa et al. 2013, 2014; Trifirò et al. 2016) that a
complete measurement of the BBH spin angles will allow
Advanced LIGO/Virgo not only to discriminate between
different formation channels for BBHs, but also to measure
differences in the binary stellar physics producing BBH
mergers from isolated field binaries.

In Figure 10, we show the distributions of θ1, q q-∣ ∣1 2 , and
Δf. Both θ1 and Δf have broad distributions. The former
arises from spin precession described in the previous sections,
while the latter is a natural feature of randomly distributed
vectors in the plane (see, e.g., Gerosa et al. 2013, their Figure
2). At the same time, we note that our distribution of q q-∣ ∣1 2 is
somewhat broader than the one presented there. This suggests
that sufficient observations of the individual spin angles can be
used not only to better understand BSE, but also to discriminate
between binary and triple stellar evolution of BBH mergers
(e.g., Trifirò et al. 2016).

6.2. Eccentricity and Spin

The eccentricity distribution of BBHs from LK-induced
mergers is one of the distinct observables that can be identified
by GW detectors. While BBHs from isolated field binaries and
BBHs ejected from globular clusters will reach the LIGO/
Virgo band with very low orbital eccentricities (10−3, e.g.,
Breivik et al. 2016), the presence of the third companion can
induce highly eccentric mergers that can maintain eccentricities
as high as e∼0.1 up to a GW frequency of 10 Hz (assuming

the secular approximation to be valid, e.g., Antonini et al.
2014). How these values correlate with the spins can be a
significant discriminant between BBH formation channels.
In Figure 11, we show the 1D distributions for the

eccentricity at a GW frequency of 10 Hz (the lower bound of
the LIGO band) and their corresponding χeff distributions.
There is a clear break at e10Hz∼2×10−4, where binaries
with higher eccentricities have a nearly flat distribution in χeff

from −1 to 1, while binaries with lower eccentricities recover
the χeff∼0 peak described in the previous sections. This
behavior is discussed at length in Section 2.2, and is well
illustrated in Figure 2. In the example of case (i) (left panels),
the strong octupole terms from the interaction Hamiltonian
drive the eccentricities to very large values (e1> 0.99999) such
that GW emission drives the binary to merge before the 1pN
terms can significantly dampen the LK oscillations or cause the
spins to precess. At the same time, the inner binary can flip its
angular momentum several times, while the spin–orbit angles
vary wildly. When this binary merges (essentially in a single
highly eccentric oscillation), the spins are still aligned with
each other, while the spin–orbit orientation is drawn from a
nearly random distribution from 0 to 180°. This type of
evolution results in the uniform χeff distribution of the higher
eccentricity systems displayed in Figure 11. On the other hand,
the smoother evolution of case (ii) in the right panels of
Figure 2 does not experience large oscillations in eccentricity/
inclination, since any highly eccentric oscillations are arrested
by the angular momentum barrier (Equation (32)). This
significantly longer evolution allows the spins to experience
significant precession, producing a χeff near 0.5 (Antonini
et al. 2018), while the angular momentum barrier keeps the
maximum eccentricity at lower values, yielding a lower
eccentricity at merger. We show the fraction of systems that
obey Equation (32) as a function of eccentricity in the top panel
of Figure 11.
We do note that, by restricting ourselves to the secular

equations of motion, we have explicitly ignored the highly
eccentric mergers that can occur during LK oscillations when the
secular approximation breaks down (e.g., Antonini et al. 2014).

Figure 9. The same as the top panel of Figure 8, but now showing the χeff

distribution as a function of different spin magnitudes, calculated using the
same final spin angles as in the previous section. Although this ignores the
reduced SO coupling from the lower spin magnitudes, we have shown
(Figure 6) that the SO and SS couplings do not influence the distributions of
χeff, and the 1pN precession of the spins is independent of the spin magnitudes.
The black points and their error bars show the six χeff measurements reported
by LIGO/Virgo so far.

Figure 10. Final distributions of the individual spin vectors with respect to j1.
We show the absolute misalignment between S1 and j1, θ1, the relative
misalignment angles between S1 and S2 along the azimuth, ( q q-∣ ∣1 2 ), and the
angle between the two spins in the orbital plane of the binary (perpendicular to
j1), Δf.
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Since the breakdown occurs in regimes where very high
eccentricities allow GW emission to change the triple on an
orbital timescale, these systems (with e10Hz∼ 1) would likely
show a similarly flat distribution in χeff.

6.3. Merger Rate

To probe the contribution from this channel to the population
of BBH binaries detected by Advanced LIGO/Virgo, we place

Figure 11. The final eccentricity (at a GW frequency of 10 Hz) and χeff

distributions from merging BBHs. On the top, we show the eccentricity
distributions above and below 2×10−4 (in solid blue and dashed orange),
while the inset along the top shows what fraction of the triples at each
eccentricity initially satisfies Equation (32). On the bottom, we show the χeff

distributions corresponding to those same eccentricity bins. For high-
eccentricity systems, the distribution is nearly flat, while low-eccentricity
distributions clearly show the distinct χeff distribution shown in the text. An
example from each of these distributions is shown in Figure 2, in the left and
right panels respectively.

Figure 12. The merger rate of low-metallicity BH triples as a function
of cosmological redshift. In the top panel, we show the four variant triple
BH populations described in the main text (Section 6.3). We bracket
the uncertainties in our triple stellar evolution by assuming that (i) no
triples merge or interact during their main-sequence evolution (solid lines),
or (ii) any stellar triple that can undergo LK oscillations with an LK
timescale <3 Myr merges during its main-sequence evolution (dashed lines)
and is excluded from our rate estimate. The pessimistic criterion
preferentially selects triples with longer delay times between formation
and merger, which in turn pushes the peak of the pessimistic estimate
to lower redshifts. In the bottom panel, we show our assumed SFR,
and the SFR rate when restricted to metallicities below 0.25Ze
(Equations (34)–(36)).

Figure 13. The final eccentricity (at a GW frequency of 10 Hz) for our standard
model (used throughout the main text) and our more liberal model (maximum
a2 of 2000 au and no BH natal kicks). While the underlying physics of these
two distributions is unchanged (see Sections 2.2 and 6.2), the relative number
of systems in each peak (determined by Equation (32)) depends on our initial
conditions.
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our models of BH triples into a cosmological context. We begin
by assuming that the formation of stellar BH triples will follow
the cosmological SFR of the universe. We use the SFR as a
function of redshift from Belczynski et al. (2016), based on
significant multi-wavelength observations (see, e.g., Madau &
Dickinson 2014):
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Because we have shown that the contribution from low-
metallicity star formation is the dominant contribution to the
BH triple channel (e.g., Figure 3), we consider only the SFR for
stars with Z<0.25 Ze. This is done by computing the
cumulative fraction of star formation, using the chemical
enrichment model of Belczynski et al. (2016). In this model,
the mean metallicity Z at a given redshift z is given by
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where R=0.27 is the fraction of mass from each generation
of stars that is returned to the interstellar medium, y=0.019
is the mass fraction of new metals created in each generation
of stars, r = ´ W -
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density with Ωb=0.045 and h0≡H0/100, and º( )E z

W + + W + + WL( ) ( )z z1 1M k
3 2 .

Belczynski et al. (2016) assumed that the distribution of
metallicity at a given redshift followed a log-normal distribution,
with mean given by (35) and a standard deviation of 0.5 dex
(based on measurements from Dvorkin et al. 2015). Since we are
only interested in metallicity below 0.25Ze, and since we are
dealing with small number statistics, we convolve the SFR from
(34) with the cumulative distribution of metallicities:
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For this estimate, we restrict ourselves to models for which
Z<0.25Ze (see the bottom panel of Figure 12). We then
assume that the rate can be expressed as
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where Fmerge is the fraction of triples that merge (e.g.,
Figure 3), Ftriple is the fraction of massive binaries with a
tertiary companion (taken to be 60%, following Sana et al.
(2014), their Figure 16), > FM M22 is the fraction of triples with
all three components having masses above 22Me (assuming m1

is drawn from the initial mass function, while m2 and m3 are
drawn from distributions uniform in the mass ratio), á ñM is the
mean mass of a star from the initial mass function (both taken
from Kroupa (2001), running from 0.01Me to 150Me), and
tdelay is the distribution of delay times between triple formation
and merger. The integral is the convolution of the distribution
of delay times over the low-metallicity SFR. The factors z(t)

and t(z), giving the redshift at a given lookback time and vice
versa, ensure that the integral is performed over time, and that
the corresponding rate is in mergers per unit time (not per unit
redshift).
Here we introduce three new sets of initial conditions,

designed to bookend the possible parameter space of rates. In
addition to our standard model, in which the distribution of
outer orbits runs up to 20,000 au, we also consider a population
synthesis model with a maximum initial a2 of 2000 au.
Furthermore, because the kicks are one of the largest
uncertainties in many population synthesis studies of BBHs,
we also consider models with zero natal kicks for any BHs
(though we still treat the effect of the mass loss of the inner
binary). The four possible models are presented in Figure 12.
The second critical uncertainty is the possible LK dynamics

during the evolution of the stellar triples to BH triples, which
we have ignored here. To bracket this uncertainty, we consider
two additional factors: first, for the most pessimistic case, we
assume that any stellar triple whose initial LK timescale is less
than the lifetime for the most massive stars (∼3 Myr) will
merge before it evolves to a BH triple. We then exclude from
our sample any triple where tLK<3Myr and Equation (28) is
false, since a stellar triple may begin its life sufficiently close
that pericenter precession suppresses LK oscillations (and
possible mergers), then evolve to a regime where LK is
possible. This assumption reduces the overall number of
mergers by 90% to 95%, but is far more drastic than the results
from the triple stellar evolution presented in Antonini et al.
(2017), which found the decrease in surviving BH triples to be
around 70% (see, e.g., their Figure 2). For the pessimistic case,
we recompute the rate using tdelay of those triples that cannot
merge as stellar triples.
As is obvious from the figure, the rate increases with the

overall SFR of the universe, peaking at around z∼1.6 for
the optimistic cases and z∼1.2 for the pessimistic cases. The
delay between the merger rate and the overall peak of low-
metallicity SFR (at z∼ 2) arises from the delay time between
formation of stellar triples and the merger of the inner BBH.
The pessimistic case has a peak at lower redshifts, since we
have assumed that triples with small LK timescales will merge
during the main sequence, which leaves us with a population of
mergers with longer delay times. The highest merger rate in
any of our models (maximum a2 of 2000 au and no BH natal
kicks) occurs at z∼1.6, and is nearly 90Gpc−3 yr−1, which
decreases to 23Gpc−3 yr−1 in the local universe (z∼ 0). Our
most pessimistic case (maximum a2 of 2000 au, regular natal
kicks, and excluding any systems where tLK< 3Myr) achieves
a maximum of 5Gpc−3 yr−1 at z∼1.1, which decreases to
2Gpc−3 yr−1 in the local universe. Combined with the rate of
mergers from triples at solar metallicities (0.3–2.5 Gpc−3 yr−1

in the local universe, Antonini et al. 2017), this suggests an
overall merger rate from stellar triples of between 2 and
25Gpc−3 yr−1. Although we do not show the calculation here,
our high-metallicity stellar triples (Z> 0.25Ze) produce a
similar merger rate of 0.1–2 Gpc−3 yr−1.
This range of merger rates is consistent with the current rates

from the first observing run of Advanced LIGO (Abbott
et al. 2016a), but we note that this merger rate applies only to
the heavy, low-spin BBH mergers detected to date. Given that
these rates are fully consistent with the rate reported by these
individual events (2–53 Gpc−3 yr−1 for GW150914-type
events), we suggest that the merger of stellar triples from
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low-metallicity environments can naturally explain all the
heavy BBHs observed by LIGO/Virgo.

Finally, we note that these different initial conditions all
show similar distributions of spin, mass, and eccentricity to
those of our standard model that were illustrated in the previous
section, with one notable exception. In Figure 11, the
correlation between the eccentricity and spin of the system
was set by the initial LK and GR timescales for each triple
(Equation (32)). While the physics does not change with
different initial conditions, the initial timescales do, which can
alter the distributions of eccentricity and spin. We illustrate this
in Figure 13, where we show the eccentricity distributions at 10
Hz for our standard model (i.e., the middle panel of Figure 13)
and our most liberal model (maximum a2 of 2000 au and no
BH natal kicks). While the locations of the two peaks are
unchanged (as are their respective χeff distributions), the
relative fraction of sources in each regime of Equation (32)
does change. As such, our somewhat conservative choice of
initial conditions used in Section 6 may be underpredicting the
number of sources with large eccentricities and a flat
distribution of χeff.

7. Conclusion

In this paper, we have explored the contribution to the GW
landscape from BBHs driven to merger by a third BH via the
LK mechanism. By evolving a population of ∼106 stellar
triples, we found that the reduced mass loss and lower natal
kicks for triples at low metallicities (0.25Ze) make stellar-
mass BH triples nearly 100 times more efficient at producing
mergers than triples at solar metallicities (e.g., Antonini et al.
2017). Using self-consistent secular equations for the triple
dynamics and BBH spin evolution, we expand upon the results
first described in Antonini et al. (2018), and show that these
low-metallicity-forged triples naturally form heavy BBHs with
low effective spins that merge in the local universe, and that the
merger rate of these objects (2–25 Gpc−3 yr−1) can explain all
of the heavy BBH mergers observed by LIGO/Virgo to date.

Our simplified approach to triple dynamics ignores the
potentially significant evolution of stellar triples during their
evolution to BH triples. Although our rate estimate brackets the
range of possible mergers and interactions during this phase, a
more self-consistent approach (e.g., Toonen et al. 2016) will
provide further insight into the initial conditions of these
systems, since it is likely that our upper limits have
underestimated the number of stellar triples that merged before
becoming triple BHs.

At the same time, we have ignored a significant amount of
the LK-driven BBH merger parameter space by our assumption
that the third body be a BH. This was done for simplicity (as
our technique could not follow LK oscillations while a tertiary
was still evolving), but the eccentric LK mechanism does not
require the third body to be a BH. It is entirely possible that, by
considering triples in which the inner BH binary is orbited by a
distant massive star, the merger rates quoted here may increase.

Finally, all of our χeff distributions rely on the assumption
that the spins of the inner binary are initially aligned with the
orbit. Although this assumption has been used in many
previous studies, it is easy to imagine scenarios where this
may not be the case, and there exists some observational
evidence that “Binaries are Not Always Neatly Aligned” (the
BANANA survey, Albrecht et al. 2011, 2013, 2014). At the
same time, many of the inner binaries in the triples explored

here experienced significant mass transfer during their main-
sequence evolution, which could, in conjunction with tidal
torques, both spin-up and align the BHs with the orbital angular
momentum. The correct treatment of dynamical tides and
eccentric mass transfer during LK oscillations is significantly
beyond the scope of this paper, but could play a large role in
the initial spin distributions of BH triples.
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