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A supercapacitor is well recognized as one of emerging energy sources for powering electronic 

devices in our daily life. Although various kind of supercapacitors have been designed and 

demonstrated, their market aspect could become advanced if the utilisation of other 

physicochemical properties (e.g. optical) is incorporated in the electrode. Herein, we present an 

electrochromic supercapacitor (smart supercapacitor) based on a nanoflake NiMoO4 thin film 

which is fabricated using a facile and well-controlled successive ionic layer adsorption and 

reaction (SILAR) technique. The polycrystalline nanoflake NiMoO4 electrode exhibits a large 

electrochemically active surface area of ~ 96.3 cm2. Its nanoporous architecture provides an easy 

pathway for the intercalation and de-intercalation of ions. The nanoflake NiMoO4 electrode is 

dark-brown in the charged state and becomes transparent in the discharged state with a high 

optical modulation of 57 %. The electrode shows a high specific capacity of 1853 Fg–1 at a 

current rate of 1Ag–1 with a good coloration efficiency of 31.44 cm2/C. Dynamic visual 

information is obtained when the electrode is charged at different potentials, reflecting the level 

of energy storage in the device. The device retains 65% capacity after 2500 charge-discharge 
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cycles compared with its initial capacity. The excellent performance of the nanoflake NiMoO4 

based smart supercapacitor is associated with the synergetic effect of nanoporous morphology 

with a large electrochemically active surface area and desired chemical composition for redox 

reaction.  

 

Keywords: NiMoO4, nanoflake morphology, smart supercapacitor, SILAR technique.  
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Introduction   

Supercapacitors are promising energy storage devices because of their outstanding 

characteristics such as high power density, fast charging ability, and excellent electrochemical 

cycling stability [1–4]. The charge storage mechanism in electrochemical supercapacitors 

(pseudocapacitors) is associated with the reversible Faradaic reaction. Electrosorption or 

intercalation processes occur on the surface of an electrode accompanying an electron charge-

transfer between electrolyte and electrode, and this reversible reaction often changes the color of 

the electrode (known as electrochromism) [5]. Devices having such dual functionality are called 

smart supercapacitors [5,6–19]. Smart supercapacitors store energy as a normal supercapacitor 

and sense the level of energy stored by changing visual color. Recently, diverse transition metal 

oxides (TMOs) and complex compounds have been investigated for use as smart supercapacitor 

electrodes.  

A literature survey on the present status of the smart supercapacitor technology, based on 

TMOs and complex compounds, is presented in Figure 1, together with our results [5–19]. The 

mailto:akbarphysics2002@gmail.com
mailto:hyunsik7@dongguk.edu
mailto:hskim@dongguk.edu
https://en.wikipedia.org/wiki/Capacitive_deionization
https://en.wikipedia.org/wiki/Intercalation_(chemistry)
https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Charge_transfer_complex
https://en.wikipedia.org/wiki/Charge_transfer_complex
https://en.wikipedia.org/wiki/Electrolyte
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wavelength on the horizontal axis is associated with the color of the electrode materials in the 

colored state. Well-known materials such as WO3 and its complex compounds, polyaniline 

(PANI), carbon nanotubes (CNT), and nickel oxide (NiO) have been investigated as smart 

supercapacitors. Attempts have been made to fabricate nanostructured materials to enhance the 

electrochemical reaction and efficiency using different techniques such as Rf-magnetron 

sputtering, electrodeposition, hydrothermal, thermal evaporation, spin coating, and chemical 

vapor deposition [6–19]. The techniques used for the synthesis of nanostructured materials need 

a long time and a sophisticated experimental setup. Thus, the challenge is to obtain a reliable 

electrode material that is abundant, non-toxic, and cost-effective, which can be fabricated using 

simple experimental techniques. Drawbacks, such as high production cost, low reversibility, 

short lifetime, low chromatic contrast, compromised capacity, and low coloration efficiency, 

need to be overcome. Based on the literature discussed, it has been noted that NiMoO4, which is 

an abundant material and can be easily synthesized using chemical techniques, has not yet been 

employed for smart supercapacitor applications. It is anticipated that the electrochemical 

properties of NiMoO4 will be satisfactory because Mo can enhance the conductivity of an 

electrode. There is also the high electrochemical activity of nickel ions. 

In this work we report on the synthesis of a binder-free, nanoflake NiMoO4 thin film 

electrode on an ITO coated conducting glass substrate by using the SILAR technique. The 

nanoflake NiMoO4 electrode exhibits bifunctionalities for electrochemical energy storage and 

electrochromism. A maximum specific capacitance of 1853 Fg 1 at 1 Ag 1, with good capacity 

retention over 2500 cycles, is obtained. During the charging and discharging processes, the 

electrode shows a color change between dark brown and transparent with good coloration 

efficiency of 31.44 cm2/C.  
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Experimental  

Nanoporous NiMoO4 thin film electrodes were synthesized on ITO coated conducting glass 

substrates with a sheet resistance of 27 Ω cm 2 using the SILAR technique. A NiMoO4 film was 

fabricated by successively dipping an ITO substrate in Ni and Mo solution baths (see Fig. S1 in 

Supplementary Information). One cycle consists of 20 s of dipping in the Ni-containing bath, 10 

s in D. I. water, 20 s in the Mo-containing bath, and again, 10 s in D.I. water. Each bath contains 

0.1 M NiCl2 6H2O and 0.1 M Na2MoO4 2H2O, respectively. The purpose of the water dipping 

step is to remove unwanted by-products. The pH of the Ni-containing bath is adjusted to 12.2 by 

dropwise addition of an ammonia solution. During the film deposition, the Mo- and Ni-

containing baths were maintained at 70 C and room temperature, respectively. Each cycle 

consists of ion adsorption and nucleation processes of both the Ni and Mo species at the substrate 

surface, resulting in the formation of composite NiMoO4. The NiMoO4 thin film was grown 

using 30 successive cycles. Subsequently, the film was annealed at 300 C for 2 hours, to remove 

water content and to increase adhesion to the substrate. The thickness and active area of the 

electrode film are ~ 100 nm and 1×2 cm2, respectively. The mass of the active electrode was 

estimated using a standard weight difference method and it is 0.17 mg. 

The electrochemical supercapacitor and electrochromic performance of the NiMoO4 thin 

film electrode were investigated using cyclic voltammetry (CV), galvanostatic charge/discharge, 

and AC impendence analysis. A potentiostat (Princeton Applied Research, Versa STAT 3) was 

used with a conventional three-electrode electrochemical cell containing a 2 M KOH electrolyte, 

NiMoO4 as the working electrode, a saturated calomel electrode (SCE) as the reference 

electrode, and graphite as the counter-electrode. Electrochemical impedance spectroscopy (EIS) 

measurements were performed from 1 Hz to 10 kHz (AC), using an impedance analyzer. X-ray 
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diffraction (XRD) patterns of the films were recorded using an X-ray diffractometer with Ni-

filtered Cu-Kα radiation (Ka α-1.54056 Å) (X pert PRO, Panalytical).       

Surface morphology was observed using field emission scanning electron microscopy (FE-

SEM, model: JSM-6701F, JEOL, Japan). The chemical states of the NiMoO4 film were 

investigated using X-ray photoelectron spectroscopy (XPS, Ulvac -phi, Verse probe II). The 

microscopic structural properties of the sample were investigated using transmission electron 

microscopy (JEOL 3000F) and high angle annular dark field (HAADF) scanning transmission 

electron microscopy (STEM) with an Oxford EDX detector (JEM-2100), high-resolution 

transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED) 

were performed on JEOL 3000F at 300 kV. Optical transmittance is analyzed using a 

spectrophotometer.   

 

Results and Discussion 

The crystal structure of the as-prepared nanoflake NiMoO4, heated to 300 °C, is determined 

through the X-ray diffraction spectrum. Figure 2(a) shows the X-ray diffraction spectrum of 

NiMoO4 nanoflake thin film. The film consists of multiple diffraction peaks revealing its 

polycrystalline nature. The peaks marked with a star symbol are associated with the ITO 

substrate. The diffraction peaks observed at 23.08 , 45.26 , 55.68 , 60.26 , 62.02 , and 77.76  

are assigned to the (02  ), (113), (53  ), (620), (44  ), and (82  ) Bragg indexes of a NiMoO4 

structure (JCPDS card # 45-0142), suggesting the formation of a NiMoO4 structure. The 

polycrystalline nature which provides grain boundaries and granular voids for electrolyte 

penetration could improve the electrochemical performance of the electrode [5]. To further 

identify the formation of NiMoO4, Raman spectroscopy analysis is performed. As shown in the 
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Figure 2 (b), two major peaks at 482 and 813 cm 1, which correspond to Mo-O vibrations and 

Mo=O stretching modes of NiMoO4, respectively [20,21], supporting the formation of NiMoO4. 

Broad shoulder peaks observed at around 360 and 704 cm 1 are ascribed to the asymmetric 

stretching modes of Ni-O-Mo bonds [22].   

The scanning electron microscopic image of the NiMoO4 electrode is shown in Fig. 2(c) 

and Supplementary Fig. S2, revealing an interconnected nanoporous network of nanoflakes. The 

nanoporosity of the electrode can allow the electrolyte to penetrate through the electrode. This 

nanoporous architecture is expected to provide a high surface area and easy pathway for ion 

intercalation and de-intercalation. The uniform distribution of the main constituent elements (Ni, 

Mo, and O) is also confirmed by energy dispersive analysis measurements (supporting 

information, Fig. S3). 

Figure 3 shows the HRTEM, SAED, and HAADF-STEM elemental mapping results of 

the NiMoO4 thin film electrode. The HRTEM (Fig.3 (a)) image clearly resolves lattice fringes of 

nanoflake NiMoO4. A lattice distance (d222) of 0.22 nm (Fig.3 (b)) is indexed to the {222} plane, 

which is associated with the NiMoO4 monoclinic crystal configuration. The SAED image in Fig. 

3(c) shows multiple diffused diffraction rings, which correspond to the (02  ), (02  ), and (201) 

reflections. The appearance of the diffused rings is typical of polycrystalline materials [23]. 

Figure 3(d) shows the HAADF-STEM elemental mapping images of nanoflake NiMoO4, which 

clearly demonstrates the homogeneous distributions of Ni, Mo, and O elements. The HAADF-

STEM elemental line scan (1 µm) and EDS spectrum (Fig. S4, Supplementary information) 

further confirms the stoicheiometrically presence of Ni, Mo, and O. The atomic ratio of Ni:Mo is 

determined using EDAX, and it is found to be 1:0.45. 
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The presence of the constituent elements and the chemical states of the NiMoO4 film are 

confirmed using X-ray photoelectron spectroscopy (XPS) analysis. Figure 4 displays the wide-

scan survey spectrum, and Ni 2p, Mo 3d, and O 1s core-level spectra of the nanoflake NiMoO4 

film. To determine the peak positions in the core-level spectra, the Gaussian-Lorentz distribution 

function is used. The survey spectrum in Fig. 4(a) reveals the presence of elemental Ni, Mo, and 

O in the prepared material. For the core-level Ni 2p spectrum in Fig 4 (b), the binding energy 

peaks at 854.75 and 872.5 eV and their satellite peaks are associated with Ni2+ binding states of 

Ni 2p3/2 and Ni 2p1/2 [22, 24, 25]. The difference between these two peaks is 17.75 eV, which is 

related to the formation of Ni2+ oxidation states [24, 26]. In the Mo 3d core-level spectrum 

(shown in Fig.4 (c)), the peaks at 231.12 and 234.25 eV are associated with Mo 3d5/2 and Mo 

3d3/2, respectively. The difference between these two peaks is 3.13 eV, which corresponds to 

Mo6+ oxidation states in the film [22, 24]. The peak at 530.5 eV in the O 1s spectrum (Fig 4(d)) 

is linked with metal-oxide bonds [24, 27]. 

The electrochromic properties of the NiMoO4 nanoflakes electrode are now discussed. 

Figure 5 (a) shows a cyclic voltammetry (CV) curve of the NiMoO4 nanoflake electrode at a scan 

rate of 5 mV/s. The arrow indicates the scan direction during the CV measurement. The pair of 

redox peaks observed in the CV is an indication of the pseudocapacitive behavior of the 

electrode. During the anodic scan, an oxidation peak is observed at 0.49V (vs SCE), and the 

film’s color changes to dark brown. For the cathodic scan, the reduction peak appears at 0.18 V 

(vs SCE), and the film becomes transparent. Both the electrochromic performance and the 

pseudocapacitive behavior are based on the same mechanism, oxidation and reduction (redox 

reactions) between Ni2+ and Ni3+ states. The scan rate dependent CV curves are shown in Fig. S5 

(Supplementary information). As the scan rate increases, the oxidation and reduction peaks shift. 
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This shift is due to the internal resistance of the electrode. The CV shape, even at a high scanning 

rate of 50 mV/s, remains similar, suggesting that the electrochemical reaction during 

charge/discharge processes is stable. The coloration (charging) and bleaching (discharging) are 

associated with the insertion and de-insertion of OH  ions according to the following equation;  

                                NiO + OH  ↔ NiOOH + e                                               (1)  

The reversible transition between NiO and NiOOH accompanies the charge transfer 

between Ni2+ and Ni3+ [3, 28, 29]. The charging and discharging processes are due to the charge 

transfer of Ni species. These processes are not due to Mo species because the oxidation state of 

Mo is +6. Mo does not undergo any charge transformation upon OH– ion intercalation during the 

charging process. Even in the reverse potential scan, Mo does not undergo the reduction process 

because of the limited potential window. The intercalation of the OH− ion causes the electrode to 

be in the charged state, with de-intercalation in the discharged state. The charged and discharged 

states of the electrode can be easily judged by observing the change in color.  

The coloring performance of the NiMoO4 nanoflake electrode is evaluated using optical 

transmittance measurements. The NiMoO4 electrode is colored and bleached at  0.6 V (vs. 

SCE) for 30 s. The transmittance spectra of the NiMoO4 electrode in the colored and bleached 

states are presented in Figure 5(b). The transmittance difference between the colored and 

bleached states gives information on the coloration efficiency of the electrode. The change in the 

optical density (ΔOD) at 630 nm is calculated using the following formula;  

                                  (ΔOD)630nm = log     )                                                      (2)  

where Tb and Tc are the transmittances of the bleached and colored states. The electrode is ~ 93 

% transparent in its original state, but the transparency decreases to 36.23 % in the fully charged 

state. The sample shows highly reversible color/bleach transmittance characteristics between the 
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bleached (transparent) and colored states with an optical modulation of ~ 57 % at 630nm. The 

(ΔOD) at 630 nm for the NiMoO4 nanoflake electrode is found to be 0.9440. This obtained ΔOD 

can be used for the estimation of coloration efficiency (CE), which is defined as the change in 

the optical density per unit charge inserted into the electrochromic film. The following formula is 

used to calculate the coloration efficiency [7]: 

CE630nm                )                                                        (3)  

where Q/A is the per unit charge density. The charges inserted into the electrochromic film are 

estimated from chronocoulometry (CC) measurements, shown in Figure 5 (c). The total charge 

per unit area for the film, which is colored at 0.6 V (vs SCE), is measured to be 30.01 mC. Thus, 

the coloration efficiency of the NiMoO4 nanoflake electrode is calculated to be 31.44 cm2/C.         

Figure 5(c) shows the CC curves measured at different potentials. During the initial 60 

(fixed time) seconds, the film becomes colored with a positive potential due to the intercalation 

of OH  ions. Subsequently, the film becomes bleached with a negative potential for the next 60 

seconds. Photographs of as-grown and colored films at different potentials are shown in Figure 5 

(d). As the intercalated charges increases, the film becomes dark-brown. The film becomes 

transparent at the discharged state. Thus, the remaining energy level can be easily visualized 

through a simultaneous change in color with varying voltage.  

              The Electrochemically active surface area (ECSA) is estimated by measuring scan-rate 

dependent CV curves in the non-Faradaic voltage region, which is described by charge 

accumulation rather than redox reaction (Supplementary Figure S5) [30, 31]. A linear increase of 

the capacitive current with respect to the scan rate is observed. Figure 6 (a) shows the non-
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Faradaic region of the CV curves at different scan rates. The ECSA for the nanoflake NiMoO4 

sample is estimated using the following expression [30, 31]: 

                                                                                                  (4) 

where Cs is the specific capacitance of the electrolyte, and CDL is the double-layer region 

specific capacitance. Cs = 0.040 mFcm–2 for the KOH electrolyte [31]. The capacitive current 

(IDL) at different scan rates is estimated from the non-faradic region, as follows:  

                                      IDL =  CDL                                                                     (5) 

Figure 6(b) shows the capacitive current (IDL) of the nanoflake NiMoO4 electrode. Figure 

6(c) shows the current at 0.21 V, as a function of scan rate ( ). The CDL is the slope of the curve. 

The ECSA value for the NiMoO4 electrode is calculated to be ~ 96.3 cm2.  

The electrochemical supercapacitor properties of the NiMoO4 nanoflake electrode are 

now investigated. Figure 7(a) shows its galvanostatic charge-discharge (CD) properties at 

different current densities. The non-linear and symmetric behavior of the charge-discharge 

curves suggests the pseudocapacitive nature of the electrode [5]. During the charging and 

discharging processes, the voltage plateaus at around 0.25 and 0.18 V (vs SCE), associated with 

the oxidation and reduction processes, respectively. The film is brown in the fully charged state 

and transparent in the fully discharged state. The specific capacity is calculated using the 

following equation;  

                      Cs = IΔt / mΔV                                                                  (6)     

where Cs is the specific capacitance, and I and m represent the discharge current and the mass of 

active materials, respectively. ΔV and Δt are the potential window and total discharge time, 

respectively. The specific capacitance, obtained at different current densities, is presented in 
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Figure 7 (b). The specific capacitance decreases gradually with increasing discharge current 

density. This decrease is associated with ions diffusing and migrating into the active material. 

The specific capacitance (1853 Fg–1), obtained for the nanoflake NiMoO4 electrode, is much 

higher than the specific capacitance obtained from other smart supercapacitor electrodes 

(literature survey, summarized in Figure 1). The higher electrochemical capacitance of the 

NiMoO4 nanoflake electrode is associated with the synergetic effect between nanostructure 

morphology which provides easy path way for the ion diffusion, chemical composition for the 

desired redox reactions, and shorter diffusion length for the faster kinetics.    

The CV curves measured at different scan rates are used to estimate the scan rate 

dependent specific capacitance of the NiMoO4 nanoflake electrode using the following formula, 

                               Cs =         /(2m      V)                                              (7)  

where Cs is specific capacitance and IdV is the area under the curve. Figure S5 shows the scan 

rate dependent specific capacity of the NiMoO4 nanoflake electrode. The specific capacity of the 

NiMoO4 nanoflake electrode is 937 F/g, and it decreases with increasing scan rate. 

           Electrochemical cycling stability of the nanoflake NiMoO4 electrode is evaluated at a high 

current density of 10 Ag-1 for 2500 cycles. Figure 7(c) shows the specific capacitance as a 

function of cycle number. The specific capacitance decreases gradually as the cycle number 

increases. The capacitance after the 2500th cycle is 301 Fg 1, which is 65 % retention of the 

initial capacity. A gradual decrease in specific capacity can be from structural damage to an 

electrode, which increases the electrical resistance of the electrode [32, 33].  

The coulombic efficacy  of the NiMoO4 nanoflake electrode is estimated using the 

following expression:   

                                       =  Td / Tc × 100                                                         (8)  
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where Td is the discharge time and Tc is the charge time. Figure 7(c) represents the measured 

coulombic efficiency as a function of cycle number. The overall coulombic efficiency of the 

sample is larger than 95%, revealing their excellent cycling performance and reversibility. 

Figure 7(d) shows a Nyquist plot of the nano-flake NiMoO4 electrode, before and after 

2500 charge-discharge cycles along with equivalent circuit diagram. The Nyquist plots are 

recorded in the frequency range of 1Hz to 10 kHz. Nyquist plots consist of a semicircle in the 

high-frequency region and slight straight line in the low-frequency region, which are attributed to 

the charge transfer resistance (Rct) and Warburg impedance W of the electrode material, 

respectively. The intersection of the semicircle in the x-axis indicates the internal resistance of 

the electrodes (Rs), which is a combination of the intrinsic resistance of the substrate and 

electrolyte resistance of the electrochemical system, CPE is the constant phase element. The 

fitted impedance parameters are provided in supplementary table S1. The Rs value of the nano-

flake NiMoO4 electrode before and after cycling are 44.66 and 48.38 , respectively indicating 

constancy of the electrochemcial system used to estimate impedance data. The charge-transfer 

resistance (Rct) of the electrode is found to be 42.69 and 75.08  before and after cycling 

respectively. The increased electrochemical resistance with cycle number is associated with the 

structural reconstruction of the nano-flake NiMoO4 electrode during charge-discharge processes. 

 The power (P) and energy (E) densities (Ragone plot) are calculated from the 

charge/discharge measurements, using the following equations: 

E = 0.5  Cs  ΔV 2                                                             (9) 

                                   P = E /Δt                                                                    (10) 
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Figure 8 shows a Ragone plot for power (P) and energy (E) densities of the nanoflake NiMoO4 

electrode. The energy density decreases with increasing power density, exhibiting a high energy 

density of 117 Wh/kg at a given power density of 7527 W/kg compared with other oxide 

materials [34,35]. The steep slope in the P-E plot indicates the electrode's superior 

supercapacitive performance, even at high current rates.   

 

Conclusions  

For the first time, we successfully demonstrate a balance-visualized smart supercapacitor 

via employing electrochromic nanoflake NiMoO4. A facile and robust synthetic strategy is 

developed for the growth of a polycrystalline nanoflake NiMoO4 nanostructure. A high specific 

capacitance of 1853 Fg–1 at a current density of 1 Ag–1 is obtained, with good coloration 

efficiency of 31.44 cm2/C. The nanoflake NiMoO4 electrode can generate an energy density of 

117 Wh/kg at a power density of 7527 W/kg. The electrode also shows stable long-cycle 

performance over 2500 charge-discharge cycles. The as-prepared electrode exhibits fast and 

reversible color modulation between the charged (dark-brown) and discharged (transparent) 

states which offers dynamic visual information on the status of power storage. Our findings 

suggest an efficient pathway for material design for high-performance intelligent multi-

functional electrochemical energy storage devices. The NiMoO4 nanoflake electrode would be 

excellent capacitor and good counter electrode in WO3-based electrochromic devices where both 

electrodes contribute to the coloration.     
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Fig. 1. Schematic representation of the materials used for the smart supercapacitor technology, 

exhibiting their specific capacities, compared with the present work.  
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Fig. 2. (a) X-ray diffraction pattern of the NiMoO4 film, along with the standard JCPDS (45-142) 

data. The star symbol (*) indicates the signal from the ITO substrate. (b) Raman spectrum of the 

NiMoO4 film, showing two main peaks associated with Mo–O vibration and Mo=O stretching 

modes of the NiMoO4 structure. (c) SEM image of the NiMoO4 film, showing a unique 

nanoflake morphology. 
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Fig. 3. (a) HRTEM image of the nanoflake NiMoO4, (b) HRTEM image showing lattice fringes, 

(c) selective area electron diffraction (SAED) pattern, and (d-g) HAADF-STEM image of 

nanoflake NiMoO4 and elemental mapping under the TEM mode, revealing the homogeneous 

distributions of Ni, Mo, and O in the nanoflake NiMoO4. 
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Fig. 4. XPS spectra of NiMoO4: (a) Survey scan revealing the existence of Ni, Mo, and O as 

constituent elements. A high-resolution scan of the (b) Ni 2p peaks, (c) Mo 3d peaks, and (d) O 

1s peaks. The solid circles and lines represent the experimental data and fitting curves, 

respectively.  
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Fig. 5. (a) Cyclic Voltammogram of the NiMoO4 electrode, recorded in a 2M KOH electrolyte at 

a scan rate of 5mV/s, (b) Optical transmittance spectra for the NiMoO4 electrode in the colored 

and bleached states. (c) Chronocoulometry measurements for the film, colored at ± 0.3, 0.4, 0.5 

and 0.6 V, (d) Actual photographic image of the NiMoO4 electrode bleached at  0.6 V vs. SCE, 

and at 0.3, 0.4, 0.5, and 0.6 V vs. SCE. These states are associated with different levels of stored 

charge.  
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Fig. 6. (a) Cyclic Voltammogram (CV) of the NiMoO4 electrode at various scan rates. (b) Non-

faradaic current in the low potential region for various scan rates (v). (c) Capacitive current (IDL) 

measured at 0.21 V, as a function of scan rate.  
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Fig.7. (a) Galvanostatic charge-discharge (GCD) curves of the NiMoO4 electrode at various 

current densities. (b) Specific capacitance, obtained from the GCD curves at various current 

densities. (c) Cycling stability test at a high current density of 10 Ag   1. (d) Nyquist plot before 

and after the cycling test.   
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Fig. 8. Calculated energy and power densities (Ragone plot) for the NiMoO4 electrode at various 

charge/discharge current densities.  

 


