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Next-generation electronic technology requires the use of advanced energy storage devices with 

integrated functionality to fulfill key application requirements. A smart supercapacitor shares the 

same electrochemical processes as a conventional energy storage device in addition to 

electrochromic functionality. It can sense the energy storage level and can display it in a noticeable 

manner, which results in added convenience to everyday applications. In this study we have 

developed a smart supercapacitor that uses tungsten oxide nanograin thin film to provide the 

combined advantages of energy storage and electrochromism. The nanostructured tungsten oxide 

is dark blue in the charged state and becomes transparent in its discharged state; and it has a specific 

capacitance of 228 Fg−1 at 0.25 Ag−1 with a quite large potential window of 1.4 V. It is highly 

durable, exhibits good electrochemical stability over 2000 cycles, retains a significant charge 

storage of 75%; and exhibits a high coloration efficiency of ~170 cm2/C with an optical modulation 

of 82%. The smart-supercapacitor fabricated with this material exhibits a superb combination of 
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energy storage and electrochromic features in one device to monitor the energy storage level 

through visible changes in color. 
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1. Introduction 

As the demand for advanced electronic devices increases, the need to develop high-

performance, and multi-functional materials has also increased and this trend is also true for energy 

storage technology. It is inevitable to integrate greater functionality in energy storage devices in 

order to support the growing range of applications in portable electronics. One core example of 

multi-functional energy storage devices is a smart-supercapacitor, or a chromo-supercapacitor, 

which relies on the same electrochemical process in the electrolyte to store energy as well as to 

provide the electrochromic functionality [ 1 , 2 , 3 , 4 ]. It would certainly be useful and 

advantageous if the user could determine the amount of energy that has been consumed while 

using an electronic device before the device stop working, Thus, smart supercapacitors can work 

as normal supercapacitor to store energy and can also sense the energy storage level through a 

change in the visual color (visualization of the device charge state as the degree of color saturation), 

and this can bring convenience to a wide range of potential applications [5, 6]. Electrochromic 

devices and supercapacitors rely on many common characteristics of materials, including physical 

and chemical operating mechanism, chemical and structural requirements. 
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Electrochromic supercapacitor were first studied by Wei et al., who used ordered 

bicontinuous double-gyroid vanadium pentoxide (V2O5) in their study [1]. They found that such 

devices had a specific capacitance of 155 F/g with a strong electrochromic change in color from 

green/gray to yellow; and they also suggested that the concept could be extended to other 

electrochromic compounds. W18O49/PANI composites were then found to exhibit excellent 

electrochemical and electrochromic behavior and to operate over a wide potential window [2]. 

Bilayer films made of tungsten trioxide/zinc tungstate (WO3/ZnWO4) exhibit a combined 

electrochromic and energy storage behavior in 0.5 M H2SO4 electrolyte [ 7 ].PANI/WO3 

nanocomposite films show dual electrochromism for both negative and positive potentials with a 

coloration efficiency of 98.4 cm2 C-1 and an aerial capacitance of 0.025 Fcm-2 with a broader 

working potential window of 1.3 V [8]. On the other hand, NiO nanoparticles exhibit a large optical 

modulation (63.6%), a high capacitance of 1386 F/g, and a superior rate capability that shortens 

the ion diffusion length, facilitate charge transfer, and simultaneously monitors the energy storage 

level through a visual display. [3].  

The challenge is to search for materials that exhibit charge storage properties and changes in color 

according to the charged states. Transition metal oxides (TMOs) have electrochromic coloration 

efficiencies along the color spectra, as illustrated in Fig. 1, and there are two mail kinds of 

electrochromic materials: cathodically and anodically coloring materials [ 9 -40]. Of all 

electrochromic TMOs, tungsten oxide (WO3) is the most suitable for numerous applications, 

including electrochromism, photochromism, electrocatalysis, gas sensor, dye-sensitized solar cell 

and photocatalysis due to its superior properties including fast redox reaction, recognizable color 

changes, good chemical stability, and strong adherence to the substrate [2, 7, 8, 41]. Tungsten 

oxide exhibits an optical color change during intercalation/deintercalation of cations like H+, Li+, 
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Na+ and K+, [9-41] and it is an electrochromic material that is very sensitive to the stoichiometry 

and oxygen content in the film [41]. Nevertheless, to the best of our knowledge, the use of 

tungsten oxide in smart supercapacitors has not yet been fully explored, except for a few reports 

in the literature.  

 In this paper, we investigate the electrochromic and electrochemical supercapacitor 

properties of reactively-sputtered tungsten oxide nanograin thin films as a multifunctional 

electrodes. The highest coloration efficiency of ~170 cm2C-1 and the best specific capacitance of 

228 Fg−1 at 0.25 Ag-1 are achieved for the nanograin tungsten oxide thin film.    

 

2. Experimental details 

Nanograin tungsten oxide (WO3) thin film electrodes were fabricated on ITO-coated 

conducting glass substrates with a sheet resistance of 27 Ωcm−2 by using conventional radio 

frequency (RF) magnetron sputtering with a WO3 target (99.99% purity). The sputtering chamber 

was initially evacuated to 2.0 × 10−6 Torr and was then maintained at 10 mTorr with a mixture of 

Argon (Ar) and oxygen (O2) gas flow. The films were grown at room temperature with an applied 

power of 120W and during this growth, the oxygen content of the film was determined by setting 

the Ar to O2 gas ratio to 8:2 (20% oxygen). Ellipsometry was carried out to measure the average 

thickness of the film 138 nm. Cyclic voltammetry (CV), galvanostatic charge/discharge, and an 

AC impendence analysis with a potentiostat (Princeton Applied Research, VersaSTAT 3) were 

then carried out to determine the electrochemical characteristics of the tungsten oxide electrode. 

The three-electrode electrochemical cell consists of 1 M LiClO4 + PC as the electrolyte, a WO3 

electrode as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, 

and graphite as the counter-electrode. The chemical composition of the films was determined via 
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X-ray photoelectron spectroscopy (Ulvac-phi (Japan with X-ray beam size: 10 - 200 um) and 

Rutherford backscattering spectroscopy (RBS). The microstructure and grain morphology of the 

films were determined via transmission electron microscopy (TEM, JEOL 2010 with an Oxford 

EDX detector), high-resolution electron microscopy (HRTEM), and selected area electron 

diffraction (SAED). The acceleration voltage was set to 200 KV, and the camera length was 20 

cm. The film morphology was studied using atomic force and scanning electron microscopy (FE-

SEM, Model: JSM-6701F, JEOL, Japan). The crystal structure and the phase evolution were then 

studied using X-ray diffraction spectroscopy (X pert PRO, Panalytical with K = 1.54056 Å) and 

micro-Raman spectroscopy (VG Multilab 2000, Thermo VG Scientific, UK).   

 

3. Results and discussion  

3.1 Microstructural and structural analysis    

The sputtered tungsten oxide thin films were subjected to TEM, AFM, SEAD, and X-ray 

diffraction studies to assess their microstructural properties and to conduct a qualitative phase 

analysis. The TEM (Fig. 2a) and AFM (Fig. S1, supporting information) images; indicate that the 

obtained product had a particle size smaller than 10 nm. The HRTEM analysis was carried out to 

observe the lattice fringes of the as-prepared WO3 nanoparticles (Fig. 2b); and the lattice distance 

was measured to be of d002 = 0.38 ± 0.01nm, which is close to the bulk WO3 d002 value; and suggests 

the formation of a monoclinic tungsten oxide phase [42, 43]. The selected area electron diffraction 

(SAED) pattern exhibits diffuse rings, indicating that the sample has a polycrystalline nature. The 

diffraction pattern; reveals an inner diffuse ring that is indexed to be a combination of the 002, 020 

and 200 planes. [44]. Another diffuse ring (Fig.2(c)) appeared just outside of the inner ring and 

could be indexed as the collective contribution of the 022, 220 and 202 planes. The diffraction of 



6 

 

the former and latter three planes is overlaid to produce two different diffuse rings. As shown in 

the inset of Fig. 2(b), the XRD pattern also shows broadening in the diffraction peaks and a large 

number of overlapping reflections. [44]. These features can be attributed to the small difference in 

the inter-planar distances of the respective planes and to the nanocrystalline dimension of the 

particle. For instance, the first intense peak centered at a 2θ° = 23.64 is the peak resulting from the 

overlap of the 002, 020, and 200 reflections. Another intense peak appears at 2θ ~33.46°, which is 

due to the overlap of the 022, 220, 202 reflections resulting from monoclinic symmetry. The 

deconvolution (Fig. S2) of the first peak observed at 23.64° reveals individual positions for the 

three different 002, 020 and 200 reflections. The 2θ position of the 002 reflection was found to be 

23.12°, which corresponds to an inter-planar distance d002 = 0.384nm. Thus, the monoclinic WO3+ 

phase is comprised mostly of corner-linked octahedra (see the inset of Fig. 2(c)), resulting in the 

4-membered channels along all crystallographic directions. Figure 2(d) shows a cartoon that 

visually illustrates the monoclinic phase together with the crystallographic planes in the 002 and 

022 orientations. The striking consistence in the XRD Space group P21/n and SAED 

measurements is that both show two intense peaks and distinct diffuse rings. Furthermore, the 

inter-planar distance (d002 = 0.380nm) from the HRTEM measurement and (002)-indexed 

reflection peak in the SAED pattern are in good agreement with that obtained from the XRD data 

(d002 = 0.384nm, Space group P21/n). Thus, the combined results obtained from the XRD, HRTEM 

and SAED studies indicate that the tungsten oxide film has a nanogranular structure with a 

monoclinic phase. Further details of the X-ray diffraction study are provided in the Supporting 

Information. 

X-ray photoelectron spectroscopy (XPS) is used to determine the constituent elements and 

the corresponding oxidation state. The XPS spectra collected from the WO3+ sample confirms the 
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existence of tungsten (W); oxygen (O) with a small amount of carbon as well. Figure 3 (a-b) shows 

the W4f and O1s core level spectra of the as-prepared WO3 sample. The deconvoluted W4f 

spectrum shows a pair of peaks located at 35.98 and 38.1 eV, which correspond to W4f7/2 and 

W4f5/2, respectively, indicating the formation of the W+6 oxidation state [45, 46]. The deconvoluted 

O1s spectrum consists of main characteristic peak at about 530.98 eV and shoulder at 531.98, 

which correspond to the lattice oxygen peak and OH groups (or surface contamination), 

respectively [45]. The XPS data suggest the presence of W+6 oxidation states and a slight widening 

of the binding energy is presumably due to excess oxygen, which is in consistent with the 

Rutherford back scattering (RBS) and -Raman results shown in Fig. 3(c, d). The oxygen to 

tungsten (O/W) ratio extracted from the RBS measurement is 3.35, indicating the presence of a 

large excess of oxygen in the film. The excess oxygen can produce new gap states in WO3, which 

results in an increase in the electrical conductivity and electrocatalytic activity [47]. Thus, the 

abundance of oxygen is expected to improve the donor density and charge transfer in the film [45, 

47]. Two characteristic peaks centered at 758 and 949 cm-1 appear in the Raman spectrum, and 

these peaks are respectively associated with the O-W-O and W=O stretching modes vibrations [48, 

49]. The breadth of the O-W-O peak reveals that the film has a nanogranular structures, which is 

consistent with the TEM (Fig.1 (a)) and AFM (Fig. S1) observations.  

 

3.2 Electrochemical supercapacitor performance 

Cyclic voltammetry (CV) and charge-discharge measurments are carried out in half-cell 

configuration to investigate the electrochemical supercapacitor properties of the WO3+ nanograin 

electrode film. Fig. 4 (a) shows CV curves between −0.9 and 0.5 V (vs. SCE) in 1M LiClO4+PC 
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electrolyte with different scan rates of 10, 20, 50, 80 and 100 mVs−1. During the cathodic scan, the 

current increases due to the reduction of the W+6 state into the W+5 state, which results in a film 

with a dark blue color and simultaneous charging of the electrode [41]. The colored film returns 

to its original color (transparent) during the anodic scan, which oxidizes the previously reduced 

metal. The intercalation (reduction reaction) of Li+ ions causes the electrode to be in a colored, 

charged state while oxidation results in the electrode becoming transparent (bleached) and 

discharged. One can clearly determine whether the electrode, is either in its charged or discharged 

state; by observing the change in color during the charge and discharge cycles. The CV analysis; 

is used to propose the following insertion/extraction (reduction/oxidation) mechanism for the 

WO3+ nanograin electrode:             

WO3+ + xLi + xe− (discharged/bleached)    LixWO3+ (charged/colored)    (1) 

The charge transfer from W+6 to W+5 oxidation states during the diffusion of Li+ ions causes 

the electrode change between charged (colored) and discharged (de-colored) states. At a low scan 

rate, the Li+ ions diffuse deeply into the electrode, and at a fast scan rate, ionic diffusion occurs 

primarily near the nanogranular surface. This makes the CV curves look different (Fig. 4a), and 

results in differences in the charge storage capacity. The specific capacitance is obtained from the 

CV curves using the following formula;  

               


= IdV
Vvm

Cs
2

1
                           (2) 

where IdV is the area under the curve, v is the scan rate, m is the mass of the active electrode, and 

∆V is the potential window. Fig. 4 (b) shows the specific capacitance (Fg−1) as a function of the 

scan rate (mVs-1) with a broader potential window of 1.4 V (vs SCE). The capacitive current 

increases quasi-linearly as the scan rate increases and the specific capacitance decreases in a 
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similar way (see Fig. 4b), corroborating the good rate capability of the nanograin WO3+ electrode 

film and diffusion-controlled reaction based standard Randles–Sevcik equation [50].  

Fig. 4 (c) shows the galvanostatic charge/discharge curves measured at various current 

densities in 1 M LiClO4+PC electrolyte. The potential window is fixed between −0.9 and 0.5V (Vs 

SCE). The curvature observed in the galvanostatic charge-discharge curves is indicative of the 

pseudocapacitive behavior and the existence of Faradaic reactions at the nanogranular surface of 

the electrode [50, 51]. The discharge curve contains two slopes: one is parallel to the y-axis, 

representing the voltage change (Ir drop), and the other is related to the capacitive component. The 

specific capacitance (CS) is calculated using the following formula: [51] 

                             CS=
𝐼∆𝑡

𝑚∆𝑉
                         (3)   

where I is the discharge current, and ∆t represents the total discharge time. The nanograin WO3+ 

electrode is cycled at various charge-discharge current densities for 5 cycles to test its rate 

performance (see Fig. 4d). Within 35 cycles, the charge-discharge rate increases from 1.27 to 12.75 

Ag−1, and the specific capacitance decreases gradually from 228 to 82 Fg−1. Subsequently, the 

applied current is reduced back to 5.0 Ag−1, where 88% of the specific capacitance is recovered at 

approximately 140 Fg−1. The specific capacitance obtained in this study is more impressive than 

those in the literature for other tungsten-based electrodes, including WO3-x nano-plates (17.5 Fg−1), 

[52], graphene nanosheet-tungsten oxide composite (143.6 Fg−1) [53], self-assembled NiWO4 (173 

Fg−1) [54] and tungsten oxide nanorods (2.8 mFcm-2) [55]. The nanograin tungsten oxide electrode 

also exhibits both an outstanding reversible capacity and a high-rate long-cycle life performance, 

due to a combination of the faster Li ion diffusion, improved electrical conduction and robust 

structure of the material [46, 50, 56]. 
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The long-term electrochemical cycling stability at a high rate is evaluated using both 

charge/discharge; and CV tests in 1 M LiClO4+PC electrolyte for up to 2000 cycles, as shown in 

Figs. 5(a) and 5(b), respectively. The specific capacitance and capacitance retention from the 

charge-discharge curves were obtained at a current density of 12.75 Ag−1. The initial specific 

capacitance of approximately 90 Fg−1 decreases gradually, and after 2000 charge-discharge cycles 

it decreases down to 67 Fg−1 (approximately 75 % of the initial capacitance value). The long-

cycled CV curves after the 100th cycle are shown in Fig. S3 (supporting information). The CV 

curves and the areas under the curves after the initial cycling remain unchanged for up to 2000 

cycles. The CVs exhibit reversible characteristics without apparent deviations in each cycle, 

confirming the good electrochemical stability of the nanogranular tungsten oxide electrode. The 

capacitance and capacitance retention calculated from the CV curves are shown in Fig. 5(b). The 

specific capacitance is quite stable after an initial decrease, and high values are maintained over 

2000 cycles. The initial quick drop in the specific capacitance is presumably a result of structural 

changes in the electrode material. Repeated charge-discharge cycles induce the formation of 

neutral Li-O compounds [57], and once the Li-O layer settles on the electrode surface, the 

dissolution process becomes less effective and leads to an improvement in the electrochemical 

stability.  

 

3.3 Electrochromic performance 

We now turn to the electrochromic properties of the nonogranular WO3+ electrode. The 

coloring and bleaching performance of the electrode is evaluated using optical transmittance 

measurements with a potential step of ± 0.75 V (vs. SCE) for a fixed time of 30s. The transmittance 

modulation in the colored and bleached states is observed in the range from 350 to 800 nm (see 



11 

 

Fig. 6(a)). The transmittance modulation between the colored and bleached states at 630 nm is 

82%, which is very impressive when compared to the values of other electrochromic systems, in 

the literature [9-13]. The change in the optical density (∆OD) at 630 nm is calculated using the 

following formula [9]:  

      










=

c

b

630nm
T

T
lnOD)(  (4) 

where Tb and Tc are the transmittances of the bleached and colored states, respectively. The ∆OD 

is found to be 2.21. The coloration efficiency (CE), defined as the change in the optical density 

per unit charge inserted into the electrochromic film, is then calculated using the following 

equation [3, 10]:  

                    






 
=

Q/A

OD)(
 CE 630nm

630nm                         (5) 

where Q/A is the unit charge density. The charges intercalated during the charging process and de-

intercalated during the discharging process is measured using chronocolumetry (see Fig. 6(b)). 

The obtained CE of ~170 cm2/C is much higher than what was previously reported for other 

tungsten oxide-based electrochromic devices [7, 9-13]. The significant improvement in the 

coloration efficiency is due to the favorable energy levels for charge injection and an increased 

number of available transitions (quantum mechanical states) from W+6 to W+5 (Li+W+5 formation) 

during the Li+ ion intercalation process [41]. Another possible reason is that structural defects, 

such as oxygen, act as stable storage sites for Li+ ion diffusion [51]. The remaining energy level 

can be easily visualized through a simultaneous change in color with varying voltage. Fig. 6(c) 

shows photographic images of the nanogranular tungsten oxide electrode in different 

bleached/colored states at different potentials (colored: −0.25, −0.45, −0.75 V, bleached: +0.75 vs 
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SCE), which are associated with different amounts of stored charge. The electrode turns dark blue 

when fully charged at −0.75 V (vs SCE) and becomes transparent in the fully discharged state at 

+0.75 V (vs SCE). The electrode exhibits a light yellow and light blue color when partially charged 

at in-between potentials like −0.25 and −0.45 V (vs SCE). The superior coloration efficiency of 

the nanogranular WO3+ electrode makes it possible to efficiently and quantitatively detect the 

level of charge remaining on the electrode. 

 We perform ex-situ XPS and AFM measurements after the 1st charge and discharge 

processes to better understand the Li+ ion storage mechanism for the tungsten oxide electrode, as 

shown in Fig. 7 (a-d). The oxidation state of tungsten (W) in the electrode is characterized by 

recording the ex-situ XPS spectra for tungsten oxide. The XPS spectrum of the tungsten core level 

(W4f) after the charge process (colored state) shows two peaks centered at 35.35 and 37.48 eV, 

which correspond to W4f7/2 and W4f5/2 respectively, confirming the formation of the W+5 oxidation 

state [47]. The corresponding AFM (Fig. 7c) image shows a significant change in microscopic 

morphology, which is presumably caused by the formation of amorphous LixWO3 upon lithiation. 

On the other hand, the W4f XPS spectrum after the discharge process (transparent bleached state) 

exhibits two similar peaks at higher energies, 35.98 and 38.00 eV, indicating the formation of the 

W+6 oxidation state [45, 46]. The XPS results are consistent with the reaction mechanism in 

Equation 1. The AFM image (Fig. 7d) shows a microscopic morphology similar to that of the as-

prepared tungsten oxide film upon delithiation.  

The core level O1s XPS spectra taken after the charge and discharge processes shows peaks 

at 530.48 eV and 530.98 eV, respectively (see Fig. 7(b)). The major peak at 530.48 eV of the W 

oxidation state and lattice oxygen shifts to a lower energy level than that of the O1s spectra of the 

as-prepared sample at about 0.5 eV after the charge process (Fig.3b) and it regains its original 
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position after the discharge process. This phenomenon is associated with the Fermi level shift after 

charging (coloring). The formation of metallic W is further evidenced by recording the Nyquist 

plots after the charge-discharge processes (Fig. S4). The reduced impedance (Fig. S5a) after the 

charge process corroborates the conversion of highly-resistive W+6 into metallic W+5. Upon 

discharging, the metallic species becomes oxidized, increasing the impedance (Fig. S4b).  

  

4. Conclusions  

In summary, a highly-efficient electrochromic supercapacitor was demonstrated using an 

oxygen-rich nanogranular tungsten oxide thin film. The excess oxygen plays a critical role in 

forming a favorable microstructure, such as distorted tunnels along all directions that 

accommodate the maximum number of Li+ ions possible. It exhibits faster, reversible color 

modulation between the blue (charged) and transparent (discharged) states, thereby providing 

dynamic visual information on the status of the energy storage. The measured properties include a 

specific capacitance of 228 Fg−1 at a current density of 1.27 Ag−1, improved durability without 

apparent deviations in each cycle over 2000 cycles, and good capacity retention of 75%. In addition, 

it shows the highest coloration efficiency of ~170 cm2/C with an optical modulation of 82%. This 

superior tungsten oxide nanograin electrode material could be used as a safe, efficient, long cycle 

electrode material for next-generation supercapacitor applications with additional functionality. 
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Figure captions  

Fig. 1. Color palette of electrochromic supercapacitor (smart-supercapacitor) electrodes reported 

in the literature, together with the coloration efficiency.  

 

Fig. 2. (a,b) TEM and HRTEM images with 10 and 2 nm scale bars respectively. The inset shows 

the X-ray amorphous nature of the synthesized film. The SAED pattern of the corresponding film 

is shown in (c), and the inset shows that the monoclinic WO3 phase is mostly comprised of corner 

linked octahedra of 4 membered channels along all crystallographic directions. The 002 and 022 

crystallographic planes obtained from the SEAD patterns are projected in (d). All crystallographic 

projections are made with the VESTA structure drawing software.  

 

Fig. 3. Core level XPS spectra showing W4f and O1s peaks for the synthesized tungsten oxide 

sample (a, b), indicating the existence of W6+ oxidation states; (c) The presence of excess oxygen 

in the film is confirmed via Rutherford back scattering spectroscopy; (d) The -Raman results 

show broad characteristic Raman peaks centered at 758 cm-1 for the nanostructured amorphous 

tungsten oxide.  

 

Fig. 4.(a) CV curves recorded at 10, 20, 50, 80 and 100 mVs−1 scan rates between −0.9 and 0.5 V 

(vs. SCE) in 1M LiClO4+PC electrolyte, (b) Specific capacitance (Fg−1) and cathodic current (mA) 

as a function of the scan rate (mVs−1), measured at -0.9 V (vs SCE); (c) Galvanostatic 

charge/discharge curves recorded at 1.27, 2.54, 5.0, 7.6, and 12.75 Ag−1; (d) Rate performance of 

the supercapacitive electrode cycled at various charge-discharge current densities for 5 cycles.  
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Fig. 5.(a) Specific capacity and capacity retention as a function of the cycle number studied at a 

high current density of 12.75 Ag−1, after 2000 charge-discharge cycles where the capacity is 

retained up to 75 %, and the associated capacity fading is of 0.0125 % per cycle, (b) Specific 

capacitance and capacitance retention obtained from CV at 100 mVs−1 as a function of the cycle 

number.  

 

Fig. 6. (a) Transmittance spectra for tungsten oxide in the colored and bleached states at ±0.75 V 

(vs. SCE) for a fixed time of 30s, with transmittance modulation of 82 %; (b) Chronocolumetry 

measurements for coloration and bleaching at ±0.75 V; (c) Comparison of the coloration efficiency 

obtained (~170 cm2/C) for the previously reported PANI /WO3 composite and pure WO3 devices; 

(d) Actual photographic image of the color scheme at a different potential (−0.25, −0.45, −0.75 V 

vs SCE) and its bleached state (+0.75 V vs SCE) associated with several typical levels of stored 

charge.  

 

Fig. 7.  Ex-situ XPS, and AFM analysis after the 1stcharge and discharge process (a) Core level 

W4f spectra after the charge and discharge processes, (b) Core level O1s spectra after the charge 

process; (c) Core level O1s spectra after the discharge process; (d) The AFM image after the charge 

(lithiation) process shows a significant change in the microstructure; (e) The AFM image after 

discharge (delithiation) shows a microstructure similar to that of pristine tungsten oxide. 
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