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Abstract

In this thesis we applied a spectral element approximation to some elliptic partial dif-

ferential equations. We demonstrated the difficulties related to the approximation of

a discontinuous function in which the discontinuity is not fitted to the computational

mesh. Such a situation gives rise to the Gibbs phenomenon. A h− p spectral ele-

ment equivalent of the eXtended Finite Element Method (XFEM), which we termed

the eXtended Spectral Element Method (XSEM) was developed. This was applied

to some model problems. XSEM removes some of the oscillations caused by Gibbs

phenomenon. We then explained that when approximating a discontinuous function,

XSEM is able to capture the discontinuity precisely. We derive spectral element error

estimates. The convergence of the approximations is studied.

We have introduced several enrichment functions with the purpose of improving the

approximation of discontinuous functions. In particular we have considered the two-

dimensional Poisson equation. Unfortunately, this implementation of XSEM was not

able to recover spectral convergence. An alternative idea in which the discontinuity is

constrained within a spectral element produces accurate SEM approximation.

The Stokes problem was considered and solved using SEM coupled with an iter-

ative PCG method. The zero volume condition on the pressure is satisfied identicaly

using an alternative formulation of the continuity equation. Furthermore, we investi-

gated the dependence of the accurency of the spectral element approximation on the

weighting factor as well as the convergence properties of the preconditioner. An ef-

ficient and robust preconditioner is constructed for the Stokes problem. Exponential

convergence was attained.
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1

Chapter 1

Introduction

1.1 Polynomial Interpolation

Differential equations are incorporated into a variety of different scientific disciplines,

including biology, chemistry, physics, and economics. It is not possible to obtain

closed form or analytical solutions to partial differential equations for the majority of

problems. Therefore, scientific and engineering experts have designed numerical tech-

niques, like the finite difference method (FDM) [79], the finite element method (FEM)

[5, 109], meshless methods [40, 61], spectral methods [13], boundary element meth-

ods [88], discrete element methods [71], and Lattice Boltzmann methods [97] among

others in order to determine approximations to the solution of differential equations.

The aforementioned numerical methods are employed to determine numerical ap-

proximations to the solutions of ordinary differential equations (ODEs) and partial

differential equations (PDEs). The application of such methods is additionally called

“numerical integration”, but this term is often interpreted as the calculation of integrals.

It is possible to categorise such numerical methods into either local or global

groups. Both finite difference and finite-element methods are founded on local ap-

proximations, while the spectral technique is characterised by its global nature. In

practical terms, finite-element methods have increased suitability for complex geomet-

ric problems, while spectral methods can offer greater precisions, while sacrificing

domain flexibility. It is emphasised that there are also numerical methods, like hp fi-
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nite elements and spectral-elements, which amalgamate the benefits offered by local

and global techniques.

The finite element method (FEM) has been employed for many years as a numerical

instrument to solve a variety of problems in the field of engineering as it is capable of

managing the complex challenges associated with geometric and material properties

[31]. Computational mechanics based on FEM is an important element of numerous

scientific and engineering fields. FEM does not operate on the strong form of the

differential equations; rather, the continuous boundary and initial value problems are

reformulated into similar variational forms. When applying the FEM, it is necessary

for the domain to be separated into regions that do not overlap, known as elements.

Within FEM, a topological map, also known as a mesh, creates connections be-

tween each of the elements, while local polynomial representation is utilised for the

fields inside every element. The resulting solution is dependent on the mesh quality,

and the basic necessity is that the mesh conforms to the geometry. The primary benefit

of the FEM is that it has the capability to easily manage complicated boundaries. It

should be noted that certain solution approaches are targeted at dealing with multiple

limitations of the FEM, such as meshfree methods [40, 61], and the recently devel-

oped Smoothed Finite Element Method (SFEM) [12, 62, 73]. It has been observed that

FEM using piecewise polynomials is not efficient at addressing singularities or high

gradients within the domain.

One approach involves the enrichment of the FEM approximation basis with more

functions [95]. It is possible to combine certain developed methods with enrich-

ment methods for resolving problems that involve singularities or high gradients. An

example of a numerical method founded on the generalised finite element method

(GFEM) and the partition of unity method (PUM) is the extended finite element method

(XFEM). It expands on the traditional finite element method (FEM) methodology

through the enrichment of the solution space to differential equations with prominent

non-smooth properties in localised regions within the computational domain, such as
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close to singularities or discontinuities.

When numerically solving partial differential equations, the spectral element method

is formulated on the basis of the finite element method, which utilises high-degree

piecewise polynomials as the basis functions, as suggested by Patera in 1983 [80].

The two methods involve the decomposition of the computational domain into sub-

domains that have a suitably small size, followed by approximation of the solution.

FEM employs low-order expansion and is capable of producing outcomes for domains

characterised by their highly complex nature, although the accuracy is reduced. On the

other hand, the advantage of SEM is enhanced accuracy, which is not easy to achieve

when using low-order methods.

The application of domain decomposition methodology is similar to the finite ele-

ment method. The whole computational domain is separated into distinct sub-domains

(elements). Due to the fact that the integration process is performed on a standard

(or reference) sub-domain (in increased dimensions [−1,1]d, in which d denotes the

physical dimension), the transition of every element to standard (or reference) domain

is done through the coordinate transformation process. The Gauss-Lobatto-Legendre

(GLL) integration will be applied. All computations will be implemented on an arbi-

trary (quadrilateral) domain, whereas the integration is performed on [−1,1]2.

The spectral and finite element methods are compared. One of the similar features

of these two techniques is their weighted residual foundation, which facilitates the

combination of the methods. However, differences can be observed when the weighted

residual framework is extended to the final series of discrete equations. Spectral meth-

ods utilise high order indefinitely differentiable basis functions, which are predomi-

nantly Chebyshev or Legendre polynomials. Conversely, finite element methods em-

ploy low order basis functions. Additionally, spectral methods have a global basis,

which is defined across the entire given domain, while in the finite elements method

(as with each of the methods involving domain decomposition), the basis functions

are characterised as being local. The differentiating factor mentioned above has sig-
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nificant repercussions; when using spectral methods, the approximate solution of the

partial differential equation is converged via a higher spectral expansion order. Con-

trastingly, in the finite element methodology, this is accomplished via a greater amount

of elements. An additional significant ramification is that while spectral expansions are

characterised by their spectral or exponential precision, the limitation of finite element

methods is that they only provide a maximum of algebraic convergence. However, the

utilisation of global approximations with a higher order generates full system matrices

in the resulting series of discrete equations. Finite element systems are sparse as a re-

sult of the local nature of the approximation. Element separation that is performed in

the finite element method facilitates the resolution of highly complex geometric prob-

lems, as opposed to spectral techniques. Furthermore, the potential to refine the local

mesh when performing finite element methods allows complicated physical phenom-

ena to be addressed, including powerful solution discontinuities, which is a benefit in

comparison to the global spectral methods common to the spectral element methods.

In conclusion, spectral methods are highly compatible with problems where both the

solution and data are characterised by their regularity and the complexity of the domain

is low. Nevertheless, where the geometry involves either strong data discontinuities or

complexities, it is evident that the implementation of finite element methods presents

fewer difficulties.

1.2 Convergence of Approximations

With trial functions such as Chebyshev or Legendre polynomials and if the solution is

m times differentiable (u ∈ Hm(Ω)), it can be demonstrated that a constant C exists,

where the following bound is satisfied by the approximation:

‖u−uN‖L2 ≤CN−m‖u‖Hm

where N is the order of polynomial. It should be noted that for functions that have

infinite smoothness, this “truncation” flaw has the attribute of exponential convergence
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when N is increased as it applies for each m. However, it should be emphasised that the

estimation is asymptotic, meaning that it is applicable only for a sufficiently large N.

The convergence theory for the Legendre series is practically the same as in Chebyshev.

When comparing these two sets, weaker estimations are produced for the maximum

pointwise error. For example, the estimation is poorer for the Legendre series in com-

parison to the Chebyshev series when it has an identical order, truncated subsequent to

N terms by O(N1/2).

It could be questioned why the Legendre series is being discussed when it has been

determined that the performance of Chebyshev is better. This can be explained by the

weight function, which produces all of these orthogonal polynomial sets. Although im-

proved spectral convergence of the expansion coefficients as well as generation of the

optimal polynomial approximation of continuous functions is achieved with Cheby-

shev polynomials, the Legendre set is selected as the attributes have strong similarities

to the Chebyshev, while their generating weight function is wC(x) = 1, rather than

wC(x) =
1√

1− x2
for Chebyshev. This property associated with Legendre polynomials

allows the weak formulation of the differential equation to be simplified. Spectral ele-

ment techniques also utilise the weak form, and this will be discussed in the following

chapter; thus, only the Legendre polynomials will be used as the basis for the numeri-

cal schemes from this point.

The definition of a discontinuity is a swift alteration of a field quantity across a

length, which is minimal in comparison to the observed domain dimensions. In real-

ity, discontinuities are observed on a frequent basis. For examples, both stresses and

strains in solids are discontinuous across material interfaces, while at cracks, displace-

ments are continuous. Tangential displacements are discontinuous across shear bands.

In regard to fluids, both pressure and velocity fields could incorporate discontinuities

where two fluids are interfaced.

If Ω ∈ Rn is considered to be the computational domain including two distinct

immiscible incompressible phases and ∂Ω is the boundary of Ω. The sub-domains in
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which the two phases are contained are defined as Ω1 and Ω2 with Ω = Ω1 ∪Ω2 and

Ω1 ∩Ω2 = /0. The assumption is made that there is a connection between Ω1 and Ω2.

Within an element, Ωe,e = 1,2, the approximation for a function f is continuous.

Nevertheless, in the event that the approximated function contains a discontinuity, it

is possible to observe spurious oscillations in the approximation. This kind of phe-

nomenon is widely recognised, and is defined as the Gibbs phenomenon; see for in-

stance, [10, 11].

It is possible to implement a formal categorisation of the Gibbs phenomenon as

its lack of ability to perform the approximation of a discontinuity by using continuous

functions. The spectral element interpolation of a discontinuous function is addressed

based on a grid where the points have uniform spacing so as to provide an explana-

tion for this phenomenon. Certain complexities arise when using spectral methods for

the approximation of a discontinuous function. For example, the spurious oscillations

have the potential to contaminate the additional variables included in the computation,

particularly if the discontinuity is allowed unrestricted movement within the computa-

tional domain. The next section will present a method that is capable of moderating

these oscillations.

1.3 Weak and Strong Discontinuities

Research into strong and weak discontinuities performed by Cheng and Fries [20] was

aimed at developing the sub-optimal order of convergence that was found in the appli-

cation of a higher-order XFEM to curved discontinuities. The source of the sub-optimal

order of convergence was the approximations in the quadrature, as demonstrated by

Legay et al. [60]; hence, Cheng and Fries [20] supported a different quadrature scheme

that involved the subdivision of an element containing the discontinuity into elements

of smaller size where one of the sides of sub-element is curved. This infers that the

curved side of the element has an increased amount of nodes in comparison to the non-

curved sides. A different quadrature scheme is used for the purposes of this thesis.
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Additionally, Cheng and Fries [20] recommended that a modified higher-order XFEM

should be applied. In terms of the rates of convergence for curved weak discontinuities,

the conventional higher-order XFEM did not produce optimal rates. However, Cheng

and Fries [20] determined that it was possible to obtain maximum rates when equal-

order basis functions were applied for both the conventional and extended aspects of

the enriched approximation. Moreover, due to the fact that they adopted a modified

abs-enrichment (where the enrichment function had absolute-value), they determined

that a sub-optimal order of convergence emerged for curved discontinuities. Further-

more, the rates of convergence considered were all h-type, implying convergence in

regard to the optimal polynomial degree and the width of the mesh, which was four.

The required steps included in the application of the XFEM are:

1. It is possible to explicitly represent the discontinuity or interface via line seg-

ments, or implicitly through the use of the level set technique (LSM) [76, 90].

2. Where local enrichment is involved, only a subgroup of the nodes nearby the

region in question is enriched. Selection of the nodes that will be enriched is

performed on the basis of an area criterion or based on the nodal values of the

level set function.

3. Based on the physics of the issue, various enrichment functions can be employed.

4. An outcome of including customised enrichment in the FE approximation basis.

If we consider an n-dimensional domain Ω ∈Rn that is discretised by nel elements,

assigned numbers from 1 to nel, I is defined as the set including each of the nodes

within the domain, and I∗ denotes the nodal subgroup of the enrichment (I∗ ⊂ I). A

conventional extended finite element approximation of function u(x) can be formulated

as
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uh(x) = uh
FEM(x)+uh

Enr(x)

= ∑
i∈I

Ni(x)ui + ∑
j∈I∗

N∗
j (x)ρ(x)a j.

(1.1)

For the purposes of simplification, consideration is only shown for a single en-

richment term. The approximation is comprised of a standard finite element (FE) in

addition to the enrichment. The individual variables can be defined as follows:

• uh(x): approximated function,

• Ni(x): Standard FE function of node i,

• ui: unknown of the Standard FE part at node i,

• N∗
j (x) : conventional FE shape functions that are not automatically identical to

the ones used in the standard section of the approximation (Ni(x)).

• ρ(x): global enrichment function. The enrichment function ρ(x) contains the

essence of the solution or data regarding the fundamental physics associated with

the problem; for instance, ρ(x) = H, is utilised in the capturing of robust discon-

tinuities, while H defines the Heaviside function

• a j: unknown of the enrichment at node j.

Equation (1.1) provides a general definition of the XFEM. To achieve a specific re-

alisation of the XFEM, it is important to define the global enrichment function ρ(x)and

the division of unity functions N∗
i (x) along with the selection of the nodal subset I⋆.

With respect to the debate regarding strong discontinuities, Legay et al. [60] de-

termined that additional consideration was not necessary in the blending elements.

Nonetheless, in situations where the discontinuities are not strong, it was found by

Legay et al. that terms of higher order that arise inside the blending elements should

be removed. According to their observations, the elimination of the terms of higher or-

der inside the blending elements was enough when using polynomials of degree N −1
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in the enrichment process. Although Legay et al. [60] reviewed spectral basis func-

tions, the researches addressed XSEM on the basis of a high-order FEM perspective.

In terms of weak straight discontinuities, Legay et al. [60] found that this method gen-

erates an order of convergence that neared the optimum. Nonetheless, in relation to

weak curved discontinuities, the order of convergence generated by this method was

sub-optimal. The scheme employed by Legay et al. partitioned the element contain-

ing the discontinuity into smaller elements. If it is determined that the discontinuity

is contained within one of these elements, then the smaller element is additionally

partitioned into triangles thus generating a linear approximation of the discontinuity

contained within the element.

As an illustration of this phenomenon, the spectral element interpolation of a dis-

continuous function on a grid of points with uniform spacing is considered. In order to

simplify the process, the assumption is made that the domain Ω ⊂ R and there is only

one spectral element. The domain is defined as Ω = [−1,1] and we presume that the

function we will interpolate is piecewise constant:

f (x) =







x+1 ∀x ∈ [−1,10−4)

x ∀x ∈ [10−4,1]
(1.2)

It should be noted that the point 10−4 is selected as the intersection point between

the two sub-domains’ boundaries as 0 belongs to the Gauss-Lobatto Legendre grid.

The spectral element of this function is constructed on a grid with uniform spacing

utilising only one element. The grid with uniform spacing is formulated as:

Du = [x0,x1]∪ [x1,x2]...∪ [xM−1,xM] =
M⋃

k=1

[xk−1,xk]

where x0 =−1 and xM = 1 and M is the total number of points with uniform spacing.

Hence, the interpolant is:

fN(x) =
N

∑
i=0

fihi(x), ∀x ∈ Du (1.3)



1.3 Weak and Strong Discontinuities 10

where the polynomials hi, i = 0, ...,N, denote the Lagrange interpolants. In Fig. 1.1,

one can observe the spurious oscillations that exist surrounding the discontinuity for

M = 1000 when N = 10 and N = 100. As N rises from 10 to 100, it can be observed that

the oscillation frequency rises around the discontinuity. External to the discontinuity,

it can be observed the oscillation amplitude declines in line with the increase in N.

Hence, the Gibbs phenomenon becomes increasingly local as N becomes larger (see

Fig. 1.1). This suggests that if we allow N → ∞ , this would ultimately lead to a

convergence to the solution.
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(b) N = 100

Figure 1.1: Spectral element interpolation of a discontinuous function on a grid of

uniformly spaced points for M = 1000. The red line is the function f and the blue line

is the interpolant.

While the above example is relatively simplistic, it is illustrative of problems that

arise in relation to the use of spectral techniques when approximating a discontinuous

function. The spurious oscillations have the potential to contaminate the additional

variables within the computation. Such a phenomenon can additionally be observed in

finite elements. Nevertheless, the severity is lower compared with spectral techniques

as a result of the lower order polynomial interpolants. It could be argued that it is

necessary to conform the discontinuity to the mesh. Nevertheless, this could make
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the time required for computation significantly longer, specifically in situations where

the discontinuity is permitted free movement inside the computational domain. In the

following part, a technique that can mitigate these oscillations will be discussed.

1.4 eXtended Spectral Element Method

The approximation of a discontinuity combined with the computational mesh through

the application of continuous polynomials could lead to spurious oscillations around

the discontinuity. These could diffuse throughout the computational domain, thus con-

taminating the approximation distant from the discontinuity. In terms of the finite

elements, it was proposed by Moes et al. [8, 68] that a method defined as the Extended

Finite Element Method (XFEM) be adopted to resolve this issue. In situations where

there is a strong discontinuity (as is the case in this thesis), the fundamental idea under-

lying XFEM, according to the specific formal definition, involves boosting the initial

finite element space of admissible functions via a discontinuous event, this allows the

discontinuity to be captured by the numerics, thus obtaining the optimum order of con-

vergence for functions that are less regular. In the context of the present thesis, this

approach is adapted for spectral elements, with the consequence that is renamed the

eXtended Spectral Element Method (XSEM) and the objective is to optimise the con-

vergence order in terms of the polynomial degree, based on which it will be possible

to deduce spectral precision for functions containing discontinuities.

The rationale behind the below example is to numerically analyse the eXtended

Spectral Element Method (XSEM). Firstly, the approximation of a discontinuous func-

tion is considered.

Let Ω = [−1,1] include two sub-domains Ω1 = [−1,10−4) and Ω2 = [10−4,1] such

that

Γ = ∂Ω1 ∩∂Ω2 = {10−4}

Represents the interface between the pair of regions. Γ stands for the discontinu-

ity contained within the function. Reconsider the discontinuous function f : Ω → R
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defined by:

f (x) =







x+1 ∀x ∈ Ω1

x ∀x ∈ Ω2

(1.4)

For the purposes of simplification, only one element is considered. Hence, the

spectral element and extended spectral element approximations, represented by fN and

f Γ
N , respectively, on domain Ω are formulated by

fN(x) =
N

∑
i=0

fihi(x)

f Γ
N(x) =

N

∑
i=0

fihi(x)+
N

∑
i=0

αihi(x)φi(x)

(1.5)

where fi = f (xi), i = 0, ...,N,hi denote the Lagrange interpolants defined in (A.3), αi

represent the additional degrees of freedom resulting from the enrichment and φi is the

enrichment function formulated as :

φi(x) = H(x)−H(xi) (1.6)

where H(x) denotes the Heaviside step-function formulated as :

H(x) =







0 ∀x ∈ Ω1

1 ∀x ∈ Ω2

(1.7)

The coefficients αi are totally unknown. Consider a grid with uniform spacing formu-

lated as:

Du = [x0,x1]∪ [x1,x2]...∪ [xM−1,xM] =
M⋃

k=1

[xk−1,xk]

where x0 = −1 and xM = 1 and M denote the overall number of points with uniform

spacing.

For the purpose of calculation, it is assumed that f Γ
N(xk) ≡ f (xk),∀xk ∈ Du. The

αi’s can therefore be calculated based on residual of the standard SEM approximation:

N

∑
i=0

hi(xk)φi(xk)αi =
N

∑
i=0

Bkiαi = F(xk) = f (xk)−
N

∑
i=0

fihi(xk) (1.8)
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where the matrix entries are given by Bki = hi(xk)φi(xk).It should be noted that the

number of points with uniform spacing will normally be greater than the polynomial

degree (M > N), hence, the matrix B is not square, but its size is (M + 1)× (N + 1).

Thus, it can be inverted through a process in which it is multiplied by its transpose BT

to generate a square matrix BT B with size (N+1)× (N +1) and can then be inverted :

BT Bα = BT F (1.9)

As N rises the conventional SEM approximation approaches the precise solution, mean-

ing that the right-hand side of (1.8) will converge to zero. Consequently, the matrix B

will become more singular in line with the increase in N. Deductively, this outcome

can be interpreted as a lowering in the amount of enrichment necessary

Table 1.1 shows the convergence orders for both SEM and XSEM in terms of theL2

norm. For the calculation of the L2 norm, due to the fact that high order polynomials are

being used, the Gauss-Lobatto-Legendre (GLL) quadrature is considered. Function f is

interpolated utilising SEM and XSEM on a finer grid that has an orderM = 1000. The

resulting grid is subsequently employed in the quadrature for the L2 norm. It is evident

that SEM experiences difficulties with obtaining an analytical solution as a result of

the existence of the discontinuity (see Fig 1.3). It can clearly be observed that there are

oscillations local to the discontinuity (where N = 10). In Table 1.1 , the convergence

orders for both the SEM and XSEM approximation of discontinuous f are shown. First,

it is clear that the SEM approximation experiences problems and the error in fact grows

when N = 8, . . . ,64 (see second column of Table 1.1). It is probable that the oscillations

observed in Fig 1.3 are caused by the Gibbs phenomenon. The convergence order for

the XSEM approximation of a discontinuous function is identical to that obtained when

it approximates a continuous function. This exemplifies the strength of an enriched

method. For functions with reduced regularity, the desired high convergence order can

be maintained.
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N ‖ f − fN‖L2(Ω) ‖ f − f Γ
N‖L2(Ω)

1 18.2574 5.740 ×10−15

2 29.4052 3.884 ×10−14

4 22.2915 2.958 ×10−13

8 16.4059 2.613 ×10−10

16 11.8316 3.767×10−7

32 8.4116 1.786 ×10−7

64 5.9035 1.290 ×10−7

Table 1.1: Convergence of the error with respect to N for both SEM and XSEM.
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Figure 1.2: XSEM interpolation of a discontinuous function on a grid of uniformly

spaced points for M = 1000 and N = 10. The green line is the XSEM interpolant, the

red line (underneath the green line) is the function f .
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Figure 1.3: Comparison of the SEM and XSEM approximation ( fN and f Γ
N ) of discon-

tinuous f against the analytical solution for varying values of N.

In the present thesis, a spectral element equivalent of the hp eXtended Finite Ele-

ment Method (XFEM) is developed, which is defined as the eXtended Spectral Element

Method (XSEM). A certain amount of the oscillations generated by the Gibbs phe-

nomenon are eliminated via the XSEM. In combination with certain iterative methods

(Preconditioned Conjugate Gradient), this approach was implemented in both Poisson

and Stokes equations. Spectral element error estimates are derived and the convergence

of the approximations is investigated.
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Chapter 2

Spectral element method (SEM)

2.1 Introduction

Spectral element techniques, which were introduced by Patera (1984), are high order

weighted residual methods that can be applied to solve partial differential equations.

They amalgamate both the geometric flexible h-type (Axelsson and Barker(1984), Cu-

velier et al.(1986), Girault and Raviart(1986)), and p-type, (Babuska and Dorr(1981),

Babuska et al.(1981)) finite element techniques with spectral methods, and have the po-

tential to yield high levels of precision (Canuto et al.(1988), Gottlieb and Orszag(1977),

Gottlieb et al.(1984)). Subsequently, Maday and Patera (1989) developed this approach

and presented a theoretical basis for the method.

In the spectral element discretisation, the domain is decomposed into a finite num-

ber of spectral elements. In each element, the dependent variables are approximated

using high order polynomial expansions. With the aim of decreasing the need for ex-

plicitly imposing continuity at the interfaces of the elements, we write the partial dif-

ferential equation in its equivalent variational form. Thus, this variational formulation

is assumed to be the foundation of the discretisation procedure, in which an important

role is played by high order Gauss-type numerical quadrature (Davis and Rabinowitz

[? ]). For p-covergence we expect the discrete approximation to converge as the order

of polynomial approximations increases while keeping the number of elements con-

stant.
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The spectral element decomposition allows problems that incorporate geometries

with high complexity to be approximated accurately. Hence, spectral element tech-

niques can deal with complexities that are both geometric and physical in nature. Due

to the fact that spectral element estimation can be regarded as a spectral collocation

technique for fixed elements, the rates of convergence generated by spectral element

techniques are comparable to those produced by spectral techniques and are dependent

on the smoothness properties of the function that will be approximated. Therefore, in

the case of analytic solutions, spectral element techniques achieve either spectral or

exponential convergence, which means they are highly compatible for problems where

high order regularity is not excluded, such as incompressible fluid mechanics (Korczak

and Patera (1986), Ronquist and Patera (1988)). In the event that the regularity of the

solution is diminished, spectral element techniques may become less desirable in com-

parison to h-type finite element techniques. A similar assertion can be made when the

allowable level of error is comparably elevated.

2.2 Some examples of spectral methods

Spectral techniques are not only characterised on the basis of the method type (i.e.,

Galerkin, collocation or tau), but also the specific selection of the trial functions. The

most widely utilised types of trial function are trigonometric, Chebyshev and Legendre.

In the following sections, the fundamental tenets of the Legendre technique and the

basic attributes of the polynomial set will be presented through an in-depth examination

of a specific spectral technique based on its application to common kinds of equations.

2.2.1 The 1D spectral element mesh

Basis functions that are defined over the entire domain are impractical for complex

geometries (such as the propagation of seismic waves inside a sedimentary basin) or

models that do not have continuous physical attributes (such as the wave equation in

layered media). The spectral element technique, which largely mirrors FEM, involves
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the decomposition of the domain into separate elements, followed by the application

of the spectral technique inside each of the elements. The continuity of the global

approximation across inter-element borders can be accomplished in an efficient manner

by imposing continuity on the interface points. The domain [a,b] is divided into ne

elements E j = [x j−1,x j], j = 1, ...,ne, with x0 = a and xne
= b. Additionally, a mapping

χ j is determined which maps every element (x ∈ E j) into the reference element (ξ ∈
[−1,1]):

x = χ j(ξ ) =
(1−ξ )

2
x j−1 +

(1+ξ )

2
x j, ξ ∈ [−1,1]. (2.1)

ξ = (χ j)−1(x) =
2x− (x j−1 + x j)

x j − x j−1
, x ∈ E j. (2.2)

Each element is discretised using a Gauss-Lobatto Legendre (GLL) sub-grid. The i-th

GLL node of the j-th element is located at

x
j
i = χ j(ξi). (2.3)

The non-redundant list of these nodes (i.e. inter-element nodes counted only once)

form a set of ne ×N +1 global nodes

xI = x
j
i with I = I (i, j) = ( j−1)N+ i, i = 1, · · · ,N, j = 1, · · · ,ne−1;

i = 1, · · · ,N +1, j = ne.
(2.4)

The table I (i, j) is the local-to-global index map table.

2.2.2 The assembly operator

Consider a set of local quantities defined on an element-by-element basis: a set of

local vectors {a j}ne

j=1 each of size N + 1, or a set of local matrices {A j}ne

j=1 each of

size (N + 1)× (N + 1). To assemble the global quantity we need to add the local

contributions from each element to form the global array. The assembled vector aaa of

size Nne +1, by definition has the following components
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aI = ∑
(i, j), I≡(i, j)

a
j
i =







a
j
i if I ≡ (i, j) with i ∈ [1,N −1]

(if I is an interior node)

a
j−1
N +a

j
0 if I ≡ (N, j−1)≡ (0, j)

(if I is a boundary node)

(2.5)

The components of an assembled matrix A of size (Nne +1)× (Nne +1), are

APQ = ∑
(p,q, j), P≡(p, j), Q≡(q, j)

A j
pq =







A j
pq if P ≡ (p, j) with p ∈ [1,N −1]

if Q ≡ (q, j) with q ∈ [1,N −1]

(if I or J are interior nodes)

A
j−1
N0 +A

j
0N if P = Q ≡ (N, j−1)≡ (0, j)

(if P = Q and is a boundary node)

(2.6)

For ne = 2 and N = 3, the assembled matrix has the following form :

A =




















• • • • 0 0 0

• • • • 0 0 0

• • • • 0 0 0

• • • • • • •
0 0 0 • • • •
0 0 0 • • • •
0 0 0 • • • •




















(2.7)

2.2.3 Basis functions

A set of global basis functions is defined by gluing together the spectral basis functions

based on the GLL nodes of each element:

hI(x) =







hk
i (x) if I ≡ (i,k) and x ∈ Ek

0 otherwise
(2.8)

where

hk
i (x) = hi[(χk)

−1(x)], for x ∈ Ek

These basis functions are continuous across inter-element boundaries. This efficiently

enforces the continuity of the approximation.
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2.2.4 One-dimensional Model Problem

Let f ∈ L2([a,b]) and α,β ,γ,a1,a2 ∈ R. We are seeking a solution u of the following

second-order boundary value problem with Dirichlet boundary conditions:






−αu′′+βu′+ γu = f , x ∈ [a,b],

u(a) = a1, u(b) = a2.

(2.9)

2.2.5 Weak formulation

In order to outline the spectral element method, we first start with the variational for-

mulation of the problem. The solution u is sought in the following admissible space:

U =
{

u ∈ H1([a,b]); u(a) = a1, u(b) = a2

}
.

where H1 is the classical Sobolev space that denotes the space of square-integrable

functions with square-integrable generalized first derivatives. The test-functions are

choosen in V = H1
0 ([a,b]). We define the L2-scalar product

(u,v) =

∫ b

a
u(x)v(x)dx

Multiply the first equation of (2.9) by a test function v ∈ V integrate by parts, then one

can easily obtain the weak form :






Find u ∈ U such that

a(u,v) = ( f ,v), ∀v ∈ V

(2.10)

where the bilinear form a(., .) is defined by

a(u,v) = α(u′,v′)+β (u′,v)+ γ(u,v)

Discrete problem

Let ui ≈ u(xi). Then, in the case of a single element, the solution u is expanded in

terms of the Lagrange interpolants based on the Gauss-Lobatto Legendre (GLL) points
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i.e.

uN(x) =
N

∑
k=0

ukhk(x) (2.11)

where

hk(x) =
N+1

∏
i=1, i 6=k

(x− xi)

(xk − xi)
, k = 1, . . . ,N +1, (2.12)

is defined on the set of interpolation nodes {xk}N+1
k=1 . Let PN([a,b]) be the set of poly-

nomials of degree N defined on [a,b].

The Galerkin approximation is to solve the discrete weak problem:

Find uN ∈ U N = {uN ∈ PN([a,b]); uN(a) = a1, uN(b) = a2} such that

α(u′N,v
′
N)N +β (u′N,vN)N + γ(uN ,vN)N = ( f ,vN)N, ∀vN ∈ U

N ∩H1
0 ([a,b]) (2.13)

where the discrete inner product (·, ·)N is defined by

(φ ,ψ)N =
N

∑
i=0

wiφ(xi)ψ(xi)

where the weights for Legendre-Gauss-Lobatto numerical integration are given by:

wi =
2

N(N +1)

1

L2
N(xi)

, i = 1, . . . ,N +1.

By injecting the approximation uN given by (2.11) into the variational formulation

(2.13) and by choosing the test functions as vN = h j (1 ≤ j ≤ N −1), one obtain the

following discrete system :

α
N

∑
k=0

uk(h
′
k,h

′
j)N +β

N

∑
k=0

uk(h
′
k,h j)N + γ

N

∑
k=0

uk(hk,h j)N = ( f ,h j)N, j = 1, . . . ,N −1.

2.2.6 Legendre differentiation matrix

Define D to be the so-called Legendre differentiation matrix of dimension (N + 1)×
(N +1) given by Di j = h′j(xi), and with entries given explicitly by







D00 =−N(N +1)

4

DNN =
N(N +1)

4

Dii = 0, i = 1, . . . ,N

Di j =
LN(xi)

LN(x j)(xi − x j)
, i, j = 0, . . . ,N, i 6= j
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2.2.7 Stiffness matrix

The stiffness matrix is full with entries given by

Ai j = α(h′i,h
′
j)N +β (h′i,h j)N + γ(hi,h j)N

= α
N

∑
p=0

wph′i(ξp)h
′
j(ξp)+β

N

∑
p=0

wph′i(xp)h j(xp)+ γ
N

∑
p=0

wphi(xp)h j(xp)

= α
N

∑
p=0

wpDpiDp j +β
N

∑
p=0

wpDpiδp j + γ
N

∑
p=0

wpδpiδp j

= α
N

∑
p=0

wpDpiDp j +βw jD ji + γwiδi j.

2.2.8 Elemental mass matrix

A major practical advantage is that the mass matrix is diagonal by construction

Mi j = (hi,h j)N

=
N

∑
p=0

wphi(ξp)h j(ξp)

=
N

∑
p=0

wpδipδ jp

= wiδi j.

2.2.9 Right-hand side

The right-hand side is given by

Fj = ( f ,h j)N

=
N

∑
p=0

wp f (ξp)h j(ξp)

=
N

∑
p=0

wp f (ξp)δ jp

= w j f (ξ j).

Then the discrete problem is given by :

AUUU = FFF (2.14)
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where UUU is the unknown vector of components (uk)1≤k≤N−1 and FFF is the vector of

components Fj = ( f ,h j)N =
N

∑
i=0

wi f (xi)h j(xi) = w j f (x j),0 ≤ j ≤ N. Let W be the

diagonal matrix of element wi written as











w0 0 . 0

0 w1 . 0

. . . .

0 0 . wN











Then the matrix A is given by

A = αDTWD+βW D+ γW

where D is the Legendre differentiation matrix and DT is the transpose of D.

2.3 Numerical tests

In this section, various examples of spectral element simulations will be given in order

to numerically show the expected spectral precision. Firstly, an application of the one-

dimensional boundary value problem (2.9).

Let a = −1,b = 1,α = γ = 1 and β = 0. We take f (x) = (1+π2)sin(πx) so that

the exact solution that satisfies u(±1) = 0 is u(x) = sin(πx).

A Matlab code was written to calculate the solution of the problem (2.13) by solv-

ing the discrete problem (2.14) satisfying the boundary conditions.

The L2- norm of the error is tabulated as a function of N in Table 2.1.

We can see a rapid convergence with machine precision error is obtained for N = 18 in

Fig. 2.1.



2.3 Numerical tests 24

N L2 error

3 0.355

4 0.051

6 8.669×10−4

8 1.242×10−5

10 1,446×10−7

12 1.345×10−9

14 1,012×10−11

16 6.267×10−14

18 1,085×10−15

Table 2.1: L2- norm of the error as a function of N.
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Figure 2.1: L2 error convergence with respect to polynomial order
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Figure 2.2: Exact and approximated solutions for N = 18

Let us now solve a second equation in one dimension, with mixed boundary condi-

tions. We seek the solution of

d2u(x)

dx2
= f (x),

in the region −1 ≤ x ≤ 1, with f (x) = x3 with homogenous Dirichlet boundary con-

ditions at x0 = −1 and xN+1 = 1. Note that the exact solution can be calculated ana-

lytically and is given by u(x) =
x

20
− x5

20
. Again, a rapid convergence with machine

precision error is obtained for N = 8. The exact and approximate solution are plotted

for N = 20 in Fig. 2.3.
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Figure 2.3: Exact and approximate solution for N = 20
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Let us now reconsider the first example where we seek the solution of

−d2u(x)

dx2
+u(x) = f (x),

in the region −1 ≤ x ≤ 1, with f (x) = (1+ π2)sin(πx) with homogenous Dirichlet

boundary conditions. The domain is divided into more than one element. Again, a

rapid convergence with machine precision error is obtained for N = 8 with 2 and 3

elements, see Table 2.2. The exact and approximate solution are plotted for N = 16 in

Fig. 2.4 for 2 elements (left) and 3 elements (right).

N L2 error L2 error L2 error

1 element 2 elements 3 elements

3 0.355 8.25×10−3 8.84×10−4

4 0.051 1.07×10−3 6.95×10−5

6 8.67×10−4 6.68×10−4 1.92×10−7

8 1.24×10−5 3.20×10−8 4.05×10−10

10 1.45×10−7 1.15×10−10 6.44×10−13

12 1.35×10−9 3.16×10−13 5.31×10−15

14 1,01×10−11 3.14×10−15 4.46×10−15

16 6.27×10−14 5.18×10−15 2.16×10−14

18 1,09×10−15 5.56×10−15 1.30×10−14

Table 2.2: L2- norm of the error as a function of N.
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Figure 2.4: Exact and approximate solution for N = 16 with 2 elements(left) and 3

elements (right)

2.4 Conclusion

Based on the findings in this chapter, it can be concluded that SEM amalgamates the

positive attributes of both the domain decomposition technique (finite element method)

and spectral techniques. The spectral element technique utilises a variational formu-

lation equivalent to the original partial differential equation. Legendre Gauss-type

quadrature is used to approximate the corresponding variational problem. The spe-

cific formulation guarantees that for smooth problems, SE estimation accomplished

exponential convergence to the exact solution of the given problem with comparatively

few degrees of freedom. Numerical examples were considered to show the outcomes

for linear elliptic equations. The L2-error converges exponentially as can be seen in

Fig. 2.1.
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Chapter 3

Approximation of Poisson equation

using SEM

The Poisson equation

−∇ · (µ∇u) = f on Ω (3.1)

is the simplest and most famous elliptic partial differential equation. The source (or

load) function f is given on some two- or three-dimensional domain denoted by Ω ∈
R2 or R3. A solution u satisfying (3.1) must also satisfy boundary conditions on the

boundary ∂Ω of Ω; for example the most general form of which is given by

αu+β
∂u

∂n
= g on ∂Ω (3.2)

where
∂u

∂n
stands for the directional derivative normal to the boundary ∂Ω (traditionally

in an outwards direction) and both α and β are constants, while it is also possible to

have coefficients that have variability. In practice, u could denote the temperature field

in Ω that is subjected to the source of heat, f . Additional physical models that have

importance are gravitation, electromagnetism, elasticity and inviscid fluid mechanics,

see Ockendon et al. [74, chap. 5].

When (3.1) and (3.2) are combined, this is defined as a boundary value problem.

Where the constant β in (3.2) equals zero, the type of boundary condition is a Dirichlet,

while the boundary value problem is considered to be the Dirichlet problem for the

Poisson equation. On the other hand, where the constant α equals zero, then it is
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accordingly considered to be a Neumann boundary condition and therefore a Neumann

problem. A third alternative is that the Dirichlet conditions are satisfied on a section

of the boundary ∂Ωd , while the Neumann conditions (or in fact blended conditions in

which both α and β are not zero) are satisfied for the rest ∂Ωn = ∂Ω�∂Ωd .

3.1 Single-domain Discretizations

Let Ω = [xa,xb]× [ya,yb], f ∈ L2(Ω) and g ∈ L2(∂Ω). We seek a solution u of the

following system :







−∇ · (µ∇u) = f on Ω

u = g on ∂Ω

(3.3)

where µ(x,y) is a continuous function on Ω.

3.1.1 Weak formulation

In order to outline the spectral element method, we first start with the variational for-

mulation of the problem (3.3) for the case when Ω = [−1,1]× [−1,1] and g = 0. The

solution u is sought in H1
0 (Ω) and then one can easily obtain the weak form :







Find u ∈ H1
0 (Ω) such that

a(u,v) = ( f ,v), ∀v ∈ H1
0 (Ω)

(3.4)

where the bilinear form a(., .) is defined by

a(u,v) =
∫

Ω
µ∇u ·∇v

and the linear form is just the L2 inner product

( f ,v) =

∫

Ω
f v
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3.1.2 Discrete problem

Let N denote the degree of polynomial interpolation and let (xi,y j), i, j = 1, . . . ,N +1

denote the 2D GLL grid formed by the tensor product of the 1D GLL grids in the x and

y directions.

The weights for Legendre-Gauss-Lobatto numerical integration are given by:

wi =
2

N(N +1)

1

L2
N(xi)

, i = 1, . . . ,N+1,

so that
∫ 1

−1
f (x)dx ≈

N+1

∑
i=1

wi f (xi)

with equality if f is a polynomial of degree 2N −1 or less.

Denote by ui j = uN(xi,y j), fi j = f (xi,y j) and µi j = µ(xi,y j), i, j = 1, . . . ,N + 1,

where uN is the approximation to u expanded in terms of the Lagrange interpolants

based on the Gauss-Lobatto Legendre points, i.e.

uN(x,y) =
N+1

∑
i, j=1

ui jhi(x)h j(y) (3.5)

where hi are the 1D Lagrange interpolants defined by

hi(x) =
N+1

∏
k=1,k 6=i

(x− xk)

(xi − xk)
, i = 1, . . . ,N +1 (3.6)

defined on the set of interpolation nodes {xi}N+1
i=1 .

The Galerkin approximation is to solve the discrete weak problem:

Find uN ∈ V
N such that

(

µ∇uN ,∇vN

)

N
=
(

f ,vN

)

N
, ∀vN ∈ V N

where the discrete inner product
(

., .
)

N
is defined by

(

ϕ,ψ
)

N
=

N+1

∑
m,n=1

wmwnϕ(xm,yn)ψ(xm,yn)
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Note that

∇uN(x,y) =












N+1

∑
i, j=1

ui jh
′
i(x)h j(y)

N+1

∑
i, j=1

ui jhi(x)h
′
j(y)












and by choosing the test functions as vN(x,y) = hk(x)hl(y) (2 ≤ k, l ≤ N), one obtains

∇vN(x,y) =








h′k(x)hl(y)

hk(x)h
′
l(y)







.

By substituting the approximation uN given by (3.5) and the chosen test function into

the variational formulation (3.7), one obtains the following discrete system of equa-

tions for the unknowns ui j,2 ≤ i, j ≤ N:

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

ui j

=
N+1

∑
m,n=1

wmwn fmnhk(xm)hl(yn), 2 ≤ k, l ≤ N,

Since uN satisfies homogenous Dirichlet boundary condition the expression (3.5) can

be simplified to

uN(x,y) =
N

∑
i, j=2

ui jhi(x)h j(y) (3.7)

and the discrete system is equivalent to

N

∑
i, j=2

ui j

N+1

∑
m,n=1

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

wmwnµmn

=
N+1

∑
m,n=1

wmwn fmnhk(xm)hl(yn)

Using the Kronecker delta property hi(xm) = δmi and defining h′i(xm) = Dmi one

deduces

N

∑
i, j=2

ui j

N+1

∑
m,n=1

(

Dmiδn jDmkδnl +δmiDn jδmkDnl

)

wmwnµmn =
N+1

∑
m,n=1

wmwn fmnδmkδnl
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Let I = (l−2)(N−1)+(k−1) and J = ( j−2)(N−1)+(i−1). Then the system

reduces to

(N−1)2

∑
J=1

AIJuJ = FI, I = 1, · · · ,(N −1)2. (3.8)

where

AIJ = δl jwl

N+1

∑
m=1

DmiDmkwmµml +δkiwk

N+1

∑
n=1

Dn jDnlµknwn

and

FI = wkwl fkl.

3.2 Multidomain Discretizations

Just over a decade after the ground-breaking studies of Orszag (1969) and Kreiss and

Oliger (1972) on (global) spectral methods, the initial heuristic efforts were made in the

attempts to combine spectral methods with domain decomposition techniques. Both

Orszag (1980) and Morchoisne (1983) developed spectral domain decomposition ap-

proaches for solving basic elliptic problems on the basis of the stronger form (patch-

ing) of the equations. In both works, conventional spectral collation approaches were

adopted inside the sub-domains as well as on the entire boundary of the domain. Nev-

ertheless, Orszag (1980) utilised domains with no overlap and implemented conditions

at every collocation node on the sub-domain interfaces to ensure that the solution and

its standard derivative are continuous, while Morchoisne (1983) utilised domains with

overlap (the Schwarz technique) and the solution continuity was only enforced at the

internal boundaries of the sub-domain. Conversely, Patera (1984) made use of a weak

(variational) calculation as the discretisation basis for his spectral element approach for

decomposing the spectral domain. The primary incentives for developing spectral do-

main decomposition methods were to expand existing spectral methods to domains for

which it was not possible to map the entire domain onto an individual reference domain

in order to facilitate refinement of the local grid or potentially basic domains, to exploit
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the distinct behaviours of the solution observed in various areas of the domain, and po-

tentially to partially resolve some of the problems caused by the significant time-step

constrains experienced with single-domain spectral methods utilising time discretiza-

tion. An analogous viewpoint underpins the advancement of hp finite-element methods

(see, for example Babu˘ska and Suri (1994), Schwab (1998), Babu˘ska and Strouboulis

(2001), Melenk (2003)). When applied to spectral approximations, the domain decom-

position technique enables the user to take advantage of local tensor-product bases.

In the following sections, we present a general overview of methods used for dis-

cretisation along with theoretical analysis of spectral methods used in complex geomet-

rical problems. The scope of the thesis is predominantly restricted to model problems

that are illustrative of the fundamentals and define the association between traditional

spectral methods and their domain decomposition offshoots. Methods of domain de-

composition that are founded on the weak formulation are more broadly used and their

history has greater breadth and complexity. Resultantly, increased focus will be ap-

plied to these methods in comparison to those founded on the equation’s strong form.

Nevertheless, the similarities between the strong and weak approaches will also be

identified. In-depth explanations of domain decomposition methods are presented in

the works of Smith et al. (1996), Quarteroni and Valli (1999), Toselli and Widlund

(2005), and Wohlmuth (2001). Researchers who have specifically focused on spectral

element methods include Karniadakis and Sherwin (1999, 2005) and Deville, Fischer

and Mund (2002). Readers of this thesis are recommended to depend on works like

these to achieve a more comprehensive understanding of the various facets of this topic.

In the following chapter, we will detail how it is possible to adapt high-order spectral

methods for the approximation of differential problems that are located within a com-

putational domain whose form is complex. More precisely, we will consider a domain

Ω ⊂ R2, which can be depicted as the union of sub-domains Ωm,m = 1, · · · ,K (for a

suitable integer K ≥ 2). All of the sub-domains can be acquired via a process of map-

ping from a reference domain (alternatively known as a parent or master domain) Ω̂.
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The division of Ω could be either geometrically conforming, in situations where either

a vertex of whole face or edge is shared by the adjacent sub-domains, or geometrically

non-conforming, in instances where there is not a complete match between interfaces.

In the first case, a spectral element method (SEM) will be introduced. The solution

continuity will be inferred by the selection of trial functions, while weak (integral for-

mulation) will automatically account for the flux continuity, similar to finite-elements.

For the purposes of defining SEM on a multidimensional domain Ω⊂R2, a division

T = {Ωm} of Ω is introduced. Every element Ωm is acquired by transforming Fm from

a reference (or parent) element Ω̂, which could take the form of either a reference

2D-cube (a square)

Ω̂C = {x̂ = (x̂1, x̂2) : −1 < x̂1, x̂2 < 1}= (−1,1)2,

or the reference 2D-simplex (a triangle)

Ω̂S = {x̂ = (x̂1, x̂2) : −1 < x̂1, x̂2, x̂1 + x̂2 < 0}.

The transformation Fm is a bijection that is differentiable, where Ωm denotes a quadri-

lateral element with straight edges, Fm : Ω̂C 7→ Ωm represents a bilinear map.

For curvilinear elements, it is possible to construct the transformation Fm via the

application of the Gordon–Hall map, in which the faces and edges are parameterised

with polynomials that have identical degrees of freedom to those utilised in the con-

struction of the SEM solution. If Ωm denotes a simplex (a triangle or a tetrahedron)

comprised of straight faces or edges, then Fm : Ω̂2
C 7→ Ωm defines the affine map

x = Fm(x̂) = Bmx̂+bm,

where bm is a vector with 2 components, whereas Bm is an invertible 2×2 matrix.

For every Ωm ∈ T , a basis {φ̂
(m)
i } for VNm

(Ωm) is gained as the image of a appro-

priately selected boundary-adapted basis {φ̂i} of P̂N, that is,

φ
(m)
i = φ̂i ◦F−1

m , or φ
(m)
i (x) = φ̂i(x̂) with x = Fm(x̂)
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A basis for the entire space Xδ can thus be acquired through the unification of

the elemental basis functions on every element Ωm to ensure that global continuity

is achieved. Every basis function inside an element abruptly produces a global basis

function by extending it by zero external to the element. Suitable matching of vertices

and edges is performed to produce global basis functions.

The matching is relatively insignificant if, as is the case with the majority of SEM

realisations, the degree of the polynomial on both contiguous domains is identical.

To fix concepts, assume that there is a common edge shared by Ωm and Ωk , which

can be denoted by Γkm = ∂Ωm ∩ ∂Ωk. If the nodal basis is utilised in every element,

then the nodes on Γkm are identical for each of the elements. Resultantly, the pair

of basis functions (characteristic Lagrange polynomials) connected with the identical

node on Γkm, such as say ψ
(m)
i existing in Ωm and ψ

(k)
j existing in Ωk, intersect on

Γkm; therefore, they generate a continuous function throughout Γkm. For x ∈ Γkm, the

function

ψ =







ψ
(m)
i in Ω̄m

ψ
(k)
j in Ω̄k

0 elsewhere,

represents the global basis function of the nodal type related to the node x. However,

where x is a vertex, the global basis function can be acquired by unifying each of the

local basis functions related to x and then expanding the resultant function by zero ex-

ternal to the area of elements that contain x. The process of constructing the global

basis bears certain similarities when the type of the nodal bases is modal. The only nu-

ance is that face or edge basis functions that possess identical wave numbers could still

have conflicting signs as a result of the distinct local interface orientations; thus, it may

be necessary to adjust the sign prior to unifying the local functions. The aforemen-
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tioned matching process is also applicable if a distinct polynomial degree is allowed in

each direction for every element, as long as there is agreement between the polynomial

degrees across an interface among two elements. A basic example demonstrating this

case is provided in Fig. 3.1

Figure 3.1: An example of spectral element discretization with different polynomial

degrees in the different elements (top left) and three basis functions associated with

an internal node (top right), an edge node (bottom left) and the cross-point P (bottom

right)

A situation that has greater significance is one in which completely different polyno-

mial degrees are permitted in neighbouring elements (unless we only add higher order

polynomial bubbles to particular sub-domains). Continuity through an interface Γkm

among a pair of sub-domains Ωk and Ωm with, for example, Nm < Nk, necessitates

that the limitation to Γkm of all functions in VNk
(Ωk) must be (the image of) a poly-

nomial with a degree of Nm. When the modal bases are utilised in every element, this

necessity can easily be met: only the edge basis functions in Ωm related to Γkm make

a contribution to the global basis functions; they are extended to the contiguous do-

main Ωk as described above. In other words, one discards the contribution from the
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edge basis functions in Ωk associated with Γkm, having wavenumber higher than Nm.

Algebraically, the matching columns and rows of the local stiffness matrix of Ωk are

eliminated. Conversely, if one uses the nodal bases instead, the following process is

applied: ψi(m), i∈ I, is assumed to be the basis functions in Ωm related to the nodes on

Γkm; π j(k), j ∈ J is defined in a similar manner for the additional domain. Due to the

fact the constraint of ψi(m) to Γkm is (the image of) a polynomial with a degree ≤ Nm,

coefficients ri j exist such that

ψ
(m)
i = ∑

j∈J

ri jψ
(k)
j on Γkm (3.9)

(

more precisely, ri j = ψ
(m)
j (x

(k)
j ), where x

(k)
j denotes the node on Γkm ⊂ Ωk related

to ψ
(k)
j

)

. Hence, ψ
(m)
j is glued throughout Γkm with the specific linear combination

of edge basis functions in Ωk by the right side of (3.9). Algebraically speaking, this

amounts to the proper condensing of the stiffness matrix of Ωk : the group of rows

with indices j ∈ J is substituted with their linear combinations with coefficients ri j ,

for all i ∈ I; an analogous transformation process is utilized to the group of columns

with indices j ∈ J. It can be observed that the matching process explained previously

is merely a particular state of the mortar matching process. A necessary condition is

that there is agreement between the pair of functions vm ∈ VNk
(Ωm) and vk ∈ VNk

(Ωk)

such that

∫

Γkm

(vm− vk)φdγ = 0 for all φ ∈ Ykm (3.10)

where Ykm represents an appropriate function space on Γkm. When Ykm is the restriction

space of VNk
(Ωk) on Γkm, then there must be a coincidence between vk and vm on Γkm

(meaning that the degree of vk is reduced to the same as vm). In the event that Ykm

coincides with the restriction space of VNk
(Ωm) on Γkm (or potentially with a space that

is even smaller), condition (3.10) would only infer that there is a continuity in the sense

of least squares. In fact, the latter is the frequently used kind of matching in relation to

the mortar method.
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3.2.1 SEM Formulation

At this point, all the necessary components are present to establish the spectral element

approximation related to boundary-value problems through the application of a multi-

domain discretisation. The weak formulation of (3.3) can be written in the following

form:







Find u ∈ H1
0 (Ω) such that

∑
m

aΩm
(u,v) = ∑

m

( f ,v)Ωm
, ∀v ∈ H1

0 (Ω)

(3.11)

where the bilinear form is

aΩm
(u,v) =

∫

Ωm

µ∇u ·∇vdΩ

and the linear form is

( f ,v)Ωm
=

∫

Ωm

f vdΩ

3.2.2 Algebraic Aspects of SEM

SEM produces an algebraic system in which the entries of the stiffness matrix A are:

Ai j = ∑
m

aΩm
(φ m

i ,φ m
i )

It is possible to construct the matrix A by gathering the local stiffness matrices asso-

ciated with each element Ωm. If we consider the particular state where Ω is a square

divided into K number of squares Ωm,m = 1, · · · ,K, of same size, as well as the same

polynomial degree N is consistently utilised, this implies that VN(Ωm) = QN is em-

ployed for each m.

Each of the elements contains boundary nodes that define their geometry and en-

able connectivity with adjacent elements. The process of gathering elements necessi-

tates that the values of the main variables in nodes shared by neighbouring elements
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are equal. The assemblage of specific sub-domains into the whole domain is a proce-

dure called direct stiffness, which needs a universal or global system of nodes to be

identified.

3.3 Numerical simulations

In the case of two-dimensional problems, the cost of using direct solvers on particu-

larly fine meshes can be prohibitive. This is because of the costs associated with the

assembly and factorisation of the global matrix. In such situations, it is necessary to

use iterative methods. Such methods do not necessitate a large matrix to be stored

or inverted. Rather, the fundamental computational procedure is founded on matrix-

vector multiplications. There are numerous iterative methods that can be used to solve

large systems of linear equations. Nevertheless, the critical factor is that a method must

be found that is suitable for the given problem. An incorrect decision could cause slow

convergence, or potential divergence.

There are numerous iterative methods that could be employed in the process of

solving this system. The conjugate gradient (CG) method is the most traditional and

celebrated member of the category of non-stationary iterative methods. In such meth-

ods, there is no element of choice in the determination of the iteration parameters.

They are selected in a dynamic manner during every iteration in a way that minimises

the error in a particular norm. The method was designed to solve symmetric, positive

definite systems of linear equations. Convergence is accomplished in a rapid manner in

situations where the eigenvalues of A are in a cluster or are located in specific clustered

groups.

The rate of convergence for the CG method depends on the condition number of the

coefficient matrix. If there is no clustering of the eigenvalues of A, then the CG method

will produce slower convergence. This problem could be resolved by preconditioning

the system using an appropriate non-singular matrix P. The main concept that under-
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pins the preconditioning approach is that the initial system is transformed into a similar

system with improved conditioning

P−1Axxx = P−1bbb, (3.12)

where the preconditioner is defined as P. The preconditioner, P is selected to be an

approximation to A, in a certain sense, which is less complex and more cost-effective

to invert in comparison to A when the eigenvalues of P−1A are clustered close to unity.

Preferably, the properties of the preconditioner should be analogous to those of the

initial matrix and should additionally be sparse so that the efficiency of construction

and storage is enhanced.

3.3.1 Preconditioned Conjugate Gradient method

In the field of mathematics, the conjugate gradient method represents an algorithm for

numerically solving specific systems of linear equations, particular the ones that have

a symmetric and positive-definite coefficient matrix, as can be observed here. The

conjugate gradient method is frequently applied in the form of an iterative algorithm,

which is suitable for sparse systems whose size restricts them from being addressed

via a direct application or alternative direct techniques like the Cholesky decompo-

sition. Large sparse systems frequently emerge in the numerical solutions of partial

differential equations or problems involving optimisation.

In the majority of situations, preconditioning is required to ensure the conjugate

gradient method rapidly converges. The Preconditioned Conjugate Gradient (PCG)

consists of the steps shown below:

1. Choose an initial guess xxx0 and compute rrr0 = bbb−Axxx0.

2. Solve Pzzz0 = rrr0. Set ppp0 = zzz0.
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3. For n = 1,2, ..., compute

αn = rrrT
n−1zzzn−1/pppT

n−1Apppn−1

xxxn = xxxn−1 +αn pppn−1

rrrn = rrrn−1 −αnApn−1

zzzn = P−1rrrn

βn = rrrT
n zzzn/rrrT

n−1zzzn−1

pppn = zzzn +βn pppn−1

until convergence i.e. the stopping criterion is satisfied.

In our case, the preconditioner is chosen as follows: P = AFEM where AFEM is the

stiffness matrix calculated using the finite element method (FEM).

We choose forcing f = 0 and diffusivity such that

µ(x,y) =







µ1, y ≤ ȳ,

µ2, y > ȳ,

and A1,A2,η1,η2,µ1 and µ2 are constants. The analytical solution is then

u(x,y) =







sin(πx)A1

(
eη1y − e−η1y

)
, y ≤ ȳ,

sin(πx)
[

A2

(

eη2y − eη2(2−y)
)

+ eη2(1−y)
]

, y > ȳ.

Details of this model problem can be found in [58, 89]. We choose µ1 = µ2 = 1 and

ȳ = 0.5001 so that the solution is continuous at y = 0.5001. The constants A1 and A2

are given by A1 = 0.043295 , A2 =−0.043295 .

3.3.2 Single-domain

Here we consider a single domain. The linear system was solved using the PCG-

algorithm described in the previous section. The exact and approximated solutions are

plotted in Figs. 3.2 - 3.3 for N = 10. The L2-error converges exponentially as can be
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Figure 3.2: Analytical solution on mesh with N = 10 and a single element.

seen in Fig. 3.4. The ratio of the largest to smallest eigenvalue was plotted with respect

to N in Fig. 3.5. A linear dependence can be seen. Similarly, the condition number of

P−1A was plotted with respect to the mesh size N in Fig. 3.5 where a linear relationship

can be seen. Finally, in Fig. 3.6, the number of iterations was plotted with respect to

N. The number of iterations increases with the mesh size N.
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Figure 3.3: Approximate and exact solution on mesh with N = 10 and K = 1 for a

stopping criteria ε = 10−16.
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Figure 3.4: Convergence of the L2-norm of the error with respect to N for K = 1 for a

stopping criteria ε = 10−16.

The L2- norm of the error is tabulated as a function of N in Table 3.1. As it can be seen,

a rapid convergence is obtained with machine precision error reached for N = 12.
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Figure 3.5: The ratio of the largest to smallest eigenvalue with respect to N for K = 1

and a stopping criteria ε = 10−16. The slope is about 1.023.
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Figure 3.6: Number of iterations for convergence with respect to N for K = 1 and a

stopping criteria ε = 10−16. The slope is about 1.5.



3.3 Numerical simulations 45

N Number of iterations L2 error

2 2 0.029

4 7 5.90×10−4

5 9 3.05×10−5

6 13 4.2×10−6

7 14 1.66×10−7

8 17 2.16×10−8

9 26 6.8×10−10

10 28 8.1×10−11

12 33 2.30×10−13

16 42 1.95×10−15

Table 3.1: L2- norm of the error as a function of N for K = 1 and a stopping criteria

ε = 10−16.

3.3.3 Multi-domain

In this sub-section we decompose the domain into more than one element (2, 3 and 4

elements) and initially we fix the order of polynomial approximation with N = 10. The

solution of the system (3.8) was performed using the PCG-algorithm as in the previous

section. The exact and approximated solutions are plotted in Fig. 3.7 for 2 elements, in

Fig. 3.8 for 3 elements and in Fig. 3.9 for 4 elements. Again, the L2-norm of the error

converges exponentially as it can be seen in Fig. 3.10 for 2 elements, in Fig. 3.11 for 3

elements and in Fig. 3.12 for 4 elements. In Fig. 3.13 for 2 elements, in Fig. 3.14 for

3 elements and in Fig. 3.15 for 4 elements the number of iterations was plotted with

respect to N. The number of iterations increases with the mesh size N. Similar, the

condition number of P−1A was plotted with respect to the mesh size N in Fig. 3.16 for

2 elements, in Fig. 3.17 for 3 elements and in Fig. 3.18 for 4 elements where again a

linear relationsheep can be seen. Finally, the ratio of the largest to smallest eigenvalue

was plotted with respect to N in Fig. 3.19 for 2 elements, in Fig. 3.20 for 3 elements
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and in Fig. 3.21 for 4 elements. A linear dependence can be seen in each case.
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Figure 3.7: Approximate and exact solution for N = 10 with K = 2 and a stopping

criteria ε = 10−16.



3.3 Numerical simulations 47

0
1

0.5 1

0.5

0.5

Approximate solution

y

0

x

0

1

-0.5 -0.5
-1 -1

0
1

0.5 1

0.5

0.5

Exact solution

y

0

x

0

1

-0.5 -0.5
-1 -1

Figure 3.8: Approximate and exact solution for N = 10 with K = 3 and a stopping

criteria ε = 10−16.
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Figure 3.9: Approximate and exact solution for N = 10 with K = 4 and a stopping

criteria ε = 10−16.
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Figure 3.10: Convergence of the L2-norm of the error with respect to N for K = 2 and

a stopping criteria ε = 10−16.
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Figure 3.11: Convergence of the L2-norm of the error with respect to N for K = 3 and

a stopping criteria ε = 10−16.
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Figure 3.12: Convergence of the L2-norm of the error with respect to N for K = 4 and

a stopping criteria ε = 10−16.
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Figure 3.13: Dependence of the number of iterations for convergence with respect to

N for K = 2 and a stopping criteria ε = 10−16. The slope is about 1.6.
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Figure 3.14: Dependence of the number of iterations for convergence with respect to

N for K = 3 and a stopping criteria ε = 10−16. The slope is about 1.6.
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Figure 3.15: Dependence of the number of iterations for convergence with respect to

N for K = 4 and a stopping criteria ε = 10−16. The slope is about 1.2.
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Figure 3.16: Dependence of the condition number of P−1A with respect to N for K = 2

and a stopping criteria ε = 10−16. The slope is about 1.4.
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Figure 3.17: Dependence of the condition number of P−1A with respect to N for K = 3

and a stopping criteria ε = 10−16. The slope is about 1.4.
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Figure 3.18: Dependence of the condition number of P−1A with respect to N for K = 4

and a stopping criteria ε = 10−16. The slope is about 1.4.
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Figure 3.19: Dependence of the ratio of the largest to smallest eigenvalue with respect

to N for K = 2 and a stopping criteria ε = 10−16. The slope is about 1.4.
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Figure 3.20: Dependence of the ratio of the largest to smallest eigenvalue with respect

to N for K = 3 and a stopping criteria ε = 10−16. The slope is about 1.4.
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Figure 3.21: Dependence of the ratio of the largest to smallest eigenvalue with respect

to N for K = 4 and a stopping criteria ε = 10−16. The slope is about 1.4.
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N Number of iterations L2 error

2 3 0.029

4 13 3.17×10−4

5 21 2.81×10−5

6 28 2.03×10−6

7 35 1.59×10−7

8 42 9.77×10−9

9 46 6.58×10−10

10 52 3.47×10−11

12 62 2.86×10−12

16 81 2.46×10−12

Table 3.2: L2- norm of the error as a function of N for K = 2 and a stopping criteria

ε = 10−16.
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N Number of iterations L2 error

2 3 0.028

4 13 3.17×10−4

5 22 2.81×10−5

6 35 2.03×10−6

7 44 1.5910−7

8 54 9.77×10−9

9 63 6.58×10−10

10 73 3.56×10−11

12 88 6.42×10−12

16 100 5.62×10−11

Table 3.3: L2- norm of the error as a function of N for K = 3 and a stopping criteria

ε = 10−16.



3.3 Numerical simulations 56

N Number of iterations L2 error

2 6 5.74×10−3

4 24 1.08×10−5

5 29 4.67×10−7

6 34 1.8×10−8

7 39 6.65×10−10

8 43 2.2×10−11

9 47 3.04×10−12

10 53 1.33×10−12

12 61 2.69×10−12

16 79 1.79×10−12

Table 3.4: L2- norm of the error as a function of N for K = 4 and a stopping criteria

ε = 10−16.
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3.4 Conclusions

In this chapter, we provide a general introduction to discretization methods and theo-

retical analysis of spectral methods. Our scope is mostly confined to model problems

that illustrate the fundamentals and establish the relationship between classical spectral

methods and their domain decomposition progeny. We discussed the discretization of

Poisson’s equation using spectral domain decomposition techniques. In particular, a

detailed description of the spectral element discretization was provided. The obtained

linear system was solved using the PCG-algorithm. As we can see from the previ-

ous figures and for single and multidomain discretization of differential equation the

L2– norm of the error of spectral element Method (SEM) depends on both number

of elements (the domain was decomposed into one or more than one element (2, 3

and 4 elements)) and the degree of the approximation N (varying from 2 to 32). So,

increasing one of these two parameters leads to convergence of SEM. The spectral el-

ement approximation achieved exponential convergence to the analytic solution of the

problem with relatively few degrees of freedom. The L2-norm of the error converges

exponentially as can be seen in Fig. 3.4 for one element, in Fig. 3.10 for 2 elements,

in Fig. 3.11 for 3 elements and in Fig. 3.12 for 4 elements. The ratio of the largest to

smallest eigenvalue was plotted with respect to N in Figs. 3.5, 3.19, 3.20 and 3.21. A

linear dependence can be seen. Similarly, the condition number of P−1A was plotted

with respect to the mesh size N in Fig. 3.5 for one element, in Fig. 3.16 for 2 elements,

in Fig. 3.17 for 3 elements and in Fig. 3.18 for 4 elements where a linear relationship

can be seen. Finally, the number of iterations was plotted with respect to N. The num-

ber of iterations increases with the mesh size N. the number of iterations was plotted

with respect to N in Fig. 3.6 for one element, Fig. 3.13 for 2 elements, in Fig. 3.14

for 3 elements and in Fig. 3.15 for 4 elements . The number of iterations increases

linearly with the mesh size N. The L2- norm of the error is tabulated as a function of

N and number of iterations in Tables 3.1, 3.2, 3.3 and 3.4. As can be seen, a rapid

convergence to machine precision error is obtained for N = 10.
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Chapter 4

Approximation of Poisson equation

using XSEM

Let Ω = [xa,xb]× [ya,yb] = Ω1 ∪Ω2, f ∈ L2(Ω) and ud ∈ L2(∂Ω) where Ω1 ∩Ω2 = Γ

is the interface between Ω1 and Ω2. We are seeking solution u of the following system

:






−∇ · (µ∇u) = f on Ω

u = g on ∂Ω

(4.1)

where

µ(x,y) =







µ1 on Ω1

µ2 on Ω2

µ1 and µ2 are two constants such that µ1 6= µ2.

4.1 Weak formulation

In order to outline the extended spectral element method, we first start with the vari-

ational formulation of the problem (4.1) for the case when Ω = [xa,xb]× [ya,yb] and

g = 0. The solution u is sought in H1
0 (Ω) and then one can easily obtain the weak form
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(xa,ya)

(xb,yb)(xa,yb)

(xb,ya)

ȳ

Ω2

Ω1

Γ

Figure 4.1: Two-phase domain.

:






Find u ∈ H1
0 (Ω) such that

a(u,v) = ( f ,v), ∀v ∈ H1
0 (Ω)

(4.2)

where the bilinear form is

a(u,v) =
∫

Ω
µ∇u ·∇v dΩ

and the linear form is

( f ,v) =

∫

Ω
f v dΩ

4.2 Discrete problem

If we denote by N the degree of interpolation and xi and yi, i = 1, ...,N + 1 are as-

sociated nodes, known as the Gauss-Lobatto Legendre points, which are the zeros of

(1− x2)L′
N(x) and (1− y2)L′

N(y), respectively.

The weights for the Legendre-Gauss-Lobatto numerical integration rule are given by:

wi =
2

N(N +1)

1

L2
N(xi)

, i = 1, ...,N+1.
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Denote by ui j = u(xi,y j), fi j = f (xi,y j) and µi j = µ(xi,y j), i, j = 1, ...,N+1.

The idea is based on decomposing the domain into three elements such that the

middle element contains the discontinuity.

(xa,ya)

(xb,yb)(xa,yb)

(xb,ya)

ȳ =⇒

Ω1

Ω2

(xa,ya)

(xb,yb)(xa,yb)

(xb,ya)

Figure 4.2: The idea is based on decomposing the two-phase domain into three ele-

ments such that the middle element contains the discontinuity.

On the first and third elements we used an SEM approach. On the middle element, u is

expanded in terms of the Lagrange interpolants based on the Gauss-Lobatto Legendre

points together with a supplementary enrichment term

uN(x,y) =
N+1

∑
i, j=1

ui jhi(x)h j(y)

︸ ︷︷ ︸

+
N

∑
i=2

s+1

∑
j=s

αi jh̃i(x)h̃ j(y)φ(x,y)

︸ ︷︷ ︸

strd. SE approx. enrichment

where y2 ≤ ys ≤ ȳ ≤ ys+1 ≤ yN . Here the polynomials hi(x), i = 1, . . . ,N + 1 are the

Lagrange interpolants and h̃i is a polynomial of degree (N − 2) that interpolates the

interior (N−1) GLL points, αi j are the additional degrees of freedom and φ(x,y) is an

enrichment function.

It can be a difficult task to analyse the enriched methods of the kind which we have

discussed. As far as we are aware, it is only in Reusken [85] that we are able to find
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any estimates of error for the extended finite element method (XFEM) . One reason for

analysis of this method being difficult is the reliance on the estimate of the enrichment

function φ . This function can be subject to considerable variation according to which

enrichment type is needed. The enrichment function is totally different, even when

the discontinuities at the interface are strong or weak. Consequently, it is no easy task

to analyse this method in a unified way, and separate from the enrichment function

which has been addressed. Reusken [85] inaugurated a structure which supplies an

integrated treatment of the XFEM approximation for functions having strong disconti-

nuities which was achieved by eliminating any reference to the enrichment function.

Let the space of functions V be a broken Sobolev space of order m ≥ 1. When

m = 0, we define:

H0(Ω1 ∪Ω2) = L2(Ω1 ∪Ω2) =
{

u ∈ L2(Ω)|u ∈ L2(Ωi), i = 1,2
}

= L2(Ω)

In Reusken’s structure [85], the construction of the approximation space shows a minor

difference from that previously considered.

Therefore, let NV denote the dimension of VN and let Ψi, i ∈ I , where I = 1, ...,NV ,

indicate the global basis functions which span VN , where VN =V ∩ [φ ; φ|Ωe
∈ PN(Ωe)]

d .

Furthermore, let X = xk,k ∈ I be the set of all nodal points. We define the enriched ap-

proximation space as the restriction of the original approximation space to each side of

the interface Γ. We define the restriction operator, Ri : L2(Ω)→ L2(Ω), i = 1,2, as:

Riu =







u|Ωi
in Ωi

0 otherwise
(4.3)

Furthermore, it was demonstrated that the approximation may be written as:

V Γ
N = R1VN ⊕R2VN.

Reusken [85] showed that

V Γ :=V ⊕V Γ
1 ⊕V Γ

2 .
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Additionally, it was shown that one may write the approximation uΓ
N ∈V Γ

N in the form:

uΓ
N = uN + ∑

k∈I Γ
1

β
(1)
k R1φk + ∑

k∈I Γ
2

β
(2)
k R2φk (4.4)

where uN ∈ VN is the standard continuous approximation and β
(i)
k , i = 1,2, are addi-

tional degrees of freedom. We present the XSEM equivalent of the approximation

results derived by Reusken [85] for the case of a single spectral element.

Let Ω = [−1,1]d with d = 1 or d = 2. Define εm
i : Hm(Ωi)→ Hm(Ω) to be an ex-

tension operator such that : (εm
i v)|Ωi

= v and ‖εm
i v‖Hm(Ω) ≤ c‖v‖Hm(Ωi), ∀ v ∈ Hm(Ωi).

Let πm
N : Hm(Ω)→VN := Hm(Ω)∩PN(Ω) be a projection operator satisfying

‖w−πm
N w‖L2(Ω) ≤ cN−m‖w‖Hm(Ω), m ≥ 0, ∀ w ∈ Hm(Ω)

‖w−πm
N w‖H1(Ω) ≤ cN1−m‖w‖Hm(Ω), m ≥ 2, ∀ w ∈ Hm(Ω)

(4.5)

then one has the following corollary :

Corollary 1.

inf
uΓ

N∈V Γ
N

‖u−uΓ
N‖L2(Ω1∪Ω2)

≤ cN−m‖u‖Hm(Ω1∪Ω2), m ≥ 0, ∀ w ∈ Hm(Ω1∪Ω2)

inf
uΓ

N∈V Γ
N

‖u−uΓ
N‖H1(Ω) ≤ cN1−m‖w‖Hm(Ω1∪Ω2), m ≥ 2, ∀ w ∈ Hm(Ω1 ∪Ω2)

(4.6)

The steps needed to prove the result of the aforementioned approximation are con-

gruous to the stages which Reusken utilised [85].

.

Define extension operators

εm
i : Hm(Ωi)→ Hm(Ω), i = 1,2

with (εm
i w)|Ωi

= w and

‖εm
i w‖m ≤ c‖w‖m,Ωi

.

Let m ∈ 1,2 and u ∈ Hm(Ω1∪Ω2) be given. Define v∗ ∈V Γ by

v∗ = R1πm
N εm

1 R1u+R2πm
N εm

2 R2u. (4.7)
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For this approximation we obtain

‖u− v∗‖2
L2(Ω1∪Ω2)

=
2

∑
i=1

‖u− v∗‖2
L2(Ωi)

=
2

∑
i=1

‖u−πm
N εm

i Riu‖2
L2(Ωi)

=
2

∑
i=1

‖εm
i Riu−πm

N εm
i Riu‖2

L2(Ωi)

≤
2

∑
i=1

‖εm
i Riu−πm

N εm
i Riu‖2

L2(Ω1∪Ω2)

≤ cN−m
2

∑
i=1

‖εm
i Riu‖2

m

≤ cN−m
2

∑
i=1

‖Riu‖2
m,Ωi

= cN−m‖u‖2
m,Ω1∪Ω2

(4.8)

This verifies the first approximation result, the second being similarly verified by ap-

plying the H1-semi norm. �

To illustrate this phenomenon we consider the spectral element interpolation of a

discontinuous function on a grid of uniformly spaced points. For simplicity, we will

assume that our domain Ω = (−1,1)2 ⊂ R2 and that we only have a single spectral

element.

Define the 1D interface

Γ = {(x,y) ∈ Ω; y = 0.05} , Ω1 = {(x,y) ∈ Ω; y < 0.05} , Ω2 = Ω\Ω1.

Note that the line y = 0.05 is chosen as the intersection between the boundaries of

the two subdomains because 0 is a member of the Gauss-Lobatto Legendre grid.

Let u be given by

u(x,y) =







x2 + y2 in Ω1,

3x2 + y2 +2 in Ω2.

(4.9)
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Figure 4.3: SEM for continuous function

We construct the spectral element interpolant of this function on a uniformly spaced

grid using a single element. The uniformly spaced grid is denoted:

Du =
Mx⋃

k=1

[xk−1,xk]×
My
⋃

m=1

[ym−1,ym]

where x0 = y0 =−1 and xMx
= yMy

= 1 and (Mx+1)× (My+1) is the total number of

uniformly spaced points. Therefore the spectral element and extended spectral element

approximations, denoted SEM and XSEM respectively, on the domain Ω are given by:

SEM(x,y) =
N

∑
i, j=0

ui jhi(x)h j(y)

XSEM(x,y) =
N

∑
i, j=0

ui jhi(x)h j(y)+
N−1

∑
i, j=1

αi jh̃i(x)h̃ j(y)φi j(x,y)

(4.10)

where ui j = u(xi,y j), i, j = 0, ...,N,hi are the Lagrange interpolants, αi j are the addi-

tional degrees of freedom.
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The local enriched approximation is given by :

XSEM(x,y) = SEM(x,y)+Enr(x,y)

=
N+1

∑
i, j=1

ui jhi(x)h j(y)

︸ ︷︷ ︸

+
N−1

∑
i, j=1

αi jh̃i(x)h̃ j(y)φi j(x,y)

︸ ︷︷ ︸

strd. SE approx. enrichment

(4.11)

It is clear that this function is dependent on the kind of discontinuity or singularity

which is being enriched. It is possible to utilise the same global enrichment function

as that which is defined in [41], i.e. φi j(x,y) = H(x,y)−H(xi,y j), where H(x,y) is the

Heaviside function defined by:

H(x,y) =







0, (x,y) ∈ Ω1

1, (x,y) ∈ Ω2

(4.12)

The coefficients αi j = α(i, j) are totally unknown. Therefore, we need to pre-

suppose that XSEM(xk,ym) ≡ u(xk,ym),∀(xk,ym) ∈ Du for the purpose of calculating

them. We subsequently found the coefficients α(i, j) from the residual of the standard

SEM approximation:

Enr(xk,ym) =
N

∑
i, j=0

αi jhi(xk)h j(ym)φi j(xk,ym)

= u(xk,ym)−SEM(xk,ym)

= u(xk,ym)−
N

∑
i, j=0

ui jhi(xk)h j(ym)

(4.13)

In order to calculate them, one can write the matrix (α(i, j)) in a vector form as follows

(Vα)I = α(i, j) for I = (i−1)(N+1)+ j, i, j = 0, . . . ,N. (4.14)

Then one obtains a linear system of the form

AVα = F

where F is the right-hand side. Note that the number of uniformly spaced points will,

in general, be larger than the degree of the polynomial (M > N), thus the matrix A
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of size (M + 1)2 × (N + 1)2 is not square. Therefore it is inverted by multiplying by

its transpose AT of size (N + 1)2 × (M + 1)2 to produce a square matrix AT A of size

(N +1)2 × (N +1)2 which is then inverted.

AT AVα = AT F (4.15)

Figure 4.4: XSEM for discontinuous functions

The Galerkin approximation is to solve the discrete weak problem (4.2):

Find uN ∈ V N such that

(

µ∇uN ,∇vN

)

N
=
(

f ,vN

)

N
, ∀vN ∈ V N (4.16)

where the discrete inner product
(

., .
)

N
is defined by

(

ϕ,ψ
)

N
=

N+1

∑
m,n=1

wmwnϕ(xm,yn)ψ(xm,yn)

Note that

∇uN(x,y) =












N+1

∑
i, j=1

ui jh
′
i(x)h j(y)+

N

∑
i=2

s+1

∑
j=s

αi j

(

h̃′i(x)φ(x,y)+ h̃i(x)
∂φ

∂x
(x,y)

)

h̃ j(y)

N+1

∑
i, j=1

ui jhi(x)h
′
j(y)+

N

∑
i=2

s+1

∑
j=s

αi j

(

h̃′j(y)φ(x,y)+ h̃ j(y)
∂φ

∂y
(x,y)

)

h̃i(x)











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and by choosing the test functions as vN(x,y) = hk(x)hl(y) (2 ≤ k, l ≤ N), one obtains

∇vN(x,y) =








h′k(x)hl(y)

hk(x)h
′
l(y)







.

By injecting the solution’s decomposition uN and the chosen test function into the

variational formulation (4.16), one obtains the following discrete system :

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

ui j

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

+

N+1

∑
m,n=1

wmwnµmn

N

∑
i=2

s+1

∑
j=s

αi j

(

h̃′i(xm)φ(xm,yn)+ h̃i(xm)
∂φ

∂x
(xm,yn)

)

h̃ j(yn)h
′
k(xm)hl(yn)+

N+1

∑
m,n=1

wmwnµmn

N

∑
i=2

s+1

∑
j=s

αi j

(

h̃′j(yn)φ(xm,yn)+ h̃ j(yn)
∂φ

∂y
(xm,yn)

)

h̃i(xm)hk(xm)h
′
l(yn)

=
N+1

∑
m,n=1

wmwn fmnhk(xm)hl(yn)

which is equivalent to

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

+

N

∑
i=2

s+1

∑
j=s

αi j

N+1

∑
m,n=1

wmwnµmn

(

h̃′i(xm)φ(xm,yn)+ h̃i(xm)
∂φ

∂x
(xm,yn)

)

h̃ j(yn)h
′
k(xm)hl(yn)+

N

∑
i=2

s+1

∑
j=s

αi j

N+1

∑
m,n=1

wmwnµmn

(

h̃′j(yn)φ(xm,yn)+ h̃ j(yn)
∂φ

∂y
(xm,yn)

)

h̃i(xm)hk(xm)h
′
l(yn)

=
N+1

∑
m,n=1

wmwn fmnhk(xm)hl(yn)
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By choosing

φ(x,y) =
N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣hp(x)hq(y)−

∣
∣
∣

N+1

∑
p,q=1

(yq − ȳ) hp(x)hq(y)
∣
∣
∣

where −1 ≤ ȳ ≤ 1, arbitrarily chosen. The values of φ on the nodes are given by

φ(xi,y j) =
N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣hp(xi)hq(y j)−

∣
∣
∣

N+1

∑
p,q=1

(yq − ȳ) hp(xi)hq(y j)
∣
∣
∣

= |y j − ȳ|− |y j − ȳ|

so that φ(xi,y j) = 0,1 ≤ i, j ≤ N +1

Remark 1. We considered different enrichment functions given hereafter

• φ1(x,y) = ||(x,y)− (x, ȳ)||= |y− ȳ| where ȳ, arbitrarily chosen.

• φ2(x,y) =
N+1

∑
p,q=1

∣
∣
∣(xp,yq)− (xp, ȳ)

∣
∣
∣hq(y) where ȳ, arbitrarily chosen.

• φ3(x,y) = ||(x,y)− (x̄, ȳ)||=
N+1

∑
p,q=1

||(xp,yq)− (x̄, ȳ)|| hp(x)hq(y)

where (x̄, ȳ) is a point on the interface, arbitrarily chosen. It is taken to be

somewhere about the midpoint along the interface which is easy to calculate in

the case of a straight interface.

• φ4(x,y) = |y− ȳ|−
∣
∣
∣

N+1

∑
p,q=1

(yq− ȳ) hp(x)hq(y)
∣
∣
∣ where −1 ≤ ȳ ≤ 1, arbitrarily cho-

sen.

• φ5(x,y) =
N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣hp(x)hq(y)−

∣
∣
∣

N+1

∑
p,q=1

(yq − ȳ) hp(x)hq(y)
∣
∣
∣ where −1 ≤ ȳ ≤

1, arbitrarily chosen.

By applying these functions in the local enriched approximation (4.11), the results

using each of the above enrichment functions do not improve the accurcy of the en-

riched XSEM approximation.
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One can easily calculate

∂φ

∂x
(x,y) =

N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣h

′
p(x)hq(y)−

N+1

∑
p,q=1

(yq − ȳ)h′p(x)hq(y) sign
( N+1

∑
p,q=1

(yq − ȳ)hp(x)hq(y)
)

and their values on the nodes are given by

∂φ

∂x
(xi,y j) =

N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣h

′
p(xi)hq(y j)−

N+1

∑
p,q=1

(yq − ȳ)h′p(xi)hq(y j) sign
( N+1

∑
p,q=1

(yq − ȳ)hp(xi)hq(y j)
)

= |y j − ȳ|
N+1

∑
p=1

h′p(xi)− sign (y j − ȳ)(y j − ȳ)
N+1

∑
p=1

h′p(xi)

= 0

and also the derivative with respect to y is given by

∂φ

∂y
(x,y) =

N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣hp(x)h

′
q(y)−

N+1

∑
p,q=1

(yq − ȳ)hp(x)h
′
q(y) sign

( N+1

∑
p,q=1

(yq − ȳ)hp(x)hq(y)
)

and then their values on the nodes are given by

∂φ

∂y
(xi,y j) =

N+1

∑
p,q=1

∣
∣
∣yq − ȳ

∣
∣
∣hp(xi)h

′
q(y j)−

N+1

∑
p,q=1

(yq − ȳ)hp(xi)h
′
q(y j)sign

( N+1

∑
p,q=1

(yq − ȳ)hp(xi)hq(y j)
)

=
N+1

∑
q=1

∣
∣
∣yq − ȳ

∣
∣
∣D jq − sign(y j − ȳ)

N+1

∑
q=1

(yq − ȳ)D jq

then the discrete system becomes

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

+

N

∑
i, j=2

αi j

N+1

∑
m,n=1

wmwnµmnh̃i(xm)h̃ j(yn)hk(xm)h
′
l(yn)

∂φ

∂y
(xm,yn) =

N+1

∑
m,n=1

wmwn fmnhk(xm)hl(yn)

Using the notation hi(xm) = δmi, h̃i(xm) = Gmi and h′i(xm) = Dmi, one deduces that

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn

(

Dmiδn jDmkδnl +δmiDn jδmkDnl

)

+

N

∑
i=2

N

∑
j=2

αi j

N+1

∑
m,n=1

wmwnµmnGmiGn jδmkDnl

∂φ

∂y
(xm,yn) =

N

∑
m,n=2

wmwn fmnδmkδnl

Let I = (l−1)(N+1)+ k and J = ( j−1)(N +1)+ i. Then the system reduces to

(N+1)2

∑
J=1

AIJuJ +
N2

∑
J=2

BIJαJ = FI (4.17)
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where

AIJ = δl j

N+1

∑
m=1

DmiDmkwmµmlwl +δki

N+1

∑
n=1

Dn jDnlwkµknwn,

BIJ =
N+1

∑
n=1

wkwnµknGkiGn jDnl

∂φ

∂y
(xk,yn)

and

FI = wkwl fkl.

Now by choosing another test function vN = h̃k(x)h̃l(y)φ(x,y) (2 ≤ k, l ≤ N), one

obtains

∇vN(x,y) =






(

h̃′k(x)φ(x,y)+ h̃k(x)
∂φ

∂x
(x,y)

)

h̃l(y)

h̃k(x)
(

h̃′l(y)φ(x,y)+ h̃l(y)
∂φ

∂y
(x,y)

)




 .

Then the discrete system becomes:

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

ui j hi(xm)h
′
j(yn)h̃k(xm)h̃l(yn)

∂φ

∂y
(xm,yn)+

N+1

∑
m,n=1

wmwnµmn

N

∑
i, j=2

αi j h̃i(xm)h̃k(xm)h̃ j(yn)
∂φ

∂y
(xm,yn)h̃l(yn)

∂φ

∂y
(xm,yn) = 0

which is equivalent to

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn hi(xm)h
′
j(yn)h̃k(xm)h̃l(yn)

∂φ

∂y
(xm,yn)+

N

∑
i, j=2

αi j

N+1

∑
m,n=1

wmwnµmnh̃i(xm)h̃k(xm)h̃ j(yn)
∂φ

∂y
(xm,yn)h̃l(yn)

∂φ

∂y
(xm,yn) = 0

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn hi(xm)h
′
j(yn)h̃k(xm)h̃l(yn)

∂φ

∂y
(xm,yn)+

N

∑
i, j=2

αi j

N+1

∑
m,n=1

wmwnµmnh̃i(xm)h̃ j(yn)h̃k(xm)h̃l(yn)(
∂φ

∂y
)2(xm,yn) = 0

using notations as hi(xm) = δmi and h̃i(xm) = Gmi, one deduces

N+1

∑
i, j=1

ui j

N+1

∑
m,n=1

wmwnµmn δmiDn jGmkGnl

∂φ

∂y
(xm,yn)+

N

∑
i, j=2

αi j

N+1

∑
m,n=1

wmwnµmnGmiGn jGmkGnl(
∂φ

∂y
)2(xm,yn) = 0
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Let I = (l−2)(N−1)+k−1 and J = ( j−1)(N−1)+ i. Then the system reduces

to

(N+1)2

∑
J=1

CIJuJ +
(N−1)2

∑
J=1

EIJαJ = 0 (4.18)

where

CIJ =
N+1

∑
n=1

wiwnµin Dn jGikGnl

∂φ

∂y
(xi,yn)

EIJ =
N+1

∑
m,n=1

wmwnµmn GmiGn jGmkGnl

(∂φ

∂y
(xm,yn)

)2

Now combining the two systems (4.17) and (4.18), one obtains the system of equa-

tions






Au+Bα = F

Cu+Eα = 0

(4.19)

Let G =




A B

C E



 be a square matrix, U =




u

α



 and FF =




F

000



 then the

system (4.19) in matrix-vector form is

GU = FF (4.20)

Direct solvers for two-dimensional problems are excessively costly on the excep-

tionally fine meshes which are occasionally needed in order to solve the singularities

as well as the steep stress boundary layers which are shown by several constitutive

equations as applied in numerical simulations. This is caused by the expense involved

in factorising and building the global matrix. A fine computational mesh with a cor-

responding increase in the magnitude of the algebraic system is needed to resolve the

boundary layers. Iterative techniques are necessary in this situation. Such techniques

need no storage or inversion of a large matrix, but rather, the fundamental computa-

tional procedure is on the basis of matrix-vector multiplications. There are several



4.2 Discrete problem 72

iterative techniques to large systems of linear equations. Nevertheless, it is a crucial

matter to discover the most effective technique for the current problem, and an inap-

propriate selection may result in slow convergence or even divergence.

In our case, we used the following iterative algorithm. For given initial values u(0)

and α(0), calculate for k ≥ 1







Au(k)+Bα(k−1) = F

BT u(k)+Eα(k) = 0

(4.21)

In many applications the error cannot be evaluated since the analytical solution is not

known and then a stopping tolerance ε is imposed such that

‖u(k)−u(k−1)‖< ε

where ε is a sufficiently small constant.
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4.3 Numerical simulations

Consider the system (4.1) on a domain Ω = [−1,1]× [−1,1] with Dirichlet boundary

condition. We choose a forcing f = 0 and diffusivity such that

µ(x,y) =







µ1, y ≤ ȳ,

µ2, y > ȳ.

A1,A2,η1,η2,µ1 and µ2 are constants. The analytical solution is then

u(x,y) =







sin(πx)A1

(
eη1y − e−η1y

)
, y ≤ ȳ,

sin(πx)
[

A2

(

eη2y − eη2(2−y)
)

+ eη2(1−y)
]

, y > ȳ.

Details can be found in [58, 89]. Let us choose µ1 = 1,µ2 = 2,η1 = 3.1416, η2 =

−3.1416 and ȳ = 0.5001 so that the solution is discontinuous at y = 0.5001. The con-

stant A1 and A2 are defined by A1 = 0.043295, A2 = −0.043295. The discrete system

was solved using either a direct method or the PCG-algorithm. The exact and approx-

imated solutions are plotted in Fig. 4.5. The L2-error with respect to the polynomial

degree N converges linearly as it can be seen in Fig. 4.6.
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Figure 4.5: Exact and approximated solution for N = 18.
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Figure 4.6: L2-error with respect to N.

4.4 Discontinuity and domain decomposition

In this section we propose an alternative way to resolve numerically the system (4.1)

using the spectral element method coupled with a particular domain decomposition.

Let Ω= [xa,xb]× [ya,yb] =Ω1∪Ω2, f ∈ L2(Ω) and ud ∈ L2(∂Ω) where Ω1∩Ω2 = Γ is

the interface between Ω1 and Ω2. We are looking for finding solution u of the following

system :







−∇(µ(x,y)∇u) = f on Ω

u = ud on ∂Ω
(4.22)

where

µ(x,y) =







µ1 on Ω1

µ2 on Ω2

µ1 and µ2 are two constants such that µ1 6= µ2.

The idea is based on decomposing the domain into three elements such that the

middle element contains the discontinuity and is of size 2ε . This means that the domain
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is decomposed as follows

Ω= [xa,xb]× [ya,yb] = [xa,xb]× [ya, ȳ−ε]∪ [xa,xb]× [ȳ−ε, ȳ+ε]∪ [xa,xb]× [ȳ+ε,yb]

(xa,ya)

(xb,yb)(xa,yb)

(xb,ya)

ȳ Ω2

Ω1

Ω3

Figure 4.7: Domain two-phase

The spectral element approximation in each of the three elements is:

uN(x,y) =







N+1

∑
i, j=1

u
(1)
i j hi

(2x− (xa + xb)

xb − xa

)

h j

(2y− (ya + ȳ− ε)

(ȳ− ya)

)

in Ω1

N+1

∑
i, j=1

u
(2)
i j hi

(2x− (xa + xb)

xb − xa

)

h j

(y− ȳ

ε

)

in Ω2

N+1

∑
i, j=1

u
(3)
i j hi

(2x− (xa + xb)

xb − xa

)

h j

(2y− (ȳ+ ε + yb)

yb − (ȳ+ ε)

)

in Ω3

where the solution uN is expanded in terms of Lagrange interpolants based on the

Gauss-Lobatto Legendre points.
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The discrete system was solved using either a direct method or the PCG-algorithm.

We used the same exact solution as in the previous section. The L2-error converges

exponentially with respect to the parameter ε as it can be seen in Fig. 4.8 for N = 12

and in Fig. 4.9 for N = 14. Now by fixing ε = 10−6, in Fig. 4.10 the L2-error converges

exponentially with respect to N.
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Figure 4.8: log-log plot of the L2-norm of the error with respect to the value of ε for

N = 12. The slope is about 1.06.
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Figure 4.9: log-log plot of the L2-norm of the error with respect to the value of ε for

N = 14. The slope is about 1.05.
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Figure 4.10: L2-error with respect to N for ε = 10−6.
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Figure 4.11: log-log plot of the L2-norm of the error with respect to N for ε = 10−6.
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4.5 Conclusion

In this chapter we introduced the spectral element method and illustrated the prob-

lems associated with approximating a function which is discontinuous, where the dis-

continuity is unfitted to the computational mesh. We consider how the presence of a

discontinuity influences the convergence and accuracy of the spectral element method

(SEM). So we consider a rectangular domain subdivided into two sub-domains (two

rectangular) with different characteristics. By applying the spectral element method, a

Gibbs phenomenon can be observed. To overcome this we propose an extended spec-

tral element method (XSEM) by adding an enrichment to the classical spectral element

method which introduces two additional sparse matrices to the linear system which

increase the condition number quite significantly. We showed that when approximat-

ing a discontinuous function, XSEM can capture the discontinuity exactly. Using the

framework of Reusken [85] we were able to obtain the spectral equivalents of his error

estimates. Therefore we applied XSEM to Poisson’s equation. We found that the ma-

jority of Gibbs phenomena was removed. However, the results were not satisfactory.

It is clear from Fig. 4.6 that the XSEM approximation does not improve the solution.

This is quite disappointing, however - to a certain degree - not too surprising. More

research is required to determine the reason why XSEM does not improve the solution

in this case.

Then we propose an alternative way by applying spectral element method on special

domain decomposition. The idea is based on decomposing the domain into three ele-

ments such that the middle element contains the discontinuity and is of size 2ε . The

L2-error converges exponentially with respect to the parameter ε (size of the domain

decomposition) and by fixing ε small enough, the L2-error converges exponentially

with respect to mesh size.
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Chapter 5

Approximation of the Stokes Problem

using Spectral Element Method

5.1 Introduction

This chapter investigates the approximation of the Stokes problem as well as the con-

sequent conditioning of the discrete problem . The well-posedness of the variational

formulation of the Stokes problem and, in particular, the uniqueness of the pressure

has been demonstrated when the subspace of square-integrable functions having van-

ishing mean is chosen for the pressure space. A conforming subspace is selected in the

discrete setting for the analysis of the discrete problem as well as the discrete pressure

space according to this selection. Nevertheless, there is no utilisation of this space

in the practical applications of spectral or finite element methods in the case of the

Stokes problem. In this chapter, we demonstrate the means of accommodating the zero

volume condition on the pressure within the trial space by modifying the continuity

equation in a consistent manner. Furthermore, we investigate the precision of the spec-

tral element approximation on the weighting factor as well as the dependence of the

condition number of the preconditioned linear system on N.

5.2 Stokes Problem

Let Ω = [xa,xb]× [ya,yb] be a bounded, connected domain in R2 with presupposed

boundary Γ and fff = ( f1, f2)
T ∈

(
L2(Ω)

)2
. We search for a solution (uuu, p) to the fol-
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lowing Stokes system :







−∇ · (µ∇uuu)+∇p = fff on Ω

−divuuu = 000 on Ω

uuu = ggg on Γ

(5.1)

where uuu = (u1,u2)
T indicates the velocity field of an incompressible fluid motion, and

p indicates the associated pressure , the function µ is the viscosity of the fluid. In sim-

ple terms, we treat the first stage as being homogeneous Dirichlet boundary conditions

for the velocity, which is uuu|Γ = 000.

Green’s theorem tells us that the inhomogeneous Dirichlet data ggg is required to

satisfy the condition

∫

Γ
ggg ·nnnds = 0 (5.2)

where nnn being the outward unit normal vector to Γ. The Stokes problem is of funda-

mental importance in the study of incompressible fluid flow. Not only does it appear in

a primary role as a model for the slow flow of fluids with very high viscosity but it also

appears in a supporting capacity as part of the solution process for the Navier–Stokes

equations when a time-splitting or semi-implicit approach is adopted.

We may regard the pressure to be a restriction which guarantees the velocity field to be

divergence free. The only occurrence of pressure in the Stokes problem is as a gradient

in the momentum equation (5.1). Therefore, the pressure can only be determined up

to a constant. Two techniques may determine a unique pressure solution. The first of

these is to establish the pressure at a specific point in Ω, normally a boundary point

or a node, . thereby eliminating the null space. If this method is used, the matching

discrete technique for the pressure is non-singular, which we may solve by applying

standard direct methods. We should be aware that if the problem’s boundary conditions

differ, it may not be necessary to impose a zero mean on the pressure. For instance, in
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the case of a zero mean condition being enforced on the pressure regarding a problem

having an outflow boundary on which a natural, zero normal stress boundary condition

is imposed, this will lead to an over-determined problem. When the second technique

is enforced, we calculate the pressure from a consistent singular system by utilising a

minimisation involving an iterative solver; for instance, the conjugate gradient method.

There are many reasons why this method is unpopular in the finite element community.

However, the spectral clement community approves of it, where there appears to be less

of a reluctance to solve singular systems. Nevertheless, the expansion of round-off may

result in the singular method becoming inconsistent, thereby having severe repercus-

sions for the conjugate gradient method convergence.

The analysis of the conventional velocity–pressure formulation of the Stokes problem

is based on its reformulation as a saddle point problem. The uniqueness and existence

theory for this type of problem was developed by Brezzi [14]. The basis of this analysis

is the satisfaction of a compatibility condition between the pressure and velocity func-

tion spaces. We sometimes call this the inf-sup or Ladyzhenskaya–Babus̆ka–Brezzi

(LBB) [3, 14, 57] condition which is required in order to guarantee a unique pressure

solution L2
0(Ω), being the space of the square-integrable functions according to the Ω

domain with a vanishing mean, the velocity space being (H1(Ω))2. Furthermore, the

corresponding discrete problem analysis needs the compatibility condition between the

pressure spaces and the discrete velocity to be satisfied. False pressure modes can be

caused by the violation of this condition. Modes of this kind can affect the pressure

approximation precision. Modes of this kind can affect the pressure approximation pre-

cision. We are aware that it is insufficient for the velocity and pressure approximation

spaces to conform to the subspaces of (H1(Ω))2 and L2
0(Ω)respectively which attains

a well-posed discrete problem. However, most theoretical finite element or spectral

element monographs do not describe the practical details of implementing conforming

finite element or spectral element approximations in this framework. For example, the

nodal basis functions that are generally used in the spectral element approximation of

pressure do not lie in L2
0(Ω), i.e. the nodal basis functions do not have vanishing mean.
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The spectral element literature does not document how the problem of implementing

conforming approximations is resolved in practice, although a common practice seems

to be to modify the pressure approximation a posteriori by adding a constant chosen

so that it has zero mean. Note, however, that modal hierarchical basis functions con-

structed using the Legendre polynomials do belong to L2
0(Ω) apart from the constant

mode. For finite dimensional approximations that are local in their influence, such

as those based on finite elements or certain spectral elements the global conditions

on the average of pressure may be inconvenient to use. In this chapter we introduce

and analyse a regularized saddle point problem that has a unique pressure solution.

Although this formulation of the Stokes problem does not explicitly require the pres-

sure to have vanishing mean, the solution to the regularized problem does possess this

property. An additional benefit of this approach is that it results in a positive definite

system for the pressure whereas the original formulation produced a positive semi-

definite system. A review of the classical statement of the Stokes problem is provided.

An alternative statement of the Stokes problem is given and analyzed. The spectral

element discretization of the Stokes problem is developed. Numerical results demon-

strating the performance of the PCG method and the efficiency of the preconditioners

are presented.

5.3 Classical statement of the Stokes problem

The Stokes problem comprises the conservation laws of momentum and mass (5.1) in

which uuu is the velocity, p is the pressure and fff is the body force. Consider the solution

of the problem (5.1) in some bounded, connected domain Ω in R2, with a Lipschitz

continuous boundary Γ. In this section we provide a review of the classical statement

of the Stokes problem, including existence and uniqueness results. The following ex-

istence and uniqueness result holds:

Theorem 1. Let Ω be a bounded and connected subset of R2 with a Lipschitz contin-

uous boundary Γ. Let fff and ggg be two given functions in (H−1(Ω))2 and (H1/2(Γ))2,
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respectively, such that

∫

Γ
ggg · nnnds = 0 where nnn is the unit outward normal to Γ. Then,

there exists a unique solution (uuu, p) ∈ (H1(Ω))2×L2
0(Ω) satisfying (5.1).

The proof of this theorem is based on the equivalence of the solution to this problem

with the solution to a corresponding variational problem, and involves an application

of the theory of saddle point problems (see Chorin [22]). If the boundary data ggg is a

function in (H1/2(Γ))2 satisfying (5.1) then Temam [100] has shown that there exists

a function uuu000 ∈ (H1(Ω))2 such that

divuuu000 = 000 on Ω and uuu000 = ggg on Γ (5.3)

This outcome allows one to articulate the inhomogeneous Stokes problem (5.1)

with regard to an equivalent one having homogeneous Dirichlet boundary conditions:







−∇ · (µ∇www)+∇p = fff +∇ · (µ∇uuu000) on Ω

−divwww = 000 on Ω

www = 000 on Γ

(5.4)

Therefore, the solution to (5.1) is uuu = www+uuu000. In this chapter, in the discussion of

the theoretical treatment of the Stokes problem, we presuppose that, without any loss

of generality, the velocity satisfies homogeneous Dirichlet boundary conditions, that is

uuu = 000 on Γ.

In order to implement the variational formulation of this problem, we apply:
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





−∇ · (µ∇uuu)+∇p = fff on Ω

−divuuu = 000 on Ω

uuu = 000 on Γ

(5.5)

It is necessary to implement function spaces for both velocity and pressure as indi-

cated by V and Q, respectively. With regard to the conventional statement of the Stokes

problem, these are provided as follows:

V =
(
H1

0 (Ω)
)2

and Q = L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω
q dΩ = 0

}

We need to be aware that the selection of pressure space as aforementioned elim-

inates any indeterminacy in the pressure. Furthermore, this may be attained through

several other means, which include the pressure specification at one point within the

domain. The particular choice of Q, as mentioned previously is appropriate when the

variational formulation is discretised by applying spectral methods. In order to obtain a

discrete pressure solution with zero average, it is basically necessary to ignore its low-

est Fourier coefficient which is the one that is connected to the constant polynomial

[42].

5.3.1 Weak fomulation

We multiply the momentum equation by the test function vvv ∈
(
H1

0 (Ω)
)2

and the mass

(continuity) equation by the test function q ∈ L2
0(Ω) . For the momentum equation, we

use integration by parts in order to get the weak formulation of the Stokes problem:

Find uuu ∈
(
H1

0 (Ω)
)2

and p ∈ L2
0(Ω) such that







(µ ∇uuu,∇vvv)− (p, divvvv) = ( fff ,vvv), ∀vvv ∈
(
H1

0 (Ω)
)2

−(divuuu,q) = 0, ∀q ∈ L2(Ω)

(5.6)
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The required conditions for the well-posedness of a saddle point system are called

inf-sup conditions. The setting for the Stokes equations is as follows:

• Define the spaces V =
(
H1

0 (Ω)
)2

with semi-norm |vvv|1 = ‖∇vvv‖, and

Q = L2
0(Ω) =

{

q ∈ L2(Ω),

∫

Ω
q = 0

}

, with norm ‖p‖.

• Define the bilinear forms a(uuu,vvv) =

∫

Ω
µ ∇uuu : ∇vvv and b(vvv,q) =−

∫

Ω
(divvvv)q.

For the purpose of summarising the spectral element method, we begin with the

problem’s variational formulation (5.5). We seek the solution (uuu, p) in V×Q, being

the function spaces for the velocity and pressure respectively. Subsequently, we can

attain the weak formulation:







Find (uuu, p) ∈ V×Q such that

a(uuu,vvv)+b(vvv, p) = ( fff ,vvv), ∀vvv ∈ V

b(uuu,q) = 0, ∀q ∈ Q

(5.7)

If this problem is to be solved, it is necessary to verify the following conditions to have

a unique solution for the problem (5.7) :

1. The coercivity condition of the bilinear form a is given by

inf
uuu∈V

sup
vvv∈V

a(uuu,vvv)

|uuu|1|vvv|1
= inf

vvv∈V
sup
uuu∈V

a(uuu,vvv)

|uuu|1|vvv|1
= α > 0.

2. The inf-sup condition is given by

inf
q∈Q

sup
vvv∈V

b(vvv,q)

|vvv|1‖q‖ = β > 0.

3. The bilinear forms continuity is given by

a(uuu,vvv)≤ k1|uuu|1|vvv|1, ∀uuu,vvv ∈ V

b(vvv,q)≤ k2|vvv|1‖q‖, ∀vvv ∈ V, ∀q ∈ Q

where k1,k2 > 0 and | · |1 = ‖∇ · ‖ is the H1 semi-norm.
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5.3.2 Alternative continuity equation

We have addressed, in the previous sections, the normal continuity equation for an

incompressible fluid, divuuu = 0. Gwynllyw and Phillips [42], in 2006, investigated an

alternative formulation of the Stokes problem by replacing the continuity equation by:

−divuuu = λ
∫

Ω
p dΩ in Ω (5.8)

where λ is a positive constant.

The statement continues to be equivalent to the original equation since the pressure

has a vanishing mean over the domain Ω. We may see this by integrating (5.8) over

Ω and using Green’s Theorem. It is advantageous that the vanishing mean property

is not certain to be satisfied in one element of the domain. However, this alternative

formulation ensures that the pressure possesses the vanishing mean across the domain;

therefore, it is certain that p ∈ L2
0(Ω). This means that a unique solution for the pres-

sure may be determined instead of a solution up to a constant for the conventional

formulation. Although this formulation was initially applied to the Stokes problem, it

is clear that the alternative formulation is also valid for the Navier-Stokes equations.

Furthermore, another advantage for the spectral element method is the enhancement

in the conditioning of the linear system resulting from the spatial discretisation. We

shall address this in a later part of the chapter. We shall now use the alternative form

of the continuity equation,(5.8) since we are aware that we may recover the original

formulation by setting λ = 0.

5.4 Approximation using Spectral Element Method

The Spectral Element Method (SEM) is used to discretize the Stokes problem’s weak

formulation of the Stokes problem.

We define the nodes xi = yi and weights wi, i = 1, ...,N+1 as in Chapter 1.
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We need to choose conforming discrete subspaces for pressure and velocity when

applying the spectral element method. Let VN ⊂ V and QN ⊂ Q indicate these sub-

spaces, respectively. Let PN(Ω) indicate the space of all polynomials on Ω of degree

less than or equal to N and define:

PN(Ω) := {ϕ : ϕ|Ω ∈ PN(Ω)}

We may define the velocity and pressure approximation spaces as:

VN := V∩
[

PN(Ω)
]2

, QN := Q∩PN−2(Ω)

Subsequently, the velocity uuu = (u1,u2)
T is expanded in terms of Lagrange interpolants

based on the Gauss-Lobatto Legendre points

u1N(x,y) =
N+1

∑
i, j=1

u1i jhi(x)h j(y)

u2N(x,y) =
N+1

∑
i, j=1

u2i jhi(x)h j(y)

where u1i j = u1(xi,y j), u2i j = u2(xi,y j), i, j = 1, . . . ,N + 1, and hi are the Lagrange

interpolants given by

hi(x)=
N+1

∏
k=1,
k 6=i

(x− xk)

(xi − xk)
=

−(1− x2)L′
N(x)

N(N +1)LN(xi)(x− xi)
=

LN+1(x)−LN−1(x)

(2N+1)LN(xi)(x− xi)
, i= 1, . . . ,N+1

defined on the set of GLL interpolation nodes {xi}N+1
i=1 .

The pressure p is expanded in terms of the Lagrange interpolants based on the interior

Gauss-Lobatto Legendre points

pN(x,y) =
N

∑
i, j=2

pi jh̃i(x)h̃ j(y)

where pi j = p(xi,y j), i, j = 2, . . . ,N and h̃i are the Lagrange interpolants given by

h̃i(x) =
(1− x2

i )

(1− x2)
hi(x) =

N

∏
k=2
k 6=i

(x− xk)

(xi − x̃k)
=

−(1− x2
i )L

′
N(x)

N(N +1)LN(xi)(x− xi)
, i = 2, . . . ,N
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defined on the set of the interior interpolation nodes {xi}N
i=2.

The only difference between these formulae is the selection of the interpolating

nodes. The interpolation points are the nodes within the corresponding GLL quadra-

ture formula, and the Stokes equation spectral element approximation produces the

following semi-discrete problem: Find uuuN = (u1N ,u2N) ∈ VN and pN ∈ QN such that







(µ∇uuuN,∇vvvN)N − (∇ · vvvN, pN)N = ( fff N,vvvN)N, ∀vvvN ∈ VN

−(∇ ·uuuN ,qN)N = λ (pN ,1)N(qN,1)N, ∀qN ∈ QN

(5.9)

where uuuN = (u1N ,u2N), pN and fff N indicate the approximations of the velocity, pres-

sure and source term, respectively, µ denotes the dimensionless viscosity and (·, ·) the

standard L2(Ω) inner product. We define the discrete inner product by: (·, ·)N

(φ ,ψ)N =
N+1

∑
m,n=1

wmwnφ(xm,yn)ψ(xm,yn)

Subsequently, we define the discrete L2-norm by

‖φ‖2
L2 =

N+1

∑
m,n=1

wmwn

[
φ(xm,yn)

]2

The discrete weak formulation then becomes: find uuuN = (u1N,u2N)∈ VN and pN ∈ QN

such that







(µ∇u1N ,∇v1N)N −
(

∂v1N

∂x
, pN

)

N

= ( f1N ,v1N)N ,

(µ∇u2N ,∇v2N)N −
(

∂v2N

∂y
, pN

)

N

= ( f2N ,v2N)N , ∀(v1N ,v2N) ∈ VN

−
(

∂u1N

∂x
+

∂u2N

∂y
,qN

)

N

= λ (pN ,1)N (qN ,1)N , ∀qN ∈ QN

(5.10)

The optimal a priori error estimate [42] is given by

‖uuu−uuuN‖V +‖p− pN‖Q ≤ L
(

infwwwN∈V ‖uuu−wwwN‖V+ infrN∈Q‖p− rN‖Q

)

(5.11)
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By injecting the decomposition of uuuN = (u1N,u2N) and pN into the variational for-

mulation (5.9) and choose the test functions as v1N = v2N = hk(x)hl(y) (2 ≤ k, l ≤ N)

and qN = h̃k(x)h̃l(y) (2 ≤ k, l ≤ N), one attains the following discrete system:

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

u1i j

−
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

h̃i(xm)h̃ j(yn)h
′
k(xm)hl(yn)pi j =

N+1

∑
m,n=1

wmwn f1mnhk(xm)hl(yn),

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

(

h′i(xm)h j(yn)h
′
k(xm)hl(yn)+hi(xm)h

′
j(yn)hk(xm)h

′
l(yn)

)

u2i j

−
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

h̃i(xm)h̃ j(yn)hk(xm)h
′
l(yn)pi j =

N+1

∑
m,n=1

wmwn f2mnhk(xm)hl(yn),

−
N+1

∑
m,n=1

wmwn

N+1

∑
i, j=1

h′i(xm)h j(yn)h̃k(xm)h̃l(yn)u1i j

−
N+1

∑
m,n=1

wmwn

N+1

∑
i, j=1

hi(xm)h
′
j(yn)h̃k(xm)h̃l(yn)u2i j

= λ

(
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

h̃i(xm)h̃ j(yn)pi j

)(
N+1

∑
m,n=1

wmwnh̃k(xm)h̃l(yn)

)

,
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which is equivalent to

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

(

DmiDmkδnl j +Dn jDnlδmik

)

u1i j

−
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

Dmkδmiδn jl pi j =
N+1

∑
m,n=1

wmwn f1mnδmkδnl,

N+1

∑
m,n=1

wmwnµmn

N+1

∑
i, j=1

(

DmiDmkδnl j +Dn jDnlδmik

)

u2i j

−
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

Dnlδmikδn j pi j =
N+1

∑
m,n=1

wmwn f2mnδmkδnl,

−
N+1

∑
m,n=1

wmwn

N+1

∑
i, j=1

Dmiδmkδn jlu1i j −
N+1

∑
m,n=1

wmwn

N+1

∑
i, j=1

Dn jδmikδnlu2i j

= λ
N+1

∑
m,n=1

wmwn

N

∑
i, j=2

δmiδn j pi j

N+1

∑
m,n=1

wmwnδmkδnl .

Making use of the Kronecker delta property, the equations reduce to the following

N+1

∑
m=1

wmwlµml

N+1

∑
i=1

DmiDmku1il +
N+1

∑
n=1

wkwnµkn

N+1

∑
j=1

Dn jDnlu1k j −
N

∑
i=2

wiwlDik pil = wk f1klwl,

N+1

∑
m=1

wmwlµml

N+1

∑
i=1

DmiDmku2il +
N+1

∑
n=1

wkwnµkn

N+1

∑
j=1

Dn jDnlu2k j −
N

∑
j=2

wkw jD jl pk j = wk f2klwl ,

−
N+1

∑
i=1

wkwlDkiu1il −
N+1

∑
j=1

wkwlDl ju2k j −λ wkwl

N

∑
i, j=2

wiw j pi j = 0.

Since u1N and u2N satisfy homogenous Dirichlet boudary conditions, their expression

can be simplified to

u1N(x,y) =
N

∑
i, j=2

u1i jhi(x)h j(y) and u2N(x,y) =
N

∑
i, j=2

u2i jhi(x)h j(y) (5.12)
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Let I = (l − 2)(N − 1)+ (k− 1) and J = ( j− 2)(N − 1)+ (i− 1). Therefore, the

system can be written in the more compact form

(N−1)2

∑
J=1

AIJu1J −
(N−1)2

∑
J=1

C3IJ pJ = F1I, I = 1, · · · ,(N−1)2,

(N−1)2

∑
J=1

AIJu2J −
(N−1)2

∑
J=1

C4IJ pJ = F2I, I = 1, · · · ,(N−1)2,

−
(N−1)2

∑
J=1

C1IJu1J −
(N−1)2

∑
J=1

C2IJu2J −λ
(N−1)2

∑
J=1

BIJ pJ = 000, I = 1, · · · ,(N −1)2.

where

AIJ = δl j

N+1

∑
m=1

DmiDmkwmµmlwl +δki

N+1

∑
n=1

Dn jDnlwkµknwn

C1IJ = δl jDkiwkwl

C2IJ = δkiDl jwkwl

C3IJ = δl jDikwiwl

C4IJ = δkiD jlwkw j

BIJ = wkwl wiw j

and

FiI = wkwl fikl, i = 1,2.

Note that C3 =CT
1 and C4 =CT

2 , then the system is equivalent to






Au1 −CT
1 p = F1

Au2 −CT
2 p = F2

−C1u1 −C2u2 −λBp = 0

(5.13)

or in matrix-vector form













A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























u1

u2

p














=














F1

F2

0














(5.14)
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One method of decoupling the set of equations as suggested by Maday and Patera

(1989) is by writing







u1 = A−1(CT
1 p+F1)

u2 = A−1(CT
2 p+F2)

C1u1 +C2u2 +λBp = 0

this we can do since A is symmetric and positive definite and subsequently A−1 exists.

The multiplication of the first two equations by C1 and C2, respectively and substitution

into the third equation produces:

C1u1 +C2u2 +λBp =C1A−1(CT
1 p+F1)+C2A−1(CT

2 p+F2)+λBp = 0

therefore, we may obtain an equation for the pressure:

(
C1A−1CT

1 +C2A−1CT
2 +λB

)
p =−

(
C1A−1F1 +C2A−1F2

)
. (5.15)

As soon as the pressure has been determined; for example, by utilising an iterative

solver for (5.15), we can calculate the velocity by solving the decoupled systems:







Au1 = F1 +CT
1 p

Au2 = F2 +CT
2 p

(5.16)

We remove any columns or rows corresponding to a Dirichlet node in the global

matrix for the purpose of applying the boundary conditions. Subsequently, we substi-

tute the known values into the solution at these nodes and undertake the matrix-vector

calculations with the corresponding rows with the global matrix. This contributes to

subtracting from the right hand side of the linear system.
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5.5 Preconditioning

Direct solvers’ cost becomes prohibitive, even for two-dimensional problems, on the

extremely fine meshes which are sometimes required to resolve the steep stress bound-

ary layers in addition to the singularities shown by several constitutive equations which

are used in numerical simulations. The reason for this is the cost of the assembly and

factorisation of the global matrix. A fine computational mesh with a corresponding

increase in the size of the algebraic system is needed for resolving the boundary layers,

and in this situation, iterative methods are necessary. In the case of iterative methods,

the inversion or storage of a large matrix is not necessary, but rather, the fundamental

computational procedure matrix-vector multiplications. There are numerous iterative

methods for solving large systems of linear equations. Nevertheless, the critical point is

to discover the most efficient method for the problem which is being considered. An in-

appropriate choice could result in slow convergence or even in divergence. The inf-sup

stability condition, which is linked to the mixed approximation of the Stokes Problem,

is of major significance regarding the discovery of fast and dependable iterative solu-

tion methods. Although it is certainly unnecessary to apply stable approximations to

calculate a precise velocity field at all times, it is essential to do so for the construction

of fast convergent iterative methods. This topic is addressed in this section.

We desire to solve the following system:

Kxxx = bbb, (5.17)

where K is an n×n matrix and xxx and bbb are n-dimensional column vectors have a certain

structure and given by:

K =














A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB














, xxx =














u1

u2

p














and bbb =














F1

F2

0














. (5.18)
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where K is symmetric, and reflects the self-adjointness of the continuous Stokes op-

erator, but is always indefinite, having both positive and negative eigenvalues. We

note that the Laplacian matrix A is always positive, definite and has the dimension

(N −1)2 × (N −1)2.

Several iterative methods may be applied in order to solve this system. The oldest and

best-known member of the non-stationary iterative methods is the conjugate gradient

(CG) method. In a nonstationary iterative method there is no element of choice in the

determination of the iteration parameters. They are dynamically selected at each iter-

ation in order to minimise the error in a particular norm (L2-norm, for example). This

method was developed in order to resolve symmetric, positive definite systems of linear

equations. It converges extremely rapidly when the eigenvalues of K are clustered or lie

within distinct clustered groups. The convergence rate for the CG method is dependent

on the condition number of the coefficient matrix. In a situation where the eigenvalues

of K are not clustered, the convergence of the CG method is slow. However, we may

enhance this by preconditioning the system with an appropriate non-singular matrix

P. The concept which underlies the preconditioning philosophy is to change the initial

system into an equivalent and improved conditioned system

P−1Kxxx = P−1bbb, (5.19)

where P is the preconditioner, which is chosen as an approximation of K with the

eigenvalues of P−1K clustered close to unity. In an ideal situation, the properties of

the preconditioner ought to be similar to the original matrix as well as being sparse in

order to be efficient to construct and to store. It is essential to consider the trade-off

between application and construction cost of the preconditioner as well as the antici-

pated increase in the convergence speed of the iterative method. The inverse P−1 is not

constructed explicitly, but rather, the linear system of the form

Pyyy = ccc, (5.20)

are solved. However, we are indeed aware of the existence of two extreme cases. lf

P = K then (5.20) is the same except for there being a possible change of the right side
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vector. Therefore, (5.17) the application of the preconditioner is equally as difficult as

finding a solution to the initial problem. If P = I , then (5.19) is equal to (5.17) and it

is trivial to apply the preconditioning because it is still necessary to invert K.

However, the linear system (5.19) transformation (5.17) is not used in practice in

the calculations because P−1K may not necessarily be symmetric and positive definite,

but rather the preconditioner is decomposed in the form P = HHT and the transformed

system is written as

H−1KH−T (HT xxx) = H−1bbb. (5.21)

The convergence behaviour of the preconditioned method is dependent on the spec-

trum of R = H−1KH−T . A given iterative method is preconditioned as follows:

1. Transform the right-hand side vector according to

b̃bb = H−1bbb

2. Apply the iterative method to the system

Rx̃xx = b̃bb,

where x̃xx = HT xxx.

3. Compute

xxx = H−T x̃xx

In practice, the decomposition of P, as given in (5.21) is is not required. The stages

of the conjugate gradient method may be rewritten to enable the preconditioner to be

applied in its entirety:

The Preconditioned Conjugate Gradient (PCG) algorithm
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1. Select an initial guess xxx0 and compute rrr0 = bbb−Kxxx0.

2. Solve Pzzz0 = rrr0. Set ppp0 = zzz0.

3. For n = 1,2, ..., compute

αn = rrrT
n−1zzzn−1/pppT

n−1K pppn−1

xxxn = xxxn−1 +αn pppn−1

rrrn = rrrn−1 −αnK pn−1

zzzn = P−1rrrn

βn = rrrT
n zzzn/rrrT

n−1zzzn−1

pppn = zzzn +βnpppn−1

until convergence stopping criterion is satisfied.

The convergence behaviour of the preconditioned method depends on the spectrum

of the matrix H−1KH−T . The theory in [33] shows that convergence of the precondi-

tioned CG iteration depends on the eigenvalues of H−1KH−T , which are identical to

the eigenvalues of P−1K because of the similarity transformation H−T H−1KH−T HT =

P−1K. Thus, introducing the loose notation

κ(P−1K) =
λmax(H

−1KH−T )

λmin(H−1KH−T )

we are able to demonstrate that
1

2

√

κ(P−1K)| log(ε)/2| preconditioned CG iterations

will be needed if we are to reduce the K-norm of the error by ε (pre-selected toler-

ance). In particular, if a preconditioner P can be found such that κ(P−1K) is bounded

independently of N then, for a fixed convergence tolerance ε , the number of required

iterations will not increase when we search for more accurate solutions by applying

more refined grids.

The bound based on the discrete eigenvalues λ j of the operator P−1K is given by
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[33]

‖rrrk‖P−1

‖rrr0‖P−1

≤ min
pk∈Πk,pk(0)=1

max
j

|pk(λ j)| (5.22)

where Πk is the set of real polynomials of degree less than or equal to k and pk is a

real polynomial of degree less than or equal to k. This bound shows that the rate of

convergence is dependent on the eigenvalues of the generalised eigenvalue problem

Kxxx = λPxxx (5.23)

5.6 General strategies for preconditioning

For the Stokes problem, we assess the discretization error in the energy norm for ve-

locities and in the L2 norm for pressure. Therefore, the natural matrix norm is ‖eee(k)‖E

where

E =














A 0 0

0 A 0

0 0 Q














(5.24)

where Q is the pressure mass matrix with entries given by:

QIJ =

∫ ∫

h̃i(x)h̃ j(y)h̃k(x)h̃l(y)dxdy.

where I = (l − 2)(N − 1)+ (k − 1) and J = ( j − 2)(N − 1)+ (i− 1). In the case of

SEM, its approximation obtained by means of a GLL quadrature rule given by

QIJ =
N+1

∑
m,n=1

wmwnh̃i(xm)h̃ j(yn)h̃k(xm)h̃l(yn).

Using the fact that

N+1

∑
m,n=1

am,n =
N

∑
m,n=2

am,n +
N

∑
m=2

am,1 +
N

∑
m=2

am,N+1 +
N

∑
n=2

a1,n +
N

∑
n=2

aN+1,n
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+a1,1 +a1,N+1 +aN+1,1 +aN+1,N+1

we can express the entries of Q in the form

QIJ =
N

∑
m,n=2

wmwnh̃i(xm)h̃ j(yn)h̃k(xm)h̃l(yn)

+
N

∑
m=2

wmw1h̃i(xm)h̃ j(y1)h̃k(xm)h̃l(y1)

+
N

∑
m=2

wmwN+1h̃i(xm)h̃ j(yN+1)h̃k(xm)h̃l(yN+1)

+
N

∑
n=2

w1wnh̃i(x1)h̃ j(yn)h̃k(x1)h̃l(yn)

+
N

∑
n=2

wN+1wnh̃i(xN+1)h̃ j(yn)h̃k(xN+1)h̃l(yn)

+w1w1h̃i(x1)h̃ j(y1)h̃k(x1)h̃l(y1)

+w1wN+1h̃i(x1)h̃ j(yN+1)h̃k(x1)h̃l(yN+1)

+wN+1w1h̃i(xN+1)h̃ j(y1)h̃k(xN+1)h̃l(y1)

+wN+1wN+1h̃i(xN+1)h̃ j(y)N +1h̃k(xN+1)h̃l(yN+1)

which reduces to

QIJ = wkwlδikδ jl

+wkw1δikh̃ j(y1)h̃l(y1)

+wkwN+1δikh̃ j(yN+1)h̃l(yN+1)

+w1wlδ jl h̃i(x1)h̃k(x1)

+wN+1wlδ jl h̃i(xN+1)h̃k(xN+1)

+w1w1h̃i(x1)h̃ j(y1)h̃k(x1)h̃l(y1)

+w1wN+1h̃i(x1)h̃ j(yN+1)h̃k(x1)h̃l(yN+1)

+wN+1w1h̃i(xN+1)h̃ j(y1)h̃k(xN+1)h̃l(y1)

+wN+1wN+1h̃i(xN+1)h̃ j(yN+1)h̃k(xN+1)h̃l(yN+1)

Since Keee(k) = rrr(k), in terms of the residual this is

‖eee(k)‖2
P =< EK−1rrr(k),K−1rrr(k) >= ‖rrr(k)‖2

K−1EK−1

For the Stokes problem, the relevant matrix is
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K−1EK−1 = (KE−1K)−1

=



























A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























A−1 0 0

0 A−1 0

0 0 Q−1



























A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























−1

=



























I 0 −CT
1 Q−1

0 I −CT
2 Q−1

−C1A−1 −C2A−1 −λBQ−1



























A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























−1

=














A+CT
1 Q−1C1 CT

1 Q−1C2 −CT
1 +λCT

1 Q−1B

CT
2 Q−1C1 A+CT

2 Q−1C2 −CT
2 +λCT

2 Q−1B

−C1 +λBQ−1C1 −C2 +λBQ−1C2 C1A−1CT
1 +C2A−1CT

2 +λ 2BQ−1B














−1

Since the PCG method reduces ‖rrr(k)‖ , it is apparent that a wise choice of precon-

ditioner would be the positive-definite matrix

P =














A+CT
1 Q−1C1 CT

1 Q−1C2 −CT
1 +λCT

1 Q−1B

CT
2 Q−1C1 A+CT

2 Q−1C2 −CT
2 +λCT

2 Q−1B

−C1 +λBQ−1C1 −C2 +λBQ−1C2 C1A−1CT
1 +C2A−1CT

2 +λ 2BQ−1B














For uniformly stabilized approximation (λ = 0), this has the form
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P =














A+CT
1 Q−1C1 CT

1 Q−1C2 −CT
1

CT
2 Q−1C1 A+CT

2 Q−1C2 −CT
2

−C1 −C2 C1A−1CT
1 +C2A−1CT

2














The form of the Galerkin matrix K and the desired norm on the basis of matrix E

implies that it is essential that the block structure should be considered during precon-

ditioning. Therefore, we consider the block diagonal preconditioning matrices of the

form

P =














P1 0 0

0 P2 0

0 0 T














(5.25)

where P1,P2,T ∈ R(N−1)2×(N−1)2
are positive-definite and symmetric.

The PCG convergence speed is dependent on the eigenvalues µ of the generalized

eigenvalue problem














A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























u1

u2

p














= µ














P1 0 0

0 P2 0

0 0 T



























u1

u2

p














(5.26)

If P1 = P2 = A, then the generalized eigenvalue problem becomes
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












(1−µ)A 0 −CT
1

0 (1−µ)A −CT
2

−C1 −C2 −λB−µT



























u1

u2

p














=














0

0

0














, (5.27)

or, in component form,







(1−µ)Au1 =CT
1 p

(1−µ)Au2 =CT
2 p

C1u1 +C2u2 +(λB+µT )p = 0

(5.28)

It is easily observed that if P1 = P2 = A, then 1 is an eigenvalue of multiplicity be-

ing at least 2(N −1)2 − (N −1)2 corresponding to any eigenvector [uT
1 ,u

T
2 ,0

T ]T with

C1u1 +C2u2 = 0. The multiplicity is derived from the size of the right null space of

the rectangular matrix [C1,C2]; therefore, if [C1,C2] is of full rank, (N −1)2, then the

multiplicity of 1 is exactly 2(N −1)2 − (N −1)2 = (N −1)2.

In the uniformly stable case (B = 0), if also T = C1A−1CT
1 +C2A−1CT

2 , then the

remaining eigenvalues satisfy,







(1−µ)Au1 =CT
1 p

(1−µ)Au2 =CT
2 p

C1u1 +C2u2 =−µT p =−µ(C1A−1CT
1 +C2A−1CT

2 )p

(5.29)
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or






(1−µ)C1A−1Au1 =C1A−1CT
1 p

(1−µ)C2A−1Au2 =C2A−1CT
2 p

C1u1 +C2u2 =−µ(C1A−1CT
1 +C2A−1CT

2 )p

(5.30)

or






(1−µ)C1u1 =C1A−1CT
1 p

(1−µ)C2u2 =C2A−1CT
2 p

C1u1 +C2u2 =−µ(C1A−1CT
1 +C2A−1CT

2 )p

(5.31)

Finally, multiplying the last equation in (5.31) by (1− µ) and using the other two

equation to eliminate u1 and u2.

(1−µ)(C1u1+C2u2)= (C1A−1CT
1 +C2A−1CT

2 )p=−µ(1−µ)(C1A−1CT
1 +C2A−1CT

2 )p

This reduces to

(µ2 −µ −1)(C1A−1CT
1 +C2A−1CT

2 )p = 0

Therefore, since in this case, the assumed inf-sup stability guarantees that (C1A−1CT
1 +

C2A−1CT
2 ) is positive-definite, we deduce that µ =

1

2
±
√

5

2
are the remaining eigenval-

ues, each with multiplicity (N − 1)2. From the convergence perspective of PCG, this

situation is ideal because the preconditioned matrix has only three distinct eigenvalues.

A cubic polynomial having these three roots means that PCG will terminate with the

precise solution subsequent to three iterations, irrespective of the size of the discrete

problem where the arithmetic is exact, meaning that there is no truncation error. This

situation is ideal because the preconditioning operation with (5.25) needs the action of

the inverses of A and also of the Schur complement (C1A−1CT
1 +C2A−1CT

2 ). These

three iterations need three such computations. The operation involving the Schur com-

plement is entirely impractical because this is a full matrix. Nevertheless, this special
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selection of P implies what is really required, namely, an appropriately selected P1 and

P2 which approximate A and a suitable P that approximates of the Schur complement

(C1A−1CT
1 +C2A−1CT

2 ).

In order to verify that

∫

pdΩ ≈ 0, we approximated

∫

pdΩ using the L2-norm of

the vector T p in (5.26) for different values of N for a range of values of λ .

5 10 15 20 25 30

N

0

0.5

1

1.5

2

2.5
10

-11

Figure 5.1: Mesh convergence of the approximation of

∫

pdΩ for λ = 0.01.

We can see that

∫

p dΩ=O(10−12) with respect to N for different values of λ . Hence,

we can effectively neglect the term T p in (5.29). Then for µ 6= 1, we have







(1−µ)Au1 =CT
1 p

(1−µ)Au2 =CT
2 p

C1u1 +C2u2 +λBp = 0

(5.32)
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5 10 15 20 25 30

N

0
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1

1.5
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2.5

3

3.5

4
10

-12

Figure 5.2: Mesh convergence of the approximation of

∫

pdΩ for λ = 0.017291812.

5 10 15 20 25 30

N

0

0.5

1

1.5
10

-12

Figure 5.3: Mesh convergence of the approximation of

∫

pdΩ for λ = 0.1.

which, on eliminating u1 and u2 from the first two equations becomes






u1 =
1

(1−µ)
A−1CT

1 p

u2 =
1

(1−µ)
A−1CT

2 p

(

C1A−1CT
1 +C2A−1CT

2 +λ (1−µ)B
)

p = 0

(5.33)



5.7 Numerical simulations 106

In our case the Stokes system is













A 0 −CT
1

0 A −CT
2

−C1 −C2 −λB



























u1

u2

p














=














F1

F2

0














(5.34)

and the preconditionner is chosen to be

P =














A 0 0

0 A 0

0 0 T














(5.35)

where A is the stiffness matrix (calculated either by SEM or FEM) and T = diag(Q)

where Q is the SEM pressure mass matrix.

5.7 Numerical simulations

For µ(x,y) = 1, we examine the solution to a Stokes problem for which the exact

solution is given by

u(x,y) =








sin(πx)cos(πy)

−cos(πx)sin(πy)







, and p(x,y) = sin(πx)sin(πy).

The exact solution automatically satisfies the Stokes equations and
∫ 1

−1

∫ 1

−1
p(x,y)dxdy = 0.

The source term in the momentum equation is given by

f (x,y) =








2π2 sin(πx)cos(πy)+π cos(πx)sin(πy)

−2π2 cos(πx)sin(πy)+π sin(πx)cos(πy)







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In this section, we presuppose every spectral element to be rectangular. The num-

ber of spectral elements in each of the Cartesian coordinate directions is defined by

the ordered pair (Ex,Ey). This results in the number of spectral elements, Ne equals

Ex ×Ey.

We calculated the L2-norm of both pressure and velocity with regard to the spectral

discretisation parameters N, which are plotted here on a log-log scale. We observed an

exponential convergence of the L2-norm to zero for both variables (velocity and pres-

sure) (see Figures 5.4 and 5.5 for (Ex,Ey) = (2,3) and (Ex,Ey) = (1,3), respectively).
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Figure 5.4: L2-norm of the error with respect to N for (Ex,Ey) = (2,3).
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Figure 5.5: L2-norm of the error with respect to N for (Ex,Ey) = (1,3).

We examine the dependence of the condition number of the operator P−1K over

a range of numerical and physical parameters. The condition numbers of P−1K is

indicated by κ . Furthermore, we consider the impact of the spectral discretisation pa-

rameters N and the number of elements Ne = Ex×Ey , the aspect ratio of the geometry

α , and also the stabilisation parameter λ on this condition number.

5.7.1 Effect of the integral weighting factor, λ

The parameter λ , which multiplies the domain pressure integral is an arbitrary weight-

ing factor in the pressure matrix. When λ = 0, the pressure level may be selected

arbitrarily. However, when λ is large then the matrix λB will be dominant, which is

also an undesirable situation. Consequently, it is interesting to study the impact of λ

on the condition number κ .

The dependence of κ on λ is given for a single spectral element for the domain

[−1,1]× [−1,1]. The results for the three different values of N are given; namely,
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N = 8,10,12. Figs. 5.6, 5.7 and 5.8 depict a plateau at the minimum value of κ . It is

only values which are outside of this interval that affect the condition number κ .

The width and position of the plateau denote the interval where λ has no impact on κ .
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Figure 5.6: Condition number of P−1K when using SEM preconditioner with respect

to λ for N = 8.

As can be observed in Fig. 5.6, the condition number κ , for N = 8, admits its minimum

value (≈ 1.08 in log scale) on an interval for which λ < 1 and not close to zero.
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Figure 5.7: Condition number of P−1K when using SEM precondioner with respect to

λ for N = 10.
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Figure 5.8: Condition number of P−1K when using SEM precondioner with respect to

λ for N = 12.
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Similarly to Figs. 5.7 and 5.8, the condition number κ , for N = 10,12, admits almost

the same minimum value for almost the same range of value of λ .

The problem is then well-conditioned if we choose our parameter λ in this interval

(≈ [0.05,0.4] ). Values of λ in this interval provide the smallest condition number for

the preconditioned system.

5.7.2 Effect of the spectral discretization parameter N

Condition Number

Furthermore, the discretisation parameter N has an important impact on the condition

number of the operator P−1K. In this part, only a single spectral element (Ex,Ey) =

(1,1) is considered. The log-log plot of the condition number against N effectively

produces straight lines. The dependence of κ upon N varies according to different

values λ because the slope of the straight lines depends on λ .
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Figure 5.9: Condition number of P−1K when using the SEM preconditioner with re-

spect to N on a log-log scale for λ = 10. Linear dependence of the condition number

of P−1K with respect to N with a slope equal to 0.5939
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Figure 5.10: Condition number of P−1K when using the SEM preconditioner with

respect to N on a log-log scale for λ = 0.5. Linear dependence of the condition number

of P−1K with respect to N with a slope equal to 0.5878
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Figure 5.11: Condition number of P−1K when using the SEM preconditioner with

respect to N on a log-log scale for λ = 0.1. Linear dependence of the condition number

of P−1K with respect to N with a slope equal to 0.5499
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Figure 5.12: Condition number of P−1K when using the SEM preconditioner with

respect to N on a log-log scale for λ = 0.001. Linear dependence of the condition

number of P−1K with respect to N with a slope equal to −0.1178

We are aware that, for large values of λ , the condition number κ of P−1K increases

with N. (see Figs. 5.9, 5.10, 5.11) . Nevertheless, for small values of λ , it decreases

with respect to N (see Fig. 5.12). One possible relationship can take the form κ =

CNα where C and α are constants and subsequently, in a log-log plot, the relationship

becomes lnκ = α lnN+ lnC where α is the slope of the linear dependence of lnκ with

respect to lnN.

Number of Outer PCG Iterations, Nit

In this section, results will be provided on the number of outer PCG iterations, Nit ,

which are needed to solve Eq. (5.26) by a termination criterion of a maximum relative

difference of 10−12 between successive conjugate gradient iterates. This tolerance is

sufficiently small to guarantee that it does not have any general impact on the precision

of the spectral approximation.
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Figure 5.13: Number of iterations for convergence of the PCG method with respect to

N for λ = 10.
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Figure 5.14: Number of iterations for convergence of the PCG method with respect to

N for λ = 0.5.
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Figure 5.15: Number of iterations for convergence of the PCG method with respect to

N for λ = 0.1.
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Figure 5.16: Number of iterations for convergence of the PCG method with respect to

N for λ = 0.001.

The number of outer PCG iterations, Nit , is almost constant and is independent of the

spectral discretization parameter, N, as can be seen in Figs. 5.13, 5.14, 5.15 and 5.16.
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We solve the system (5.26) using the SEM with one element, where the matrix Ap

used in the preconditioner P is calculated using either FEM or SEM preconditioner.

The L2-norm is used for both variables (velocity and pressure). As can be seen in Ta-

bles 5.2 and 5.4, the number of iterations grows slowly when the matrix Ap is calculated

using SEM compared to the case when the matrix Ap is calculated using FEM.

Ap calculated using SEM Ap calculated using FEM

N u-error p-error u-error p-error

4 0.255 1.832 0.255 1.832

6 3.32×10−2 0.396 3.321×10−2 0.396

8 1.4×10−3 0.025 1.403×10−3 0.025

10 3.729×10−5 9.239×10−4 3.729×10−5 9.239×10−4

12 6.671×10−7 2.177×10−5 6.671×10−7 2.177×10−5

14 8.653×10−9 3.582×10−7 8.654×10−9 3.582×10−7

16 8.527×10−11 4.344×10−9 8.536×10−11 4.342×10−9

18 6.603×10−13 4.04×10−11 1.431×10−12 4.919×10−11

20 4.492×10−15 2.952×10−13 2.657×10−12 4.091×10−11

Table 5.1: Resolution of the system (5.26) using the SEM with one element, where the

matrix Ap used in the preconditioner P is calculated using SEM (left) or FEM (right).

The L2-norm is used for both variables (velocity and pressure).
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Ap calculated using SEM Ap calculated using FEM

N Nit CPU Nit CPU

4 21 0.047 24 0.141

6 45 0.125 53 0.031

8 56 0.078 72 0.063

10 54 0.313 88 0.063

12 55 0.500 102 0.234

14 55 1.484 124 1.063

16 57 2.984 147 1.359

18 57 5.500 169 2.828

20 61 9.969 194 5.734

Table 5.2: Resolution of the system (5.26) using the SEM with one element, where the

matrix Ap used in the preconditioner P is calculated using both SEM (left) and FEM

(right). Number of PCG iterations and CPU time.

Once again, the number of iterations is almost constant for N ≥ 8 when the matrix

Ap is calculated using SEM compared to the case when the matrix Ap is calculated

using FEM. If we compare these results to the ones in the case with one element, we

see that by increasing the number of elements, the convergence is more rapid (Table

5.3 ), and the number of iterations increases slowly in the case of SEM (see Table 5.4).
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Ap calculated using SEM Ap calculated using FEM

N u-error p-error u-error p-error

4 3.285×10−3 7.154×10−2 3.285×10−3 7.154×10−2

6 3.75×10−5 1.01×10−3 3.75×10−5 1.01×10−3

8 2.461×10−7 8.706×10−6 2.461×10−7 8.706×10−6

10 1.121×10−9 4.893×10−8 1.121×10−9 4.893×10−8

12 3.732×10−12 1.936×10−10 8.642×10−12 2.371×10−10

14 9.639×10−15 5.723×10−13 1.732×10−12 5.832×10−11

16 6.34×10−15 7.392×10−14 2.936×10−12 1.988×10−10

18 1.597×10−14 6.275×10−13 4.027×10−12 1.118×10−10

20 6.477×10−15 7.197×10−14 6.98×10−12 2.196×10−10

Table 5.3: Resolution of the system (5.26) using the SEM with four elements (K = 4),

where the matrix Ap used in the preconditioner P is calculated using both SEM (left)

and FEM (right).
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Ap calculated using SEM Ap calculated using FEM

N Nit CPU Nit CPU

4 75 0.063 126 0.031

6 90 0.125 219 0.172

8 85 0.719 271 0.550

10 85 2.125 343 1.828

12 93 3.813 403 6.531

14 89 6.406 480 9.500

16 97 10.219 561 21.375

18 103 16.297 653 46.063

20 113 27.188 765 63.469

Table 5.4: Resolution of the system (5.26) using the SEM with four elements (K = 4),

where the matrix Ap used in the preconditioner P is calculated using both SEM (left)

and FEM (right). Dependence of the number of PCG iterations and CPU time on N.
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As can be seen in Fig. 5.17, there exists a critical value of the parameter λ ≈
0.0173, for which the condition number of P−1K is almost constant with respect to N.
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Figure 5.17: log-log plot of the condition number of P−1K when using SEM precon-

dioner with respect to N for different values of λ .

Next, we calculated the slope of the curve describing the relation between the condition

number of P−1K and the discretization parameter, N for different values of λ . It can

be seen that for large values of λ , the slope is almost constant which means that the

condition number of P−1K is not influenced by the discretization parameter, N.
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Figure 5.18: Dependence of the slope of the log-log relation between the condition

number of P−1K and N on λ .

We calculated the ratio of the largest to the smallest eigenvalue of P−1K with re-

spect to N for different values of λ (see Figs. 5.19, 5.20, 5.21, 5.22).
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Figure 5.19: The ratio of the largest to the smallest eigenvalue of the preconditioned

system (5.26) with respect to N for λ = 0.01.
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Figure 5.20: The ratio of the largest to the smallest eigenvalue of P−1K with respect to

N for the critical value λ = 0.017291812.
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Figure 5.21: The ratio of the largest to the smallest eigenvalue of P−1K with respect to

N for λ = 0.1.

It can be seen that the ratio of the largest to smallest eigenvalue with respect to

N is increasing for λ = 0.01 for N ≥ 8, almost constant for the critical value λ =

0.017291812 (note the scale on the vertical axis) and then decreasing for λ = 0.1.
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Figure 5.22: The ratio of the largest to the smallest eigenvalue of P−1K with respect to

N for different values of λ .
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The number of iterations was calculated with respect to discretization parameter, N,

for different values of λ . It can be seen that the number of iterations is almost constant

when varying the discretization parameter, N ( see Tables 5.5-5.6). It is approximately

40 iterations for most cases, as can be seen also in Figures 5.13, 5.14, 5.15 and 5.16.

N \λ 0.0025 0.005 0.01 0.015 0.0173 0.03 0.05 0.1 0.2 0.5

10 43 50 50 43 43 50 39 43 44 50

12 41 39 41 43 39 41 43 43 50 45

14 39 41 41 43 45 41 39 45 42 43

16 43 41 41 41 41 45 41 45 42 41

18 37 39 41 39 41 39 37 37 39 40

20 45 37 43 37 37 37 37 35 39 40

Table 5.5: Number of iterations for convergence of the PCG algorithm with respect to

N for different values of λ .

N \λ 2 5 10

10 45 44 42

12 44 41 45

14 45 45 42

16 47 43 40

18 44 38 40

20 40 38 37

Table 5.6: Number of iterations for convergence of the PCG algorithm with respect to

N for different values of λ .



5.8 Stokes flow in contraction geometries and unbounded domains 125

5.8 Stokes flow in contraction geometries and unbounded

domains

In this part, we resolve Stokes flow numerically in a contraction which means an in-

finite channel with an abruptly changing width. Two approximations are involved in

the numerical solution of these problems. First, the solution must be approximated by

some representation. The unknowns in such a representation are determined by satis-

fying the differential equation and boundary conditions, in some sense. Secondly, it

is possible to approximate the unbounded domain by a finite domain. We have a spe-

cial interest in the impact on the solution of the truncation of the unbounded domain.

It is well known that from the study of non-Newtonian fluids by means of tortuous

geometries, the flow behaviour depends on entry and exit lengths [27]. It is neces-

sary to increase the entry length as Weissenberg number or the elasticity parameter

also increases in order to impose a fully-developed velocity profile on the entry and

exit sections. The resolution of these problems numerically utilises domain truncation

and also enforces an artificial boundary condition at a considerable but finite distance.

Subsequently, the problem is solved in the finite domain.

The Stokes problem is







−∇ · (µ∇uuu)+∇p = fff on Ω

−divuuu = λ

∫

Ω
p dΩ on Ω

(5.36)

where uuu = (u1,u2)
T can be interpreted as the velocity field of an incompressible fluid

motion, p is the associated pressure and the function µ is the viscosity of the fluid. We

enforce some artificial Dirichlet boundary condition at the input (inflow, uin) and the

output (outflow, uout) of the truncated domain. The flow rate is constant; therefore we

require that

∫

Γin

uin =
∫

Γout

uout .

Again we assume that all spectral elements are rectangular. The domain was sub-

divided into six sub-domains (six elements). We calculated the L2-norm of the error
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of both velocity and pressure with respect to the spectral discretization parameter, N,

plotted here on a log-log scale. An exponential convergence of the L2-norm of the error

for both variables (velocity and pressure) is again observed.

5.8.1 Mixed boundary condition

It is evident that the x-axis represents an axis of symmetry for the problem. We solve

Eq. (5.36) subject to the following boundary conditions on uuu(x,y)=
(
u1(x,y),u2(x,y)

)
:







u1(−a,y) = uin(y),u2(−a,y) = 0, ∀−1 ≤ y ≤ 1

u1(b,y) = uout(y),u2(b,y) = 0, ∀ 0 ≤ y ≤ 1

u1(0,y) = u2(0,y) = 0, ∀−1 ≤ y ≤ 0

u1(x,1) =
∂u2

∂n
(x,1) = 0, ∀−a ≤ x ≤ b

u1(x,−1) = u2(x,−1) = 0, ∀−a ≤ x ≤ 0

u1(x,0) = u2(x,0) = 0, ∀ 0 ≤ x ≤ b

(5.37)

u1 = uin

u1 = uout

u2 = 0

u2 = 0

∂u1

∂n
= 0,u2 = 0

u1 = u2 = 0

u1 = u2 = 0

u
1
=

u
2
=

0

Figure 5.23: Stokes flow in contraction domain.

To ensure conservation of mass we must have

∫ 1

−1
uin(−a,b)dy =

∫ 1

0
uout(b,y)dy
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We separate the area of interest into two semi-infinite rectangular sub-regions, in each

of which we represent the solution to Eq. (5.36) in a truncated series format which

involves orthogonal polynomials. In these expansions, the unknown coefficients are

established by satisfying the boundary conditions (5.37) and also those of the differen-

tial equation (5.36) at various selected points in the area (collocation points) and also

the solutions in both sub-regions which are matched by enforcing continuity conditions

over the interface.
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Figure 5.24: Condition number of P−1K when using SEM precondioner with respect

to λ for N = 6.
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Figure 5.25: Condition number of P−1K when using SEM precondioner with respect

to λ for N = 8.
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Figure 5.26: Condition number of P−1K when using SEM precondioner with respect

to λ for N = 10.

As we can see from Figs. 5.24-5.26, the condition number κ admits its minimum

value (≈ 5.5 on log scale) on an interval for which λ < 1 and not close to zero. At

the minimum value of κ , a plateau is shown by Figs. 5.24, 5.25 and 5.26 in which

the only values of λ that have an impact on the condition number κ are outside this

interval. The plateau’s position and the width show the interval within which λ has no

discernible impact on κ . The log-log plot of the condition number against N produces

lines which are almost straight in which their slopes are dependent on λ . It should be

noted that for large values of λ , κ increases with N (see Fig. 5.27); nevertheless, for

small values of λ , it decreases with respect to N(see Fig. 5.29).
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Figure 5.27: Condition number of P−1K when using SEM precondioner with respect

to N on a log-log scale for λ = 2.
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Figure 5.28: Condition number of P−1K when using SEM precondioner with respect

to N on a log-log scale for λ = 0.5.
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Figure 5.29: Condition number of P−1K when using SEM precondioner with respect

to N on a log-log scale for λ = 0.0001.

We calculated the ratio of the largest to the smallest eigenvalue with respect to N

for different values of λ (see Figs. 5.30, 5.32, 5.31). It can be seen that the ratio of the

largest to smallest eigenvalue with respect to N is increasing for λ = 0.00001, almost

constant for the critical value λ = 0.5 and then increasing for λ = 2.
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Figure 5.30: The ratio of the largest to smallest eigenvalue of P−1K with respect to N

for λ = 2.
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Figure 5.31: The ratio of the largest to smallest eigenvalue of P−1K with respect to N

for the critical value λ = 0.5.
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Figure 5.32: The ratio of the largest to smallest eigenvalue of P−1K with respect to N

for λ = 0.0001.

The number of outer PCG iterations, Nit , is almost constant and increases slowly

with respect to the spectral discretization parameter, N, as can be seen in Figs. 5.33 ,

5.34 and 5.35.
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Figure 5.33: Number of iterations for the PCG method with respect to N for λ = 2.
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Figure 5.34: Number of iterations for the PCG method with respect to N for λ = 0.5.
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Figure 5.35: Number of iterations for the PCG method with respect to N for λ =

0.0001.
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Figure 5.36: Velocity vector for N = 10 on a truncated domain.
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Figure 5.37: Approximated horizontal velocity component for N = 30 on different

truncated domains.
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Figure 5.38: Approximated horizontal velocity component for N = 30,26 and 20 on

the truncated domain Ω = [−7,5]× [−1,1]\ [−1,5]× [−1,0].
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Figure 5.39: Approximated horizontal velocity component for N = 16,12 and 10 on

the truncated domain Ω = [−7,5]× [−1,1]\ [−1,5]× [−1,0].
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In these simulations, the exact solution is unknown and so we cannot calculate the error

with respect to an exact solution but the iterative method was applied by imposing a

criteria on the residual (relative error between the approximate solution obtained at

iteration k and the approximate solution obtained at iteration (k− 1). As can be seen

in Figs. 5.37-5.38-5.39 the smoothness of the approximate solution depends on the

discretization parameter, N. The larger the value of N, the smoother the approximation

becomes.

5.8.2 Dirichlet conditions on all boundaries

Consider the Stokes problem







−∇ · (µ∇uuu)+∇p = fff on Ω

−divuuu = λ

∫

Ω
p dΩ on Ω

uuu = ggg on Γ

(5.38)

where uuu = (u1,u2)
T can be interpreted as the velocity field of an incompressible fluid,

p is the associated pressure and the function µ is the viscosity of the fluid. We note that

the x-axis represents an axis of symmetry for the problem. The problem geometry is

shown in Fig. 5.40. We solve Eq. (5.38) subject to the following boundary conditions

on uuu(x,y) =
(
u1(x,y),u2(x,y)

)
:







u1(−a,y) = uin(y),u2(−a,y) = 0, ∀−1 ≤ y ≤ 1

u1(b,y) = uout(y),u2(b,y) = 0, ∀−1 ≤ y ≤ 1

u1(0,y) = u2(0,y) = 0, ∀−1 ≤ y ≤ 0

u1(x,1) = u2(x,1) = 0, ∀−a ≤ x ≤ b

u1(x,−1) = u2(x,−1) = 0, ∀−a ≤ x ≤ 0

u1(x,0) = u2(x,0) = 0, ∀ 0 ≤ x ≤ b

(5.39)
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Figure 5.40: Stokes flow in contraction geometries and unbounded domain.
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Figure 5.41: Field vector for N = 10 on a truncated domain Ω = [−3,1]× [−1,1] \
[−1,1]× [−1,0].
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Figure 5.42: Approximated solution for u1 for N = 30 on different truncated domains.



5.8 Stokes flow in contraction geometries and unbounded domains 140

0

1

0.5

0.5

y

0

1

-0.5

1.5

6

x

420-2-1 -4-6-8

2

(a) N = 30

-0.5

1

0

0.5

1

Ap
pro

xim
ate

d u
1

1.5

y

0

2

6

x

420-2-1 -4-6-8

(b) N = 26

-0.5

1

0

0.5

1

Ap
pro

xim
ate

d u
1

1.5

2

y

0

64

x

20-2-1 -4-6-8

(c) N = 20

Figure 5.43: Approximated solution for u1 for N = 30,26 and 20 on the truncated

domain Ω = [−7,5]× [−1,1]\ [−1,5]× [−1,0].
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Figure 5.44: Approximated solution for u1 for N = 16,12 and 10 on the truncated

domain Ω = [−7,5]× [−1,1]\ [−1,5]× [−1,0].
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Again, the exact solution is unknown and then the iterative method was applied by

imposing a criteria on the residual. As it can be noted in Figures 5.42-5.43-5.44 the

smoothness of the approximate solution depends on the discretization parameter, N.

The smoothness of the solution improves as N increases. By comparing the Dirichlet

boudary condition to the mixed one, one can see that for the same discretization pa-

rameter, the mixed boundary condition produces a smoother approximate solution than

the case of a Dirichlet boundary condition.

5.9 Conclusions

A new formulation of the Stokes problem has been presented and analysed in this

chapter. Such a formulation guarantees a unique pressure solution to this problem as

it possesses a vanishing mean. The traditional primitive variable formulation of this

problem is adjusted by the addition of a scalar multiple of the domain integral of the

pressure to the right side of the continuity equation. The modified Stokes problem has

a weak formulation and is subject to unique pressure in addition to a unique velocity

solution. A successful application has been made of a spectral element approximation

(SEM) to the Stokes problem, and the PCG-algorithm was applied to resolve the ob-

tained linear system. Moreover, the L2-norm of the error converges exponentially. The

effect of the scalar multiplier, λ , on the conditioning of the discrete problem and the

precision of the spectral element approximations is explored. We discovered a range of

values of λ for which the precision and effectiveness of the preconditioned conjugate

gradient scheme is optimal. The effectiveness of the scheme can deteriorate signif-

icantly for values of λ outside this range, particularly if the operator is conditioned

poorly. Furthermore, the precision of the pressure field can be powerfully influenced

by the choice of λ , despite the fact that the velocity approximation error is less sensitive

to the value of this parameter. Moreover, this chapter also investigates the Stokes flow

in contraction geometries and unbounded domains. A primitive variable formulation is

applied to present a spectral element technique over elements or semi-infinite rectan-
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gular sub-regions. The area of interest is separated into two semi-infinite rectangular

sub-regions, and within each of these the solution in a truncated series format involv-

ing orthogonal polynomials is presented. In these expansions, the unknown coefficients

are established by satisfying the boundary conditions and differential equations at se-

lected points in the area; moreover, the solutions in the two sub-regions are matched

by enforcing continuity conditions over the interface. Furthermore, spectral element

approximation (SEM) was used to resolve the Stokes problem, in combination with the

PCG-algorithm. The L2– norm of the spectral element Method (SEM) error is depen-

dent on the level of the approximation N (between 2 to 32). Exponential convergence

of the approximation to the solution of the Stokes problem was attained with relatively

few degrees of freedom.
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Chapter 6

Conclusions and Future Work

In this thesis, we have successfully applied a spectral element approximation to some

partial differential equations. We introduced the extended spectral element method

(XSEM) that we applied to some example problems that possessed a weak discontinu-

ity.

In Chapter 2, we introduced the spectral element method in one dimension and

illustrated some numerical examples for linear elliptic equations which demonstrated

that the L2-error converges exponentially with respect to the order of polynomial.

Chapter 3 contains a basic introduction to the spectral element discretisation in 2 D

as well as a theoretical analysis of spectral methods. A discussion of the development

of spectral domain decomposition methods is given and the subsequent development of

spectral element methods showing the transition from the treatment of the strong for-

mulation to that of the weak formulation. The extent of our study is mainly restricted to

difficulties with paradigms which depict the basics and verify the connection between

classical spectral methods and their domain decomposition progeny. Furthermore, the

chapter considered the discretisation of Poisson’s equation by applying spectral do-

main decomposition techniques. The chapter provides a comprehensive explanation of

the spectral element discretisation. We applied the PCG-algorithm in order to resolve

the derived linear system. The L2-norm of the spectral element method (SEM) error is

dependent on the degree of the approximation, N, as well as the number of elements,

and it is shown that the L2-norm of the error converges exponentially.
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Chapter 4 began by introducing the spectral element method and subsequently demon-

strated the difficulties related to determining an approximation to the solution of a

problem that is discontinuous in the case when discontinuity is not fitted to the compu-

tational mesh. In a such situation, oscillations are observed local to the discontinuity

that gives rise to the Gibbs phenomenon. Furthermore, the spectral element version of

the extended finite element method was introduced, which we refer to as the extended

spectral element method (XSEM). We then demonstrated that when approximating a

discontinuous function, XSEM is able to approximate the discontinuity precisely. We

modified the analysis of Reusken [85] to derive spectral equivalents of his error esti-

mates, and following this, we discussed a possible inf-sup condition. We implemented

several enrichment functions with the purpose of improving the approximation of the

discontinuous functions, particularly for the two-dimensional Poisson problem. Unfor-

tunately, we have not achieved the desired goal of overcoming the Gibbs phenomenon.

However, an alternative approach in which the system (4.1) is solved numerically, by

utilizing SEM accompanied with a particular domain decomposition is adopted. We

observed that good results are obtained in this case, where the L2-error converges ex-

ponentially for the parameter ε , which is a measure of the width of an element, that

contains the discontinuity, perpendicular to the discontinuity.

In Chapter 5, a general study of Stokes problem was undertaken. Its importance

in several scientific fields was discussed. The mathematical formulation of the Stokes

problem was discussed and numerical methods based on the SEM were introduced.

An alternative continuity equation was introduced and shown to be equivalent to the

traditional formulation. Its effectiveness for finding a unique solution for pressure is

highlighted. The discretization of the Stokes problem is performed using SEM. Iter-

ative methods and their importance in solving algebraic equation systems in general,

were presented. The PCG method is used to solve the linear systems and efficient

preconditioners are constructed for the Stokes problem. The dependence of the num-

ber of iterations for convergence on the discretization parameters is studied. The aim
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here was to obtain the optimal preconditioning strategy for the Stokes’ system. The

condition number of the coefficient matrix in the Stokes system is studied and the in-

fluence of parameters on the condition number is investigated. Finally, some problems

in complex geometric are considered. The Stokes problem has been solved numeri-

cally in an unbounded contraction geometry. The boundary conditions are applied and

the effect on both pressure and velocity variables is considered. Using what was pre-

viously presented and examined in this chapter we find that approximate solutions to

the Stokes problem , which depends on smooth basis functions in the computational

domain, utilizing SEM indicated exponential convergence. This is in comparison to

the FEM which yields only algabraic convergence.

Future goals which we wish to consider in the future are :

• Application of the XSEM to more realistic example problems. To the best of

our knowledge, the literature has not addressed the issue of errors in the spectral

estimation of a function from an interpolation space or a broken Sobolev space.

Consequently, it is our intention to consider this, and also XSEM, in more detail

in the future.

• Treatment of higher-order (curved) interfaces and to compare use of the over-

integration instead of the standard quadrature scheme used in the XFEM litera-

ture, which involves subdividing the element containing the discontinuity.

• Examination of the inf-sup condition for XSEM, the velocity-pressure and velocity-

pressure-stress formulations, and also removing areas of small support as advo-

cated by Grob and Reusken [85].

In our opinion, XSEM has great potential and it is important to continue to resolve

some of the outstanding difficulties. We also have a desire to apply XSEM to more

physically realistic problems .
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Appendices
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Appendix A

Legendre polynomials

For our numerical integration procedure we adopt Gauss-Lobatto Legendre quadrature.

The fundamental concept of any numerical integration procedure is the approximation

of the integral by a quadrature rule.

A.1 Gauss-Lobatto Legendre quadrature

The Legendre polynomials are polynomials that are orthogonal over the interval [−1,1]

with respect to weight function w(x) = 1. Legendre Polynomials are generated using

the following recursive formula:







L0(x) = 1, L1(x) = x

(n+1)Ln+1(x) = (2n+1)xLn(x)−nLn−1(x),n = 1, · · · .

The last relation, along with knowledge of the first two polynomials L0 and L1, allows

the Legendre Polynomials to be generated recursively. Important properties are given

by:

(2n+1)Ln(x) = L′
n+1(x)−L′

n−1(x) (A.1)

and:

(1− x2)L′
n(x) = nLn−1(x)−nxLn(x). (A.2)
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A.1.1 Legendre-Gauss-Lobatto- Lagrange interpolants

Denote by N the degree of polynomial interpolation and let xi, i = 0, · · · ,N, denote the

associated nodes, known as the Gauss-Lobatto Legendre points, which are the zeros of

(1− x2)L′
N(x).

These roots can be found using the Newton-Raphson method. Given a function f (x) =

(1− x2)L′
N(x) defined over the reals line, and its derivative f ′(x), we begin by deter-

mining a first guess, x
(0)
i for a root of the function f . Provided the function satisfies

all the assumptions made in the derivation of the formula, an improved approximation

x
(1)
i is

x
(1)
i = x

(0)
i − f (x

(0)
i )

f ′(x(0)i )
.

The process is repeated as

x
(n+1)
i = x

(n)
i − f (x

(n)
i )

f ′(x(n)i )

until a sufficiently accurate approximation to xi is reached.

It can be shown that f (xi) = LN−1(xi)−LN+1(xi) = 0 which follows from the recur-

rence relation

f (x) = (1− x2)L′
N(x) =

N(N +1)

2N +1

(

LN−1(x)−LN+1(x)
)

= N
(

LN−1(x)− xLN(x)
)

and by (A.1), one obtains

f ′(x) =−N(N +1)LN(x)

Then

f (x)

f ′(x)
=

xLN(x)−LN−1(x)

(N +1)LN(x)

An approximation of the zero of LN(x) is given by [92]:

σi =
[

1− N −1

8N3
− 1

384N4

(

39− 28

sin2(θi)

)]

cos(θi)+O(N−5)

where θi is given by:

θi =
4i−1

4N +2
π , 1 ≤ i ≤ N.
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Notice that there exists exactly one zero of L′
N(x) between two consecutive zeros of

LN(x). As for an iterative method, it is essential to start with a good initial approxima-

tion, one can take the initial guess as

x
(0)
i =

σi +σi+1

2
, 1 ≤ i ≤ N −1.

Notice that the roots of the Chebyshev polynomials can be used as initial guess x
(0)
i =

cos

(
iπ

N

)

, 1 ≤ i ≤ N −1.

The Lagrange interpolant through Legendre-Gauss-Lobatto nodes is described by:

h j(x) =
N

∏
i=1
i 6= j

x− xi

x j − xi

=− (1− x2)L′
N(x)

N(N +1)LN(x j)(x− x j)
=− LN−1(x)−LN+1(x)

(2N +1)LN(x j)(x− x j)
. (A.3)

An important property is given by

h j(xi) = δi j =







1 if i = j

0 otherwise

A.1.2 Weights for Legendre-Gauss-Lobatto numerical integration

Weights for Legendre-Gauss-Lobatto numerical integration are given by:

wi =
2

N(N +1)

1

L2
N(xi)

, i = 0, · · · ,N

A.1.3 Differentiation matrix

Denote by D the so-called differentiation matrix with dimension (N+1)×(N+1) with

entries defined by Di j = h′j(xi), and given explicitly by

Di j =







−N(N +1)

4
if i = j = 0

N(N +1)

4
if i = j = N

0 if 1 < i = j < N

LN(xi)

LN(x j)(xi − x j)
if i 6= j
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